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Approach to Equilibrium in an Explicit Quantum Model?)

by Christian Favre and Jean-Paul Marchand

Institute of Theoretical Physics, University of Geneva

(28. IX. 65)

Abstract. A quantum mechanical model is introduced which admits true equilibria (no Poincaré
cycles) but avoids calculation in infinite product spaces. The existence and uniqueness question of
equilibria is solved in various examples and the approach to equilibrium discussed geometrically
in the Liouville space of the physical states.

1. Introduction

The aim of this paper is to obtain some insight into irreversible quantum processes
approaching an equilibrium state.

It is well-known that the evolution of any finite system is quasiperiodic in time
and that true equilibria do not exist (Poincaré cycles). In order to avoid dealing with
them we start from the question: Can we construct an nfinite model without running
into the difficulties of working in an infinite tensor product-space ? If the answer is
yes, an explicit study of the approach to equilibrium will be p0531ble by simple
mathematical means.

The model consists roughly of a small system S of interest (for instance one 1/2
spin) coupled to an infinite reservoir B of identical systems in thermal equilibrium in
such a way that S interacts at any given time only with one particle of B and never
twice with the same (here the infinity of the “bath” B is used). The evolution of this
“collision”” model at any moment may thus be described in the product space of only
two particles, where, however, the particle of the bath falls back into its initial state
after any collision with S. This “loss of memory’’ of the bath is at the origin of the
fact, that the movement of the state of S becomes homogeneous in time and admits
true equilibria. It corresponds to the classical ““Stosszahlansatz’ of BOLTZMANN.

In § 2, we describe in mathematical terms a somehow stilized version of the model
(all collisions of equal duration and succeding each other without interval between
them). The Liouville space of states in S is introduced, in order to visualize the
evolution of any state geometrically by a line.

1) Partly supported by the ‘“Fonds national suisse pour la recherche scientifique”.
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In § 3 the main questions as to existence and uniqueness of the equilibrium and
approach to it will be formulated.

The main part is § 4 where the model is explicitly calculated in the simple case
of 1/2-spins and various couplings. It is astonishing to see how strongly the general
properties of the time-evolution depend on the coupling Hamiltonian. The follow-
ing cases arise:

a) all states of S approach a unique equilibrium which corresponds to the thermal
equilibrium of the bath;

b) all states of S approach a unique equilibrium which however differs from that of
the bath;

c) all states of S approach an equilibrium, but the latter is not unique: some
“memory’’ of the initial state of S persists throughout the motion;

d) only a subset of states of S approach equilibria (unique or not), the others do not
approach an equilibrium at all.

We see from this that already in one of the simplest examples many different
types of evolution may occur. The one thing they have in common is the existence of
at least one fixpoint as asserted in entire generality by the theorem of MARKOFF-
KAKUTANI [1]32).

In § 5 various other properties of the model are discussed in connection with
energy, entropy, Markofficity, diagonality.

We conclude with the adaptation of the model to a possible physical situation
introducing a mean free path between the collisions. This causes some modifications
not only in the way how the systems approach equilibrium but also in the uniqueness
question of equilibrium.

2. The Model

Let 5, #E be the finite Hilbertspaces of systems S and B. The uncoupled states
of S and B are described by density matrices W* and W%, and they evolve in time
according to the free Hamiltonians A and HJ. The bath B is furthermore supposed
to be in thermal equilibrium at time ¢ = 0:

B
—(kT) H]

WE = = . (2.1)

—(1&T) HB
Tye (YrT) Hy

From time O to A¢ a first “collision” takes place between S and B and the total state in
H = W ® HE develops according to the total Hamiltonian

H=H,I+I®H{+V,

where the interaction V couples H> and H#Z. The time evolution of the system S of
interest during this first collision is thus acheived by the following three steps:

WS A a WOS ® WE Uat B_iHAt(Wﬁ ® WB) ¢ 4t
S .. .
—»R Tif{a—H 4 (WOS ® WB) et 4 = W3, (2.2)

2) Numbers in brackets refer to References, page 20.
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where the operation 4 “amplifies” the state W3 into a state Wy @ W% in H (un-
coupled systems at ¢ = 0), U 4, describes a Schrodinger motion of the states in H, and
R® reduces the total state at A¢ to the system of interest S. The joint operation

W=RP UL A (2.3)

maps thus the matrices of #° onto themselves and may be called the propagator 0 to
At of the state W3.

Now enters the essential hypothesis that the second collision from A¢ to 2 A¢ takes
place between S and a “new particle” of the bath, which was unaffected by the first
collision. In other words: the bath at time A¢ falls back into the initial state W&, it
looses memory. We obtain thus

Waae=R° Uy A W = Ua Wi, = ( 20" Wﬁ = Uz 4 Wf)g
and repeating this procedure
im = fn)”-
Interpolating this operator-function for arbitrary times ¢ we finally define

uts = | SAt)tMt- (2.4)
The general properties of U; are:

I U maps the set C5 of all states?3) in S into itself.

II The set {U;} of mappings C° = C° (all ¢ > 0) forms an abelian semi-group?),
i.e. for any ¢, £, >>0:

S S94S S 945
ut1+t2 = utl utz = utz t "

ITI There exists a fix “point” in C5 with respect to the semi-group, i.e. a state left
invariant under any of the mappings U; .
Proof I. Let Wy be a state in }°, then 4 W3 and U, A4 W are states in .
Now, hermiticity, positivity and trace-condition are conserved in the process of
reduction. So U, W3 = RS Uy, A WS is still a state in }S.

8) A state in Y is defined as a linear operator W in Jf with the three properties W* = W
(hermiticity), W > 0 (positivity), Tr W = 1 (trace-condition).

%) The most characteristic underlying feature of the evolution defined here is its homogeneity
in time. In general a propagator depends on both, the initial and the final time #, and #,; if the
evolution is homogeneous however it depends only on the difference #,—# and we may write

Usy, = Uty—t,0 = Uty—1, -
As an example of an inhomogeneous situation consider the so called reduced system. (Cf. U. Fano,
Rev. Mod. Phys. 29, 74 (1957). U. FaNo: Lectures presented at the 5th International Spring School
of Physics (Ravello 1963). J. M. JaucH, Helv. Phys. Acta 37, 293 (1964)). Using our notations its

evolution reads
WP =RSU,AW; = uf/o wy

which coincides with (2.3) only for ¢ = A¢ This evolution, though not Schrédingerian, is
quasi-periodic (Poincaré cycles) whenever the space {f = 5 @ B is finite. Furthermore, the
semi-group property does not hold, since the group-multiplication of two operators Uy, and utaltl
can only be performed if the intermediate times ¢, and 7, coincide. The “most general evolution”
of a system as defined by JorpAN, PiNskY, and SuDARsHAN in J. M. P. 3, 848 (1962) does in fact
not include the case of the reduced systems.
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Pyoof I1 is an immediate consequence of the definition (2.4) of U7
U, Wy, = (UZ)" (UG = (UG = U,

Proof 111 follows from (I) and (II) by the theorem of MARKOFF-KAKUTANI [1],
since C° forms a convex subset of all matrices in #° which is invariant under the
abelian set {U7}. The topological requirements (compactness) of the theorem may be
easily verified after introduction of the Liouville space L£° attached to H° (and the
topology induced by the norm[2]. The definition of the Liouville space is given below).

As stated in the Introduction the main advantage of the Liouville space consists
in the fact, that all states are represented by points in a sphere moving in time under
the action of the one-parameter family of “propagators” {U;}. In the following it will
be useful to use some geometrical notions which we shall define.

Let H be a (finite) Hilbertspace. The Liouville space L attached to H is defined by
the set of linear operators O in H satisfying Tr Ot O < oo. The scalar product (O, O’)
is defined by Tr O+ O'. (For clarity elements in £ will always be denoted by bold
type letters.) Let NV be the dimension of ¥, then dim £ = N? and we may choose
in L an orthonormal basis V, (i = 0, 1, ... N2 — 1). If we choose furthermore ¥V, =
1//N I (1/)/N is the normalisation factor: || ¥, ||2 = 1/N Tr I2 = 1) the conditions
on W to represent a state imply the following relations in L:

1 1
V 3 W o R T W gy e—
( 0 ) VN r | VN
|WIPP=Tr W< Tr W=1
The first line defines an (N2 — 1)-dimensional hyperplane Y in £ orthogonal to ¥,

and the second line defines a hypersphere § of radius 1. The set C C £ of statesis a
subset of the intersection YN § which in turn represents a hypersphere of radius

r = /1 — 1/N lying in Y; its boundary C consists of the pure states (Fig. 1).

v, & ¢
/

)
-y

1/ﬁ Vv,

Vv
Fig. 1

In N2?-dimensional Liouville space the physical states are contained in an (N2-1)-dimensional
hypersphere C with radius » = ]/1—— 1/N whose boundary C represents the pure states

Consider now the Liouville spaces £5, £B, £ attached to #°, H?, and H and introduce
the orthonormal frames V§, VP, V,, = Vi ® VF with V5 =1//dm ¥ I; V&=

i
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1/)/dim HP 1. Let W3, WE be the components of W3, W§; then we may now write
the three operations (2.2)

N2—1

we =£W§ Ve, W& :%’Wf 144

AW =WS@W:= Y WiWEV,

ik

uAtA W3:ZW§ Wf uAtVik .
ik

WS =R Uy AWS = Y WEWEW,,, Uy, Vi) V3 )

N

From this follows the geometric interpretation of U3, as an operator in £5: U3, is
obtained in the steps

1) formation of a direct product; _

2) rotation in the product space £ (note that || U,, W || = | W] £) ;

3) projection into the plane spanned by the basis-vectors V,,.

The general definition of motion in L5 may be written

W}g= ( it)t/Ath; ( it)ti:;WE(VIO'uAtVik) .

3. The Main General Questions

We saw that the operations U5 may be interpreted as operators in the Liouville
space L attached to 5, and that they have the property to map the subset C5C L5
into itself, leaving at least one element of C° invariant (fixpoint). In order to formulate
further questions, let us first introduce the following convenient terminology:

We call F C CS the set of fixpoints of the operator family {U3}. It follows from the
homogeneity of U3 that this set is identical to the set of fixpoints of US5;;. Let W2 be
an element of F; then C(W?3) denotes the class of states approaching W3 for t - oo i.e.

CW3) = (WS e CS | lim Us WS = W3}

W3 may be called the equilibrium for the states in the set C(W3).
The following cases may arise:

1) F contains exactly one point W3 (unique equilibrium):
a) C(W3) = C° (all states tend to the same equilibrium),
b) C(W3) C C3 (there exist states which do no tend to any equilibrium).

8) The operation of reduction is given by the well-known formula
W-—>WS=TrBW
which transforms an operator acting in J{ to an operator acting in 5. A simple calculation shows
that the corresponding operation in the Liouville space is essentially a projection on a subspace
spanned by the 4 basis-vectors V;:

RS W - _%‘IW?:IC(VEO’ V‘c‘:k) V?.
Il” H
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2) ¥ contains more than one point (non-unique equilibrium), C(W3) isthennecessarily
smaller than C5, but the following alternatives exist:

a) SU ;C(WIS?) = C(F) = C5 (all states tend to at least one equilibrium),
Wi e

b) C(F) C C° (some states do not approach any equilibrium).

In the case of a unique equilibrium we may expect that in certain cases W3 is
identical with the equilibrium state W2 of the bath. So the further question arises to
specify necessary and sufficient conditions for this situation.

The second case of several equilibria W3 with the corresponding classes C(W3) is
of some special interest. In physical terms it represents the case where the state W}
conserves some memory of the initial state throughout its motion. This implies the exis-
tence of additional constants of motion. Their physical meaning may be interesting
to explore. (The occurrence of this case is related to the mathematical problem of me-
trical indecomposability.)

The propagators U3 depend on the choice of the Hamiltonian H and the initial
state W of the bath, as one may see from their definition. It follows that in our model
the sets F and C(W3) depend implicitly on H and W? and the most general problem
to be posed is that of establishing conditions on H and W% which imply the different
alternatives for F and C(W3). This problem is difficult (some indications are found in
§5). We intend however to proceed in the converse direction; i.e. to start from specific
Hamiltonians and bath-temperatures, and to establish the corresponding sets F and
C(W3) explicitly. This procedure has the further advantage of yielding an explicit
insight into the approach to equilibrium.

We shall do this for the simplest non-trivial model available, namely that of two
coupled 1/2-spins. The result is astonishing in its variety: starting from three different
standard coupling-schemes we obtain examples for almost all possibilities enumerated
above. The explicit evolution will be visualized geometrically in the three-dimensional
hypersphere C5 of 1/2-spin-states. |

4. Discussion of an Explicit Example

The system of two 1/2-spins is described by the direct product of two 2-dimensional
Hilbert-spaces }#° and H#Z. They evolve separately according to the free Hamiltonians
Hj and HZ which may be choosen identical. In the basis in which they are diagonal

we assume:
y . w-+¢e0
H2 e HE = : (4.1)

0 w—e¢
The total Hamiltonian is

H=H;®@ I+ I®H;+V =H,+ V.

It is sufficient to discuss the interactions V vanishing on the diagonal since we may
always include the diagonal part of H in H,. We shall in particular consider the cases
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(I) (IT) (ITT)

g*

The three other cases of this type either do not couple the two systems or are dual to
(ITI). Note that in (I) H commutes with H,,.

Introducing the signs 4 and | for the eigenstates of Hj resp. HZ (which are supposed
to be equal) to the eigenvalues w + ¢ and w — ¢, the couplings (I) to (III) may be
given the following physical meaning:

S B S B
(I) couples + 4 ta ) %
(1) P4 oto )|

(u b4t 44

The results will be interpreted in the 4-dimensional Liouville space £° in which we
introduce the orthonormal basis

Vo= 1L, Vi=——0, (i=123).

V2 Y
Here o, are the Pauli matrices. Since in this basis the propagators U3 leave the zero-
component of any state vector invariant, we may restrict ourselves to the hyperplane
spanned by {V;}. The elements of this space will be designed by an arrow (for the
operators we will omit them). For an arbitrary state we may thus write

3
W= Y WSV,

)
i=1

(Note that C fills up the entire hypersphere Y §. Since in the two-dimensional case
considered here the condition || W* || < 1 implies the positivity of W.) Let us briefly
indicate the connection between this and the Hilbertspace representation of a state
as a matrix. The most general state density matrix has in 3#° the form

A B
WS = R} 1 0<<A<1; Det W>0.
B¥1—-4

In C° C LC° this reads
2Re B

—WS=_ZW.SV.; wS—_L | —2Im B
241
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In particular W? is supposed to be diagonal in HJ-representation and we obtain the
correspondance

a 0 1
01—a V2
2a-—1

where according to (2.1), (4.1)
e efk TB

a= . (4.2)

— e TB B
gk TE | ek T

Using the calculation scheme given in § 2 we shall now determine and interprete
U3 successively for the three models (I), (II), and (III).

Model (I)
]/; cose At — ]/o? sing At 0
S WS = Vo sine At Yo cose At 0 ﬁ§+41—@i33mzcwﬂgLMJ (4.3a)
0 0 o

U consists of a homogeneous and an inhomogeneous part. The homogeneous part
effectuates a rotation by an angle ¢ A¢ and a contraction by a factor [/a < 1 in the
1-2-plane, and it contracts the third component by « << 1. The inhomogeneous part
adds a fraction 1 — « of the state W25, Using the summation formula for finite geo-
metrical sums we find now

V;n cosn e At — '/;n sinn £ A 0
= — —n —n -— -
s Wo = (US)" WS — ]/oc sinn e At Va cosnedt 0 | Wy + (1 —ar) WP
0 0 o" (4.3b)

1
]
1

Wy

2

v

Fig. 2
The evolution of a state W§ towards its equilibrium W £ in model (I)
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furthermore
— —
U WS = (US4 WS, TmUS WS =US, WS = WS, = WE,  (4.30)
t—00

W? is a fixpoint of U7 which is approached by any arbitrary initial state Wy . There
extists thus a unique equilibrium which equals that of the bath, and the class C(W5) is the
ensemble C° of all states in £°. It may also be shown that the approach to equilibrium

is uniform in time in the sense that the distance || fﬁs — ﬁ’};’; || decreases monotoni-
cally. The “worldline” of an arbitrary initial state is represented in Fig. 2 (omitting
the zerocomponent).

It is interesting to discuss this model in the light of a relaxation process. We may
in fact — as indicated in Fig. 2 — introduce two relaxation times T, and T, the first
for the 3-component, the second for the length of the 1-2-component of the vector

— —>
(W3 — W3). The formal definitions are thus

— 1 —> —>
(er_ Wci)s =g (W(f - Woso)s

Vs, — woz+ s — sz — L ) g - Wz s -
Using the expansions
a=1—|gPAB+; Ina=—|gPar+ -
we find from (4.8b), (4.8c), | |

1 2

h=tepa T~ jgpm

As a first conclusion, we remark T; <C T,°) (this has been indicated in Fig. 2). But it
is more interesting to see what 7, and T, have in common:

(a) they are independent of the initial state,
(b) they tend to infinity for A¢ - 0.

The property (a) expresses the fact, that the rapidity of decay of W* increases with
its distance from the equilibrium; this is a consequence of the exponential decay laws

Je! resp. ! in (4.3) where the first derivative is proportional to the size of the function
itself. Property (b) has the following physical meaning: In order to maintain the law
of approach to equilibrium fixed for a collision whose duration A¢ tends to zero, it is
necessary to keep the product | g |24¢ constant: for decreasing A¢ the coupling
strength | g |*> must increase.

6) The existence of two relaxing processes of the type described here is well known in the theory
of magnetic resonance. The time T, describes the approach to the equilibrium population and
corresponds to the so called spin-lattice relaxation. The time T, deals with the annihilation of the
off-diagonal elements of the density matrix and corresponds to the spin-spin relaxation. The
experiment shows that T, > T, which contradicts our result. This however means simply that
the Heisenberg interaction we used (see last remark of § 4) is not the only source responsible for
the relaxation in these experiments. For further details see for instance A. ABraGam: The principles
of nuclear magnetism (Oxford at the Clarendon Press, 1961). ’
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Model (I1)
Yo Y1-B)1-ua 0
W= —1=g)1i—=a  Ja 0 WS —B(1—a)WE
0 0 1—6(1—a)

B T _ 4le+)1gB+e)2 g
o = cos? ]/] g2+ At; f= (c+VigP+e)2+1g 2|

The situation looks here very similar to that of the model (I). A slight complication
consisting in the existence of constants depending both on | g | and ¢ is due to the fact
that H does not commute here with H, and mixes up states of H,-energy (o + ¢) and
(@ — &). (If we set e = 0 we remark in fact, that § = 1 and « = cos? | g | 4¢, and we
obtain the same constants as in (I)).

There is however one essential difference between (I) and (II): 2n (II) the unique

— —
equilibrium of the system S is not W5, but WP with inversed populations:

WS — — W=,

If TP is the temperature of W2 according to (4.2), the equilibrium state W3, has
temperature — 7% (remember that we assumed Hy = Hf). This fact should not
astonish here, since in the two-particle subspace, in which collisions take place, the
total energy is not conserved. One should always maintain the picture of collision with
an infinite bath; at any time ¢ which is a multiple of A¢ one particle of the bath is
replaced by another, which produces an obvious jump in the energy of the two-
particle “collision subspace”.

Model (II1)

1—2a(1l—a)(1—Bcos?h) 2a|/oc(1-—oc) (1—58) Za(l—oc)]/ﬁ(Tﬁ)mcosa
—afB(l —«)sin26 —{—2an sinf
S —2afa(l—w) (1—B) |1—2a(l—a) (1--Bsin20) 2a)af(l—a)cost
YT —apl—o)sin20 —2a(1—a))/B(1—p)sind
2a(1—o) }/Mcos@ —Za]/mcosﬂ 1—2af(1l—a)
— 2a]/ocﬁ(1 ——ocu)_sinﬂ —2a(1 —a) V,B—Ujﬂsixlﬁ

_ T _ 4gel2-YiglP+ (/222 , Img
w=cost)|g [+ (/27 At f= (ol2— yeizr+ g g 0 = o8 Fg} -

We notice here an obvious difference between the models (I) and (II) in the fact
that U3, is homogeneous and that the information contained in W2 acts in a different
manner: we cannot expect W2 to be an equilibrium in this model. Let us now para-
metrize the above motion in a way which is suitable for geometrical interpretation.



Vol. 39, 1966 Approach to Equilibrium in an Explicit Quantum Model 15

Consider in the three-dimensional sphere C5 a rotation R(p, 71) by an angle ¢
leaving the axisfi = 3 m; V; invariant. In components this may be written (with
summation rule): :

Rix Wy = (cosg 8, + (1 — cosq) m; my, + sing e, m) Wi .
We claim now that U5, is of the form

Gi=aRl@n) +1—-a)-I
or, in components

(US0)ix = ik + a(l — cosg) (m;ny, — 8;y) + asing e, . (4.5)
In order to prove this we have only to choose

—VB-COSB
‘P=2|/|8 2+ (/22 At; 1= ]/E‘sinﬂ

_‘/1_5

From this follows at once

cosp=2a—1, 1—cosp=2(1—a, sin(p=2|/o¢(1—cx)

and we may identify (4.4) and (4.5). For 0 < a < 1 we conclude that U3, leaves

exactly the axis n invariant, i.e. F = {A ?1}, and that all initial states WOS convergelto a

point of the axis, i.e. C(F) = C>. In the special case a = 0, (4.2) implies that bath-

temperature T = + 0 (— 1/T? = — o) ; then all points of C° are fix,i.e. F= C°;inthe
—_

other extreme case a = 1 ((4.2) > TZ = — 0) the axis n is invariant but no other stales
tend to these equilibria, i.e. = {An}, C(F) = F= C5.

W; A e s
aR@W; + (W, =S, W3

aw;

Fig. 3
Construction of state W7 out of the state W5 in model (II1)
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—>
Let us first split the initial state W; into a component parallel and one orthogonal
-
ton

= > TE ey =
We=(n W))n+ W, .

The first component is left invariant under U5, and it suffices to discuss the movement
of the second in the two-dimensional plane orthogonal to 7 (Fig. 3).

—_—

Call g the angle by which W} has rotated and y the factor by which it has been
contracted under the action of U3,. They may be expressed as follows by @ and ¢
(resp. a):

1-a(l—cosg) _ 1-2a(l—a)

V1-2a(l-a) (1-cosg)  Vi-4a(l—a) (1-a)

y:]/l——?a(l—a) (i—coscp) =]/1—4a(1—ma) (1— o).

cos@Q =

It is now immediately seen that @ + 0, except in the case a = 0 (T% = + 0); in this
case Wy and thus W; do not move and all states in C° remain fixed. On the other
hand, fora + 0: y < 1 whenever a #+ 1, and any initial state W} moves towards zero
in a spiral with a speed which depends on a and A¢ (Fig. 4).

Fig. 4
. § — — — —
The evolution of the projection W§" of a state Wy into the plane defined by (n, W9) = (n, W3)
in model (IIT)

In the limiting case, finally, where @ = 1 (temperature of the bath-0), y = 1 and all
states move in cercles never approaching the axis 7i. Here we have the case of the
existence of states in C° which never approach an equilibrium (C(F) C C5).

In order to discuss the physical meaning of a system with non-unique equilibrium,
let us write down the general equation of motion for Wy :

> —> _ - .,
US W3 = (1, W) a4 "% Ript]At) WS
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This leads (with ¢ &= 0; < 1) to the equilibria

- — —
m W Ws =W =(n Wn
t—00

— — W) cost -V, + Wy sing -V, + W, )1 — gV,
where Wy, W,, and Wy are the components of the initial state. We see that

(a) some information about the initial state is carried throughout all times; the system
does not entirely loose its memory ;

(b) the initial state W of the bath does not influence the equilibrium states of the system S ;
it influences however the speed by which they are approached.

Let us put together the main results for the different cases (I), (II), (III) in the
short-hand notation introduced in § 3:

@ F={W};, CWH=CH=C

I F={-W’}, C-WH=Cc@®=C.

(@ TP=+0(—1/T8 = —00): F=C(F) =C°

b) +0< TP < —0(— 00 << —1/T5 < 4 o0):

(I11) F = axis 11; let A7 denote an arbitrary point of this axis; then C(An) =

plane orthogonal to 72 through A7 and U c@ n) = CF) = C,
7

(c) TB = — 0 (—=1/T® = + o00): F = axis n; C(An) = point A7; C(F) C C°.

The scale (— 1/T) is the scale used in general for spin-temperature.
It is interesting to note that the model (I) which seems to behave more physically
than the others differs from the wellknown HEISENBERG interaction

V:()'1®(71+0'2®0'2+0'3®0'3
only by the diagonal term in ¢, which however does not affect the evolution of the
system.
5. Various Other Remarks

In this section we shall make some additional general remarks in connection with
our models.

(1) Entropy of the system S
The entropy of a state W may be defined in Liouville space £ by

S=—In||W|e.

2 H.P.A. 39,1 (1966)
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If we choose in  the particular basis in which all states have equal zero-components
C, this reads

S=—1In(|| W2+ CY

where W denotes the component of Worthogonal to V. The state of maximal entropy

1s thus
s

W=0.

In the models which we have studied in § 4 the equilibrium state of S does not, in
general, correspond to the state of maximal entropy. While for the coupling (I1I) the
length of W;® decreases and hence the entropy increases monotonously in time, this is
not true for the cases (I) and (II). For (II), forinstance, any state tends to the equi-

— — —
librium W2 = — W5. If we choose, in particular, W? for the initial state, the initial

and final entropies coincide, while ITV: passes through the state P_V> = 0 of maximal
entropy at an intermediate time #’; for this case the function S(#) is thus not mono-
tonous.

(This is however not astonishing, since the system S is not insulated.)

(2) The case of commuting Hy and V

We find that H, and V' commute in the spin model (I). The same would be true for
models (IT) and (III) if we set ¢ = 0. Considering now the propagators US; in these
models we remark that the assumption ¢ = 0 modifies only the constants o and f:

e=0 > a=cos?|g|Adt =1

and we conclude that the postulate of commuting H, and V does not essentially affect
the structure of the equilibrium problems in our model.

(3) The limat of short collisions

If the duration of the successive collisions tends to zero, the evolution is defined by

U = lim (151
At—0

The equilibrium problem is then essentially changed in the spin models (I) and (II).
One shows that in these cases U7 induces a rotation (with speed &) round the axis V,
and we find

C(F) =F =axis V,.

In model (I1I) the general results enounced at the end of § 4 remain unchanged.

(4) Markofficity

Consider the two projectors P; and P,in ¥ projecting respectively on the orthog-

onal states
1 0
(pl - 0 ’ (pQ - 1
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in #°. In L these operators are represented by the orthonormal elements

P,——— (Vo4 V); Py=—— (Vy—V). (5.1)

b
143

Furthermore

P,+P,=1

They may thus be considered as a set of independent events. A sufficient condition for
the validity of the corresponding CHAPMAN-KOLMOGOROFF equation [3]

(Pilui+tzpk)=2(1)i’u2pl) (Pz:uflpk)
I

(which in turn expresses the Markofficity of the process [4]) is that the propagators U}
map the subspace of ¥ spanned by P, and P, (and its orthogonal complement) into
itself. It is easily seen from the general forms of U7 given in §4, that this is the case for
the models (I) and (II) (but not for (I1I)). On the other hand we know that the elements
V,and V,, and thus also P; and P, span the set of all diagonal matrices in #° and we
may state the result: if the evolution {Us } does not mix up the diagonal and non-diagonal
parts of the statematrices, then 1t is a (homogeneous) Markov process with vespect to the
events P, defined in (5.1).

6. Physical Improvement of the Model

The model as stated so far gave us some insight on the approach of quantum
systems to equilibrium. Let us now raise the question to what extent these models
mirror some real physical situations. Given a very big bath B of identical particles in
thermal equilibrium. We introduce another particle S “of interest” into the bath, which
collides successively with particles of B; the probability of a second collision of S with
the same particle of B is supposed to vanish (infiniteness of B). Let 7 denote the
ordinal number of the collisions, A¢; the duration of the ¢-th collision, A7; the interval
between the beginning of the i-th and the (¢ 4 1)-th collision. So far we considered

At; = Ar; = At = const.

In the most general situation A%, and (A7, — A¢;) would be distributed according to
independent Poisson distributions. This case will not be discussed here, the only
generalisation we shall discuss is

At, = At; Av; = Av > At (short collisions).

One expects, that this modification should not change the sets F of equilibria
themselves but rather the laws of approach to equilibrium (relaxation times). This is
however not exactly true because of the proper evolution H, of the systems.

So, for instance, in the spin model, case (ITI). The calculation shows that the set F

—

will reduce to the point W = 0. We conclude that here the insertion of a free path
between the collisions destroys the memory of the initial state. The reason is the following:

during the collision the state rotates round an axis 7, its i-component being invariant.
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In the intervals between two collisions, however, a rotation takes place round the

axis V; (speed ¢/A¢), which is not parallel to n. But any vector submitted to alternative
rotations round non commuting axes reduces to zero.

The effect of the above generalization in the cases (I), and (II), of the spin-
example is much more trivial: it results simply in a modification of the relaxation
times 7', and 7T,, which now read: '

Az . 2 Av

Tl_TgPAtZ ’ 27 g pde

7. Conclusion

We have studied irreversible quantum processes by means of a definite model.
The main result is that the behaviour of the system is very strongly dependent on
the interaction. Considering in detail some of the simplest couplings we observed that
almost all thinkable ways of approach or non approach to equilibrium were realized.
Our results may thus furnish some background to a more general study of the equi-
librium question. They indicate that general theorems are to be expected only under
rather restrictive assumptions on the form of the interactions.
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