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S-Matrix und interpolierende Felder

von Walter Schneider

Seminar für theoretische Physik, ETH Zürich

(27. XII. 65)

Abstract. For a certain class of S-matrices LSZ [1]*) gave a formal construction of interpolating
fields A(x) satisfying the asymptotic condition lim A(x) Aout(x), Aout(x) S_1 Ain(x) S.

t—*-± oo
'

in
The purpose of this paper is to formulate this construction in a mathematically rigorous manner.

1. Einleitung
Ein bisher ungelöstes Problem der Quantenfeldtheorie ist der Nachweis der

Existenz nichttrivialer Modelle, die sämtlichen Wightmanschen Axiomen genügen [5] ;

nichttrivial bedeutet in diesem Zusammenhang, dass das betreffende Modell zu einer
von 1 verschiedenen S-Matrix führt.

Das Ziel dieser Arbeit ist die Konstruktion nichttrivialer Modelle, die einem Teil
der Wightmanschen Axiome genügen. Um die Einschränkung des Axiomensystems
genau zu erfassen, sei daran erinnert, dass sich die Wightmanschen Axiome für ein
einziges reelles Skalarfeld wie folgt formulieren lassen :

0. Der Zustandsraum ist ein Hilbertraum 7/. In "U ist eine stetige unitäre Darstellung
Ufa, A) der Einskomponente P\^ der Poincaré-Gruppe gegeben. Als unitärer Operator
besitzt Ufa, 1) die Darstellung Ufa, 1) exp i P*1 a~ das Spektrum der selbstadjun-
gierten Operatoren P" liegt voraussetzungsgemäss in {pjfp, p) > 0, p° > 0} u {0}.

Es existiert ein bis auf einen Phasenfaktor eindeutiger Zustand Q, das sogenannte
Vakuum mit Ufa, Ä) Q ü.

1. Jedem pe5(R4) (Raum der stark abfallenden C°°-Funktionen [6]) ist ein

Operator Afip) zugeordnet. Afp) ist definiert auf einem dichten Bereich DQ.1l,
derart dass Afcp) D CD und fW, A fcp) 0) e S'(R4) (Raum der temperierten Distributionen

[6]) für W,0eD.
Ä ist symmetrisch, das heisst (W, À fcp) 0) (Ä(ö>*) lF, (p) mit <p*(p) <p(— p).

Q gehört zu D. D ist invariant unter Ufa, A) : Ufa, A) D C D.

2. Auf D gilt
Ufa,Ä)Ä(y)Ufa,A)-i A(^A))

mit
?(a,4P) e ^"ffA-'p).

x) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 106.

6 H. P. A. 39, 2 (1966)
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3. Lokalität : Sind die Träger der Fouriertransformierten von cpx und q>2 raumartig
separiert, so gilt auf D

[Ä(c}x), Äfq>2)] 0

Bemerkung: Axiom 1 kann dahingehend verallgemeinert werden, dass jedem

<P e V9 D S(R4) ein Operator Afjp) zugeordnet wird mit der Eigenschaft fW, A fcp) 0) e
W C S'(R4). Dabei ist W ein topologischer linearer Raum, W sein Dualraum [7];
die durch W in S(R4) induzierte Topologie kann gröber sein als die übliche Topologie in
S(R4).

Die im folgenden konstruierten Modelle erfüllen Axiom 0, Axiom 1 in der in obiger
Bemerkung abgewandelten Form für einen noch zu beschreibenden topologischen
Raum W (der leider S(R4) nicht enthält) und Axiom 2.

2. Formale Betrachtungen [1, 2]

Es sei Ainfx) ein freies Feld zur Masse mA 0. Die Klasse der betrachteten S-

Matrizen ist durch
S én (2.1)

n £ JA / ZK- ..-.**): Amfxx) Ainfxk) :d*xx...d*xk (2.2)

charakterisiert, wobei die Funktionen hkfxx xf) den Bedingungen

a) hkfxh, X{k) hfxx, ,xk) A. '".\e<Zk

b) hkfxx, xk) hkfxx xfi

c) hfA xx + a, ,Axk + a) hkfxx,... xf) fa, A) e P\_

d) hk(- xx,...,-xk) hfxx, ,xk)

zu genügen haben. Die Bedingung a) wird durch die totale Symmetrie des Wick-
Produkts: Ain(xx) Ain(xk): nahegelegt; auf Grund von b) ist rj ein symmetrischer
Operator, die S-Matrix wegen (2.1) also ein unitärer Operator. Aus c) folgt

[U(a,A),t)] 0 (2.3)

wobei U(a,A) die zu Ain(x) gehörige unitäre Darstellung von P\_ (Einskomponente
der Poincaré-Gruppe) ist. (2.1) und (2.3) implizieren

[Ufa,Ä),S] 0 (2.4)

das heisst die S-Matrix ist invariant unter der Poincaré-Gruppe.
Ist 0in eine antiunitäre Involution mit

0inAinfx)0in Ainf-x) (2.5)

so folgt aus d)

0in r, 0in r, (2.6)
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was mit (2.1)

0in S 0in S-i (2.7)

ergibt.
Definiert man

Aoutfx) S-M ,.„(*) S (2.8)

und

0=0inS (=S-10,,) (2.9)

so ist 0 eine antiunitäre Involution mit

0Ainfx)0 Aouf-x) (2.10)

Analog ist
0out S-* 0in S (2.11)

eine antiunitäre Involution mit

®outAoufx)0out Aouf-x) (2.12)

0in ist durch 0in Q Q fü Vakuumszustand) eindeutig festgelegt ; es gilt dann auch
0Q=Q.

(2.9) führt zu
0 S0= S"1 (2.13)

was nichts anderes als die TCP-Invarianz der S-Matrix bedeutet.
Führt man die einparametrige Schar unitärer Operatoren e*}-*, X reell, ein, so erhält

man durch formale Differentiation nach X

-J- («"»' AJx) «"•») i e-n" [Ainfx), rj] «"" (2.14)

oder durch Integration
i

^«.(*) 4,W + *' / dX e~a" [Ainfx), ry] <Z" (2.15)

Mit (2.2) folgt

[AJx), V] i J d*yAfx-y) êfy) (2.16)

«-i 1

*(y)- 27 TT / Äw-ib'.«!.-.**):^*!)-^**):^*! ••¦««•**¦ (2-17)
* - 3 ^

Setzt man (2.16) in (2.15) ein, so erhält man

i
Amfx) AJx) - J dXe-^ (J d*yA fx - y) êfy)) <Z" (2.18)

o

Ausgehend von (2.18) führt man das interpolierende Feld Afx) ein:

i
Afx) Ainfx) + J dX e-a« (J d*yAret fx - y) â(y)) ea" (2.19)

o

Aretf£) - 0fC°) Afi) (2.20)
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Aus (2.19) folgt
i

0 A fx) 0 Aouf- x) + f dX eu" (| dy Arel fx - y) 0 êfy) 6») e~a» (2.21)
0

niXn (Ai „- iXr,wobei von 0 eUr> 0 g-a" (Analogon zu (2.13)) und Aret(Ç) Aref£) Gebrauch
gemacht wurde. Die Variablentransformation X -> 1 — X führt zu

i

0A(x)0 Amf- x) + J dXe "" / dA Am fx - y) S 0 §(y) 0 S^) eu» (2.22)
o

was mit S 0 0in und der Bedingung (d)

i
0Afx) 0 Amf- x) + f dXe-^ (f d*yAret fx - y) êf- y)) eZ» (2.23)

o

ergibt. Drückt man in (2.23) Aouf— x) nach (2.18) aus und verwendet man Af— £)

- /1(1) nebst (2.20), so ist schliesslich

i
0 Afx)0 AJ- x)+ f dX e nr> fd*y Aret (-x-y) ê(y)) eUr> (2.24)

o

Vergleich mit (2.19) ergibt [2]

0 Afx) 0 A(-x) (2.25)

Diese rein formalen Betrachtungen sollen im folgenden einer mathematisch strengen
Behandlung unterzogen werden, das heisst also, dass Definitions- und Bildbereich der
eingeführten Operatoren in einem konkreten Hilbertraum angegeben werden.

3. Fockraum und freies Feld

Die Sequenz von Hüberträumen 7/A-, 2V 0, 1, 2, sei wie folgt definiert:

% C (3.1)

(0O,XFO) 0O¥O (3.2)

Kv J <Zypi Pn) I 0ZP,v • • • PiN) ®N(Pi. ...,PN),

fn^\®N(pi.---.pN)\2<°°\, oz

(*s • "PJ f fl "Hy ®n(Pi. • • • Pn) VnÌPi ,--,Pn)- (3-4)

Dabei ist p e R3, cap \/m2 + p2 > 0, m > 0
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Der Fockraum U ist die direkte Summe der Hilberträume U,\, also

°° I ~ I

-U ® UN <P {0AT I ^ve Un-Z^n. ®n) < °° - (3-5)

OO

(0, ¥)=£(&,-,¥A ¦ (3-6)
o

7/ ist ein separabler Hilbertraum.
Lemma 1 : Die Menge DN sei dicht in Un, N 0,1,2, Dann ist die Menge

D {0 e U | <PW e LV <2>jV 0 für iV > ZV0(<P)} (3.7)

dicht in U-
Beweis: DL sei das orthogonale Komplement von 73, das heisst es ist f0, W) 0

inx0eD±,¥eD. Nun enthält D alle Vektoren W {0, ,0,WN,0, ...},WNeDN,
N 0,1,2, Daher ist für beliebiges 0eD^ nach (3.6) f0, W) f0N, WN) 0

für alle WN e DN, N 0,1,2, das heisst 0N =0, N 0, 1, 2, Somit ist
73x =0, q.e.d.

Das freie Feld AJcp) ist durch

(ÂJÏ) 0)N (Px,..., pA }<2n |/ÎV + 1 | |^ ^(oJp, p) <Pv+1(p, px pA,)

+ 1/2Z ~ ^ ?>(- «,-, - Pò &n-i(Pi .-.Pì-.-Pn) (3-8)

definiert. (AJcp) 0)N ist genau dann in Un iur beliebiges 0 e U falls

Z' Ü t I ^(ftV P) !2 + I 9(- «>p- - P) I2} < °° (3-9)

gilt. Die Menge aller Funktionen cp(p), für die (3.9) gilt, bilden einen Hilbertraum §.
Der Definitionsbereich D~ von AJcp), cp e §, besteht aus allen 0 e U mit

||iin(^)0 j|2<co. (3.10)

Erfüllt Z) die Voraussetzungen des Lemma 1, wobei zusätzlich DN Un gelten soll,
so ist D C D~ ; insbesondere ist also D~ dicht in U-

Es gilt der
Satz 1 : [3]

ÀJv*) [ÀJÏ)]* (3.11)

das heisst AJcp*) ist der zu AJcp) adjungierte Operator. Dabei ist cp*(p) cpf— p).
Es ist üblich AJcp) Ajtp) + Affcp) zu setzen mit

(Äf (ri) 0)N (Pl, pN) =(2n fÜ + 1 J JJJ-p ffcüp, p) 0N+xfp, Px,..., pN) (3.12)

(ÄfAf) ®)n (Pi,-, Pn) f,Jy fff-«,,- P«) <V i(Pi - • • ¦ - Pt. ¦ ¦ ¦. Pn) (3-13)
VN tri

AfAfp) heisst Vernichtungs-, Af (cp) Erzeugungsoperator.



86 Walter Schneider H. P. A.

Der Raum § ist der grösstmögliche Raum von sogenannten Testfunktionen für das

freie Feld Ain. Es wird im folgenden nötig sein, passende Unterräume (mit im
allgemeinen feineren Topologien versehen als mit der induzierten) von § zu finden, auf
welchen nebst A in weitere Operatoren als lineare Funktionale definiert werden können.

Die antiunitäre Involution 0in ist durch

(@in #)o #7 (3.14)

iß in ®)n (Pi. • • • - Pn) ®n(Pi ¦ ¦ ¦ > Pn)

charakterisiert. Man überzeugt sich leicht, dass

einAjï)&ltt Ajï) (3.15)

gilt. Das stimmt formal mit (2.5) überein, wenn man

f dH AJx) tpfx) Âjq>) $(p) -J-f J d*x cpfx) e'**' (3.16)

setzt.
In U ist eine unitäre Darstellung Ufa, A) der Poincaré-Gruppe P\. gegeben:

.v

Ufa, A) 0)lX fpx,..., p,.) ,* i '* 0JA-1 px,...,A-i pA
rk"

p°r coPrr=l,...,N. (3.17)

Aus (3.8) und (3.17) folgt

Ufa, A) ÀJÏ) Ufa, A)~* A~J^A)) (3.18)

^A)fP)=cpfA-^p)e-Py (3.19)

Um einen für das folgende geeigneten Definitionsbereich charakterisieren zu können,
wird der Begriff der Hölderstetigkeit eingeführt und einige Lemmata über hölder-
stetige Funktionen bewiesen.

Definition: Die Funktion f(x), xeRm, heisst hölderstetig, falls eine Konstante

fi ftff), 0 < /jt < 1 und eine Konstante gff) > 0 existieren mit
m

l/(*')-/(*) l< eV) £ i*;-*f|* (3-2°)

für alle x,x'eRm; gff) heisst Hölderkonstante, pt Hölderindex. Eine hölderstetige
Funktion/mit Hölderindex pt heisse kurz Hf/ti) -stetig.

Mit g(f) ist auch g'(f) > g(f) Hölderkonstante; das Infimum gff) aller Hölder-
konstanten ist ebenfalls eine Hölderkonstante. gff) ist eine Seminorm, das heisst
es gilt :

&>(/) > o

Qofif) 1*1 Qo(f)

Qoff+g) <Qoff)+6ofg), (3-21)

wovon man sich leicht überzeugt.
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Eine .ff(/^-stetige Funktion ist stetig im gewöhnlichen Sinn. Besitzt /beschränkte
partielle Ableitungen erster Ordnung, so ist/.ff(l)-stetig (Mittelwertsatz der
Differentialrechnung)

Lemma 2: Ist/(%, xm) Hfpi)-stetig in jeder Variablen separat, so istfHfß)-
stetig. Trivialerweise gilt die Umkehrung.

Beweis: Nach Voraussetzung ist

\ffxx,...,x'i,...,xm) -ffxx, ,Xi,...,xm) | <gff) \x\-Xi [" i=l, ,m.
Damit folgt

m

1/(7) -ffx) | l27(/(^i- ¦¦¦>xk-i,x'k, ¦¦¦ ,xm) -ffxXl... ,xk,x'k+x,...,xj) |

k-l
m

<HQk(f)\H-xk\"
Ä l

m

<eff)Z!\x'k-xJß e(/) max&(/) • q-e-d-
k-l k

Lemma 3: Eine beschränkte .ff (^-stetige Funktion / ist ff" (»>)-stetig für

0 < v < ft.
Beweis: Nach Lemma 2 genügt es zu zeigen, dass/in jeder Variablen separat H(v)-

stetig ist. Für | x\ — xt | < 1 folgt das aus [ x\ — xf" y \ x\ — xt ]", 0 < v < pt; für
| xt — Xi | > 1 ist es eine Konsequenz der Beschränktheit von /.

Lemma 4: ffx), x e Rr, sei ff(^-stetig, gfy), y e Rs, sei ff (f)-stetig, k= 1, ,r.
Dann ist h(y) ffgfy)) H(p i>)-stetig.

Beweis: Die ff(ft v)-Stetigkeit von h(y) ist eine unmittelbare Folge der Ungleichung

(Êai)" <È< ai>°
\*-l / i-l

die man durch Induktion nach s beweist. Für s 2 erhält man sie aus

(1 + è)" < 1 + b < 1 + b" 0 < b < 1

indem man entweder & a1/a2 oder ô «J«! setzt.
Lemma 5: ffx, y), xe Rr, y e Rs, und gfy, z), y e Rs, ze R', seien beschränkt und

ff(^-stetig. Dann ist auch hfx, y, z) ffx, y) gfy, z) ff (^-stetig und beschränkt.
Beweis: Sind a(f) und a(g) Schranken von /bzw. g, so ist aff) afg) eine Schranke

von h. Weiter folgt

\f(x', A) gfy', 7) -ffx, y) gfy, z) j

l/(Z y') gfy', z') -ffx, y) gfy', z') + ffx, y) gfy', z') -ffx, y) gfy, z) \

<ofg)gff) 27K-*.-l"+27ly<-y«l"

+ off)gfg) (è\yi^yl\r+è\*i~*iI")<K)e(/) + *(/)efe))

x (271 *;-*<l*+27lyi-y<r +27K-*<I" i-e-d-
i ».i »-i
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Sei nun D ein Bereich, der den Voraussetzungen von Lemma 1 genügt. Es wird
folgende spezielle Wahl von DN getroffen :

DN besteht aus allen &N, die hölderstetig sind und einen kompakten Träger haben.
Offensichtlich existiert dann zu 0 e D eine Konstante Cf0) und ein Index pt pt(0)
derart, dass 0y H(fi)-stetig ist und Cf0) Schranke und Hölderkonstante von 0N ist;
das ist eine unmittelbare Folge von Lemma 3.

DN ist dicht in Un • da bereits die Teilmenge der differenzierbaren 0K e Dx dicht
in Un ist.

Es gilt der Satz 2 :

Ufa, A) D C D (3.22)

Beweis: Sei # e D. Nach (3.17) ist

(Ufa, A) 0)N fpx,... ,pN) exp i U° 27 w* ~ «27P* WJpx,..., pN)
\ k-l k-l j

VJPl,---, Pn) &NÌA-1 Pi, - ¦ ¦, A-i pA

Die Funktion exp i a° fff mk — a V Pk) ist beschränkt und besitzt beschränkte erste
V A-l k-l I

Ableitungen; sie ist daher ff(l)-stetig, also nach Lemma 3 auch H (^-stetig. Dir
Funktion S^CPi» • • • Pv) ist ff (^-stetig nach Lemma 4, da (A~l p)k (A~x)l wp +
(/l-1)f pl ff (l)-stetig ist. Lemma 5 ergibt schliesslich die ff (fi)-Stetigkeit von
(U(a,A)0)N.

Es bleibt die Kompaktheit des Trägers von Ws nachzuweisen. Da supp 0N

kompakt ist, existiert ein c mit supp 0N Ç \(px, ¦ --Pn) 1 ^7 <»,¦ < c\ Dann ist
t i-l I

supple {(px, ...p.v) \£w, < 2 cA°l, q.e.d.
\ i-l I

Der Testfunktionenraum W bestehe aus allen ff (l)-stetigen cp(p) mit kompaktem
Träger. %$ ist ein topologischer linearer Raum; die Topologie auf W ist der induktive
Limes der Topologien auf den Teilräumen Wk die aus allen cp(p) eW bestehen, deren

Träger in der kompakten Menge K enthalten sind. Die Topologie auf Wk ist durch
die beiden Seminormen sup | cp(p) |, g fcp) bestimmt.

Satz 3 : Für cp e W ist

Äjcf) DCD. (3.23)

Dabei ist pt(AJcp) 0) pi(0) ; AJcp) 0 hängt stetig von cp ab.
Der Beweis folgt ohne Schwierigkeit aus (3.8) und den Lemmata 3, 5.

4. Die S-Matrix - Fall n 4

Die durch (2.1), (2.2) formal definierte S-Matrix enthält den Parameter n, der die
Werte n 4, 5,6, und n oo annehmen kann. Der im folgenden ausführlich
behandelte Fall n 4 zeichnet sich sowohl durch Einfachheit als auch durch die
Tatsache aus, dass r\ - und damit S - teilchenzahlerhaltend ist,
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Für den Fall n 4 ist der Operator rj durch

fad>)N(Pi. •¦• -Pn) 1/227ZZ + Pj) fdÜeh (pi,Pj,-s(pi + pj,e),-t(pi + pJ,e))

#n ((* (Pi + Pj,*), t fPi + Pj, e),Pi, ••• •Po-- .P,.--.Pn)

P\=fm* + p* r=l,...,N (4.1)

definiert. Dabei ist für einen beliebigen Vierervektor P

ffP) 0fP°) <9 (P2 - 4 m2) |/?2-4^ / 8 fp2 (4.2)

und für Vierervektoren P mit P° > 0, P2 > 4 mA

sfP, e) -Z (p + |/p2 _ 4 W2 L(P)-1 ß)

*(P, e) i (P - |/p2- Zw2 L(P)-1 <?)

e=(0,e), |e| l, (4.3)

L(P) ist die drehungsfreie Lorentz-Transformation

po/i/p2 - PVi/p2 - pa/i/P2 - P3/|/p2X

pi/i/p2
L{P] S

P'/l/p2 J..+ _*J? » (4'4)

' u i/P2 (j/P2 +P°)

ps/i/p2

aus Z.J:I(P) P= (/P2, 0).
Eine einfache Rechnung ergibt

L(P)-1 e 1/j/p2 • /P e, |/p2 e + — ~ —- P\ (4.5)

und
s2 fi m2, s° > 0, t° > 0 (4.6)

kfpi ,p2,p3, Pi) genüge den Bedingungen :

1) kt ist beschränkt und ff (1)-stetig

2) HPi,,Pi>,Pu,Pi) =kfp1,p2,p3,Pf

3) ki(Apx,Ap2,Ap3,Api) =kfpx,p2,p3,pi) AeLl
4) kf- px, - pg, - p3, - pf kfpx, p2, p3, pf

5) KiPl> p2. Pz. Pi) KfPl ,p2,Ps, Pi)
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Daraus folgt der Satz 4:
a) Der Operator »yN, definiert als Einschränkung von rj auf Un (Definitions- und

Bildbereich von ?yN liegen in ?/N, letzterer wegen (4.1)), ist symmetrisch und beschränkt.
Daher ist rj ein selbstadjungierter Operator [4].

b) rj ist invariant unter Pj :

[U(a,A),rj] 0. (4.7)

c) Es ist

rjDcD (4.8)
und für 0 e D gilt

^Jl^*iL|»|r<00jVzec. (4.9)
r-0 r '

D ist also ein dichter Bereich analytischer Vektoren [8] des Operators rj.
Beweis: Für das Skalarprodukt in 'Un gut

(<p*- *Z) /" /7 d^-$n(pi,---,pn)*ypi.• ¦ ¦.pz

/Vp fäüj fj f^ /(P) 0A-(5(P,e),^(P,e),p3,...,p.v)

•<FA.(s(P,e),f(P,e),p3,...,pA.) (4.10)

speziell also

[|0A.j|2= / d'P dQej JJ-^ \}/f(P)0js(P,e),t(P,e),p3,...,pN)\z. (4.11)

Dabei wurde von

/ 77/ /5tF(^' ^ / diP I düJ{P) F{S{P' e)-t(P' e)) (4-12)

Gebrauch gemacht. Die Herleitung von (4.12) findet man im Anhang 1.

a) Aus (4.1) und (4.10) folgt

N (N-l)(On, Vn V») ^i-'-J d*P / dQ. dQ, JJ-J*
.v

f(P) 0N(s(P, e), tfP, e), p3, pN) kfsfP, e), t(P, e), - sfPJ), - t(PJ))

ffP) TJsfPJ) tfPJ),Ps, ,pN), (4.13)

woraus man unmittelbar die Symmetrie von rjN abliest unter Berücksichtigung der

Bedingungen (4) und (5) für kfpx, p2,p3, pf.
Nach Bedingung (1) ist | kfpx, p2, p3, pf) | < K < oo. Es folgt daher aus (4.13)

wegen (/(P))2</(P)/8

I (*„. Vs V») I < -(-^ K\f*pJiQ.JäQ,jjj*t;
\ÌW)ON(^(P,e)A(P,e),p3,...,pN)\\)jJfP)WJsfP,f),tfP,f),p3,...,pN)\, (4.14)
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woraus sich mit (4.11) und der Schwarzsehen Ungleichung

«Pw, Vn n) I < -™r 1] K -Z 4 n 11 0V [ j 11 TN \ | (4.15)

ergibt. Damit ist auch die Beschränktheit von rjN nachgewiesen.
b) Die Translationsinvarianz von rj folgt unmittelbar aus

sfP, e) + tfP, e) P (4.16)

während die Lorentzinvarianz eine Konsequenz von

(10
0 0

0 R(A P)
'' R(A'P)eJ (4'17)

ist. (4.17) zieht nämlich

A'1 sfP, e) sfA-1 P, R(A, P) e)

A-1 tfP, e) ifA-1 P, RfA, P) e) (4.18)

nach sich. Aus (4.18) und

'

dQJfRe) f dQJfe), R e 0+ (4.19)

erhält man die Gleichheit von fr] UfO,A) 0)N fpx,... ,pN) und fUfO,A) tj0)N fpx,..- ,pN).
c) Sei 0 e D ; 0N besitzt also kompakten Träger, das heisst es existiert cN mit

supp 0N C {(Px, ¦¦¦,Pn)\Èc°ì<cn\- (4-2°)
I i-l I

suppfo<p)tfC\(Pi,---,Pn) l'27^<c-v - (4-21)

Aus [rj, Ufa, 1)] 0 folgt
I

i-l
somit ist supp (rj 0)N kompakt.

Aus (4.1) und der Kompaktheit von supp 0N folgt mit Lemmata 4, 5 die H(pt(0))-
Stetigkeit von frj 0)N, da die Argumente von £4 und 0N aus stetig differenzierbaren
Funktionen zusammengesetzt sind - abgesehen vonffp{ + pf), dessen ff (l)-Stetigkeit
im Anhang 2 nachgewiesen wird. Dieselbe Argumentation zeigt, dass eine Konstante
af0) existiert mit

Cfrj 0) x(0) Cf0) (4.22)

Damit ist rj D C D gezeigt ; darüber hinaus folgt, dass auch

e'r> DCA zeC (4.23)
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gilt, wobei

e">0=£ L r]«&i &eD
ist. Nach (4.22) ist

C(e">0) e z'a{0) C(0)
zudem ist

fife*« 0) pt(0)
Setzt man

V* max f ff pN-1,..,N„(0) J V 2cU<

H. P. A.

(4.24)

(4-25)

(4.26)

(4-27)

V
Zmi<cN
1

so folgt
oo

27 -^Z I\nn ® 11 < \/tio(0) +1 Z*>lz C(0) V (4.28)

womit gezeigt ist, dass D ein Bereich analytischer Vektoren ist.
Korollar: V(X) eUv, — oo < X < oo, ist eine einparametrige Schar unitärer

Operatoren mit V(X) D CD; insbesondere ist S U(l) unitär und S D C D.
Bemerkung: Aus (4.1) und der Bedingung (5) für ki folgt unmittelbar die Gleichheit

von (0in tj 0)n (Pi, ,py) und fr/ 0in 0)N (px, ,pN), das heisst

(0ln,rj] O. (4.29)
Das durch

Àmt&) S"1 ÀJe}) S (4.30)

definierte Feld erfüllt nach Satz 3 und dem Korollar zu Satz 4

Âjjp) DCD. (4.31)

Die entsprechende Zerlegung in Erzeugungs- und Vernichtungsoperatoren lautet

Ä-U?) S_1 Alti) S ¦ (4-32)

Sei fA Jcp))N die Einschränkung von A Jcp) ani Ux- Dann ist fAfnfcp>))Nein beschränkter
Operator von Un in ?fv± i • Daher ist auch

«~"'M4(?))* "'" (4-33)

ein beschränkter Operator von Un in ?/w±i- Funktionen beschränkter Operatoren
haben ein zu gewöhnlichen Funktionen analoges Verhalten, was Differenzierbarkeit,
Analytizität und dergleichen anbelangt. Es gilt :

1[^^Zz;m)v^]
ie~iKn^[fÀlf^))NrjN-r,N±l(Âl(Ap))N]ea^. (4.34)
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Für jeden Bereich, der den Voraussetzungen von Lemma 1 genügt, gilt also

Z- [e-**« ÀI®) A'-" 0] i e-**» [Âlfp), rj] <Z" 0 (4.35)

dabei hängt der Vektor
e-iX" A?® eil* 0

analytisch von X ab.
Aus (4.35) gewinnt man die Darstellung

i
Äfjf) 0 Àffcp) + i f dX [e-iu< [i?(£), rj] eix» 0] (4.36)

o

unter Berücksichtigung von (4.30).
Für die Operatoren

*Z(?) \ÂZ$), Vi (4-37)

gilt

fät® ®)n fPi,---, Pn) Ì2n j/ivTÏ \Ê! ffip vK.P) f.fP + Pò

dQekfp, p.,-s(p + pi,e),-tfp + pi,e))

x 0N+ xfsfp + pi,e),tfp + pi,e),p1...p{... pN) (4.38)

(KW) ®)x (Pi. ¦ • •. PN) - |/2 n -L £f(pt + Pj) [ dQe~cpf-s fp, + p}, e)

ki(Pi,Pj,-sfpi + Pj,e),tfpi+pj,e))0N_1ftfpi+pJ,e),px...pi...pj...pN). (4.39)

5. Das interpolierende Feld Ä(<p) - Fall n 4

Für 0 g D, epe W ist das interpolierende Feld A (cp) durch

(Ì(£)0)N(p1(...,pa \ ffÀjcf) 0)N(Px,...,Pn)
i

+ y (Àoutf?) $)„ (Pi,... Pn) + J àX («-»' afep) e"" 0)N (px,..., pN) (5.1)
0

definiert. Dabei ist

à(?>) à8(ç>) + òtfcp) + x+fcp) + òc-fcp) + à_fcp) + <k-a(<p) (5.2)

mit

3 „ 9\E li1 ]/(N+l)(N + 2)(N + 3) f At ffig,few *)* (P1.....PZ ~J*^*y>^ jj i
m 3! y v^ /i?1.r-»2

X hijjlf -?i.-?2. -Ça) *jv+s(9i. 92.^3. Pi. ..-.Pjv) (5-3)
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(«iW V)n (Pi,-, Pn) ^- 2 Z y ii 2 ^ (?i+?2 _ ^, _ m2

x[l-z((?i + ?2-Z)2)]Z(?i + ?2-Z-Z.-?i.-?2)^.v+i(9i.g2.Pi...Pi...Pv) (5-4)

<;-*>^-<> M-wwSf-% /-ZZZ
x[^-z((?-Z-Z)2)]Z(?-Z--Z.Z.Z.-?)0v-1(9.Pi...P.---Pi---PZ (5-5)

(i-*>*>»<p »«» - Z? TinOTr ,M„ ^^7
-E ft*7 1 *

z(-27z,..Pi,,pu,Pt,)&n-b(Pi¦ ¦ ¦ h¦ ¦ ¦ h -h--pz (5-6)

Xfs) ist eine reelle ff(l)-stetige Funktion mit supp %C\fn — fi, m + pi], pi < m und
Xfm2) 1.

Satz 5 :

a) xfy)DcD «' 3.1,-1,-3
b) U{a,A)it(q>)U(a,A)-1-i{ftißiA))

e) fife}) 0, W) f0, £_!(£*) W)

(àfy) 0,W)= f0, *_f<}*) V)

0,WeD.
Beweis:

a) Die Kompaktheit von supp fafcp) 0)N folgt aus derjenigen von supp 0K+i und
supp cp. Auf die Hölderstetigkeit schliesst man wie üblich; es ist ptfxfcp) 0) ptf0),

b) folgt unmittelbar aus (5.3) bis (5.6), (3.17) und der Eigenschaft (3) von ki,
c) folgt aus den Gleichungen:

((ZM &N, ¥n) (0.V+1. (5-lM) ^Z+l)
((x3(iï)0)x, WN) (0N+3, (£_3(£*) W)N+3),

deren Gültigkeit man leicht nachweist.
Es bleiben die Operatoren öc+ (cp), ôc~ (cp) zu definieren. Zu diesem Zweck wird

das Hauptwertintegral eingeführt.
Definition: f(x) sei eine Riemann-integrable Funktion in (— a, a], a > 0. Falls

lim ZZZ dx + fß*) dx\
(5.7)

ejO \ J X J X J
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existiert, so definiert man das Hauptwertintegral

95

P fJJ-dx

durch den erwähnten Grenzwert.
Wegen

ist auch

P f fJJ dx lim
J X ejo

P / --¦- dx 0

/w-/(Q) dx+ fiAizmdx

Aus (5.7) folgt, dass das Hauptwertintegral existiert, falls die Grenzwerte

im
t-\ o

lim M- und lim /W
x\0 x

existieren ; in diesem Fall ist

(5.8)

(5.9)

(5.10)

p [ßJdx= [M-dx.J x J X

Aus (5.10) folgt die Existenz des Hauptwertintegrals für hölderstetige Funktionen
und es ist

P (M- dx hm ffM-no) dx + lim f /W-/(0) dx (5.11)

p(MÄ <2^o(/)-«7 (5.12)

Lemma 6: ffx, y) sei hölderstetig und beschränkt. Dann ist auch

Ffy) P [JJ-Jdx (5.13)

hölderstetig und beschränkt.

Beweis:

a) Beschränktheit von Ffy) :

Nach (5.12) ist

Ffy)\<2g0ff)^-a+ (5.14)
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b) Hölderstetigkeit von F (y) :

Definiert man für 0 < u < a
a

T-i \ /'/(*» v)-/(0, -yjFAu, y) / y «

F_(w, y) y
/7,7-/(0, y) dx

und

FAy) =lim F+K y)

FAy) lim F_(w, y)
«4,0

so ist F (y) F+(y) + F_(y).
Es genügt offenbar, die Hölderstetigkeit von F+(y) nachzuweisen.

Für | y' — y | > a ist wegen (5.14)

| FAA) - FAy) \ < 4 g0(f) J-\y'-y \" ¦ (5.15)

Für j y' — y | < a ist

I FAy') - FAy) |

| FAA) ~ F+f\y' -y\,y') + F+ f\y' - y \, y') - F+ (\ y' - y \, y)

+ F+(\y' -y\,y) - F+(y) \ < | F+(y') - F+ f\y' - y\, y') \

+ | F+ f\y' - y\, y') - F+ f\y' - y\, y) \ + \ F+ f\y' -y\,y)- FAA | • (5.16)

Wegen

| FAu, y) - FAy) | < ß0(/) v u" (5-17)
fl

sind der erste und letzte Summand in (5.16) jeweils kleiner als gfj) fljpt) \ y' — y f,
was selbst wieder kleiner als gff) fljpt) a''~v j y' — y \v, 0 < v < pt ist. Für den zweiten
Summanden in (5.16) folgt

I F+ (| y' - y |, y') - F+ (| y' - y |, y) |< 2 gff) \y'-y fin -A-^
<2Qff)a^-y-l1^\y'-yf 0 < v < ft. (5.18)

FJy) ist also H(i>)-stetig, 0 < v < ft q.e.d.

Korollar: f(x,xx...xm,yx...yn) sei beschränkt, hölderstetig in den Variablen
x, yx yn, Riemann-integrabel in xx xm, G ein beschränktes Gebiet im Rm. Dann ist

Ffyx, ...,yn) f d<*x p/UAArrAAjAAjAAA dx\
(5.i9)
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hölderstetig und beschränkt; die beiden Integrationen in (5.17) sind vertauschbar,
das heisst, es gilt:

Ffyi, ...,yn)= P J dx-Jf J dmxffx, xx...xm,yx... y„)\.
~a \G

(5.20)

Das folgt unmittelbar aus Lemma 6, Lemma 2 und Abschätzungen vom Typus (5.17).
Man setzt nun

mjß
(£+($>) 0)N fpx,..., Pn) ~ \In + 1 d*q P f dx-^J

% — m
m—p

xAAA^Afêw~q,{q)Sfiq + Pi) J'M.Mq.Po-'Ü + Pi.e),

-t(q + pi, e))0N+xfs (q + pit é), t fq + pt, é), px Pi pN) (5.21)

mit q f\/x2 + q%, q) und

(Sr(q>) 0)n (Px.. ¦ Pn) ~=- ^27 [dQeP f dx —-V \Y> /NKfl fNI y27t yN j^_ J et x„m
m—ii

x 77«^ XW F &t + Z- A~V(-S (p, + Pj, x, e)) K (- 5 fPi + Pj, x, e),

- T (pt + Pj, x, e), pit Pj) 0N_X fT fpt + pj: x, e),px...pi..Apj...pN) (5.22)

mit

FfP, x) ©(P») 0 (P2 -fx + mf) jZZ_-7+«mf-7-")2]

SfP, x,e) \ [ p2 — P + 8 l/P2 FfP, x) I(P)-1 e\

TfP, x, e) J- \pZitAAft p _ s fï* FfP, x) LfP)~l e]

e (0, e), I e j 1 (5.23)

Die Kompaktheit von supp (SA (cp) 0)N ergibt sich leicht aus der Kompaktheit von
supp 0N±i und supp cp.

Berücksichtigt man, dass 0(f) j/£ ff (l/2)-stetig ist - es ist nämlich | |/|' — J/|| <
]/ \ A — i \, ?'A yO-so folgt auf Grund der Lemmata 2 bis 6 die Hölderstetigkeit von
(S±(q>)0h.

Satz 6 :

a) cy(y)DcD,
b) Ufa, A) vA ff) Ufa, A) -1 à± (£(a> A))

c) (*+(<p) 0, W) (0, Srfq>*) ¥), 0, We D

7 H. P. A. 39, 2 (1965)
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Beweis:

b) folgt aus (3.17), (5.21), (5.22), (4.18) und dessen Analogon für S, T, Bedingung
(3) für ki und Korollar zu Lemma 6.

c) folgt aus

ffàjcp) 0)N, wN) (0N+X, (i-(^*) w)N+x),

was man aus dem Korollar zu Lemma 6 und dem Ergebnis des Anhanges 1 schliesst.
Die Operatoren aff) und ôc+(ç>) sind einzeln von der Wahl von % abhängig, nicht

aber ihre Summe ixfcp) + cfA(f), wie man leicht einsieht. Entsprechendes gilt für
5-^.ff) und x.-~((p).

Die Menge DN(K;pi) aller 0NeDN mit gleichem Hölderindex, deren Träger in
einem beliebigen, aber festen Kompaktum K enthalten sind, ist ein Banach-Raum;
die Norm ist das Maximum der beiden Seminormen go(0N), max 10v(Pi • • • px) \-

Für jede Komponente 0N eines beliebigen 0 e D existiert ein geeignetes DNfK; pi)

mit 0N e DJK; ft).
Die Einschränkungen von à.fcp), à^fcp), e±tXrì ani DNfK;pì) sind beschränkte

lineare Operatoren mit Bildbereich in DN'fK'; pt.'). Daher ist der Integrand in (5.1)
in DN und hängt analytisch von X ab, also existiert das Integral und ist ebenfalls in D v.

Zusammen mit Satz 5, 6 folgt der

Satz 7:

Äff) DCD

U(a,A)Ä(f)Ufa,A)-1 Ä(f(atA))

(Äff) 0, W) f0, Äff*) W) 0,WeD

Bemerkung: A ftp) ist CTP-invariant, das heisst es gilt

0 Äff) 0 Äff) (5.24)

mit 0 0in S, was aus (5.1) und 0in ct.ff) 0in ôc(rp) (auf Grund der Bedingung (5)

für kf folgt.

6. Asymptotenbedingung

Jedem cp e W wird wie folgt ein fj e W, er + 1 zugeordnet :

9Ï(P) ?(P) ~zfff- Jap°~mp)t
¦ (6-1)

Dann gilt auf Grund von (3.12), (3.13), (4.32)

Äfff1)=oroÄlff), r,o=±l, (6.2)

wobei ex für in bzw. out steht und Aff für Afx gesetzt wurde.
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Satz 8: Für W, 0 e D gilt die LSZ-Asymptotenbedingung [9]

Jm (W, A (f°) 0)=fW, AUf) 0). (6.3)
Z-)°° (iM'

Beweis: Auf Grund von (5.1), (5.2), (6.1), (6.2) und Satz 5c), Satz 6c) genügt es,

i
lim / dX (eiXr> W, xffl) eUn 0) 0 « 1,3 (6.4)

t—>+oo
(-) o

t
lim / dX feari W, l+fff) enr> 0)
(-) ö

i
1 + cr i

2 AA J
o

+ --- 7 / & feUn W, i+(q>) eUr> 0)

- ,+ ^ r (^ (i^ - Ätm ®) (6.5)
(-)

zu zeigen; im letzten Schritt von (6.5) wurde von (4.36), (4.37) Gebrauch gemacht.
(6.4) lässt sich auf folgendes Lemma reduzieren :

Lemma 7 : f(xx,... xn) sei beschränkt und integrabel, supp/kompakt, g(xx,... ,xn)
sei differenzierbar, grad g 0 höchstens auf einer Mannigfaltigkeit M der Dimension
m < n. Dann ist

Hm f d" xffxx, xfj e''s<*i--*»> o (6.6)

Beweis: Sei supp/= K, Ke eine Umgebung von M O K derart, dass

f d"x\f(xx,...,xn) | <£ (6.7)

s

ist. In K — Ks ist grad g =f= 0, es existiert also eine Zerlegung K — Ks \J Kit
i-l

s < oo, Kt n Kj 0, i 4= /, so dass in K{ dgjdxr =t= 0 für ein r rfi) gilt. Dann lässt
sich das Integral

f d"xf(xx, xf e"^i-----y (6.8)

Ki

ani die Form

f dyf(yx,...,yn)eil^ (6.9)
j

Ki

transformieren. Man sieht unmittelbar ein, dass sich auf (6.9) das Riemann-Lebesgue-
sche Lemma (Theorem 1 von [10]) anwenden lässt; es ist also

f dnxffxx,...,x„) f'-^i'-rn) < s, t > Tfe) (6.10)
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itg(xx,...,xn)

f d"xf(xx, ,xn) e"**!--*»

f d"xffxx,...,xn) e*<«<*i'•••>%> +£ f d»xf(xx, ,x„)el

f d"xffxx, ,x„) eitsi*i *«' + £ f d"xf(xx, ,x„) <Z«(*i *»>

rjr 1 — 1 j}~
_

<

< (s + 1) e für t > Tf), Tfe) max Tfs)
1...S

(6.5) läuft auf eine Diskussion von

<x m-fß

lim f dyP f dx -Jr-f(x, y) fa j/'x1 -ZZ + |/w2 + y2) g«'7'/^+7" - V--

hinaus, wobei ffx, y) hölderstetig ist und einen kompakten Träger in

K {fx, y) | x e [m — pt, m + pi] y e [0, oc]}

(6.11)

>"'+yi"" (6.12)

besitzt. Für a — 1 ist (x — m)-1 (a f1x2 + y2 + ]/m2 + y2) stetig; das Hauptwert-
integral ist ein gewöhnliches Integral. Der Gradient von (a j/72 + y2 — |/w2 + y2)

verschwindet nirgends auf K ; daher lässt sich Lemma 7 anwenden :

a m+ß
-¦/*'+ya~A- fm*A-y* M-f*T? - Yn.lim / dy I dxffx, y) --"*"¦•' -yy^y jWA-r ~ \<»>°Ay>)t 0 _ (6J3)

t-+±ooJ J x-m
0 m—ß

Für c + 1 ist

f dy P f dx -Jfmffx, y) (|/** + y* + |/Z2 + y2) ei{]/*^ ~ VW+^)*

0 m—/i

j dy P dx —- gfx, y) eifx'+ y* + ]'m° + y')t

dy gfm, y) P I dx
mVx'+v' - Vf'+y'ii

(6.14)

mit g(x, y) ffx, y) f]/x2 + y2 + \fm2 + y2), gfx, y) gfx, y) - gfm, y). Wegen | gx

fx, y) | < gfg) | x — m \v ist die Differenz zwischen dem ersten Summanden von
(6.14) und

a m—ôfe) m + p

fdy if dx Affy2 e^'+y' - fa+W + I dx AfyJ e^'+y' " ^+M (6.15)
0 m—/j. m + öfe) vR£ oà

dem Betrage nach kleiner als e > 0 für geeignetes ò(s) > 0 unabhäns^ vonJ. -

O NEUCHATEL o

V _o7
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Auf die beiden Summanden in (6.15) lässt sich nun Lemma 7 anwenden: Für
| t | > Tfe) ist der i-te Summand in (6.15) dem Betrage nach kleiner als e, i 1, 2.

Insgesamt ist also

fdyPfdx-^gfx.yie^*'^-^*»
0 m—fj,

< 3s, \t\ > Tfs), Tfe) max Tfe)
i l, 2

(6.16)

oder also
a mf- pj,

lim dy P dx - — gJx, y) et{
/_>j- oo J J x — m 0±x *"

0 m—/j,

[/*» + >¦« - /«« + y«)* q (6.17)

Es bleibt zu zeigen, dass

a m-T-fj,

lim fdy gfm v) P fix ™&W-\K* + ?)t _0 (6.18)
*->± oo J ^ a\ j i j x-m

0 m—/i

a WI4-/Z a

1^ + kJ dy gfm, y)lim / dy gfm, y) \ dx AAAÏA—A
t-*+<x,J y ^ ¦" J X-

(6.19)

(-) 0 m-ii (—) 0

gilt.
Intervall m — fi y x y,m + ptDa 9?(#, y) \/x2 + y2 — ljm2 + y2 das einein-

deutig und analytisch auf das Intervall Iy f]/fm — pt)2 + y2 — fm2 + y2) < u <
(y(m + ft)2 + y2 — (/m2 + y2) abbildet, lässt sich f(x, y) u als neue Integrationsvariable

einführen (man überlegt sich leicht, dass Hauptwertintegrale invariant sind
unter analytischen Variablentransformationen). Für den Ausdruck in (6.18) folgt

dy gfm, y) P J -°^J %fu, y) du

iV

A a

P J du cosA N dy gfm, y) yfu, y)

-A 0

A

P J du AAAAL %^u)
-A

A

J du jZ«ZiZ°Z cos u t + Z2(0) P J du C°7Z (6.20)

-A -A

Dabei ist yfu, y) (ujipfu, y)) dipfu. y)fdu, wenn mit ffu, y) die Umkehrfunktion von
ffx, y) bezeichnet wird, yffu, y) stimmt auf ue Iy, 0<y<a mit yfu, y) überein,
sonst ist yfu, y) 0. Weiter ist Iy C [— A, A], 0 < y < a für geeignetes A und
u m ist innerer Punkt von Iy, 0 < y < a. Offenbar ist fyfu) — %fO))ju beschränkt
und integrabel; der erste Summand in (6.20) strebt also gegen null für t -> f- oo



102 Walter Schneider H. P. A.

(Theorem 1 [10]). Der zweite Summand in (6.20) verschwindet identisch. Damit ist
(6.18) bewiesen.

Analog ergibt sich (6.19) aus Theorem 12 [10] unter Berücksichtigung von
yfm, y) y(m, y) 1.

7. Der allgemeine Fall

D(c, pi) C "H sei wie folgt definiert:

f N \

0 e Dfc, pi)*-* 0N ist H(/i)-stetig und supp 0N C (Pi, ¦¦•, Px) \ E <°i <* c\ •
I i-i I

Offenbar ist 0N 0 für N > cjm, also ist Dfc, pt) C D. Umgekehrt existieren c, pt zu
0 e D derart, dass 0 e Dfc, pt).

Dfc, pi) ist ein Banachraum mit der Norm

\\0\\Dic,t,)=ZmSiX {Qo(®n).<*o(®n)} &eD(c.i*) (7.1)
N-0

mit gof0N) Infimum der Hölderkonstanten von 0K und ao(0N)
max \0N(px, ,Pn)\ ¦

Zwischen der Hilbertnorm || 0 || und der Banachnorm j| 0 \\d(C,,i) besteht folgende
Beziehung

cim r X ,3

H^IKrWIl^lk,,) y(c? i+E II ify- <7-2)
V-1 J 1 i

N

Der Operator r\ ist durch

n K — 4 -. t ,— ——

(v*)n(Pi,-,pn)=E E' WWwim^ ZK=ir--K+ iY ¦ \ " ^i<'2<---<\K-r)l2
p (K+t)l2 /(K r)/2 (K+r)/2 \ Ç*/ nfA'{? *>,-.%<)Siä-

X kK fPh, pi{K_r)l%, -s,-t,-q3,...,- q{K+r)l2)

x 0N+r fs, t,q3... q(K+r)l2,Pi ¦¦¦Ph--- P«|jr_f)/, ---Pn) (7-3)

erklärt, wobei

/{K-r)l2 (K+r)l2 \ /(K-r)l2 (K+r)/2 \
>->($ >«.-£*-.«) *-*(? K-Z H <7-4>

ist und 5"" die Summation über r in geradzahligen Schritten bedeutet.
r

Die Funktionen kjpx, pm), m 4, n, erfüllen die Verallgemeinerung der

Bedingungen (1) bis (5) für kfpx, pfj.
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Satz 9:

a) [v, Ufa, A)] 0

b) n Dfc, pi) C Dfc, pt)

\\v®\\D{c,li)<à(c) H^IU.rt-
Aus b) folgt

7" Dfc, pt) C Dfc, pt)

I \ e"' 0 I < V '

-
'

11 n» <ß 11 < Az j ö (c71 <ö I

17 ^llD(C,rt^Z^ „I II*? W \\D(c,ß) y e I! W \\D{c,iz)

und

rjDcD, e"ÖCÖ,

7 -Z— II W" ^ II < oo
o

c) frj0,W) f0,r]W) 0,WeD.

D ist also ein dichter Bereich analytischer Vektoren des symmetrischen Operators rj ;

nach [8] ist rj wesentlich selbstadjungiert, besitzt also eine eindeutige selbstadjungierte
Erweiterung^, e1^, — oo < X < oo, ist eine einparametrige Schar unitärer Operatoren
mit eaJ> 0 eUr* 0, 0eD und ZZ Ufa, Af] 0. Insbesondere ist die S-Matrix
S elT> unitär und invariant unter der Poincaré-Gruppe.

Der Beweis verläuft analog zu dem von Satz 4.
Definiert man

\J2nf^.ff)0)Nfpx,...,ph'xl —

/(K+r)li (K-r)l2
«__! JL ir^rrr i n*+72 .*.„ ^ \ % q'~ f f
y v-1/<Z±Zi _Z^ y ft - -
[! - z ((2> ~2X)2)] ää+i Œz* -A- ^i' • • ¦ ' fy*-,)/«' - ?i«{K-r)l2' 11' ¦¦• ' 1(K+r)l2

®N+r(<ll, ¦¦-, 1(K+r)l2, Pl, ...,Pix,--., Pi.K_m, :-,P'Nl

K-l K--4 - /~rr; rr- /" (tf+r)/2 ,„ /"

+ E E E'^^ffé^ Z [ n^rf**a-+lf-l tf-3 r=-AT+4y ^ ' »l<*a< "" <*(Ä--r)/a •/ 3 ^

p / dx~ A^xA2)-, J=vfo<òf\'y<i+ E Pi - E(72 + q2

y d^ekK+i(oq,ph---Pi(K-r)l2' S, — t, — q3 — q{K+,)l2Ì

0N+r (*. t,qs... q{K+r)i2,Pi ¦:Pix--- Pw ,)/2 ¦ ¦ ¦ P'Ni
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ni + ii

AfÉ^yf^^+rZJnAkJ^rj'>>rAy:
m- ix

X^^ AyfAAJ \q + Pt~E IA / dQe kK+fq, pi,-s,-t,-q3...- qK_x)

®n+k-2(s, t,q3... qK-i,Pi -Pi-PNi

m+fi

+ E\-N~^2)l E 2P dx-J X—yfx2)
é-tn V Nl -^ I x-m x + m AX '
K-3 tl<t2<---<'(K-l) J

m—fi

K-l \\ /K-l
J dÛe vl^-SlE Pit>x> AJ F E Py A kK+i (- Z Pix - - - PiK_,x, - T)

&N-K+2 (T, Pi-Pi,--- PiK_x ¦ ¦ ¦ Pn) (7-5)

so erfüllt das interpolierende Feld Aff) nach (5.1) die Sätze 7 und 8. Die Beweise sind
analog zum Fall n 4, nur ist in der Argumentation durchgehend mit Dfc, pt) zu
operieren (im Fall n oo sind nur endlich viele Glieder in (7.3) und (7.5) von null
verschieden, so dass keine Konvergenzprobleme auftreten).

Meinem verehrten Lehrer Prof. R. Jost danke ich bestens für die Ermöglichung
dieser Arbeit sowie für zahlreiche anregende Diskussionen.

Anhang 1

px, p2 seien zwei Vierervektoren. Die Menge

{fPi, Pè | Pi Ì™\ + PÌ, Pì Ì™1 + P\, ™2Pi + %P2}

wird durch

P(Pl,Pè=Pl + p2

efPi, Pè A ffpx + pf2, mx, m2)-i L(px + p2) (px ~p2- ^J, (px + p2)j

Afs, mx, mf y fs — fmx + mff) (s — (mx — m2)2)jys

eineindeutig auf die Menge

{(P, e) j P2 > fmx + mf2, P° > 0, | e \ 1}

abgebildet, denn es gilt :

i) fpx + pf2 > k + mA2

für p\ \fm\ + p\, p2= Vm2 + p\ und das Gleichheitszeichen gilt genau dann, wenn

mîpx mxpz ist.
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2) (pi -Pt- -^^ fPi + Pè)2 - mi + pè2, wi, ^r
(MPI + Pè (Pi -Pz- -g=$ (Pi + Pè))° 0 -

Die inverse Abbildung lautet

pfP, e) J ((Pa + ^-i)P + AfP2, mx, m2) L(P)~i e)

pfP, e) -\- ((Pa-^rÌ)P - *(P2, mx, m2) L(P)- e)

e (0, e) | e | 1

Man verifiziert leicht

pfP, e)2 m\ p\>\ (|Zl2 + 4 m\ - A) PfP2 > 0

PfP,é) m\ pl> \- ftjj2 + 4 m\- A) PfP2 > 0

Setzt man e (sin ¦& cos f, sin ¦& sinip, cos è), so folgt

à{P\,P\,P\,p\,P\,p\) _ dipi. Pi, Pi) _ /1/8 fr- Mp2 m m) sin^ 4 j,o .0

Daraus folgt

f 9.1%*- t - Af%A, - G^'p2Ì I dip 9{p0) 6 (p2 - K + Wa)2)
J 2\'mi + p\ J 2\m\+p% J

A{^,mi,m2) rdQeG{Pi{P>e)iMP>e)y
8\/P2

Sei

also

Anhang 2

p f\jm2 + p2, p) q f)/m2 + q2, q)

MP.vrfï+ÂfA-f,
0 < Afp, q) < 1

p q — m2

p q + m2

Differenziation ergibt

dp* p" pqAnfi f(pq)2_mi « V P * ;

Z Z* _ _
1

(„0 J,k _ £0 gk
p° pq + wfi \/(pq)2~p2q2

Damit folgt

dA(p,q)\i 1

K-lAl d** j *o2 (*«7 + m2)2 (pq)2-p2q2 W P + P 9 ZP ï P 91 •
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Nun gilt für beliebige Vierervektoren a, b

fa b)2 - a2b2 aA b2 + b°2 a2 - 2 aA b° a b - (a x fe)2 ;

daher ist

Mit

l)A{p, q) \2 m1 mi(pxq)2y (òa(p, g)
AZ àp*

folgt

und

dpk po^pq + m2)2 po' (p q + m2)2 [(p q)2 - p2 q2}

\ p | m Sh u, u y 0

\ q \ mSh v, v y 0

p q | p | | q | cos 2 a

i«4 1

po'{p q + m2)2
-~~~ A m2

m\p X q)2

p0'{pq + m2)2 \_(pq)2-p2q2]

A m8 Sh2 u Sh2 u sin2 a cos2

<

m2Ch2umi[Ch(u-v)A2 Sh u Sh v sin2a+l]2 [(Ch (u-v)A-2Shu Sh v sin2a)2- 1] m4

1 4 Sh2 ì« Sh2 w sin2a cos2a 1 Sh « Sh v 0~ COS OC

m2 Ch2 u A Ch (w — v) A Sh m Sh w sin2 a A m2 Chu Cb. u Ch. (u — v)

4 „2 Tg M (Tg M - Tg (« - »)) cos2a < T^ï •

Zusammengefasst ergibt sich

y IdA(p.q) \2 _3
Ai l ^* / ^ 4 m2 '

Fürp #= qr existieren also die Ableitungen ÒAfp, q)jdpk und sind beschränkt. Ausserdem

existieren

I™ rrnr (l + « e, l), I e I 1
•

Das ist offenbar hinreichend für die #(1)-Stetigkeit von Afp, q) in p. Analoges gilt
für die Variable q.
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