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Sum Rules for 77— 77-Scattering?)

by G. Wanders

Séminaire de Physique Théorique de 1’Université de Lausanne, Lausanne, Switzerland

(10. I1. 66)

Summary. Scattering amplitudes T(s, ¢, #) having simple symmetry properties in s, ¢ and «
can be expressed as functions of suitably choosen homogeneous variables. The assumption of the
validity of the Mandelstam representation determines the analyticity properties of the amplitudes
as functions of these homogeneous variables. These properties lead to a new type of dispersion
relations involving integrals along curves of the (s, ¢, #)-space. In the case of the 7 — m-system, these
dispersion relations imply a set of sum rules relating S-, P- and D-wave scattering lengthes,
S-wave effective ranges and integrals over physical quantities. The present experimental infor-
mation does not allow a detailed test of these sum rules.

1. Introduction

Our purpose is to establish some sum rules for 7 — z-scattering which are physi-
cally meaningful consequences of analyticity, crossing symmetry and unitarity.

The three conditions of analyticity, crossing symmetry and unitarity are of quite a
different nature and this makes it hard to exploit them exhaustively and simulta-
nously. Fixed transfer dispersion relations relate two channels; their connection to the
third one is completely ignored. The s-channel partial wave dispersion relations
involve contributions from the - and u-channel through the left hand cut. However,
these contributions cannot be evaluated in a closed form.

In this paper, we develop an approach which takes into account the full crossing
symmetry. The scattering amplitudes 7(s, ¢, #) we consider have simple symmetry
properties in the variables s, £ and ». Therefore, these amplitudes may be written as
functions of two suitably choosen homogeneous and symmetric combinations of
s, t and u. These new variables are called x and y: T(s, ¢, #) = F(x, y). The difficulty
mentioned at the beginning appears here too; the analyticity properties of F(x, y) are
intricate and it is not easy to express unitarity in terms of this function. Nevertheless,
it is possible to extract from the analyticity properties of F(x, y) some new type of
dispersion relations in one variable. These relations involve integrals which extend
over curves of the (s, ¢, #)-space.

Our sum rules are deduced from these dispersion relations. They relate scattering
lengthes and effective ranges to integrals over total cross-sections and derivatives of
forward absorptive parts with respect to momentum transfer.

1) Work supported by the Fonds National de la Recherche Scientifique.
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In Part 2 we expose our method in the case of a totally symmetric scattering
amplitude. The amplitude of the process n° + #x® - 7° + #° is an example of such a
function. The results of this Part have been published previously [1]2). In Part 3, our
method is extended to the case of a partially symmetric amplitude, such as the
amplitude of the process at+ + at - 7t 4+ zt. Some results concerning antisymmetric
amplitudes, like the isospin 7" = 1 state amplitude, are described briefly in Part 4.
Part 5 is devoted to a systematic application of our sum rules to the 7= 0, 1 and 2
amplitudes of the 7z — 7 system.

2. Totally Symmetric Scattering Amplitude

In this Part, we consider the scattering amplitude 7'(s, ¢, #) of identical, spin zero
mesons. The variables s, ¢ and # are the usual Mandelstam variables:

sz(p1+p2)2: t:(pl+p3)2s u:(?1+]54)2=4—3—t,

where p, and $, (— p5, — p,) are the energy-momentum vectors of the initial (final)
mesons. The meson mass has been set equal to one.

We assume that crossing symmetry implies the symmetry of T'(s, ¢, #) under any
permutation of s, £ and u:

T(s,t,u)=T(s,u,t), T(s,t,u)=T(u,s,t). (2.1)

2.1. Homogeneous Variables

It follows from (2.1) that 7'(s, ¢, #) can be written as a function of two independent,
homogeneous and symmetric combinations of s, ¢ and » without introducing new,
kinematical, singularities. A convenient choice is:

x=——i—(st+tu+us)
1
= migstu. (2.2)

We shall write:
T(S, t: M) = F(x) y) *

We shall start with a study of the change of variables (2.2). The real (s, ¢, #)-plane
is mapped onto a domain R of the real (x, y)-plane. In order to find this domain, we
take the straight line 4, £ = const., as a search line and we look for its image 4’ in the
(¢, v)-plane. With v = u s < (4 — #)2/4 we have:

4x=1t({t—4) —v 1

a’; L (4 —1)2. 2.3
b 16y =t v (4 —) (2.3)

d’ is a half straight line. As ¢ varies, the extremity 4" of ¢’ describes the boundary C
of R (Fig. 1):

C; y=yalt) = - [4—33x+4) £ Bt 4%, x>—4[3. (2.4)

2) Numbers in brackets refer to References, page 246.
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This curve is composed of two branches, C, and C_, corresponding to the + or
—signin (2.4). A’ ison C, ift << 4/3, it lieson C_if ¢ > 4/3. A line &’ whose extremety
ison C_ (C_) is tangent to C_ (C,) at a point B’.

The points of R are in one-to-one correspondence with the points of one of six
sectors of the real (s, ¢, u)-plane; the sector # <t <s for example. In this corre-
spondence, the image of d’ is the broken line 4 BC (B is the image of B’).

by

Figure 1
Totally symmetric amplitude

The real (s, ¢, #)-plane and its image R in the real (», y)-plane. [¥ = — (1/4) (st+tutus), y =
(1/16) s ¢ u]. P is the physical region and S is the double-spectral domain. The straight line 4’ is
the image of d, or of the broken line 4 B C.

The preceding results imply that a point (x, v) corresponds to physical values of
s, tand u if
$>0, 0<y<y.(). | (2.5)

This defines the physical domain P in the homogeneous variables x and y. The
axis y = 0 corresponds to forward scattering (¢ = 0), the part of C, which limits P
corresponds to scattering under 90° in the.c.m. system (u = {).

The double spectral functions of the Mandelstam representation are non vanishing
in parts of sectors like s > 4, ¢ > 4. The image S of these sectors is:

& x>4, y(o)<y<—x. (2.6)
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The image of the extended Symanzik domain (s << 4, £ << 4, u << 4) is
— 5 <x<4, y (0 <y< Min (y.(x), — %) (2.7)
Real (x, y) points which are outside of R correspond to complex values of s, £ and .

2.2. Dispersion Relations in the Homogeneous Variables

We assume that a Mandelstam representation without pole terms holds for
T(s, t,u):

3 SN N N yN uN N
T(s, ¢, u) =fdoc ap o(a, p) [(a_s) BTt e T g (ﬁ_s)]

N-1

t2 j damy(o) [ @+ w) + D e s+ (s 4 1)

N-1

-+ 2 Chq (sP 49 + t# u? 4 ut s9) (2.8)
quzo s

o, ) = 0(B, ®), ¢,, = ¢,,- This representation may be written in terms of the
homogeneous variables x and vy:

F(x,y) — / dudf oo, B) Plae, B, %, v) [16y + 4 x ot — o (o — 4)]1

< [6y+ 458~ (B A7+ 3 [ danyle) Qe 5, )
p=0

X [16y +4x 00— a2 (a@—4)]" + R(x, ). (2.9)

P, Q,and R are polynomials in their arguments. Inspection of (2.9) shows that the
analytic properties of F(x, ) are not simple; this function has complex singularities
which are not located on a topological product of planes. Nevertheless, we get simple
properties if we consider the values taken by F(x, ) on the complex planey = a x + b
(@ and b real). It follows from (2.9) that F(x, a x + b), as a function of x, has only real
singularities. These are due to the vanishing of the denominators appearing in (2.9)
at real (x, y) points. For a given, real, x, this happens for:

y = v1(x) = Min ! (02 (o — 4) — 4 x o

® 16
—zx for x < 4
- 2.10
() y_(») for x > 4. (2.10)
(This result becomes intuitively clear if we remember that the line y = — x is the

image of the line s = 4 and that S is the image of the double spectral region.) (2.10)
defines a domain X' of the real (x, y)-plane (Fig. 2). F (¥, a ¥ + b) is holomorphic in the
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complex x-plane provided with cuts along the real axis. Let D(a, b) be the real section
of the plane y = a x + b. The cuts of F(x, a x + b) correspond to those parts of D(a, b)
which belong to 2. We shall confine ourselves to planes with @ >> — 1. For such a
plane, there is only a right-hand cut x,(a, ) < x << 0. x4(a, b) is the abscissa of the
point where D(a, b) intersects the boundary of 2.

The part of D(a, b) lying in R corresponds to a curve D’(a, b) in the sector
—u <t <s of the real (s, ¢, #)-plane:

D'(a, b); b= 1t & b), s = s(x, a,b). (2.11)
For x > + oo,
tx,a,b) ¥ —4a, s(x, a, b) ~ (4 x)12 . (2.12)

This shows that D’(a, b) has the asymptote = — 4 a. We know that unitarity
and analyticity imply the following, fixed ¢, asymptotic bound [2]:

| Im T'(s, t,4 —s — ) | < Cs'te, ¢ <1, for s—o0, t<4. (2.13)
Therefore, we have from (2.12) and (2.13):

|Im F (x,ax +8) | < C' 4972 for x >00, a > —1, (2.14)

Figure 2
Totally symmetric amplitude

D(a, b) is the real section of the plane y = a x+ b. The singularities of F(x, a ¥+ b) are located on
the part of D which lies in 2\
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This, and the fact that I'* (x*, a x* + b) = F (v, a x + b), allow us to write a once

substracted dispersion relation for each straight line D(a, b) whose slope is greater
than — 1:

Fx,ax+b) =F (x, ax,+ )

-L (% — %) fd' ImF@tiealytie)+h) (2.15)

7T (¥ —xg) (¥ — )

#1(a, b)

where a > — 1, %, < x4(a, b).

We now ask what is the relation between Im I (x 4+ 2 ¢, a (¥ + ¢ &) + b) and the
absorptive part of 7(s, £, #). To this end we consider a line D(a, b) which does not cut
the double spectral region S: @ > — 1, 8 > — 4 (1 + a). The s-coordinate of a point
on D’(a, b) and the x-coordinate of the corresponding point on D(a, b) are related by:

sE(s—4)—160D

= 4 (s++4a) ’ (2.16)

and x > x;(a, b) = — b/(1 + a) corresponds to s > 4. If s has a small imaginary part,
x gets an 1maginary part too:

Imx=G(s,a,b)Ims, G(s,a,b) >0 for s >4. (2.17)
Therefore, in X, but outside S:

ImF (x+iea(x+ie) +b)=1ImT(s(x,a,b) + ¢ tx, a,b),ux, a,b))
— A(s(x.a, b), {x, a, b)) (2.18)

where A(s, #) is the absorptive part of T'(s, ¢, #) in the s-channel.

The dispersion integral in (2.15) corresponds, in general, to an integral along a part
of a curve D’(a, b) in the (s, ¢, u)-space. The usual, fixed ¢, dispersion relations are
particular cases of (2.15) obtained by taking for D(a, b) a tangent to C. The generalized
dispersion relations (2.15) are a specific consequence of the symmetry of 7'(s, ¢, u).

As a by-product, (2.15) shows that F(x, y) is real at all real (x, y)-points on the
left of 2. In other words, the extended Symanzik region is only the real portion of the
domain R where 7'(s, ¢, %) is real. R contains in addition at least all complex (s, £, u)-
points which have real images in the (, y) space, on the left of 2. The domain R
extends to infinity and the asymptotic growth of 7(s, ¢, #) in R 1s strongly restricted
by (2.15).

2.3. Sum Rules

In this Section, we want to derive physically meaningful sum rules from (2.15).
To this end, we choose a straight line D(a, 0), passing through the origin (zero kinetic
energy point):
yv=ax, a>-—1,

and perform the subtraction at this point: x; = 0. (2.15) gives:

Im F (¥ +i¢ea (¥ +i¢g)
x (%' — %)

Dma@=mam+%me' (2.19)
0
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where D(x,y) = Re F(x,y). If we assume a normal threshold behavior for the
absorptive part A(s, ) we may write:

A(s, 8) = (s — 42 B(s, t),
the function B(s, #) being regular in a neighbourhood of s = 4, £ = 0. Thus we have:
Im F(x, y) = (x + )" G(x, y) , (2.20)

where G(x, v) is regular at x = y = 0. If we insert (2.20) into (2.19) and use the fact
that:

)
Pfdx’ﬁ_?i—x_()forx>0,
0

we get:

G(x', a x')—G(0, 0)
G =)

D(x, @) — D(0,0) = (1 + o)z = Pfdx’ for x>0.  (2.21)
0

We divide both sides of (2.21) by x and take the limit ¥ - 0 +. The integral on the
left hand side of (2.21) is such that its limit is equal to the integral over the limit of
the integrand. Therefore we have:

Xt+aY=(1+aw f a5 3 [G(x, ax) — G(0, 0)] (2.22)
0
with:
: 0 ; 0
X wa};EyTx D(x,y), Y —xJ’l;EngrW D(x,y) . (2.23)

The integral on the right of (2.22) extends exclusively over physical values of x
and y for @ = 0. Therefore, we get a sum rule involving only physical quantities if
we set @ = 0 in (2.22). This sum rule is not really new, because it can as well be
deduced from the ordinary fixed ¢ (¢ = 0) dispersion relation. However, (2.22) is valid
for a varying continuously in an interval around a = 0. We take advantage of this
fact in deriving (2.22) with respect to the slope a3). We obtain a second sum rule by
setting @ = 01n this new relation. Thus we have two equations involving X and Y and
integrals over quantities related to forward scattering:

X= f dx 4y (G, 0) — G(0, 0)] (2.24)

0

55 Glx,0). (2.25)

1 1 1
0

3) Here, and in the following, we assume that the derivation with respect to @ and the integra-
tion over x can be interchanged. A discussion of the legitimacy of such interchanges can be found
in [6].
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These are our sum rules. Equation (2.24) could be obtained from the forward
dispersion relation ; Equation (2.25) is new, it is a specific consequence of the complete
symmetry of 7(s, ¢, u).

In order to clarify the physical meaning of (2.24) and (2.25), we have to identify
the constants X and Y and to go back to the variables s, £ and «.

The partial-wave expansion for 7'(s, ¢, #) reads:

1112 &
T(s, £, u) — — [v+ ] Zzz+ )Pl(1+%), (2.26)
1=
with » = (s — 4)/4. We know that:
S21+1)12
Re T,(y) = g oo a,(v), (2.27)

where a,(v) is regular at » = 0. Some algebra shows that, according to the definitions
(2.23) and (2.2):

X= b, Y=—(b+30ay, (2.28)
with the notation:
a
a=al0), b=-2ap)| . (2.29)

After transforming the integrals on the right-hand sides of (2.24) and (2.25) into
integrals over », we get finally:

1 Zv+1
bo = W_/. dy Ry 1)32 [o(v) — o(0)] (2.30)
0
. LiZ 2v+1 0A4 (v, 0)
30 a, _/ W | g e OO + e o ] (2.31)
0
o(¥) = [7% (v (v + 1))~12] A(», 0) is the total cross-section. MARTIN [3] derived an other

sum rule for the D-wave scattering length. Our rule (2.31) involves only physical
quantities whereas MARTINs rule uses the absorptive part A(», #) at the unphysical
values v > 0, t = 4. As 0A4(», 0)/0¢t > 0, we derive from (2.31) the non-trivial ine-
quality:

a, > 0. (2.31)

This inequality is a joint consequence of the analyticity and the symmetry of
T (s, t, ) and of unitarity. It is a restriction these conditions impose on the low energy
interaction.

3. Partially Symmetric Scattering Amplitude

In this Part we show how the use of homogeneous variables can be extended to
the case of a scattering amplitude which is not totally symmetric. We consider again
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the scattering of identical spin zero mesons described by the s-channel of an amplitude
T'(s, t, u). This amplitude is symmetric under the exchange /<> ». We assume now
that the (identical) ¢ and #-channels are distinct from the s-channel. Therefore,
crossing symmetry implies no new symmetry for 7'(s, ¢, #) and we have only:

T(s, t,u) = T(s, u,t) (3.1)

3.1. Homogeneous Variables

As a consequence of (3.1), T'(s, ¢, #) can be written as a function F(x, y) of the

variables:

s y=— e tu (3.2)

1
=g btu) =+ 16

without introducing kinematical singularities.

Figure 3

Partially symmetric amplitude

The real (s, ¢, u)-plane is mapped onto the domain above the curve C, in the real (x, y)-plane.
(¥ = (1/4) ({+u), ¥y = —(1/16) t u]. P_and P, are the physical regions of the s- and ¢-channels.
S.,and S, arethe double-spectral regions. The line d”is the image of 4, or of the broken line FF 4 G.

The change of variables (3.2) maps the real (s, ¢, #)-plane onto a domain R of the
real (x, y)-plane (Fig. 3):

R; y > —%xz. (3.3)
The image of a straight line ¢ = real const. (or # = real const.) is a tangent to the

boundary C of R. (3.2) defines a one-to-one correspondence between the half-plane
t > u and R,
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The image P, of the physical region in the s-channel is defined by:

P - x <0, O>y>—%x2, (3.4)

whereas the physical domains of the identical - and #-channels have the common
image P,:
P;: x>1, y>0. (3.5)

The double spectral region (u > 4, { > 4) is mapped onto:

S, $>2, l—x>y>— ot (3.6)

and the image of the double spectral regions (s > 4, £ > 4) and (s > 4, u > 4) is

S 2<0, yvy>1—x. (3.7)

3.2. Dispersion Relations in the Homogeneous Variables

Arguments similar to those used in Section 2.2 show that F (x,a x + b) (@ and
b real) is holomorphic in the cut x-plane. We shall always take @ > — 1. Then, there
are two cuts (Fig.4): aleft-hand cut — co << x << 0 and aright-hand cut #,(a, b) << x < 0.
The lower limit x,(a, ) is the solution of the equation:

ax+ b=y x)
l 1—x for x <2
yl(x)z 1 (3-8)
I——xz for x > 2.
4
For x > — oo, y = a x + b, relation (3.2) gives:
s~—4x, t—>—4a
and, for x - + oo, we have:
t~4x, wu—>—4%4a.
Therefore, the bound (2.13) leads to:
| Im F(x,ax+0) | <C"|x|"" for |x| 00, a>—1. (3.9)

Thus, we have a twice subtracted dispersion relation for each straight line D(a, b)
(v = a x + b) whose slope is greater than — 1. For instance, we may write:

F(x,aerb):ml—[F(xl,axl—l— b) x — F(0,8) (x — )] + — % (x — %)

[/'d, ImF (¥ +1 ¢, a(xg—i;zs—{—b__l‘]d,_lmF ¥ +1¢g, a(x+ze)+b)],

¥ (¥ —2xp) (¥ — %) T (x =) (¥ —2%)

(3.10)
if D(a, b) does not cross the double spectral region S,
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Let A (s, f) and A4,(¢, u) be the absorptive parts of T'(s, ¢, ) in the s- and ¢-channels:

A, ) =ImT (s+ie t,4—s—1¢) for s >4, —s<<t<4
A, w)=ImT 4—t—ut+ieu) for t >4, —t<u<4. (3.11)

The change of variables (3.2) transforms A4 (s, ¢) into a function U(x, y) defined in
the domain ¥ << 0, y << 1 — x:

1 1
U4 th=5), — 15 b—s—8) =451, (3.12)
and it may be shown that:

ImF (x+ic,a(x+ie)+b)=—U(x,ax+b) (313
on the left-hand cut x << 0, as faras (1 + a) x <1 — b.

~

LTI,

"

oS>

Figure 4

Partially symmetric amplitude

The plane y = @ x4+ b cuts the real (x, y)-plane along D(a, b). F(», a x+b) is singular on those parts
of D(a, b) which are in the shaded areas.

For the right-hand cut it is convenient to replace the variable x by a new variable z
defined by:
F=%-N. (3.14)

The straight lines z = const. are parallel to the line z = 1 corresponding to the
elastic threshold in the #-channel. Equations (3.2) and (3.14) transform 4 ,(¢, #) into a
function V(z, y) defined for z > 1, 2 > y:

V(g 4w — o tu, — o tu) = A1) . (3.15)
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One has:

ImF(x+ica(w+ie+0)="V(s — (@z+0)) (3.16)

ifz>1,(14a)z> b, and with z = x (1 + a) + b.
Therefore, if D(a, b) does not cross the double spectral regions S,, and S,,, (3.10)
becomes:

Frax+b) = [F{or, Toe) Tre v — FO,0) (12— 1)]

1 (#', a x'+b)
+_—x(x(1+a)—1+0) [ ‘[dx 1+m—1+w(x—m

V14 a) @)
+(ta) [ar T AR e Eh) ] (3.17)

3.3. Sum Rules

In Section 2.3 we started from the dispersion relations corresponding to the family
of straight lines we may draw through the zero kinetic energy point ¥ = y = 0. Among
this family, there is one line which leads to a dispersion integral over physical quan-
tities only. This is the line ¥ = 0. The sum rules we established involve integrals
over the physical part of that line.

In the present case, we have two straight lines leading to integrals extended over
physical values of x and y. These are the lines y = 0 and x = 1. Furthermore, as we
have now two distinct channels, there are two zero kinetic energy points through
which families of straight lines may be drawn: the origin x = ¥ = 0 and the point
x =1, y = 0. Therefore, several ways of constructing sum rules have to be explored.

A. Sum Rules Generated from the Family v = a (x — 1) and Involving Integrals
over the Physical Parts of vy =0

The threshold behavior of A,(¢, #) [A4,( ») = ({ — 4)Y? x function regular at
t =4, u = 0] implies:
Viz,y) = (z — 1)1 L(z, ) (3.18)

with L(z, y) regular at z = 1, ¥ = 0. Using an argument similar to one used in Section
2.3, we transform (3.17) (with & = — a) into:

D(%a(x—1))—D(L0) =D(L0) (x—1) — DO, —a) (x— 1) + —x (x — 1)

» [(1 + a2 P fmdz, (L' +a) L (¢, (afl+a) (&'~ 1)) = (1/L+a) L(1, 0)

(27 —=1)112 (z’+ a—x (1 + a))

, U, ax—l)
- /d eled ] (3.19)
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if x > 1 and where D(x, v) = Re F(x, ). Dividing both sides of (3.19) by (x — 1) and
taking the imit x > 1 4, we get:

X1+aY1xD(1,0)—D(o,—a)+%(1+a [dz

1)3/2
1 a
e Mo afa 6-1) - 5, L0 0)]
0
1 7 1
H?./ dx——mU(x,a(x—])) (3.20)
with the notation:
- i = i 21
Xl x+1y1_1’£%+ ()% D(,y), Yl x+£l_i_r(%+ ay D(x y) (32)
y—> >

From (3.20) and from the relation obtained by deriving (3.20) with respect to the
slope a, we get two sum rules:

1 00 1 1
X,— D(1,0) — D(0, 0) + _;fdz e [ L 0) - L, )]
1
_ L f L U0, (3.2
1 - 1 1 1
1
1 0 1 . 1 0
x [ V@0 + 5 Vi 0)]} — / @ gy 5y Ul 0) (3.23)
where:
Y, = ?‘)y- D(, 0) . (3.24)

B. Sum Rules Generated from the Family v = a x and Involving Integrals
over the Physical Parts of y =0

The threshold behavior of A (s, #) leads to the form:
Ux,y) = (— %) K(x,y), (3.25)

where K(x, y) is regular at x = y = 0. Applying our standard procedure to (3.17),
in the case b = 0, we get:

D, ax) = (1 +a) [D(. 10.) # — DO, 0) (x— )]

1+a 1+a 1+a
0
1, a/1+a) /) Fisd "
—i——x(x—% 1+a) /dz =T (Faw 3] +Pj dx

1
e— 9 [rmraer

K+, ax) + K(, 0)] , (3.26)
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if ¥ << 0. The limit x - 0 — of (3.26), after division by z, gives:

1 1
XO + a YO - (]. + El) [D (m, “1‘%) - D(O, 0)] -_— ’?T- (1 "i— a) 2(2_—:[')_
1
1 1
XV (2, 1 fdx o [ Kwe®) —K0,0],  (3.27
with:
Xy = lim -a— D(x, 0) . (3.28)
Equation (3.27) leads again to two sum rules:
1 v 1
X, = D(1,0) — D(O, 0) — —ﬂ—fdz o V(& 0)
1
1
+ = f dx [0y K 0) + K0, 0)] (3.29)

Yo=D(1,0)— D(0,0) — X, + Y, — fdz = V(z, 0) + a—‘)y V(z, 0)] |

1 1 1 0
— [ [ U 0) + 2 U 0)]. (3.30)

As is readily seen, the sum rule (3.30) is equivalent to the difference of the pre-
ceding sum rules (3.22) and (3.23). Furthermore, the rules (3.29) and (3.22) could be
derived as well from an ordinary, fixed # (» = 0), dispersion relation. Therefore, the
use of homogeneous variables provides us with one specifically new sum rule, (3.30)
for example.

C. Sum Rule Involving an Integral over the Physical Part of x =1

One could be tempted to apply our technique to the family of straight lines
x=1+ay F (1+ av,y)isholomorphic in the y-plane provided with the right-hand
cut 0 <y << + oo and the left-hand cut — oo << y < y,(a4). The contribution of the
dispersion integral along the left-hand cut vanishes for @ = 0, because y,(0) = — oo.
The right-hand cut is entirely in the physical domain P, for a > 0. However, if we
take the derivative of the dispersion integral along the left-hand cut (which contains
unphysical quantities) with respect to the slope @, we do not know if this derivative
vanishes in the limit @ - 0. Therefore, we have only one sum rule, which could also be
derived from the fixed s (s = 0) dispersion relation:

_ L / wogwm [L (52— 1) — L(1, 0)]. (3.31)

16 H. P. A. 39, 3 (1966)
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In a last step, we relate the constants appearing in our sum rules to the partial
wave amplitudes in the s- and /-channel. We write the partial wave expansions:

T(4@w+1%——2v(1~aamﬂL—-2vﬂ-%amﬂ”:;éi[vjlrﬂ
x D21+ 1) TP P(cos0) (3.32)
lle;(?n

in the s-channel, and:

/

T(—2v(1+4cosh),4m+1), —2»(1—cosh)) = i[}{j;_l_]lz
x M (214 1) TP(v) P(cos0) (3.33)

I=0
in the ¢-channel. We have:
5 p(2l+1)/2 s p2l+1)/2 ,
Re T{(y) = W) 4’(v)  Re TP{) = ECESI a’ (v) (3.34)

where a®)(y) and a¥(v) are regular at » = 0. From the definitions (3.21), (3.24) and
(3.28) one derives, using (3.2), (3.32), (3.33) and (3.34):

D(O,0)~ 4,  D{1,0)= > aff

4 120
—_ (s) — Y 08)
X, - B s g — @
4 12 4 12
Xy=— by + Y af, Yi=—_ by — g ay, (3.35)
with the notation:
d
afh O = g 0(0), B0 = L a0 (0) . (3.36)

— a, 1s equal to the 2 [-th power of the /-wave scattering length, whereas b is related
to the l-wave effective range.

Equation (3.30) and the difference of (3.23) and (3.31) lead to two sum rules
involving S-, P- and D-wave scattering lengthes. Forming suitable combinations of
these rules, we get:

S . 1 -
24 a + 4 (a9 — o) = _2f {vm s o)

1 1 1 1
+ 5w [ g ) — 3 g 00+ 392+ 8y + 2 6,0)]

— oy [.0) = 5,01} 337)
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o 1 1
120 (1(2) = “ﬁz‘/d'p {— mﬁ‘ [(3 v + 1) ('V ‘l— 1)”2 ()"t('V)
0

1 2yl — -
- T2 ( S+3 »2 +8» + 2) Gt(O)] + (v (,‘}j_l)):s/z [Gt(v) - Gt(o)]
1 1 9 1 0
o [ A O+ e A )] 3-38)

with the notation:

2 72
o) = G prne At =0 0,(v) =~y A:lv, u=0)
— nz

O-t('V) - W At ('V, u = — 4’ V) y (3.39)

o,(») and o,(») are the total cross-sections in the s- and #-channels; o,(v) is pro-
portional to the absorptive part in the ¢-channel for backward scattering.
Furthermore, we have two rules for S-wave effective ranges:

y . 1 or 1 1 ()
4 b(()) =4 (Cl(()) e dg)) -+ 312f d’V {W O't('V) -+ FET [ (V(_);_ :)1!‘2 - 0'5(0)]} (340)
0

oo

1 2 1 = =
450 =124 + — f dv W:%"/? [0,(») — 0,(0)] . (3.41)
0

It is easily seen that the sum rules established in Part 2 are equivalent to the rules
established in this Part if the s-channel and the #channel are identical. Therefore,
Part 3 gives no further properties of a scattering amplitude which is completely
symmetric in s, ¢ and u.

4. Scattering Amplitude Antisymmetric under the Exchange t < u

Consider the amplitude 7%(s, ¢, #) which coincides in its s-channel with the
scattering amplitude of the 7" = 1 isotopic spin state of a z-meson pair. This amplitude
1s antisymmetric under the exchange ¢ <> ». Therefore, the function 7(s, ¢, u)/(t — u)
is symmetric under this exchange, and the discussion of Part 3 applies. However, we
have different sum rules, because we have now once subtracted dispersion relations.

One obtains a set of six independent sum rules. Some of these turn out to be
equivalent to previous ones. Two rules involve an F-wave scattering length and a
P-wave effective range. These parameters are not easily measurable and the integrals
which expresse them are not simple. A last rule is a relation between integrals over
cross-sections and derivatives of absorptive parts with respect to momentum transfer.
These integrals are intricate and it would be hard to test the rule. In conclusion, the
sum rules considered here do not appear as very useful and we shall not write them
down.
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5. Sum Rules for 7t -1 Scattering

Let TY(», #) be the scattering amplitude of the = — & system in its T = I isotopic
spin state (I = 0, 1, 2). These amplitudes define three functions A(s, ¢, u), B(s, ¢, u)
and C(s, ¢, #) which, as a consequence of crossing symmetry, have simple symmetry
properties [4]:

A4+ 1)t —4y—1)= 5 [T, 0) — T34
B4+ 1),4 —4v—1t)= = [T, 2) + T2, 9]
C(4(p+1),t—4v—t)=— [T, ) — T2, 1)] (5.1)

forv >0, —4v <t <0. A(s, t, #) is symmetric under the exchange ¢ «» u:
As, t, u) = A(s, u, t) (5.2)

and the functions B(s, ¢, ) and C(s, ¢, u) are related to A(s, ¢, ) through cyclic
permutations of s, £ and u:

B(s, t,u) = A(t,u,s), C(s, t,u)=A(u,s,t). (5.3)

The combination:
1 1 0
A@LM+B@LM+C@LM:?JWEJ ))+—_T( ggﬂﬂ (5.4)

is totally symmetrit in s, ¢ and #, and the sum rules (2.30) and (2.31) hold for this
function.
The function:

T(s, t,u) = B(s, t,u) + C(s, £, %) = Tﬂ4@—@ ) (5.5)

is symmetric in # and £, The discussion of Part 3 applies to this function; it verifies the
sum rules (3.37), (3.38), (3.40) and (3.41). In order to get the physical content of these
rules, we have to identify T'(s, ¢, #) in the ¢-channel in terms of the T7’s:

T(—4v—u,4w+1),u)=4(4w+1),u,—4v—u)+BA@+1),u, —4v—u)

= 5 T, ) + 5 T, ) + + T30, 1) (5.6)
fory >0, —4» <<u < 0. The use of (5.4), (5.5) and (5.6) shows that the sum rule
obtamed from (3.41) is equivalent to a combination of the relations obtained from the
other rules. Hence, we are finally left with a set of five sum rules which are listed in
Table 1. According to the remark put at the end of Part 3, these rules exhaust the
results of our method.

A remarkable fact is that the different terms behaving like »=3/2 [¢!(v) — ¢/(0)] as
v - 0 compensate each other exactly in the integrals appearing in (4), (B) and (C).
Thus, the scattering lengthes are less sensitive to the behavior of the total cross
sections at threshold than the etfective ranges. In spite of this, all our rules are plainly
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Table 1
Sum rules for m—m scatteving
J ion: al = i 1/2,—(21 +1)/2 i O indl I_— 1i 1/25—(21 +1)/2
Notation a, vll)6n+ [(v+1)1/29p=(21+1)/2 exp (zél(v))smél(v)],bl v_l)g}!_ (d]dv) [(»v+1)12p
exp (i 6{ ») sin(Slf ()], ol(v) = total cross-section of the isotopic spin 7T = I state, AI(y, 1) =

absorptive part of the T = I scattering amplitude. y = (momentum)?, { = (momentum transfer)?
in the C.M. system, in units of (meson mass)?.

oo

1 1
| e

0

(A) 184} = 2al-5a3— X [2v0o®(¥)—3 3v+2) ot(p)—5va2(y)]

(B) @Y == 1%33?2- /Ojiv {W(V1+—1)5’2— 2 a®(w) +3 (12 +3v+1) ol(v)+ 5 v *(v)]
0
n mifl))z [(4,,+3) 24%.0) 5, 2410 +5v3‘%]}
© =g | O;”{ AT 27 ) =3 074 3541) 010) 497 0%)]
0
+ szi))—z [(4v+3) w +3vaila(’t’ﬁ)— +(7v+6) ‘)A—zé’;’(i]}

1 ' 1
B Bl =fdeSdrae | G
( ) 0 aﬂ a0+ 4 2 j v (’j} (v+1))3!2
0

X [(4v+3)6®¥») =3 2v+1) 6®0)=3vol(¥)+5v a%)]

0
1
(B) 65 — —2a8+5a3+—4—5—z§—/.dv ..... .
0
X [2ve'W)+3velWw) + (7 v+6) 62(v) —6 (v+1)3/2 g2(0)]

low energy relations, because of the rapid decrease of all weight functions; they
behave at least like »~2 at high » values, i.e., like the inverse of the fourth power of
the energy in the C.M. system. Indeed, this decrease is so strong that the energy
domains where resonances occur and where the scattering amplitudes are large and
relatively well known do not contribute significantly to the integrals. For these
reasons our present knowledge of the @ — s scattering amplitudes does not allow a
reliable quantitative test of our sum rules.

Recently WoLrF [5] proposed a phase shift analysis of the @ — 7 scattering experi-
mental results. This analysis is based on the hypothesis that a4l > 0. We find that the
S-wave scattering lengthes and the cross sections WOLF obtains and our rule (4) are
compatible with this assumption.
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As was mentioned in Part 2, the positivity of 4(y, 0) and (0/0:5) Al(v, 0), which
follows from unitarity, implies that:

a2+2a§>0. (5.7)

One may ask if our sum rules, combined with these positivity conditions, imply
that other linear combinations of the scattering lengthes have a definite sign. The
answer 1s negative. All what one can show is that a combination is bounded by an
integral over the S-wave, T = 0 absorptive part AJ(»):

2 - A}
2a)—5at —18al — 30 (a3 + 2 a2 + « 60 (a3 — a?) <?T—fdv—v% (5.8)
: 8

for 0 << o << 5/4.

It should be noted that MARTIN [3] gives a sum rule for aJ which ensures that this
quantity is positive. Taking this result into account and eliminating a3 from (5.8)
by choosing o« = 1, we get: '

184l > 240 — 5a0__~fde”). (5.9)
0

82 (4 1)572

In other words, the S-wave scattering of the T = 1 and T = 2 states determines a
lower bound for the P-wave scattering length of the 7" = 1 state.

I have begun to play with homogeneous variables several years ago, with Prof.
H. LEHMANN, during a stay in Hamburg. I am grateful to Mr. Y. StoLL for a careful
verification of the calculations leading to the results presented in this paper. Several
stimulating discussions with Prof. A. MArTIN, from CERN, favoured the progress of
this work.
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