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Uber das zeitliche Verhalten von glatten Losungen
der Klein-Gordon Gleichung

von Res Jost

Seminar fiir Theoretische Physik der ETH, Ziirich

(4. X. 65)

Abstract. The temporal behaviour of smooth solutions of the Klein-Gordon equation is analyzed.
A new proof of the Lemma of D. RueLLE ([1], § 3) is given.

§ 1 Einleitung

Die Haag-Ruellesche Streutheorie[1, 2]1) beruht auf 2 Sitzen, die beide von D.
RUELLE [1] bewiesen worden sind. Der erste steht hier nicht zur Diskussion. Er
behandelt die «Cluster»-Eigenschaften der Wightman-Distributionen ([1] § 2). Fiirden
zweiten ([1] § 3), der das zeitliche Verhalten der glatten Lésungen der Klein-Gordon
Gleichung behandelt, gebe ich einen neuen Beweis. Der schéne Beweis von RUELLE ist
geometrischer Natur und gestattet unmittelbar Verallgemeinerungen auf andere
Differentialgleichungen. Dagegen eignet er sich weniger zur Verallgemeinerung auf
andere Losungen der Klein-Gordon-Gleichung. Zwar hat H. ArRAKI[3] das Lemma von
RUELLE mit dessen Methode auf Fille mit nicht kompaktem Tréger der Fouriertrans-
formierten der Losung verallgemeinert. Doch wird der Beweis dann sehr umsténdlich.

Unser Beweis verwendet die Methoden der klassischen Analysis und ist dadurch
der heute dlteren Physikergeneration wohl besser zuginglich. Er geht im {ibrigen auf
Diskussionen, die der Verfasser im Friihjahr 1965 am Institut des Hautes Etudes
Scientifiques in Bures-sur-Yvette mit I. E. SEGAL hatte, zuriick. Sowohl Herrn SEGAL
wie Herrn LEoN MoTCHANE, dem Direktor des Instituts gegeniiber, fiihlt sich der Ver-
fasser zu Dank verpflichtet. |

Herrn Dr. W. SCHNEIDER dankt er fiir eine kritische Durchsicht des Manuskripts.

§ 2 Eine spezielle Losungsschar der Klein-Gordon-Gleichung

Als Ausgangspunkt fiir unsere Diskussion dienen uns die folgenden speziellen
Lésungen der Klein-Gordon-Gleichung:

F(a, x) = (2m) N2 [ e7%0 &2 Q(py) 6(p% — m?) d¥ p, (1)

) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, S. 26.
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wobei « > 0 vorausgesetzt ist. Sei #° = ¢, 1=« — ¢ { undw = |/m? + p?, dann ldsst
sich (1) auch schreiben

N—-1
- —N/2 —rw ,—i(p,%) @ P
Fla, b, %) = (2m) "2 [ e - (2)
Durch Integration (Anhang) ergibt sich
N-2 i R
Fla,t, ) = " (m)2 + )" K,m)< + 1), v= _ (N —2), (3)

wobei 7 = | & | gesetzt ist und K, (H) die modifizierte Hankelfunktion ([4], p. 29), be-
deutet. Der Zweig der Wurzel ist durch die Bedingung Re |/7% + 72 > 0 festgelegt.

Wir wollen fiir das Folgende der Bequemlichkeit halber den Fall » = 0 ausschlies-
sen und » > 0 (IV > 2) voraussetzen.

Da m in (1) nur eine (reziproke) Lingeneinheit festlegt, konnen wir ohne wesentliche
Einbusse im folgenden m = 1 annehmen.

Wir haben die folgenden Ziele: einmal

Max | F («, ¢, %) | (4)
und zum andern
f{F(oc,t,x)|dN_1x (5)

fiir grosse Werte von ¢ abzuschitzen. Dazu brauchen wir offenbar eine Abschitzung
der modifizierten Hankelfunktion K,({) in Re { > 0. Nun gilt (» > 0) ([4], S. 29,
[5], S. 373ff)

lim K, =27 Th) ©)
und fiir { - oo o
o K ft) = /5 +0 () (7)

und zwar ist der Fehlerterm in (7) in | arg { | = n/2 gleichmdssig durch const. | { |1
beschrankt. Aus (6) und (7) folgt die Existenz einer Konstanten A, derart dass in
Rel =0

1 S y—1/2 - i B
K, @) | < 4 Tclrvl—lfz | ¢ |2 gRes (8)

gilt.
Nun beachten wir, dass das Argument der modifizierten Hankelfunktion in (3)
(fiir m = 1) lautet:

{=@+2= -2+ o2—27at)l? (9)
und dass deswegen

[C]|=["—2+22 (P + )+ o]t =« (10)

ist. Damit kénnen wir (8) ersetzen durch

K@) | <4278 b o pret 1)

r—1/2
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(11) in (3) ergibt (A = 2= B)
14o7 M2
mv-1/2

F(OC, t; x) < B i g |_(V+1f2) e—Re§ (12)

Wir wenden uns nun der ersten Aufgabe zu. Abkiirzend setzen wir

(= (u+10)2 u=1r2—12+ o2 v=—2uat. (13)
Es ist
Re { = 2-12 (i + l/;té‘jl'_";z)lzz > 2712 (— | u| + l/;é'ﬁ)llz (14)
und
(Cp=Yurt 2 z12(u]+)ut+0?) (15)
also
—|u u2+ 2 —|u u? 4 v2

Verwendet man (14) und (16) in (12), dann findet sich

r—1/2

| Fla,t, %) | < BAEE_ (a| ¢ p=0+102
o

1/
X [270% (— | | + Jfut £ ORI - VetV 17)

oder schliesslich mit der Abkiirzung

=271 (— ||+ }u? + o) >0 (18)
| Flo, £, ) | < B(1 + o Y3 =2 | ¢ |01 ypt 12 gmn (19)

Aber es ist fiiry > 0
,,Yv+1/2 e é (’V + 1/2)11—}—1/2 g—(v+1/2) , (20)

so dass man schliesslich, fiir passendes C, findet:
| Fla, 2, %) | < C (14 a3 o | 2|02 (I)

Damit ist die erste Aufgabe gelost und wir wenden uns der Losung der zweiten Auf-
gabe zu. Zunidchst spalten wir das Integral (5) wie folgt in 2 Teile:

Ii= [ |F(ata)|d" '« (21)
2 = 2¢2
und
I,= [ |F(at ) |d" . (22)
r? <242

Fiir I, erhalten wir mit (I) unmittelbar die Abschitzung
I2 g Cl(]. 4 av41/2) a—Zv I ¢ I‘V—{-lfz (23)

fiir passendes C;. Dabei ist N — 1 = 2y + 1 verwendet.
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Um I, abzuschétzen, greifen wir auf (12) und (13) zuriick. Es ist fiir »2 = 2

=Y+ =u =+ (24)
und
u+]/%2+v2272—t2+a2+52+°€2>”2= (25)
womit
o 1/2 sy
| Fla £, %) | < B _T/z (l/tz o)1) gorlVE (26)

(26) in (21), wobei wir jetzt tiber # unbeschrankt integrieren, liefert

v—1/2

<Gt /et ap)- ot (27)

und fiir unsere Zwecke geniigend genau

1 r—1/2
I, & G 28)
(28) mit (23) ergibt
v—1/2
fI F(a, ¢, %) {dN—1x<D_1_+_:‘2__ (1 |22, (1)

fiir passend gewdhltes D.

§ 3 Verallgemeinerung der Resultate

Statt einer Verallgemeinerung beginnen wir viel eher mit einer Spezialisierung.
Wir betrachten ndmlich die spezielle Losung der Klein-Gordon-Gleichung, die durch

Gl = @)~ [ E8s 09 82 — m?) 6(po) &V p )
definiert ist. Da, wegen N — 2 = 2y,
ist, findet man aus (I)

| G(t, ) | < C(L+T(v+1/2)) | ¢ |70+ = Cy | ¢ |-+ (3)
und aus (II)
[1GE %) |d" ' <D+ TI'(v+1/2) 1A+ |t =Dyl + |2 P28y (4)

Aus G erzeugen wir leicht neue Losungen der Klein-Gordon-Gleichung durch Faltung.
Sei (x) absolut integrabel, dann ist

Ht, %) = [ Git,x— §) h(§) a" "' & (5)
wieder eine Losung der Klein-Gordon-Gleichung und es gilt

| Ht, %) | S Co [ | B() |V & |2 | 1A (6)
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und
JIHE %) |a7 P x <Dy [ | WE) | a7 &1+ |t [*13). (7)

Aber es ist (x° = ¢)

@m) N [N H) d¥ = S W) BP0 0 — ) (®)
wobel
h(p) = [ &P h(x)d" ' x (9)
ist.

Satz (RUELLE, ARAKI[], 3]): Sei @(¢, &) eine Losung der Klein-Gordon-Gleichung,

seien weiter2) @(0, #) € S und @0, #) = D, ,(0, x) € $ dann gibt es eine Konstante I,
so dass

|D(t, &) | < |t |-z @
und

f I @(t, x) ! dN_l x < 1'1(1 + l ¢ |(N—2)/2-|-1/2) (II)
ist.

Bemerkung: Dieser Satz wird von uns nur fiir N > 2 bewiesen. Er gilt aber auch
fiir N== 2,

Bewers: Es ist (t = x9)

D(x) = 27) N2 [ 6(p2 — m?) &7 [0(pg) g, (P) + O(— po) g_(P)] V%,  (10)
wobel

g:(P) +8-(P) =20 2m) Y2t [ FP2 D0, 4) V' x (11)
und

~ ~ .

g(p) —g_(p)=—20(2m) Nt [ P D0, %) &V - (12)

ist (w = }/m? + p?). Es sind also sowohl g, (p) als auch g_(p) Funktionen aus S.
Nun ist es offenbar hinreichend, den Satz fiir den Fall g_ = 0 zu beweisen und
weiter die unwesentliche Einschrankung # = 1 zu machen.

Setzt man weiter

T 8(p) = H(p) (13)
dann ist auch % aus §, desgleichen
h{x) = (2 n)‘N“lf e 2R fpyd¥lp. (14)
h ist also bestimmt absolut integrierbar. Schliesslich wird
O, %) = [ Glt,x— &) h(E) V& (15)
und der Satz ist auf Grund der Abschitzungen (6) und (7) bewiesen.

%) § ist der Testfunktionenraum von SCHWARTZ, besteht also aus allen C*®-Funktionen, die
mit allen ihren Ableitungen stark abfallen. § wird durch Fouriertransformation in sich abgebildet.
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Anhang
Es ist
Fla, t,#) = (2m) ™ [ o=V¥3 40, 7) —Z—, (A1)
2 ]/m2+}. ‘
wobel
_ fg—z'(p,x) S(p2—AdV-1p. (A2)

Nun gilt offenbar
e AR ) dh = ¢ 0B N1 [y -1 gty (A3)
und daher ([6], Vol. I, S. 245, Nr. 40)

AR, 7) = 2N =32 ZN-D/2 - (N-3)/2 J(V-3)14 Tl l/i) ) (A4)
Mit u = }/A ergibt (4) in (1)
o o — / =l M= /' 1 -T %ﬁ - / g d'u'
Fla, t, &) = (2m) W2y~ W 2)220fe Ve 22 Jiv_ayz (1) V!“’W‘
A5
und daher ([6], Vol. II, S. 31, Nr. 22) (43)
Flo,t, %) = 2@~ m" 2 m)2 + ) K, m)2 + ) (A6)
mit » = (N — 2)/2.
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