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S-Matrix und interpolierende Felder

von Walter Schneider

Seminar fiir theoretische Physik, ETH Ziirich

(27. XI1. 65)

Abstract. For a certain class of S-matrices LSZ [1]1) gave a formal construction of interpolating
fields A (x) satisfying the asymptotic condition lim A (¥) = Apu(¥), Aoue(®) = S dp(x) S.

t— 4 00 in
The purpose of this paper is to formulate this construction in a mathematically rigorous manner.

1. Einleitung

Ein bisher ungelostes Problem der Quantenfeldtheorie ist der Nachweis der
Existenz nichttrivialer Modelle, die simtlichen Wightmanschen Axiomen geniigen [5];
nichttrivial bedeutet in diesem Zusammenhang, dass das betreffende Modell zu einer
von 1 verschiedenen S-Matrix fiihrt.

Das Ziel dieser Arbeit ist die Konstruktion nichttrivialer Modelle, die einem Teil
der Wightmanschen Axiome geniigen. Um die Einschrankung des Axiomensystems
genau zu erfassen, sei daran erinnert, dass sich die Wightmanschen Axiome fiir ein
einziges reelles Skalarfeld wie folgt formulieren lassen:

0. Der Zustandsraum ist ein Hilbertraum ¥. In ist eine stetige unitdre Darstellung
U(a, A) der Einskomponente Pj: der Poincaré-Gruppe gegeben. Als unitdrer Operator
besitzt U(a, 1) die Darstellung Uf(a, 1) = exp ¢ P* a,; das Spektrum der selbstadjun-
gierten Operatoren P* liegt voraussetzungsgemdiss in {p/(p, p) > 0, * > 0} u {0}.

Es existiert ein bis auf einen Phasenfaktor eindeutiger Zustand £2, das sogenannte
Vakuum mit U(a, A) 2 = Q.

1. Jedem @€ $(RY) (Raum der stark abfallenden C*®-Funktionen [6]) ist ein

Operator A(@) zugeordnet. A(g) ist definiert auf cinem dichten Bereich D C H,

derart dass 4 () D C D und (¥, fi((ﬁ) ®) € §'(RY) (Raum der temperierten Distribu-
tionen [6]) fir ¥, @ e D.

A ist symmetrisch, das heisst (¥, A(¢) ®) = (4(@*) ¥, D) mit §*(p) = ¢(— p).
£ gehort zu D. D ist invariant unter U(a, A): U(a, A) D C D.

2. Auf D gilt

Ula, A) A(§) Ula, ) = A(@g 1)
mit »
q;(a,/l)(jb) =¢7'P¢ &(A_l p) -

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 106.

6 H. P. A. 39, 2 (1966)
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3. Lokalitit: Sind die Triger der Fouriertransformierten von ¢, und @, raumartig
separiert, so gilt auf D

[A(gy), A(@4)] = 0.

Bemerkung: Axiom 1 kann dahingehend verallgemeinert werden, dass jedem

@ €U D S(RY) ein Operator A(qo) zugeordnet wird mit der Eigenschaft (¥, A(cp) D) e
WY C §'(RY). Dabei ist U ein topologischer linearer Raum, W' sein Dualraum [7];
die durch U in §(R?) induzierte Topologie kann gréber sein als die tibliche Topologie in
S(RY).

Die im folgenden konstruierten Modelle erfiillen Axiom 0, Axiom 1 in der in obiger
Bemerkung abgewandelten Form fiir einen noch zu beschreibenden topologischen
Raum U (der leider S(R%) nicht enthdlt) und Axiom 2.

2. Formale Betrachtungen [1, 2]

Es sei 4,,(x) ein freies Feld zur Masse m > 0. Die Klasse der betrachteten S-
Matrizen ist durch

S — ¢ (2.1)
1
- X f B, oo 2): Ao () oon Ay () d4 5y ... di i, (2.2)
—4

charakterisiert, wobei die Funktionen %,(%; ... x,) den Bedingungen

S

[
a) (%, e, %) = B(®, e 1), ( .)e Sy
by By, so0 5 %) == Bloy, vos 5 )
c) mAx+a,..., A%+ a) =h(x,, ..., %) (a,/l)ePl

i) Pl —2y, v, — By = Ml Bpsn00 , Xp)

zu geniigen haben. Die Bedingung a) wird durch die totale Symmetrie des Wick-
Produkts: 4,,(x,) ... 4,,(x;): nahegelegt; auf Grund von b) ist % ein symmetrischer
Operator, die S-Matrix wegen (2.1) also ein unitdrer Operator. Aus c) folgt

wobei Ula, A) die zu A4,,(x) gehorige unitidre Darstellung von P! (Einskomponente
der Poincaré-Gruppe) ist. (2.1) und (2.3) implizieren

[U(a, A), S]=0 (2.4)

das heisst die S-Matrix ist invariant unter der Poincaré-Gruppe.
Ist ©,, eine antiunitdre Involution mit

@in Am(x) @in = Ain(_ x) (2'5)
so folgt aus d)
@iu 77 @in = 77 (26)
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was mit (2.1) -
58,=5"

n

@in
ergibt.
Definiert man
Aout(x) = S_l Ain(x) S
und

0-0,S (516,
so ist @ eine antiunitire Involution mit

C Am(x) O = Aout(—' .X)
Analog ist

@, =S50, S

out

eine antiunitire Involution mit

@out Aout(x) @out - Aout(ﬁ x)

83

(2.10)

(2.11)

(2.12)

0,, ist durch 6,, 2 = Q (2 Vakuumszustand) eindeutig festgelegt; es gilt dann auch

&L =10
(2.9) fithrt zu
650 =351

was nichts anderes als die TCP-Invarianz der S-Matrix bedeutet.

(2.13)

Fiithrt man die einparametrige Schar unitirer Operatoren e*7, A reell, ein, so erhilt

man durch formale Differentiation nach A

(e Ay (x) 60 = i e [A (), ] 67

oder durch Integration
1
) = Aul) +1 [ dhe ™1 (A ), m) €.
0

Mit (2.2) folgt
(Al =i [ dy 4 (x—y)90)

n-1 1
Hy) = 2 e / Pea(y, %, oo 2t Ay () o Ay () @2y o dt 3y
k=3

Setzt man (2.16) in (2.15) ein, so erhidlt man

A = Ayl) = [ dhe= 7 ([ dty A (x—3) 9) 0.

Ausgehend von (2.18) fithrt man das interpolierende Feld A4 (x) ein:

A(x) = A;,(x) + fldi giA (f ay A, (x — ) ﬂ(y)) gt

4,.(8) = — (&%) A(5) .

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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Aus (2.19) folgt

O A@x) O =4,,(— +fd). i fd@Am —3) @8y ), (221)

wobei von @ ¢'*" @) = ¢ ** (Analogon zu (2.13)) und 4,,,(§) = 4,,,(¢) Gebrauch ge-
macht wurde. Die Variablentransformation A - 1 — A fiihrt zu

O AR O = A, (—x) + f e ([ diyd,, (x—y) SO 6 5) ¥ (222)

was mit S @ = @,, und der Bedingung (d)
1 \
OAW) O = Ay~ )+ [ die ™ ([ ayd,, (x—y) 8= ») e (223)
§ ¥
ergibt. Driickt man in (2.23) 4,,,(— x) nach (2.18) aus und verwendet man A(— &) =
— /(&) nebst (2.20), so ist schliesslich

O Ax) O =A,, ) + / dA e~ ““’ fd”‘yd,,gt —x — ) ﬁ(y)) et (2.24)

Vergleich mit (2.19) ergibt [2]
O Alx) @ = A(—x) . (2:25)

Diese rein formalen Betrachtungen sollen im folgenden einer mathematisch strengen
Behandlung unterzogen werden, das heisst also, dass Definitions- und Bildbereich der
eingefithrten Operatoren in einem konkreten Hilbertraum angegeben werden.

3. Fockraum und freies Feld

Die Sequenz von Hilbertrdumen Hy, N =0, 1, 2, ... sei wie folgt definiert:
H,=C (3.1)
(@0, lpo) - @0 SUO (32)

Hy = {@N(Pp —ry ‘ gDN(Pz‘l: )PiN) = Dn(Py, .-, PN)

N a3 P ‘
LI 550 | O py) P < oo, 3.3)
1
N
R :fn G PPy o) WPy, o Py, (3.4)
1

Dabei ist p € R?, w, = m®+ p2>0,m>0.
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Der Fockraum  ist die direkte Summe der Hilbertriume ¥, also

H= % ?‘l:\' = l@ = {QDN}SO | Dye :H.-\',j(@;\w Dy) < Oo,l ) (3.5)
g 0
(@, ) = X (@, V). 3.6)

0

H ist ein separabler Hilbertraum.
Lemma 7: Die Menge Dy sei dicht in H#y, N =0, 1, 2, .... Dann ist die Menge

={PecN|DyeDy, ®y=0 fir N > Ny(D)} (3.7)

dicht in H.
Beweis: D1 sei das orthogonale Komplement von D, das heisst es ist (@, ¥) = 0
fir@ e D+, ¥ € D. Nun enthilt D alle Vektoren ¥ = {0, ..., 0, ¥y, 0, ...}, ¥y € Dy,
N =0,1,2,.... Daher ist fiir beliebiges @ € DL nach (3.6) (@, ¥) = @y, ¥y) =0

tir alle Yye Dy, N=0,1,2,..., das heisst @y, =0, N=0,1,2,.... Somit ist
DL =0, q.e.d.
Das freie Feld A4, (¢) ist durch
(4@ Phy (Pr, -, ) = V22 YN +1 [ 52 @y, p) Py a(P2 Pr - P)
'}'VZ”M ' Z‘P Pi) Dy o(Py--Pi- Py (3.8)

definiert. (4, (¢) @)y ist genau dann in ¥ fiir beliebiges @ € W falls

~
~

/pr{|¢ 0y, P) 2+ | @(— w,, — P) 2} < oo (3.9)

gilt. Die Menge aller Funktionen g(p), fiir die (3.9) gilt, bilden einen Hilbertraum $.
Der Definitionsbereich D von 4,,(¢), ¢ € §, besteht aus allen @ € H mit

| Au(@) @ |2 < 0o (3.10)

Erfillt D die Voraussetzungen des Lemma 1, wobei zusitzlich Dy = 3y gelten soll,
soist DC Dy ; insbesondere ist also Dy dicht in .

Es gilt der
Satz 1: [3]

~ ~

Ay(@*) = [Au(@)]* (3.11)

das heisst 4, (§*) ist der zu 4, (¢) adjungierte Operator. Dabei ist ¢*(p) = @(— p).
Es ist iiblich 4,,(¢) = 4,,(®) + A;,(¢) zu setzen mit

-~ s d3p ~

(A;; (®) @)N (P1, - Py) = ]/2 2 V/N +1 f ‘ZTZ (P(wp:P) Dy (P, Py - , Py) (3.12)
& 2 A %

(Az;((p) @)N (Pl""!pf\ - l{/;: Z(P z @le(pl"-~’Pz‘1""PN) (313)

A (@) heisst Vernichtungs-, A; (@) Erzeugungsoperator.
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Der Raum §) ist der grosstmogliche Raum von sogenannten Testfunktionen fiir das

freie Feld A in- Es wird im folgenden nétig sein, passende Unterrdume (mit im allge-
meinen feineren Topologien versehen als mit der induzierten) von § zu finden, auf

welchen nebst 4 ;, weitere Operatoren als lineare Funktionale definiert werden konnen.
Die antiunitire Involution @,, ist durch

(0, D)y = D, (3.14)

(0@, D)y (P1)---, Py) = Py(P1s -+ 5 PN)

charakterisiert. Man tiberzeugt sich leicht, dass

0,y A1(§) O = A1(@) (3.15)

gilt. Das stimmt formal mit (2.5) iiberein, wenn man

P e bt 1 —tpx
[ awAu@ o) = 4ue)  §0) = e [ dwel e (316
setzt.
In J ist eine unitdre Darstellung U(a, A) der Poincaré-Gruppe P_T_ gegeben:
N
Pa e 1 1
(U@, 4) @)y (Pr, oo D) = T © DAy, ., A7 py)
;bfzwp ye=1 ..., . (3.17)
Aus (3.8) und (3.17) folgt
Ula, 4) A3,(@#) Ula, 4)7 = A, 0) (3.18)
P, 1)) = P(A71p) e77P7 (3.19)

Um einen fiir das folgende geeigneten Definitionsbereich charakterisieren zu kénnen,
wird der Begriff der Hélderstetigkeit eingefiihrt und einige Lemmata tiber hélder-
stetige Funktionen bewiesen.

Definition: Die Funktion f(x), x € R”, heisst holderstetig, falls eine Konstante
w=u(f), 0 << u < 1und eine Konstante g(f) > 0 existieren mit

() — f(2) | < o)) f’| X — x| (3.20)

fiir alle x, 2" € R™; o(f) heisst Holderkonstante, u Holderindex. Eine hélderstetige
Funktion f mit Hoélderindex y heisse kurz H (u)-stetig.

Mit o(f) ist auch ¢'(f) > o(f) Holderkonstante; das Infimum p,( f) aller Holder-
konstanten ist ebenfalls eine Hoélderkonstante. g,(f) ist eine Seminorm, das heisst
es gilt:

0o(f) =0
oA f) = [ 4 go(/)
0o(f + &) < oolf) + 00lg) » (3.21)

wovon man sich leicht iiberzeugt.
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Eine H(u)-stetige Funktion ist stetig im gewdhnlichen Sinn. Besitzt f beschrinkte
partielle Ableitungen erster Ordnung, so ist f H(1)-stetig (Mittelwertsatz der Differen-
tialrechnung). :

Lemma 2: Ist f(xq, ..., x,) H(u)-stetig in jeder Variablen separat, so ist f H(u)-
stetig. Trivialerweise gilt die Umkehrung.

Beweis: Nach Voraussetzung ist

| Frs e s By ey B) = F By e s By oo, %) | S0l f) |2 — 2 [F5=1,...,m.
Damit folgt

| f&) —fx) | = If(f(xl, o Bty By vees o) = f1BL, s By Bt oo s %)) |

Lemma 3. Eine beschriankte H(u)-stetige Funktion f ist H(v)-stetig fiir
0 <cr<<pu

Beweis: Nach Lemma 2 geniigt es zu zeigen, dass fin jeder Variablen separat H (»)-
stetig ist. Fiir | x; — ;| < 1 folgt das aus | x; — x; [* < | x; — x; |, 0 <<w < y; fiir
| %; — x; | > 1ist es eine Konsequenz der Beschrinktheit von f.

Lemma 4: f(x), x € R, sei H(u)-stetig, g.(v), v € RS, sei H(y)-stetig, k=1,...,7

Dann ist A(y) = f(g(y)) H(u »)-stetig.
Bewers: Die H(u v)-Stetigkeit von A(y) ist eine unmittelbare Folge der Ungleichung

s i 3
(Z‘ai> <at a; >0
7=1 1=1
die man durch Induktion nach s beweist. Fiir s = 2 erhilt man sie aus
I+ H0<I 0 001,

indem man entweder b = a,/a, oder b = a,/a, setzt.
Lemma 5: f(x,v), x€ R, ye RS, und g(y, 2), v € R%, 2€ R?, seien beschrankt und
H(u)-stetig. Dann ist auch A(x, v, 2) = f(x, ¥) g(v, 2) H(u)-stetig und beschrdnkt.
Bewers: Sind o(f) und o(g) Schranken von f bzw. g, so ist o(f) o(g) eine Schranke
von h. Weiter folgt

| f(&, y) g, #) — fx, ) gly, 2) |
= [flx,¥) g0y, &) — f(x, 9) g, 2) + flx, ) gv', &) — flx, %) gy, 2) |

\<\a(g)9(f)(i;x~x +2|y, yi]”)
g)(;:m y““+272~zzi")<( o(f) + a(f)e(@)
X(élx;‘_’xilﬂ‘i‘z:ly;—%|”+Z:[Z;—Z,-|”) q.e.d.
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Sei nun D ein Bereich, der den Voraussetzungen von Lemma 1 gentigt. Es wird fol-
gende spezielle Wahl von Dy getroffen:

Dy besteht aus allen @, die holderstetig sind und einen kompakten Triger haben.
Offensichtlich existiert dann zu @ € D eine Konstante C(®) und ein Index u = u(9P)
derart, dass @y H(u)-stetig ist und C(@) Schranke und Hélderkonstante von @y ist;
das ist eine unmittelbare Folge von Lemma 3.

Dy, ist dicht in Hy, da bereits die Teilmenge der differenzierbaren @, € Dy dicht
in Yy ist.

Es gilt der Satz 2:

Ula, ) DC D . (3.22)

Beweis: Sei @ € D. Nach (3.17) ist
(Ula, A) D)y (P1,--- . Dy) = exp (“0 Zwk - aZPk) NP1y -5 Py)

PPy oo, Py) = Pp(A7 Py, o, A7 Py)

N

Die Funktion exp ¢ (a," 2 w, —a )y pk) ist beschriankt und besitzt beschrinkte erste
=1 =

Ableitungen; sie ist daher H(1)-stetig, also nach Lemma 3 auch H(u)-stetig. Dir

Funktion ¥y(p,, ... py) ist H(u)-stetig nach Lemma 4, da (A~ p)f = (A1) w, +
(A1) pt H(1)-stetig ist. Lemma 5 ergibt schliesslich die H(u)-Stetigkeit von
(Ua, A) D)y.

Es bleibt die Kompaktheit des Trigers von ¥y nachzuweisen. Da supp @y

N
kompakt ist, existiert ein ¢ mit supp @y C {( PPy | Y 0 < cl . Dann ist
=1

l

supp ¥y C { \Z w; % 2 ¢ /10} q.e.d.

Der T estfunktlonenra,um W0 bestehe aus allen H(1)-stetigen @(p) mit kompaktem
Triger. W ist ein topologischer linearer Raum; die Topologie auf WY ist der induktive
Limes der Topologien auf den Teilriumen Wy, die aus allen ¢(p) € W bestehen, deren
Triger in der kompakten Menge K enthalten sind. Die Topologie auf Y, ist durch
die beiden Seminormen sup | ¢(p) |, 04(¢) bestimmt.

Satz 3: Fiir ¢ € W ist

~

Ayl DCD. (3.23)

Dabei ist u(4,,(@) @) = u(®); 4,,(@) @ hingt stetig von § ab.
Der Beweis folgt ohne Schwierigkeit aus (3.8) und den Lemmata 3, 5.

4. Die S-Matrix — Falln = 4

Die durch (2.1), (2.2) formal definierte S-Matrix enthélt den Parameter », der die
Werte n =4, 5,6, ... und # = oo annehmen kann. Der im folgenden ausfiihrlich be-
handelte Fall # = 4 zeichnet sich sowohl durch Einfachheit als auch durch die Tat-
sache aus, dass  — und damit S — teilchenzahlerhaltend ist.
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Fiir den Fall » = 4 ist der Operator » durch

(n D)y (P1,---, Py) —1/22fp1+1b,/d!2 ky(pir By, — s (pi+ b;.€), —1

1< ]

Dy ((5 (i + by €), ¥ (pi+ £y, €), Prvoee s Py

—)Ym+pt  r=1,...,N

definiert. Dabei ist fiir einen beliebigen Vierervektor P

F(P) = O(PY) @ (P — 4 m2) | P? — 4 m? | 8} P2
und fiir Vierervektoren P mit P° > 0, P2 > 4 m?

S(P,e) =~ (P +|/P*— 4m? L(P)*e)
’ 2

HP,e)=— (P—|P2—4m? L(P)7e)
e=(0,e), |e|=1,

L(P) ist die drehungsfreie Lorentz-Transformation

PPz —pyP: — PyfP2 - P3P

— P/ pe

L(P) = e pip
PP gt

_ P3/Vﬁ

aus L1: L(P) P = (/' P2, 0)
Eine einfache Rechnung ergibt

und
2= =m2 s">0 >0

ky(P1, Ps, Pa, P4) geniige den Bedingungen:
1) k&, ist beschriankt und H(1)-stetig

2) k4(lbil, Piz: ?52‘3: Pz') = k4(¢’1: P2, P3> P:;)

3) Ry py, Aps, APy, Apy) = ky(Pr, Do, P35, Pa) AEL.T.

4) k4(— P1» - Pz» - ?53; - P4) - k4(?51’ Pz: P3x P4)
5) k4(?51» ibaa Pa: P4) = k4(?1’ P2, Ps; P4) :

89

(pi+pj’e))

N 1T

(4.3)
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Daraus folgt der Satz 4:

a) Der Operator 7y, definiert als Einschrinkung von n auf Hy (Definitions- und
Bildbereich vony liegenin Hy, letzterer wegen (4.1)), ist symmetrisch und beschrankt.
Daher ist % ein selbstadjungierter Operator [4].

b) # ist invariant unter P :

[Ula, 4), 7 = 0. (4.7)
c) Es ist
nDCD (4.8)
und fiir @ € D gilt
Z._I.?_‘if'p_;_l_|gl"<oo,VZEC. (4.9)

D ist also ein dichter Bereich analytischer Vektoren [8] des Operators .
Beweis: Fir das Skalarprodukt in Hy gilt

N

ds
(QDN’ WN) __PL @ (pl: v ,PN) 'ij(pl’ »pN)

f drP f e, f I 225 (P) @y{s(P, @), (P, &), By, - Pu)
Ly

wiS(P, e), £(P, €); Pys vse s Py)  (4.10)

speziell also

| @y || 2—fd4pfd9 fﬂ V) P,e),t(P,e),py, ..., Py) [P (4.11)

Dabei wurde von

[ oo [ 52 Fipy, p) = [ aiP [ 42, f(P) F(s(P, e),#(P, @)  (4.12)

2wy / 2wm,

Gebrauch gemacht. Die Herleitung von (4.12) findet man im Anhang 1.
a) Aus (4.1) und (4.10) folgt

(B, iy ¥y) = —5—— fd4pfd9 /d!? fﬂd?’l

[(P) Dx(s(P, e), t(P, €), Py, ..., Py) k4 , = S(P, f), — 4P, f))
F(P) Pu(s(P, f) (P, ), Ps, ..., P, (4.13)

woraus man unmittelbar die Symmetrie von #, abliest unter Beriicksichtigung der
Bedingungen (4) und (5) fiir 2,(p;, Ps, Ps, Pa)-
Nach Bedingung (1) ist | 24(#;., b2, P, ps) | < K < oo. Es folgt daher aus (4.13)

wegen (f(P))2 < f(P)/8
I (®.’\"’ NN TN) ‘ < EY'“('W—K‘- d4P[dQ fdQ fﬂ djbz
V7(P) @y(s(P,e),(P, ), ps, ..., py)| [ 7(P) )P S),Psree s Py

(4.14)
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woraus sich mit (4.11) und der Schwarzschen Ungleichung

N (N-1)

1
|(®N’WNYJN)|\<~_—4 'K‘g‘l'”HgDNHHgINH (4.15)

ergibt. Damit ist auch die Beschridnktheit von #y nachgewiesen.
b) Die Translationsinvarianz von # folgt unmittelbar aus

s(P,e) + t(P,e) =P, (4.16)
wahrend die Lorentzinvarianz eine Konsequenz von

0 0 O

L(At P) A~ L(P)-! = , R(A, P)e0f (4.17)

1
0
0 R, P)
0

ist. (4.17) zieht namlich
A1 5(P, &) = s(A-1 P, R(4, P) e)
A-LiP, &) = {A P, R(A, .P)e) (4.18)
nach sich. Aus (4.18) und
f iQ, f(Re) — f 0, f(e), Re0; (4.19)

erhilt man die Gleichheit von (y U(0,4) @) 5 (P4, ..., px) und (U(0,4) D)y (P1, -, Pn)-
c) Sei @ e D; @y besitzt also kompakten Triger, das heisst es existiert ¢y mit

N
supp @y C {(Py, -+, Pw) k%‘wi % CN}' (4.20)
Aus [, U(a, 1)] = 0 folgt
5
supp (7 D)y C {(pl, <oy Py) lé‘wi < cA,}, (4.21)

somit ist supp (y @)y kompakt.

Aus (4.1) und der Kompaktheit von supp @, folgt mit Lemmata 4, 5 die H(u(®))-
Stetigkeit von (n @)y, da die Argumente von &, und @y aus stetig differenzierbaren
Funktionen zusammengesetzt sind — abgesehen von f(p; + $;), dessen H(1)-Stetigkeit
im Anhang 2 nachgewiesen wird. Dieselbe Argumentation zeigt, dass eine Konstante
a(®D) existiert mit

C(n D) = a(P) C(D) . (4.22)
Damit ist y D C D gezeigt; dariiber hinaus folgt, dass auch

e"DCD, ze(C (4.23)
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gilt, wobei
em@:%-;! e, PeD (4.24)
ist. Nach (4.22) ist
Cle™ @) =" = (D), (4.25)
zudem ist
Setzt man
N
@3p,
72 _ 23
S el I, (4.27)
N
Z W, <Cy
1
so folgt
kA N (B L 1 ax D)z
XL || <YNf@) + 150 @)V, (4.28)
0

womit gezeigt ist, dass D ein Bereich analytischer Vektoren ist.
Korollar: V(1) = ¢'*", — oo < 1 < oo, ist eine einparametrige Schar unitirer
Operatoren mit V(1) D C D; insbesondere ist S = V(1) unitdr und S D C D.
Bemerkung: Aus (4.1) und der Bedingung (5) fiir £, folgt unmittelbar die Gleich-
heit von (&;, 5 @)y (P, ..., py) und (5 O,, D)y (P4, ..., Py), das heisst

(€, m] = 0. (4.29)
Das durch

~

Ap(@) = S A7) S (4.30)

definierte Feld erfiillt nach Satz 3 und dem Korollar zu Satz 4

~

Ay DCD. (4.31)

Die entsprechende Zerlegung in Erzeugungs- und Vernichtungsoperatoren lautet

T o~

Afulp) = ST AL(p) S . (4.32)

Sei (4(¢))y die Einschrinkung von A7,(¢) auf H#y. Dann ist (47,(¢))y ein beschrinkter
Operator von Hy in Hy_ ;. Daher ist auch

&N 1(“{;(‘;9) )v &N (4.33)

ein beschriankter Operator von #, in Hy_.,. Funktionen beschrinkter Operatoren
haben ein zu gewohnlichen Funktionen analoges Verhalten, was Differenzierbarkeit,
Analytizitiat und dergleichen anbelangt. Es gilt:

d [ iy o e ity
di [e N1 (A75(@)y e j‘\]

— ¢ "N [(ATF) )y 1y — v (A5 @) )n] €

7
iy

(4.34)
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Fiir jeden Bereich, der den Voraussetzungen von Lemma 1 geniigt, gilt also
d — i iAn i
i LT ALG) e @) — i e AR @), ] @, (+.35)

dabei hidngt der Vektor

—zi{?;n A:F( ) iin 7))
analytisch von 4 ab.
Aus (4.35) gewinnt man die Darstellung

~0m( )@ A:F + /‘d/'i [6“”” [A%: ) Gilﬂ @J (4.36)

unter Berticksichtigung von (4.30).
Fiir die Operatoren

o, () = [47,(@), 7] (4.37)
gilt

(555) D)y (Pry o Py) = Vé*nl/ﬂii‘ B o B) b+ B

2(,01)

fd.Qe k4(2b: Piw—s{p+Pe),—1 (?"“’pi,e))
X g,y (S P+ i€t (p+pie) Py P Py) (4.38)

(Gal@) @)y (Pus oo p) = — 27 B/(pit 1) [ 4007 (~ 5 i+ 8, )

k4(75i:¢5j’ — 5+ ?j:e):t (Pi+Pj: e)) @N—l (¢ (p; + ]bj’ e)rpl"'f)z""pj "‘PN)' (4.39)

5. Das interpolierende Feld A(p) — Fall n — 4

Fiir @ € D, ¢ € W ist das interpolierende Feld A (@) durch

~

(A(@) D)y (Prr-or D) = 5 (Al@) ®)y (Prr .-, DY)

; +7]2;_ (‘/Iout(q)) @)\(P ’-“!P’\ +fdl Mna( ) Uﬁ@) (Pl""’pN) (51)

definiert. Dabei ist

~ ~ ~

a(p) = &3(59) + &1(9;) + &*(Ep) + 5‘_(:{0) + a3 () + a_g(

X
w
2

mit

3

o\ 2 q;

& o 1 N+1 N (N +3) d3 ( 1)
(3(7) D)y (Pr,....Dy) = Vo NAEDT +2 n fﬂ q; 1
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~ ~

1 N l o3 L+ ga— P
(“1(‘P)®),N'(P1:---:PN): E l/ + Z/U i @ (@1t g2— P2

2 ®; (g1+92— Pz) — m2

x [1—x((g1+g.— 0% kolgs+ g — 2505, — 01, “42)@N+1(q1s‘I21P1---131'---pN) (5.4)

~

o (‘Z Pz Pa)
(alp) @y (Prs o Py) = ;/27; V\r 2 qu’ (=i =P~
X [1=x((g—p:i—2))) kalg—bi— b, 0005, — @) Py_1(Q, P1---P;--- P ... Py) (5.5)
3
' P| — 2 P
(&—3(‘;9) €25)N (P1) .-, Py) = L ! ( kol k)

V2a N (N-1) (N-2) 1‘1%;“ (kflp "k)2_m2

" \
Ry (-kZ Pigs> Piys Pi» Pﬁ-a) Dy_y(Py-- Py oo Py, - Dy, - Py) (5.6)
=1
%(s) ist eine reelle H(1)-stetige Funktion mit supp y C [m — u, m + ul, u << m und
x(m?) = 1.
Satz 5
a) w@eDCcD i=31-1,-3
b) Ula, A) a,(p) Ula, A)7 = (@, 1)
c) (aa(p) @, W) = (D, o a(gp*) ¥)
(0a(@) D, ¥) = (D, o_y(g*) V)
O, VYeD.
Beweis:

a) Die Kompaktheit von supp (a;(¢) @)y folgt aus derjenigen von supp @y, ; und

supp ¢. Auf die Holderstetigkeit schliesst man wie iiblich; es ist u(x;(@) D) = w(®D),
b) folgt unmittelbar aus (5.3) bis (5.6), (3.17) und der Eigenschaft (3) von %,,

c) folgt aus den Gleichungen:

((&1(&) ®1\" TN) = (¢A’+11 (&—1(69*) T)N-{-l)

(@s(@)P)y, Py) = (Pysar @ s(@*) P)xis) s
deren Giiltigkeit man leicht nachweist.

Es bleiben die Operatoren at (p), @~ () zu definieren. Zu diesem Zweck wird
das Hauptwertintegral eingefiihrt.

Definition: f(x) seil eine Riemann-integrable Funktion in [— a, a], a > 0. Falls

| 7w o1
lim (_./"7 dx + f i dx) (5.7)
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existiert, so definiert man das Hauptwertintegral

P / 19 4y (5.8)
—a
durch den erwahnten Grenzwert.
Wegen
’ 1
P f 2 x=0 (5.9)
x ¥
ist auch

Pf % dxahm(ff =10 g +ff(x ) (5.10)

Aus (5.7) folgt, dass das Hauptwertintegral existiert, falls die Grenzwerte

lim <2 1) und limm
0 X ¥to &
existieren; in diesem Fall ist
p [ 1™ gy fﬁl dx
- - .

Aus (5.10) folgt die Existenz des Hauptwertintegrals fiir holderstetige Funktionen
und es ist

pfl_(;f)_ dx — hmff —10) dx-i-hrn./gdx (5.11)

Pfij)dxg

Lemma 6: f(x, v) sei holderstetig und beschriankt. Dann ist auch

y) =P f BN & (5.13)

200(f) - @ (5.12)

holderstetig und beschrinkt.

Bewers:
a) Beschrinktheit von F(y):
Nach (5.12) ist

| FO) | <204(f) @ (5.14)
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b) Holderstetigkeit von F(y):

Definiert man fiir 0 << # < a

X
und
F+(y):£ilg Fo(u,)
F_(y):g}irg, F_(u,y)

so ist F(y) = F(y) + F_(v).
Es genugt offenbar, die Holderstetlgkelt von F_ (y) nachzuweisen.
Fir |y — v | > a 1st wegen (5.14)

|Fy) = F.0) | <4alf) o |y =y 1" (5.15)
Fiir |y — y | < a ist
| Foly) = F.0) |
= | Fiy) = Fo( )+ F Y= Fully —y|.9)
Fo(ly =y .9 —F0) | <|F) — Fo (|9 =yl 9)
HEAY =yl y) = Py =yl [+ [ Foly —oLy) = FL0) | (5.16)
Wegen
o) = Fu) | <oolf) - v (517)

sind der erste und letzte Summand in (5.16) jeweils kleiner als go(f) (1/u) | v — v |%,
was selbst wieder kleiner als go(f) (1/u) @~ | " — v |", 0 << » < pist. Fiir den zweiten
Summanden in (5.16) folgt

| F, (v —y|.¥)— F,

< 200(f) a7 e

I_ .Lt 7“
)| < 2oy —y[“In =

1
= |

0<v< p. (5.18)

F (y) ist also H(v)-stetig, 0 << v < u q.e.d.

Korollar: f(x, % ... %,,, ¥; ... ¥,) seil beschrinkt, holderstetig in den Variablen
%, ¥ ...Y,, Riemann-integrabelin x, ... x,,, & ein beschrinktes Gebiet im R™. Dann ist

Flyy, ooy = [ dns (Pf (e B - - o dx> (5.19)
G —a
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holderstetig und beschriankt; die beiden Integrationen in (5.17) sind vertauschbar,
das heisst, es gilt: ‘

Flyy, ..., y,) — Pfdx—i—(fdmxf(x,xl...xm,yl...yn)). (5.20)

Das folgt unmittelbar aus Lemma 6, Lemma 2 und Abschitzungen vom Typus (5.17).
Man setzt nun

wm-+u
1
(OC+( ) ) (pl)"'JPN) VE?L/N+1fd3QPfd% —m
2 1 = al 0
Xx+m%(x)wfp(9)§f(9+?i)fd ey (g, iy — s (g + 21, @),
*t(qu?i’e))@qul(s (q+1bi!e):t(q—l_pi’e)!pl"'ﬁz‘"‘PN) (521)
mit ¢ = (J/»* + ¢2, q) und
m-u
(@ (@) D)y (Pr - Py) = V* f iQ, P f”’f’“ B
X ¥+ m %(962)1;(?51—}—}5],%) ( (f)z-f—]b],x e)) ( (}51*#}5], » ),

— T (p;+ b5, %, €), pir ) Py (T (Bi + b5, %, €), Proo- Py - By . Py)  (5.22)

mit

VIPE= (x+m)?] [P2— (x— m)?]
8 p2

F(P,x) = O(P°) O (P? — (x + m)?)

S(P, x, e) % [P2+{(j~~- P+38 ]/P2 (P, x) L(P)™ e]
T(P,,¢) = - [Pz““” " p_8) P2 F(P,x) L(P) (]
=(0,e), |e|=1. (5.23)

Die Kompaktheit von supp (a* (@) @)y ergibt sich leicht aus der Kompaktheit von
supp @y, 1 und supp @.

Berticksichtigt man, dass @(£) /& H(1/2)-stetig ist — es ist namlich | V& — J/&| <
]/ | & — &1, &, & > 0-sofolgt auf Grund der Lemmata 2 bis 6 die Holderstetigkeit von
G () D).

Satz 6:
a) a“() DCD,
b) Ula, A) 2 (g) Ula, A7 = o= (@, ) »
c) (xt(q) @, V)= (D, «(g*) V), @, ¥eD.

7 H.P. A. 39, 2 (1966)
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Beweis:

b) folgt aus (3.17), (5.21), (5.22), (4.18) und dessen Analogon fiir S, T, Bedingung
(3) fiir 2, und Korollar zu Lemma 6.

c) folgt aus

~ ~

((&JF@Q) D)y s 5UN) = (¢’N+1’ (@~ (¢*) Sp)N+1) ,

was man aus dem Korollar zu Lemma 6 und dem Ergebnis des Anhanges 1 schliesst.

Die Operatoren a,(¢) und a*(p) sind einzeln von der Wahl von y abhingig, nicht
aber ihre Summe &,(p) + a*(@), wie man leicht einsieht. Entsprechendes gilt fiir
() und ().

Die Menge Dy (K ; u) aller @y € Dy mit gleichem Holderindex, deren Triger in
einem beliebigen, aber festen Kompaktum K enthalten sind, ist ein Banach-Raum;
die Norm ist das Maximum der beiden Seminormen gy(@y), max [Dy(p; ... py)|-

Fiir jede Komponente @ eines beliebigen @ € D existiert ein geeignetes Dy (K ; u)
mit @y € Dy(K; p).

Die Einschrinkungen von o(@), a*(@), et'*" auf Dy(K;pu) sind beschrinkte
lineare Operatoren mit Bildbereich in Dy'(K’; u'). Daher ist der Integrand in (5.1)
in D, und hingt analytisch von 4 ab, also existiert das Integral und ist ebenfallsin D).

Zusammen mit Satz 5, 6 folgt der
Satz 7:
Ag)DCD

Ula, A) A(@) Ula, A)7 = (g, )
(A@g) @, ¥) = (®, A(g*) ¥) & ¥eD.

Bemerkung: A (p) ist CTP-invariant, das heisst es gilt

6 4(p) 6 = Alg) (5.24)

mit @ = @,, S, was aus (5.1) und 0,, %(¢) @,, = &(¢) (auf Grund der Bedingung (5)
fiir ,) folgt.

6. Asymptotenbedingung
Jedem @ € W wird wie folgt ein ¢f € W, 0 = + 1 zugeordnet:
_Gio +a,

¢ (p) = o(p) 2w, gl =epl, (6.1)

Dann gilt auf Grund von (3.12), (3.13), (4.32)

~

AN:x(gU?) = 610 AU:x((};) sy T,0= :I: 1 ’ (6.2)

wobei ex fiir in bzw. out steht und fi(j; L figr /Ij;{ gesetzt wurde.
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Satz 8: Fiir ¥, ® € D gilt die LSZ-Asymptotenbedingung [9]

~ ~

Jlim (P, 4@ @) = (7, 47,(7) D). (6.3)

(i)
(=)
Bewers: Auf Grund von (5.1), (5.2), (6.1), (6.2) und Satz 5c¢), Satz 6¢) geniigt es,

lim [ dA (¢, a,(@f) 2" D) =0 i=1,3 (6.4)

t lirm dA (e, at(g)) €4 D)
(=) o

1
e [ aa e,z o o)
C 0

=t YOl AL6) - 456) ) 6.5)

zu zeigen; im letzten Schritt von (6.5) wurde von (4.36), (4.37) Gebrauch gemacht.
(6.4) ldsst sich auf folgendes Lemma reduzieren:

Lemma7: f(x,, ..., %,) sei beschrinkt und integrabel, supp f kompakt, g(x,, ..., %,)

sel differenzierbar, grad g = 0 h6chstens auf einer Mannigfaltigkeit M der Dimension
m << m. Dann ist

i | 7% (% awa ¥

n
{—00

) P {CIPREEN ) — (), (6.6)

Beweis: Sei supp f = K, K, eine Umgebung von M 0 K derart, dass
fd,”x[f(xl,...,xn)|<e (6.7)
KG

ist. In K — K, ist grad g+ 0, es existiert also eine Zerlegung K — K, = |J K|,
i=1

s<oo, K;0K,= @,1+ 7, sodass in K; 0g/0x, + 0 fiir ein » = #(7) gilt. Dann lasst
sich das Integral

f A f(xy, ..., x,) 18 m) (6.8)
K;
auf die Form
J a"y f(vy, ., v, €401 (6.9)
i

7

transformieren. Man sieht unmittelbar ein, dass sich auf (6.9) das Riemann-Lebesgue-
sche Lemma (Theorem 1 von [10]) anwenden ldsst; es ist also

\ / dnx fxy, ..., x,) e8| e > Ti(e) . (6.10)
K
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Damit folgt

K;
\ fdnxf %, X ) itglxy,..., Xy) 3 Z /dnxf(xl’ X ) ezlg(xl ..... 2
i—1 b
< (s+ 1) e fir £ > T(e), T(e) = max Ti(s) . (6.11)

(6.5) lduft auf eine Diskussion von

m-+

z_lgrnoofdy Pfdx

(=) 0

3) (o 52+ 92 + [m2 4 g2) OV T VT (g q2)

hinaus, wobei f(x, y) hélderstetig ist und einen kompakten Triger in

K={xv|xem—pum+ul, vel0 al}

besitzt. Fir 0 = — 1 ist (x — m)™1 ( l/x2 + y2 + [m? + 4?) stetig; das Hauptwert-
integral ist ein gewdhnliches Integral. Der Gradient von ]/x2 + y2 — ]/m2 + 9?)
verschwindet nirgends auf K; daher lisst sich Lemma 7 anwenden

o mtp

. - ;5:”2‘4— /hrgﬁ =Vt y® — Vmiyq2
S dyfdxﬂx,y)—--- per P VY SV Vg (6.13)
0

Firo = + 1 ist
o -t

_t 3 0 el 2 2\ Vet — Vme iy
fdy”fdx x_mf(x,y)(l/x +y2 4 m2 4 y?) y

0 m—pu

- p

fdy fdx—yglx ) FUNTEE + Pt
m V
+fazy g(m, v) Pfdx, (FEF — Vo) (6.14)
xX—m
0 m—pu
mit g(x, y) = f(x,y) (V5® + 5%+ Ym® + 92, &(x, y) = g(x, ) — glm, y). Wegen | g,
(%, v) | < 00(g) | ¥ — m |” ist die Differenz zwischen dem ersten Summanden von
(6.14) und
o m— m;l-,u ( )
g1 %9) gWarye = Ve | [ g B Y) it = Ve
fdy{/ 3 Mt [ ap BED G0 M (619
0 m—p m—+d(e)

dem Betrage nach kleiner als ¢ > 0 fiir geeignetes d(¢) > 0 unabhin ng HF%\ e __(

O ?VUJL}‘”TEL C/
y o h{‘r,
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Auf die beiden Summanden in (6.15) ldsst sich nun Lemma 7 anwenden: Fiir
| 2| > Ti(e) ist der ¢-te Summand in (6.15) dem Betrage nach kleiner als ¢, i = 1, 2.
Insgesamt ist also

‘ / dy P / dxmx_lm-gl(x, y) cVE+s — Vgt < 30 (¢), T(e) = max T3(e) (6.16)
0 m—p i
oder also
mtu .
[_iiinoofdy Pfdx — &y e i(VF+y — Vet _ (6.17)

Es bleibt zu zeigen, dass

o m+
. cos (Vﬁ;zik y2 — ]/Vﬁil—'yz_) t
tilinoo dy g(m, v) P/d - =1 (6.18)
o M4 p o o [
t_ljﬁnoo dy g(m, y) fdx sin (Vx2+3;2_—m]/m2+v2) t n ﬂfdy g(m,y) (6.19)
(=) 0 m—p (—) o

gilt.

Da g(x,y) = /a2 + y2 — ]/m2 + y2 das Intervall m — p<xm+p einein-
deutig und analytisch auf das Intervall I, = IV (m — @)% + y* — l/m2 +9%) <u <
(V(m + )2+ 2 — ]/m2 + ¥?) abbildet, lasst sich @(x, y) = u als neue Integrations-
variable einfithren (man iiberlegt sich leicht, dass Hauptwertintegrale invariant sind
unter analytischen Variablentransformationen). Fiir den Ausdruck in (6.18) folgt

fdygmy Pf C—OSM x(u, y) du

= P/d% atead fdygm y) 2, y))

A4

_ Pfdu cos ut (%)
—A
A

- / du 2= BO) 25(0) P f du =4 (6.20)

—A4 —4

Dabei ist y(u, y) = (u/yp(u, v)) Op(u. y)[0u, wenn mit p(x, y) die Umkehrfunktion von
®(x, y) bezeichnet wird. y,(u, y) stimmt auf we I, 0 <y < o mit y(u, y) tberein,
sonst ist y(u, y) =0. Weiter ist I, C[— 4, A], 0 <y <o fiir geeignetes A und
# = m ist innerer Punkt von /,, 0 < ¥ < «. Offenbar ist (y,(#) — y2(0))/u beschrankt
und integrabel; der erste Summand in (6.20) strebt also gegen null fiir £ > 4 oo
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(Theorem 1 [10]). Der zweite Summand in (6.20) verschwindet identisch. Damit ist
(6.18) bewiesen.

Analog ergibt sich (6.19) aus Theorem 12 [10] unter Beriicksichtigung von
2i(m, y) = z(m, y) = 1.

7. Der allgemeine Fall

D(c, u) C H sei wie folgt definiert:

N

i\T
@ € D(c, p) <> Dy ist H(u)-stetig und supp @ Ci(Py, ..., Py) | Z w; cl :

= |

Offenbar ist @y = 0 fiir N > ¢/m, also ist D(c, u) C D. Umgekehrt existieren ¢, u zu
@ e D derart, dass @ € D(c, u).

D(c, u) ist ein Banachraum mit der Norm

|| ? ”D(a,m :N;(: max {0y(Py), 6o(Py)} P € Dic, p) (L)

mit 0,(Py) = Infimum der Hoélderkonstanten von @y und ¢,(Py) =

max | Dy(py, .-, Py) |-
Zwischen der Hilbertnorm || @ || und der Banachnorm || @ ||, . ‘besteht folgende
Beziehung

c/m

ap;
191 <y 1@ llow 762 =145 [ [T 52 22
N
2w
1
Der Operator 7 ist durch
A (N+7) 1
(1 Pl (Pr, o0 p) = 2 WAl e X
4?‘7 K+4 11<’L'2<...<1;(K_y)/2
(K +7)/2 @y (K —7)/2 (K +7)/2
ST 55 8- Ea) [ e,
3
X e by e Bagg s =S = b= Qs> = D)

X Py (5,8, 5. Gz P i)zl 131'\,{_,)/2 .- Py) (7.3)

erklart, wobei
(K +r)/2

(K —#)/2 (K +7)/2 \ /(K —7)/2 \
S:S(Z P “qu»e) t:t(z yz2 “’Z qm’e) (7.4)
1 m 1 m

3 3

ist und 3’ die Summation iiber 7 in geradzahligen Schritten bedeutet.

Die Funktionen &, (py, --., $,,), m = 4, ..., n, erfiillen die Verallgemeinerung der
Bedingungen (1) bis (5) fiir zy(py, ..., py).
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Satz 9:

a) (7, Ula, 4)] = 0

b) 7 D(c, u) C Dlc, p)

| @ HD(c,m <) || P IlD(G,M)
Aus b) folgt

¢ D(e, ) C Dle, )

o0

1€ D [, 2% 17 @ [ pg, iy < €17 || @ [|pie,

0

und
nDCD, &"DCD,
Sl llre| <o
0

c) nd, V)= (D,nV) D, VeD.

D ist also ein dichter Bereich analytischer Vektoren des symmetrischen Operators #;
nach [8] ist 5 wesentlich selbstadjungiert, besitzt also eine eindeutige selbstadjungierte
Erweiterung. ¢'*1, — co < 4 < 20, ist eine einparametrige Schar unitirer Operatoren
mit 47 @ = ¢ P, e D und [e”” Ua, A)] = 0. Insbesondere ist die S-Matrix
S = ¢ unitidr und invariant unter der Poincaré-Gruppe.

Der Beweis verlduft analog zu dem von Satz 4.

Definiert man

VZZ (O‘Z((‘?‘Q) @)JV (plx teey PN) =
(K +7)/2 (K—7)/2
¢ ( 2 G- & Pit)

mmmmmm (K+7)/2
(N-H’ a*q; - 1 1
2 Z l/ K+1//2' Z )/2-/ ]1] 2w; (X q,— 2 p) —m

=83 r=-K 1] <ig < ’<5(K7
[1_7(((2912“‘2?%)2 K+1 Z‘h Zﬁz ’Ibzl te z )/21_91' ’”q(KJrf)/z
®N+r(q1! R q(K+r)/2! p]_’ e 9P . P’t(Kf )!2 ey pN)

o=+1,—1 K-8 7——K-4 i

n-1 K—4 o (K-+7)/2
’ (N+'r) 1 d?’Qi
=+ 2 Z E 1/ Nl  (K+7)/2! ; <i2<\.;;(1{4)/2/‘ 13] 2w, deQ

m+tp

1 " . 1 N (K —7)/2 (KYJF:)M
Pfdx P ——— x(ﬂwﬁ w(aq)f<oq+ ;’ ?i;%_, q:
m—p

fdQe Rr+1(0 Qi - 75@(}(_7)/2: =8 =4 =3 — Y inp)

®N+r (5,2 ¢s5... Qi Pr--- Py --- Pi(K_T)/z .- Py)
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o

n—1 | Ty
(N+E-2)! &q
+Zl/ N1 KllZ H 9fd3qudx X—m xtm

K-3

22 ¢(g) /i 2+7 f(q + P — ;qt> f dQ, ke r(¢s bis — 8 — 1 — @3- — dx)

Dyix o8t 45  Qg_y, Py - p; .- Dy)

m+tp

n—1 = v wemenn
(N—K+2)! 1 P
+2 N e Z _ ZPfdx x—m  x+m X(xz)
1<tg <o (K-1)

K-=3
m—p

K1
dQeQD(— S (;‘ bi %, e)) (2 Pi,» ) k1 (— S by oo by — T)
®N—If+2 (T’ Pl"'ﬁil"‘ﬁiKil"'P]\r) (7'5)

so erfiillt das interpolierende Feld A (@) nach (5.1) die Sitze 7 und 8. Die Beweise sind
analog zum Fall » = 4, nur ist in der Argumentation durchgehend mit D(c, u) zu
operieren (im Fall # = oo sind nur endlich viele Glieder in (7.3) und (7.5) von null
verschieden, so dass keine Konvergenzprobleme auftreten).

Meinem verehrten Lehrer Prof. R. JosT danke ich bestens fiir die Erméglichung
- dieser Arbeit sowie fiir zahlreiche anregende Diskussionen.

Anhang 1

Py, P selen zwel Vierervektoren. Die Menge

wird durch

P(Pl, Pz) = p1+ Po

mz

e(p1, Pa) = ((P1+?52) My, M)t L(py + Py) (?51 Pe — (Pt pa +P

= (b + 12

Als, my, my) =V (s = (my -+ ma)?) (s — (my — mD)f's
eineindeutig auf die Menge
{(P,e)| P2 > (m, +my? P*>0, |e|=1}
abgebildet, denn es gilt:
1) (p1 + P2)* = (my + my)?

fiur pY = |/mE + p}, p3 = }/m + p3 und das Gleichheitszeichen gilt genau dann, wenn
Mg Py = My Py ist,
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2) (P ps — P—:-;b— (p1 + Pz)) = A((Pl + P9)?, iy, mz)z

(L(Ibl + pa) (Ib1 v (P, + jbg)))o ==

Die inverse Abbildung lautet

P*P)z

2 .9
pu(P, &) = 5 (D E o 4(P8 oy, mg) L(P) 1)
2P, &) = 5 (EZEE APy, my) L(P)e)

= 1), &) le|=1.

Man verifiziert leicht

PP e =md P> L (AT 4mE —A) PP >0
poP @) =md Py > (A + 4wk — A) PP > 0.

Setzt man e = (sin ¢ cosg, sin ¢ sing, cos 9), so folgt

o(pi. p1. 3. p3. 23, 2D _ 0(pY. 3. PY)

Y= .
0(P°, PL, P2, P8 ), ) 0(]30 PO 9 o) @) (1/8}/ Pz) A(Pz’ My, m.‘z) sind) 4 pg 758 :

Daraus folgt

[ [ G p) = [P O O (2= (o m)

2)/m3 + p 2)/m3+py J
A(P my, My)
S [ a0, G(i(P. o), palP, @)
Anhang 2
Sei -
p=(/m+pip) q=(m+ g q
_ 1/ p+9P—4m? p q—m?
SPe gl = V b+or ¥V opgrm
also

Differenziation ergibt

0A4(p, 1 2 1
dipg 1w ey g

1 w2

e _ 1 e 0 Ak __ HO0 K,
TP patm Ypgi_pr g WP — 20 .

Damit folgt

2 1 04(p,q)\2 1 pi 1 oo .
Z — o5k g 2 p0 0 )
Kl( opk ) 2 B Go—pg LT 28°¢P9
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Nun gilt fiir beliebige Vierervektoren a, b

@b —a?b2=a"b2+ 0" a2—2a"ab — (a x b)?

daher ist
Z (9& 9 ) _om mt (p X )
= opF PP g+mA)E T PO (p g+ mAR (P 9)P— b g%
Mit
|p|=mShu,u>0
|q|=mShv,v>0
pg=|p|lq|cos2a
folgt
et
P gt S dmt
und

mi(p X g)*
PP g+ m2)? [(p 9)2— P )
- 7 4 m® Sh? u Sh? v sin®u cos*u 7 o
m? Ch? 4 m*[Ch (u—v)+2 Sh u Sh v sin®e+ 172 [(Ch (#—v)+2 Sh u Sh v sine)2— 1] m?

1 4 Sh2 u Sh2 v sin2« cos?a 1 Shu Sh v 2
o e - = cos?a,
m? Ch2u 4 Ch (k—2v) 4 Sh # Sh v sin?«x 4m? Chwu ChuCh(u—v)
1

s> Tgu (Tgu — Tg (u — v)) cos?a < el
Zusammengefasst ergibt sich
: (04 p.q ) 3
e % e
e, 0pk 4 m?

Fir p + q existieren also die Ableitungen 04 (p, q)/0p* und sind beschriankt. Ausser-
dem existieren

Das ist oftenbar hinreichend fiir die H(1)-Stetigkeit von A(p, q) in p. Analoges gilt
fiir die Variable q.
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