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Über das zeitliche Verhalten von glatten Lösungen
der Klein-Gordon Gleichung

von Res Jost

Seminar für Theoretische Physik der ETH, Zürich

(4. X. 65)

Abstract. The temporal behaviour of smooth solutions of the Klein-Gordon equation is analyzed.
A new proof of the Lemma of D. Ruelle ([1], § 3) is given.

§ 1 Einleitung
Die Haag-Ruellesche Streutheorie [1, 2] *) beruht auf 2 Sätzen, die beide von D.

Ruelle [1] bewiesen worden sind. Der erste steht hier nicht zur Diskussion. Er
behandelt die «Cluster »-Eigenschaften der Wightman-Distributionen ([1] § 2). Für den
zweiten ([1] § 3), der das zeitliche Verhalten der glatten Lösungen der Klein-Gordon
Gleichung behandelt, gebe ich einen neuen Beweis. Der schöne Beweis von Ruelle ist
geometrischer Natur und gestattet unmittelbar Verallgemeinerungen auf andere

Differentialgleichungen. Dagegen eignet er sich weniger zur Verallgemeinerung auf
andere Lösungen der Klein-Gordon-Gleichung. Zwar hat H. Araki [3] das Lemma von
Ruelle mit dessen Methode auf Fälle mit nicht kompaktem Träger der Fouriertrans-
formierten der Lösung verallgemeinert. Doch wird der Beweis dann sehr umständlich.

Unser Beweis verwendet die Methoden der klassischen Analysis und ist dadurch
der heute älteren Physikergeneration wohl besser zugänglich. Er geht im übrigen auf
Diskussionen, die der Verfasser im Frühjahr 1965 am Institut des Hautes Etudes
Scientifiques in Bures-sur-Yvette mit I. E. Segal hatte, zurück. Sowohl Herrn Segal
wie Herrn Léon Motchane, dem Direktor des Instituts gegenüber, fühlt sich der
Verfasser zu Dank verpflichtet.

Herrn Dr. W. Schneider dankt er für eine kritische Durchsicht des Manuskripts.

§ 2 Eine spezielle Lösungsschar der Klein-Gordon-Gleichung

Als Ausgangspunkt für unsere Diskussion dienen uns die folgenden speziellen
Lösungen der Klein-Gordon-Gleichung:

Ffa., *) (2 7i)~Nl2 f e~ai" ei{M 6fp0) ôfp2 - w2) dN p (1)

*) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, S. 26.
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wobei a > 0 vorausgesetzt ist. Sei x° t, x <x — it undo) \/m2 + p2, dann lässt
sich (1) auch schreiben

jN-l
1

2 co
Ffa., t, x) (2 7i)-NI2 f e~ra e-i{p'x} d

- p-. (2)
<* 2 co

Durch Integration (Anhang) ergibt sich

2nFfa, t, x) — (m i/t2 + r2)~'Kfm (/t2 + r2), v \ (N - 2), (3)

wobei r \ x | gesetzt ist und KV(U) die modifizierte Hankelfunktion ([4], p. 29),
bedeutet. Der Zweig der Wurzel ist durch die Bedingung Re )/t2 + r2 > 0 festgelegt.

Wir wollen für das Folgende der Bequemlichkeit halber den Fall v 0 ausschlies-
sen und v > 0 (N > 2) voraussetzen.

Da m in (1) nur eine (reziproke) Längeneinheit festlegt, können wir ohne wesentliche
Einbusse im folgenden m 1 annehmen.

Wir haben die folgenden Ziele : einmal

Max 1 F (a, t, x) j (4)

und zum andern

/ I F (a, t, x) \dN~1x (5)

für grosse Werte von t abzuschätzen. Dazu brauchen wir offenbar eine Abschätzung
der modifizierten Hankelfunktion Kff) in Re £ > 0. Nun gilt fv > 0) ([4], S. 29,

[5], S. 373ff)
lim C KfC) 2"-1 /» (6)

und für t, ->- oo

^e^KvfO ^+o(-JJ) (7)

und zwar ist der Fehlerterm in (7) in j arg £ [ :£ tt/2 gleichmässig durch const. | £ |-1
beschränkt. Aus (6) und (7) folgt die Existenz einer Konstanten A, derart dass in
Re £ ^ 0

I KfO I < A l+^lxl2 | £ | -1'2 *-Ref (8)

gilt.
Nun beachten wir, dass das Argument der modifizierten Hankelfunktion in (3)

(für m 1) lautet :

£ (T2 _|_ ,2)1/2 =(r2_;2 + a2_2,-K ;)l/2 (9)

und dass deswegen

| £ | [(r2 _ ^2)2 + 2 a2 (,,2 + t2) + a4]l/4 ^ a (10)

ist. Damit können wir (8) ersetzen durch

\KV(C)\<A 1+J_1I2 | £ | -1/2 g-Re; (11)
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(11) in (3) ergibt (A 2nB)

Ffa, t, x) < B Z^__ j ç |
-(v+i/2, e-ReJ (12)

Wir wenden uns nun der ersten Aufgabe zu. Abkürzend setzen wir

£ (u + i v)1'2 u r2-t2 + a? v -2at. (13)
Es ist

Re £ 2-1'2 (u + fu2 + v2)1'2 ^ 2~112 f-\u\+ J/Z^+Z2)1'2 (14)

und
| £ |2 fiF+J2 ^ 1/2 (| u | + /^ZZj2) (15)

also

£ 1-2 < 2 2(-i«l+l/«2+I'2) -|«|-r[/«a-rfa ^1

|«| + l/«^+72
=' _" v*

~~ ~ 2**t2 '

Verwendet man (14) und (16) in (12), dann findet sich

14-oc'.»-1/2

FM,*)|<B77^,am)->+i/2>

x [2-1'2 (- | u | + ]/u2 + v2)ll2f+112 e' V^+V^av) (17)

oder schliesslich mit der Abkürzung

r, 2-1'2 (- | u | + i/^ZZj2)1'2 > 0 (18)

| Ffa, t, x) | < B (1 + a^1'2) oT2* | * Z"+1/2) rf+ll<i e^ (19)

Aber es ist für rj > 0

^v+1/2 d-, ^ (v + 1/2)»+l/2 e-(v+ll2) (20)

so dass man schliesslich, für passendes C, findet :

| F(a, *, *) | < C (1 + a"-1/2) oT2" | * |-("+1/2) (I)

Damit ist die erste Aufgabe gelöst und wir wenden uns der Lösung der zweiten
Aufgabe zu. Zunächst spalten wir das Integral (5) wie folgt in 2 Teile :

Ix= f \F(a,t,x)\dN-1x (21)
c!a2«s

und

I2= f \Ffa,t,x)\dN-1x. (22)
r' S 2P

Für I2 erhalten wir mit (I) unmittelbar die Abschätzung

/2^c1(i + a*-i/2)a-2*zr+1/2 (23)

für passendes Cx. Dabei ist N — 1 2 j> + 1 verwendet.
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Um Ix abzuschätzen, greifen wir auf (12) und (13) zurück. Es ist für r2 >\ 2 tz

| £ \2 ^u^+AA ^ u ^t2 + a? (24)

und

u + (Z2 + v2 ^ r2 - t2 + a2 + t2 + a2 > r2, (25)

womit

| F(a, t,x)\<B l+fSx^2 (it2 + oc2) - <*+1/2) e~rir%. (26)

(26) in (21), wobei wir jetzt über x unbeschränkt integrieren, liefert

Z < C2 -~^~ (j/^+Z2) - C+1'2 (27)

und für unsere Zwecke genügend genau

h < C2 -^- (28)l + a*-1/2

a

(28) mit (23) ergibt
1 f-l/2/ | Ffx, t,x)\dN-1x<D
1 + \v fl+\t ri/2). (II)

für passend gewähltes D.

§ 3 Verallgemeinerung der Resultate

Statt einer Verallgemeinerung beginnen wir viel eher mit einer Spezialisierung.
Wir betrachten nämlich die spezielle Lösung der Klein-Gordon-Gleichung, die durch

Gfx) f2n)-m f (1(^i1 ei(M àfp2 - m2) 6fp0) dAp (1)

definiert ist. Da, wegen N — 2 2v,

{N~2)!
- fa2*e-«e-«*°da (2)

(Po+IA-1
ist, findet man aus (I)

| Gft, x) | < Cfl + rfv + 1/2)) 11 j-l'+i'2) C0\t [-(»+1/») (3)

und aus (II)

/ | Gft, x)\dN~1x< Dfl + rfv + 1/2)) (l+\t |"+1/2) D0(l + 11 |"+1/2) (4)

Aus G erzeugen wir leicht neue Lösungen der Klein-Gordon-Gleichung durch Faltung.
Sei h(x) absolut integrabel, dann ist

Hft,x) fGft,x-C)hß)dN-1S (5)

wieder eine Lösung der Klein-Gordon-Gleichung und es gilt

| Hft, x)\<C0f [ hf§) | dN~1 | 11 |
-("+1/2) (6)



Vol. 39, 1966 Über das zeitliche Verhalten von glatten Lösungen 25

und

/ | Hft, x) j dN~1x SD0f\ *(|) | d"-11(1 + \t Z1/2). (7)

Aber es ist fx° t)

(2 n) -N'2 f e-«*,* Hfx) dAx= ^^r hfp) 6fp0) afp2 - m2) (8)

wobei

hfp) J ei{p-x)hfx)dN-xx (9)

ist.
Salz (Ruelle, Araki [1,3]): Sei &ft, x) eine Lösung der Klein-Gordon-Gleichung,

seien weiter2) 0(0, x) e S und 0(0, x) 0, fO, x) e S dann gibt es eine Konstante F,
so dass

\0ft,x) | <r\t\-iN-*>l2-lla fi)
und

/ 10ft,x) |d*-1 x<rfi + \t f-w+v2) (ii)
ist.

Bemerkung: Dieser Satz wird von uns nur für N > 2 bewiesen. Er gilt aber auch
für N 2.

Beweis: Es ist ft x°)

0fx) (2 A)-N!2 f afp2 - m2) *«**> [6fp0) gAp) + Of- p0) g_(p)] dNx, (10)

wobei

ÎAP) + g-fP) 2 co (2 tî)-^2-1 / ««»•*> 0(0, *) i^"1 x (11)

und

i+(P) - ÎAP) - 2 * (2 Tt)"^2-1 / ^-*> 0(0, *) rf*"1 * (12)

ist fco l/m2 + p2). Es sind also sowohl g+(p) als auch gAp) Funktionen aus 5.

Nun ist es offenbar hinreichend, den Satz für den Fall g_ 0 zu beweisen und
weiter die unwesentliche Einschränkung m 1 zn machen.

Setzt man weiter

^^ÌAP)-Hp) (13)

dann ist auch % aus $, desgleichen

*(*) (2tt)-jv-1 / e-^hfp) dN~l p (14)

h ist also bestimmt absolut integrierbar. Schliesslich wird

0ft,x) f Gft,x-^)hf^)dN-H (15)

und der Satz ist auf Grund der Abschätzungen (6) und (7) bewiesen.

2) 5 ist der Testfunktionenraum von Schwartz, besteht also aus allen C°°-Funktionen, die
mit allen ihren Ableitungen stark abfallen. 5 wird durch Fouriertransformation in sich abgebildet.
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Anhang
Es ist

Ffa, t, x) (2 7Ì)-NI2 f e-^^+'AfÂ, r) ß= (Al)
wobei

Afl r) f e-iip-x) ôfp2 - X) d"-1 p (A2)
Nun gilt offenbar

/ e-y" AfX, r)dX j e-yp*-i{p<x) dN~xp fji\y)(N^i2 e~''liy (A3)

und daher ([6], Vol. I, S. 245, Nr. 40)

Afk, r) 2(^-8)/2^-D/2r-(iv-3)/2A(iv-3)/4 /(jv3)/2 {fß _ (A4)

Mit p j/X ergibt (4) in (1)
OO

-2,/2\ f e-'**** Z"-2)/2 /<*-„„ 0« ') ^ -pg
0

(A5)

F(oc, * *) (2 7r)"1/2r~(iv~2)/2 x j --rVm'+u' ..(.v-2)/2 7 /,.„u/„. ^

und daher ([6], Vol. II, S. 31, Nr. 22)

Ffa, t,x) (2n)-1 mN~2 (m i/t2 + f2)~vKvfm)/r2 + r2) (A6)

mit v=(N- 2)/2.
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