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Approach to Equilibrium in an Explicit Quantum Model*)

by Christian Favre and Jean-Paul Marchand

Institute of Theoretical Physics, University of Geneva

(28. IX. 65)

Abstract. A quantum mechanical model is introduced which admits true equilibria (no Poincaré
cycles) but avoids calculation in infinite product spaces. The existence and uniqueness question of
equilibria is solved in various examples and the approach to equilibrium discussed geometrically
in the Liouville space of the physical states.

1. Introduction
The aim of this paper is to obtain some insight into irreversible quantum processes

approaching an equilibrium state.
It is well-known that the evolution of any finite system is quasiperiodic in time

and that true equilibria do not exist (Poincaré cycles). In order to avoid dealing with
them we start from the question : Can we construct an infinite model without running
into the difficulties of working in an infinite tensor product-space If the answer is

yes, an explicit study of the approach to equilibrium will be possible by simple
mathematical means.

The model consists roughly of a small system S of interest (for instance one 1/2
spin) coupled to an infinite reservoir B of identical systems in thermal equilibrium in
such a way that S interacts at any given time only with one particle of B and never
twice with the same (here the infinity of the "bath" B is used). The evolution of this
"collision" model at any moment may thus be described in the product space of only
two particles, where, however, the particle of the bath falls back into its initial state
after any collision with 5. This "loss of memory" of the bath is at the origin of the
fact, that the movement of the state of S becomes homogeneous in time and admits
true equilibria. It corresponds to the classical "Stosszahlansatz" of Boltzmann.

In § 2, we describe in mathematical terms a somehow stilized version of the model
(all collisions of equal duration and succeding each other without interval between
them). The Liouville space of states in S is introduced, in order to visualize the
evolution of any state geometrically by a line.

Partly supported by the "Fonds national suisse pour la recherche scientifique"
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In § 3 the main questions as to existence and uniqueness of the equilibrium and
approach to it will be formulated.

The main part is § 4 where the model is explicitly calculated in the simple case
of 1/2-spins and various couplings. It is astonishing to see how strongly the general
properties of the time-evolution depend on the coupling Hamiltonian. The following

cases arise:

a) all states of S approach a unique equilibrium which corresponds to the thermal
equilibrium of the bath;

b) all states of S approach a unique equilibrium which however differs from that of
the bath;

c) all states of S approach an equilibrium, but the latter is not unique: some

"memory" of the initial state of S persists throughout the motion;
d) only a subset of states of S approach equilibria (unique or not), the others do not

approach an equilibrium at all.

We see from this that already in one of the simplest examples many different
types of evolution may occur. The one thing they have in common is the existence of
at least one fixpoint as asserted in entire generality by the theorem of Markoff-
Kakutani[1]2).

In § 5 various other properties of the model are discussed in connection with
energy, entropy, Markofficity, diagonality.

We conclude with the adaptation of the model to a possible physical situation
introducing a mean free path between the collisions. This causes some modifications
not only in the way how the systems approach equilibrium but also in the uniqueness
question of equilibrium.

2. The Model

Let 7/7 "UB be the finite Hilbertspaces of systems S and B. The uncoupled states
of S and B are described by density matrices Ws and WB, and they evolve in time
according to the free Hamiltonians Hi and HB. The bath B is furthermore supposed
to be in thermal equilibrium at time t 0 :

-(IjkT) HB
WB -A °

(2.1)
Tre~WhT)Ho

From time 0 to At a first "collision" takes place between S and B and the total state in
"H "Us ® "UB develops according to the total Hamiltonian

H HS0®I+I®HB + V,
where the interaction V couples 7/s and 7/7 The time evolution of the system S of
interest during this first collision is thus acheived by the following three steps :

Ws0 -A*-> Wsa ® WB ^J> e-iHAtfWs0 ® WB) eiHAt

rt rr. I _4H At /TTT<S _ TTrR\ « M A t \ TT/S-> Tx(e-Hdt (Ws0 ® WB) eiHAt) W% (2.2)

2) Numbers in brackets refer to References, page 20.
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where the operation A "amplifies" the state W% into a state Wl ® WB in 7/
(uncoupled systems at t 0), %lAt describes a Schrödinger motion of the states in 7/, and
Rs reduces the total state at At to the system of interest S. The joint operation

UsAt UsUAtA (2.3)

maps thus the matrices of 7/s onto themselves and may be called the propagator 0 to
At of the state Ws0

Now enters the essential hypothesis that the second collision from At to 2 At takes
place between S and a "new particle" of the bath, which was unaffected by the first
collision. In other words: the bath at time At falls back into the initial state WB, it
looses memory. We obtain thus

wtM ns uAt a w% usAt wsAt fusAt)2 ws0 us2At ws0

and repeating this procedure
UnAt (uAt) ¦

Interpolating this operator-function for arbitrary times t we finally define

Uf fUsJIAt. (2.4)

The general properties of Uf are:

I Uf maps the set Cs of all states3) in S into itself.

II The set {llf} of mappings Cs -> Cs (all t > 0) forms an abelian semi-group4),
i.e. for any tx, t2 > 0 :

n+tl Kul ufut
III There exists a fix "point" in Cs with respect to the semi-group, i.e. a state left

invariant under any of the mappings Uf ¦

Proof I. Let W% be a state in 7*?5, then A Wl and %lt A Wl are states in %
Now, hermiticity, positivity and trace-condition are conserved in the process of
reduction. So UsAtWl= Us UAt A Wl is still a state in W-

3) A state in 7/ is defined as a linear operator W in 7/ with the three properties W* W
(hermiticity), W > 0 (positivity), Tr W 1 (trace-condition).

4) The most characteristic underlying feature of the evolution defined here is its homogeneity
in time. In general a propagator depends on both, the initial and the final time tx and t2; if the
evolution is homogeneous however it depends only on the difference t2 — tx and we may write

Ky«! Ut^-tjo Xlh-t, ¦

As an example of an inhomogeneous situation consider the so called reduced system. (Cf. U. Fano,
Rev. Mod. Phys. 29, 74 (1957). U. Fano : Lectures presented at the 5th International Spring School
of Physics (Ravello 1963). J. M. Jauch, Helv. Phys. Acta 37, 293 (1964)). Using our notations its
evolution reads wf Rs % A WS s ys^ WS

which coincides with (2.3) only for t At. This evolution, though not Schrödingerian, is

quasi-periodic (Poincaré cycles) whenever the space 7/ 7és ® "HB is finite. Furthermore, the
semi-group property does not hold, since the group-multiplication of two operators "Htslts and lltjt,
can only be performed if the intermediate times t2 and t3 coincide. The "most general evolution"
of a system as defined by Jordan, Pinsky, and Sudarshan in J. M. P. 3, 848 (1962) does in fact
not include the case of the reduced systems.
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Proof II is an immediate consequence of the definition (2.4) of Uf

V?Vt (US \tJAt (ïjS -MAt
At! WJ' {USJ,+ tJAt ySh+k

Proof III follows from (I) and (II) by the theorem of Markoff-Kakutani [1],
since Cs forms a convex subset of all matrices in 7/s which is invariant under the
abelian set {Uf}- The topological requirements (compactness) of the theorem may be

easily verified after introduction of the Liouville space £s attached to 7/s (and the
topology induced by the norm [2]. The definition of the Liouville space is given below).

As stated in the Introduction the main advantage of the Liouville space consists
in the fact, that all states are represented by points in a sphere moving in time under
the action of the one-parameter family of "propagators" {Uf}- In the following it will
be useful to use some geometrical notions which we shall define.

Let 7/ be a (finite) Hilbertspace. The Liouville space £ attached to 7/ is defined by
the set of linear operators 0 in 7/ satisfying Tr 0+ 0 < oo. The scalar product (O, O')
is defined by Tr 0+ 0'. (For clarity elements in £ will always be denoted by bold
type letters.) Let iV be the dimension of 7/, then dim £ N2 and we may choose

in £ an orthonormal basis Vt (i 0, 1, N2 — 1). If we choose furthermore V0

1/i/iV I (1/l/iV is the normalisation factor: || V0 \\2 ljN Tr I2 1) the conditions
on W to represent a state imply the following relations in £ :

fV0, W) -J^ltW=JJ=
fN fN

|| W||2 TrW2<Tr W 1.

The first line defines an (iV2 — l)-dimensional hyperplane 1/ in £ orthogonal to V0

and the second line defines a hypersphere S of radius 1. The set C C £ of states is a
subset of the intersection UnS which in turn represents a hypersphere of radius

r j/l — ljN lying in Tj; its boundary C consists of the pure states (Fig. 1).

/Vn

Fig. 1

In iV2-dimensional Liouville space the physical states are contained in an (N2— l)-dimensional
hypersphere Q with radius r ]/l — 1/N whose boundary (f represents the pure states

Consider now the Liouville spaces £s, £B, £ attached to 7/7 ?/B, and ?/ and introduce
the orthonormal frames Ff, Vf, Vik= Vf ® Vg with Vi 1/j/dim 7/s I; Vg
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1/j/dim ?/B J. Let Wf, WB be the components of Wl, WB; then we may now write
the three operations (2.2)

K-EWfVf; WB=Z]WBV*
i 0 k

A ws0 WS0®WB=£ Wf WB Vik

UAtAwl=^wfwBuAtvik
i,k

usAt ws0 ns uAt A ws0 jjwf wB(vl0, uAt vik) vt

From this follows the geometric interpretation of UA t as an operator in £s: UAt is
obtained in the steps

1) formation of a direct product;
2) rotation in the product space £ (note that 11 UAt W || 11 W \| ;

3) projection into the plane spanned by the basis-vectors Vl0.

The general definition of motion in £s may be written

Wf (UsAt)tlAt Wl; (UsAt)li=ZWBfVl0, UAt Vik)
k

3. The Main General Questions

We saw that the operations Kf may be interpreted as operators in the Liouville
space £s attached to 7/s, and that they have the property to map the subset Cs C £s
into itself, leaving at least one element of Cs invariant (fixpoint). In order to formulate
further questions, let us first introduce the following convenient terminology :

We call Jc Cs the set offixpoints of the operator family {Ust}- It follows from the
homogeneity of Uf that this set is identical to the set of fixpoints of USA t ¦ Let Wp be

an element of J; then CfWp) denotes the class of states approaching WsFfor t ->- oo; i.e.

C(WSF) {Ws e Cs | um Uf Ws Wf,}

Wp may be called the equilibrium for the states in the set CfWp).
The following cases may arise :

1) 'S- contains exactly one point WF (unique equilibrium) :

a) CfWp) Cs (all states tend to the same equilibrium),
b) CfWp) C Cs (there exist states which do no tend to any equilibrium).

6) The operation of reduction is given by the well-known formula

W ->- Ws Trs W

which transforms an operator acting in 7/ to an operator acting in 7/s- A simple calculation shows
that the corresponding operation in the Liouville space is essentially a projection on a subspace
spanned by the 4 basis-vectors Vl0:

ftSW= ZWik(Vw,Va)Vf.
i, k, I
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2) J- contains more than one point (non-unique equilibrium), CfWp) is then necessarily
smaller than Cs, but the following alternatives exist :

a) U CfWp) CfJ) Cs fall states tend to at least one equilibrium),
Wp e 3

b) CfJ) C Cs (some states do not approach any equilibrium).

In the case of a unique equilibrium we may expect that in certain cases W§ is
identical with the equilibrium state WB of the bath. So the further question arises to
specify necessary and sufficient conditions for this situation.

The second case of several equilibria W§ with the corresponding classes CfW§) is
of some special interest. In physical terms it represents the case where the state Wf
conserves some memory of the initial state throughout its motion. This implies the
existence of additional constants of motion. Their physical meaning may be interesting
to explore. (The occurrence of this case is related to the mathematical problem of
metrical indecomposability.)

The propagators Uf depend on the choice of the Hamiltonian H and the initial
state WB of the bath, as one may see from their definition. It follows that in our model
the sets U and CfWF) depend implicitly on H and WB and the most general problem
to be posed is that of establishing conditions on H and WB which imply the different
alternatives for "3- and CfW§). This problem is difficult (some indications are found in
§ 5). We intend however to proceed in the converse direction ; i. e. to start from specific
Hamiltonians and bath-temperatures, and to establish the corresponding sets 3- and
CfWp) explicitly. This procedure has the further advantage of yielding an explicit
insight into the approach to equilibrium.

We shall do this for the simplest non-trivial model available, namely that of two
coupled 1/2-spins. The result is astonishing in its variety : starting from three different
standard coupling-schemes we obtain examples for almost all possibilities enumerated
above. The explicit evolution will be visualized geometrically in the three-dimensional
hypersphere Cs of 1/2-spin-states.

4. Discussion of an Explicit Example

The system of two 1/2-spins is described by the direct product of two 2-dimensional
Hilbert-spaces 7/s and 7/B- They evolve separately according to the free Hamiltonians
Hi and HB which may be choosen identical. In the basis in which they are diagonal
we assume:

fco + e 0 \Hl=HB=( (4.1)
\0 co — e/

The total Hamiltonian is

H HS0®I+I®HB+V=H0+V.

It is sufficient to discuss the interactions V vanishing on the diagonal since we may
always include the diagonal part of H in H0. We shall in particular consider the cases
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(I) (II) (III)

z
V=\ b I ; V \

•
I ; V=\ f

The three other cases of this type either do not couple the two systems or are dual to
(III). Note that in (I) H commutes with H0.

Introducing the signs f and \. for the eigenstates of Hi resp. HB (which are supposed
to be equal) to the eigenvalues co + e and co — s, the couplings (I) to (III) may be

given the following physical meaning :

SB SB
(I) couples f | to j |
(II) f j to | {

(III) j f to f f
The results will be interpreted in the 4-dimensional Liouville space £s in which we

introduce the orthonormal basis

V*-jî*> ^TT". fi-1,2,3).

Here a{ are the Pauli matrices. Since in this basis the propagators Uf leave the zero-
component of any state vector invariant, we may restrict ourselves to the hyperplane
spanned by {Vf. The elements of this space will be designed by an arrow (for the
operators we will omit them). For an arbitrary state we may thus write

3

i-l
ws=£wfv{.

(Note that Cs fills up the entire hypersphere t/n S- Since in the two-dimensional case
considered here the condition |[ Ws || < 1 implies the positivity of W.) Let us briefly
indicate the connection between this and the Hilbertspace representation of a state
as a matrix. The most general state density matrix has in 7/s the form

/A B \
Ws ; 0 < A < 1 ; Det W > 0.

\B* 1-A/
In Cs C £s this reads

Ws=£wfVf; Wf
i-l

2 Re B

21m B
1/2

2A-1
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In particular WB is supposed to be diagonal in ^-representation and we obtain the
correspondance

0 1 - a
WL

where according to (2.1), (4.1)

1/2

2a — 1

- e/k Tt

-ejk Th
A-éelk T* (4.2)

Using the calculation scheme given in § 2 we shall now determine and interprete
Uf successively for the three models (I), (II), and (III).

Model fl)

/ya. cose At — j/oc sins At (A

UsAtW~l l)/ä sine At j/oc" coseAt 0 J Ws0 + (1-a) WB [ascos2 \g \Af] (4.3a)

\ 0 0 oc/

Uf consists of a homogeneous and an inhomogeneous part. The homogeneous part
effectuates a rotation by an angle e At and a contraction by a factor ]/oc < 1 in the
1-2-plane, and it contracts the third component by a < 1. The inhomogeneous part
adds a fraction 1 — oc of the state WB. Using the summation formula for finite
geometrical sums we find now

l/a cos« e At — l/oc sinn e At 0\
111 At Wl fUsAt)n Wf; \ j/oZ sinn e At |/oc" cos« s At 0 WSQ + (1 - a») WB

0 0 oc"/ (4.3b)

W. 1

I—~u

Fig. 2

The evolution of a state W$ towards its equilibrium WB in model (I)
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furthermore

Uf Ws0 fUsJIM Wl ; lim Uf Ws0 =VLWl Wl WB, (4.3c)
t—>oo

WB is a fixpoint of Uf which is approached by any arbitrary initial state Wjf. There
exists thus a unique equilibrium which equals that of the bath, and the class CfWB) is the
ensemble Cs of all states in £s. It may also be shown that the approach to equilibrium
is uniform in time in the sense that the distance 11 Wf — W^ 11 decreases monotonically.

The "worldline" of an arbitrary initial state is represented in Fig. 2 (omitting
the zerocomponent).

It is interesting to discuss this model in the light of a relaxation process. We may
in fact - as indicated in Fig. 2 - introduce two relaxation times Tx and T2, the first
for the 3-component, the second for the length of the 1-2-component of the vector

—>¦ —»

(Wf — Wl). The formal definitions are thus

1 -vs ' oo/3(WT-W^)S=^(W^-W,

1/(^1, - wi)l + (wsTi - wi)t J- ^(Wl - wi)\ + (^0S - w
Using the expansions

oc=l- \g\2At2+---; lna=-\g\2At2
we find from (4.8b), (4.8c),

00)2

2

\e\*At • "2" \gfAt
T — ¦ T1 1 ~ I „12 At • Xt

As a first conclusion, we remark Tx < T26) (this has been indicated in Fig. 2). But it
is more interesting to see what Tx and T2 have in common :

(a) they are independent of the initial state,

(b) they tend to infinity for At -> 0.

The property (a) expresses the fact, that the rapidity of decay of Ws increases with
its distance from the equilibrium ; this is a consequence of the exponential decay laws
]/a' resp. a.' in (4.3) where the first derivative is proportional to the size of the function
itself. Property (b) has the following physical meaning: In order to maintain the law
of approach to equilibrium fixed for a collision whose duration At tends to zero, it is

necessary to keep the product |g|2Zli constant: for decreasing At the coupling
strength \g\2 must increase.

6) The existence of two relaxing processes of the type described here is well known in the theory
of magnetic resonance. The time Tx describes the approach to the equilibrium population and
corresponds to the so called spin-lattice relaxation. The time T2, deals with the annihilation of the
off-diagonal elements of the density matrix and corresponds to the spin-spin relaxation. The
experiment shows that Tx > T2 which contradicts our result. This however means simply that
the Heisenberg interaction we used (see last remark of § 4) is not the only source responsible for
the relaxation in these experiments. For further details see for instance A. Abragam : The principles
of nuclear magnetism (Oxford at the Clarendon Press, 1961).
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us ws

Model fii)
/oc" /ï -/? j/l- a

- /i-,5 j/r^oc j/a

0 Ol
W

«1
ß (1 - oc) W£

a scos2l/|g |2 + e2 2l<; /5
A>:Ay\g\* + eA*\gl2

(feA\/\g\*A-e*

The situation looks here very similar to that of the model (I). A slight complication
consisting in the existence of constants depending both on | g | and e is due to the fact
that H does not commute here with H0 and mixes up states of iï"0-energy (a> 4- s) and
fco — e). (If we set e 0 we remark in fact, that ß 1 and a cos2 | g | At, and we
obtain the same constants as in (I)).

There is however one essential difference between (I) and (II) : in fii) the unique
—*¦ —>

equilibrium of the system S is not WB, but WB with inversed populations:

Ws wl

If TB is the temperature of WB according to (4.2), the equilibrium state W^ has

temperature — TB (remember that we assumed Hi HB). This fact should not
astonish here, since in the two-particle subspace, in which collisions take place, the
total energy is not conserved. One should always maintain the picture of collision with
an infinite bath; at any time t which is a multiple of At one particle of the bath is

replaced by another, which produces an obvious jump in the energy of the two-
particle "collision subspace".

A-2afl-a)fl-ßcos26)

-2a)/«(l-oc)(l-/3)
-aßfl-a.)sin26

2a(1-a)//9(1-/S) cos0

-2a|/oc/S(l-a)sin0

Model fill)
2«/a(l-a)(l--3)

- a,3(1-oc) sin2 0

l-2«(l-a)(l-/9sin20)

-2«j/a/S(l-a)cos0
- 2 a(l-a)//8(1-/5) sin S

2a(l-a)/)3(l-/3)cos0N

-r-2a/a/S(l-oc)sin0

2a/a/?(l-a)cos0
- 2 «(1- a) j//3(l-jff) sin0

l-2a/S(l-a)

ascos2/U|2+(£/2)2-^; p *e^VlIP±W& fl arr t Irng (4.4)

We notice here an obvious difference between the models (I) and (II) in the fact
that USA t is homogeneous and that the information contained in WB acts in a different
manner : we cannot expect WB to be an equilibrium in this model. Let us now
parametrize the above motion in a way which is suitable for geometrical interpretation.
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(4.5)

Consider in the three-dimensional sphere Cs a rotation R fcp, n) by an angle cp

leaving the axis n= Jf n{ Vf invariant. In components this may be written (with
summation rule) : *

Rik Wf (cosy òik + (1 - cosç?) W; nk + sincp elkl »,) Wf

We claim now that UAt is of the form

UsAt=aRfcp,n) + fl-a)-I
or, in components

fUSM)ik àik + afl - coso;) («< nk - òik) + a sincp sikl n,

In order to prove this we have only to choose

/-//5-COS0

cf 2 /Jg~Y+JeA2)2 At; n=i fß sin t

\-/^IFrom this follows at once

coscp 2 a — 1, 1 — cosy 2 (1 — a), sincp 2 y a. (1 — a)

and we may identify (4.4) and (4.5). For 0 < a < 1 we conclude that UAt leaves

exactly the axis n invariant, i.e. J- {/In}, and that all initial states W% converge to a

point of the axis, i.e. CfA) Cs- In the special case a 0, (4.2) implies that bath-

temperature TB 4- 0 (— ljTB — oo) ; then all points of Cs are fix, i. e.J=Cs) in the

other extreme case a 1 ((4.2) O TB — 0) the axis n is invariant but no other stales

tend to these equilibria, i.e. J {A «}, Cf3) $ 4= C5-

aR(cp)W0s + (i-a)w0s7litW0s

aw„ ,;

aRfcplWo'

Fig. 3

Construction of state W$ out of the state Wjj in model (III)
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Let us first split the initial state W* into a component parallel and one orthogonal
ton

W7 (n,W>)n+Wl

The first component is left invariant under USA t and it suffices to discuss the movement
of the second in the two-dimensional plane orthogonal to n (Fig. 3).

_ —>-

Call cp the angle by which FFjj' has rotated and y the factor by which it has been
contracted under the action of UAt- They may be expressed as follows by a and cp

(resp. a) :

l — a(l — coscp) 1-28(1-»)
COSœ

(/l - 2 a(l - a) (1 - cosy)

/l - 2 afl - a) (1

|/l-4a(l-a) (1-a)

/ÏZ^4 afl - ct)fA

It is now immediately seen that y 4= 0, except in the case a 0 fTB + 0) ; in this
case Wq

' and thus Wjf do not move and all states in Cs remain fixed. On the other
hand, for a 4= 0: y < 1 whenever a 4= 1, and any initial state W0S' moves towards zero
in a spiral with a speed which depends on a and At (Fig. 4).

Y*S

Fig. 4

The evolution of the projection W^' of a state W^ into the plane defined by (n, WS) (n, W-S)

in model (III)

In the limiting case, finally, where a 1 (temperature of the bath-0), y 1 and all
states move in cercles never approaching the axis n. Here we have the case of the
existence of states in Cs which never approach an equilibrium fCfJ) C C5)-

In order to discuss the physical meaning of a system with non-unique equilibrium,
let us write down the general equation of motion for Wts :

Us Wsa fn, W*) n + y tjAt RfcptjAt)Ws0'
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This leads (with y 4= 0 ; y < 1) to the equilibria

lim Uf Wl W^= fn, Wsf> n

-Wx fßcosd -Vx+W2 //S sin0 • V2 + Ws /1^9 Vs

where Wx, W2, and Wz are the components of the initial state. We see that

(a) some information about the initial state is carried throughout all times; the system
does not entirely loose its memory ;

(b) the initial state WB of the bath does not influence the equilibrium states of the system S ;

it influences however the speed by which they are approached.

Let us put together the main results for the different cases (I), (II), (III) in the
short-hand notation introduced in § 3:

(I) 3 {WB} ; CfWB) CO) Cs

(II) 3 {- WB} ; C(- WB) CO) C •

(a) TB + 0 (- 1/TB - oo): C(T) Cs

(b) + 0 < TB < - 0 (- oo < _ l/TB < + oo) :

(III) I 3" ax*s n; let An denote an arbitrary point of this axis; then Cfin)

plane orthogonal to n through An and (J CfAn) CfPj Cs,

(c) TB - 0 f-ljTB + oo); J axis n; Cfin) point Xn;CfJ) CCs-

The scale (— 1/T) is the scale used in general for spin-temperature.
It is interesting to note that the model (I) which seems to behave more physically

than the others differs from the wellknown Heisenberg interaction

V tr, ® ax + a2 ® a2 + a3 ® as

only by the diagonal term in a3, which however does not affect the evolution of the
system.

5. Various Other Remarks

In this section we shall make some additional general remarks in connection with
our models.

(1) Entropy of the system S

The entropy of a state W may be defined in Liouville space £ by

5= -ln || W\\2.
2 H. P. A. 39, 1 (1966)
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If we choose in £ the particular basis in which all states have equal zero-components
C0 this reads

S - ln (|| W\\2+C20)

where W denotes the component of PF orthogonal to V0. The state of maximal entropy
is thus

W 0

In the models which we have studied in § 4 the equilibrium state of 5 does not, in
general, correspond to the state of maximal entropy. While for the coupling (III) the
length of Wf decreases and hence the entropy increases monotonously in time, this is
not true for the cases (I) and (II). For (II), for instance, any state tends to the

equilibrium Wfa — WB. If we choose, in particular, WB for the initial state, the initial
and final entropies coincide, while Wt passes through the state W 0 of maximal
entropy at an intermediate time t'; for this case the function Sft) is thus not
monotonous.

(This is however not astonishing, since the system S is not insulated.)

(2) The case of commuting H0 and V

We find that H0 and V commute in the spin model (I). The same would be true for
models (II) and (III) if we set e 0. Considering now the propagators UAt in these
models we remark that the assumption e 0 modifies only the constants oc and ß :

e 0 > oc cos2 | g | At; /9=1
and we conclude that the postulate of commuting H0 and V does not essentially affect
the structure of the equilibrium problems in our model.

(3) The limit of short collisions

If the duration of the successive collisions tends to zero, the evolution is defined by

Uf lixnfUsJIAt-
At—>-0

The equilibrium problem is then essentially changed in the spin models (I) and (II).
One shows that in these cases Uf induces a rotation (with speed e) round the axis V3

and we find
CfJ) 3 axis V,.

In model (III) the general results enounced at the end of § 4 remain unchanged.

(4) Markofficity

Consider the two projectors Px and P2 in 7/s projecting respectively on the orthogonal

states

l\ /0
0

; n
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in 7/s- In £ these operators are represented by the orthonormal elements

Pi j=r (V0 + Vs) ; P2=-JY(V0- V3). (5.1)

Furthermore
Pi + P, I-

They may thus be considered as a set of independent events. A sufficient condition for
the validity of the corresponding Chapman-Kolmogoroff equation [3]

fp*, uf+t2 pk) =2JfPi, ut pu (iz uf pk)
i

(which in turn expresses the Markofficity of the process [4]) is that the propagators Uf
map the subspace of Y spanned by Px and P2 (and its orthogonal complement) into
itself. It is easily seen from the general forms of Uf given in § 4, that this is the case for
the models (I) and (II) (but not for (III)). On the other hand we know that the elements
V0 and V3, and thus also Px and P2 span the set of all diagonal matrices in 7/s and we

may state the result : if the evolution {Uf} does not mix up the diagonal and non-diagonal
parts of the statematrices, then it is a fhomogeneous) Markov process with respect to the

events P, defined in (5.1).

6. Physical Improvement of the Model

The model as stated so far gave us some insight on the approach of quantum
systems to equilibrium. Let us now raise the question to what extent these models
mirror some real physical situations. Given a very big bath B of identical particles in
thermal equilibrium. We introduce another particle S "of interest" into the bath, which
collides successively with particles of B ; the probability of a second collision of S with
the same particle of B is supposed to vanish (infiniteness of B). Let i denote the
ordinal number of the collisions, Att the duration of the 7th collision, Ax{ the interval
between the beginning of the i-th and the (i + l)-th collision. So far we considered

Atf AXf =At= const.

In the most general situation Att and (Axf — Atf) would be distributed according to
independent Poisson distributions. This case will not be discussed here, the only
generalisation we shall discuss is

Atf At; Atf Ax > At (short collisions).

One expects, that this modification should not change the sets J of equilibria
themselves but rather the laws of approach to equilibrium (relaxation times). This is

however not exactly true because of the proper evolution H0 of the systems.
So, for instance, in the spin model, case (III). The calculation shows that the set J-

will reduce to the point W 0. We conclude that here the insertion of a free path
between the collisions destroys the memory of the initial state. The reason is the following:
during the collision the state rotates round an axis n, its n-component being invariant.
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In the intervals between two collisions, however, a rotation takes place round the
axis Va (speed eIAt), which is not parallel to n. But any vector submitted to alternative
rotations round non commuting axes reduces to zero.

The effect of the above generalization in the cases (I), and (II), of the spin-
example is much more trivial : it results simply in a modification of the relaxation
times Tx and T2, which now read :

j, Ar
_ rj. 2 Ar

\g\2At* ' 2 \g\2AP

7. Conclusion

We have studied irreversible quantum processes by means of a definite model.
The main result is that the behaviour of the system is very strongly dependent on
the interaction. Considering in detail some of the simplest couplings we observed that
almost all thinkable ways of approach or non approach to equilibrium were realized.
Our results may thus furnish some background to a more general study of the
equilibrium question. They indicate that general theorems are to be expected only under
rather restrictive assumptions on the form of the interactions.
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