
Zeitschrift: Helvetica Physica Acta

Band: 38 (1965)

Heft: VIII

Artikel: Berechnungen über den Ladungstransport in dünnen Filmen

Autor: Brändli, G. / Cotti, P.

DOI: https://doi.org/10.5169/seals-113621

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-113621
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


801

Berechnungen über den Ladungstransport in dünnen Filmen

von G. Brandii und P. Gotti*)
Institut für kalorische Apparate und Kältetechnik,

Eidgenössische Technische Hochschule, Zürich

(20. VII. 65)

Abstract. An eddy current size effect in the electrical resistivity of thin plates having electron
mean free path, I, comparable to the plate thickness, d, has been described recently by Cotti. This
paper presents calculations and tables of the effective eddy current resistivity for a range of ratios
Ijd and for various surface scattering situations. An extension of existing tables for the D.C size
effect in plates is also given.

I. Einleitung
Bei der Berechnung von Transportphänomenen in festen Körpern wird üblicherweise

das Produkt der Relaxationszeit mit der Geschwindigkeit als die «freie
Weglänge» / der Elektronen bezeichnet. In den heute zur Verfügung stehenden hochreinen
Metallen kann die Streuwahrscheinlichkeit der Elektronen bei genügend tiefen
Temperaturen so klein gemacht werden, dass diese freie Weglänge die Grössenordnung
von Millimetern erreichen kann. In solchen Materialien können deshalb die Streuungen
der Elektronen an den Probenoberflächen in dünnen Proben einen starken Einfluss
auf die Transportkoeffizienten ausüben. Es treten sogenannte « Size-Effekte» auf,
die in diesen hochreinen Materialien oft schon an Millimeter dicken Proben beobachtet
werden können, was deren experimentelle Untersuchung ausserordentlich erleichtert
hat.

Solche Untersuchungen gestatten, Rückschlüsse über die mittlere freie Weglänge
und über den Charakter der Streuung der Elektronen an der Probenoberfläche zu
ziehen. Die Kenntnis der freien Weglänge ist vor allem deshalb interessant, weil das
Produkt q l (q spezifischer Widerstand einer dicken Probe des gleichen Materials)
umgekehrt proportional zur Fermi-Oberflache ist [vergleiche zum Beispiel1)].

Der Charakter der Streuung an der Probenoberfläche wird hauptsächlich von
deren Rauheit, verglichen mit der De-Broglie-Wellenlänge der Elektronen, abhängen.
Es scheint, dass nur in Halbmetallen wie Wismut die Leitungselektronen so grosse
De-Broglie-Wellenlängen aufweisen, dass zwischen den Bewegungsrichtungen der
auftreffenden und der gestreuten Elektronen eine Korrelation angenommen werden
muss2).

Als einfachste Modellvorstellung für eine solche Korrelation wird üblicherweise

angenommen, dass eine Wahrscheinlichkeit p für Spiegelreflexionen an den Proben-

*) Gegenwärtige Adresse: Labor für Festkörperphysik, Eidgenössische Technische
Hochschule, Zürich.

51 H. P. A. 38, 8 (1965)
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Oberflächen existiere. Mit p 0 wird so der Fall einer vollständig diffusen Streuung
der Elektronen an den Proben-Oberflächen beschrieben. Als etwas allgemeineres
Modell könnte ein vom Auftreffwinkel der Elektronen abhängiges p gewählt werden,
indem zum Beispiel vorausgesetzt wird, dass p für alle Elektronen, deren
Geschwindigkeitsrichtung mit der Oberflächenormalen einen Winkel zwischen 0 und 90° ein-
schliesst, gleich Eins sei, für die übrigen Auftreffwinkel aber gleich Null sei. Ein
solches Modell ist kürzlich von Parrott3)*) behandelt worden. Parrott weist darauf
hin, dass damit, in Analogie zur Streuung von Licht an matten Flächen, eine den
Tatsachen eher gerecht werdende Beschreibung der Oberflächenstreuungen möglich
sei, und dass auch die bei Wismut beobachtete «Sättigung» des Size-Effektes in sehr
dünnen Proben damit erklärt werden kann.

Eine experimentelle Bestimmung von p oder 0 stösst auf die Schwierigkeit, dass

bei der Auswertung von «Size-Effekt »-Untersuchungen zwei Parameter (die Ober-

flächenstreuparameter p oder 0 und die mittlere freie Weglänge /) oder, wenn die
Reinheit des Probenmaterials unbekannt ist, sogar drei Parameter (der spezifische
Widerstand q einer dicken Probe des gleichen Materials) anzupassen sind.

Eine eindeutige Anpassung würde in diesem Fall erst möglich, wenn an einer Probe
drei verschiedene Grössen (die von diesen drei Parametern abhängen) gemessen werden

könnten. Wie kürzlich in diesem Laboratorium gezeigt wurde1), liefert die
Messung der Abklingzeit r von induzierten Wirbelströmen die Möglichkeit, wenigstens
eine zweite Information (neben der Gleichstrommessung) über diese Parameter zu
erhalten. Diese Abklingzeit stellt in dicken Proben ein Mass für die elektrische
Leitfähigkeit des Probematerials dar4). Sie kann deshalb auch als Definition für einen
effektiven Wert des spezifischen Widerstandes qt für Wirbelströme in dünnen Proben
herangezogen werden.

Die Berechnung von qt führt schon für die einfachste Vorstellung eines
Sommerfeld-Modells der Leitungselektronen zu relativ komplizierten Ausdrücken, die nicht
mehr elementar ausgewertet werden können. Wir waren daher im Rahmen unserer
Size-Effekt-Untersuchungen genötigt, die im folgenden Abschnitt hergeleitete Formel
für qt mit einem Rechenautomaten für verschiedene Werte der Parameter p oder 0 zu
tabellieren. Im gleichen Arbeitsgang erweiterten wir die von Sondheimer5) berechneten

Tabellen für qf (als Funktion von p) und erstellten neu eine Tabelle für qf als

Funktion von 0. Die vorliegende Arbeit soll nun dazu dienen, unsere Wirbelstromrechnungen

im Detail vorzuführen und die von uns berechneten Tabellen allgemein
zugänglich zu machen.

II. Die Rechnungen

a) Chambers' verallgemeinertes Ohmsches Gesetz

Nach dem Ohmschen Gesetz ist der Strom im Innern eines Leiters an jedem Ort
proportional dem dort herrschenden elektrischen Feld. Ein solches Gesetz kann aber

nur gelten, solange die freie Weglänge der Ladungsträger sehr klein ist. Andernfalls
hat das in einer grösseren Umgebung wirkende elektrische Feld einen Einfluss auf den
Strom am Beobachtungsort.

*) Wir danken Dr. Parrott dafür, dass er uns vor der Veröffentlichung Einblick in seine
Arbeit gewährt hat.
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Chambers gelang es, diesen Einfluss zu berechnen. Ausgehend von einem
Sommerfeld-Modell für die Leitungselektronen fand er eine Formel, welche eine endliche freie
Weglänge der Elektronen berücksichtigt und im Prinzip eine Verallgemeinerung des

Ohmschen Gesetzes ist. (Eine Herleitung der Formel findet man zum Beispiel im
Handbuch der Physik6).)

*• o - Art I «* « ~'U-7AA------ m
ganzer
Raum

Dabei bedeuten: r (x,y, z) den Punkt, wo zur Zeit t der Strom J(r, t) beobachtet
wird.

r' fx', y', z') den Startpunkt eines Elektrons, welches nach stoss-
freiem Weg bei r zum Strom J beiträgt.

Im Grenzfall sehr kleiner freier Weglängen geht die Chamberssche Formel in das
Ohmsche Gesetz J(r, t) efr, t)jg über.

b) Anwendung der Chambersschen Formel auf ein Size-Effekt-Problem

Formel (1) gilt für eine unendlich ausgedehnte Probe. Sie lässt sich aber auch sehr

gut verwenden, um Size-Effekte zu beschreiben. Dabei ist das Integral statt über den

ganzen Raum nur über das Probenvolumen zu erstrecken, da ja kein Elektron seinen

Startpunkt ausserhalb der Probe wählen kann. Die Elektronen, welche von der
Probenoberfläche starten, müssen allerdings noch genauer betrachtet werden. Von
ihnen muss vorausgesetzt werden, dass ihre Geschwindigkeitsverteilung von der
Vorgeschichte unabhängig ist, was nur dann der Fall ist, wenn die Probenwände
auftreffende Elektronen vollkommen diffus streuen fp 0).

Unter dieser Voraussetzung erhält man für das in der vorliegenden Arbeit
untersuchte Size-Effekt-Problem [dünner Film, in der fx, j>)-Ebene ausgebreitet und durch
z — dj2 und z + dj2 begrenzt ; Wirbelströme induziert durch plötzliche
Entfernung eines in y-Richtung liegenden Magnetfeldes] ausgehend von der Chambersschen

Formel:

rt a 3 Tj > T - T> A)yxA,t)e~^A)^AyAAyATi
L{Z't] 47ri7 J dx J dy J dz f(xr}+(yr+(z,_z)^ -¦ (2)

— oo —oo —oo

Jy und Jz sind bei der hier gewählten geometrischen Anordnung Null. Nach geeigneten
Substitutionen kann in Formel (2) wenigstens eine Integration ausgeführt werden:

nß +dß \z'-z\

^•^AYij^Tël^^'-^'1^' P)
0 -dß

0 misst den Winkel zwischen der Geschwindigkeitsrichtung der Elektronen und der
Oberflächennormalen.

c) Erweiterte Randbedingungen durch Zulassung von spiegelreflektierten
Elektronen fp =j: 0)

Wenn die Streuung an den Probenwänden nicht mehr vollkommen diffus ist,
tragen noch weitere, in Formel (3) nicht berücksichtigte Elektronen zum Strome im
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Punkte r bei. Und zwar sind das solche, die ihren Startpunkt irgendwo im Proben-
innern haben und erst nach einfacher oder mehrfacher Reflexion an der Oberfläche
der Probe den Punkt r erreichen. Nach jeder Reflexion bleiben nur p aller Elektronen
wirksam; die übrigen, diffus gestreuten, tragen im Mittel keinen Strom mehr.

Statt dass man nun diese vielen, zum Teil mehrfach gebrochenen Elektronenbahnen

durchrechnet, kann man folgendes Gedankenexperiment machen : Man denke
sich den Metallfilm und den elektrischen Feldverlauf nach links und rechts an seinen
Wänden gespiegelt, die Spiegelbilder wieder gespiegelt und so fort, bis der ganze Raum
von gespiegelten Filmen erfüllt ist (Figur 1).

5d

"Z
31
Z

Figur 1

Querschnitt durch einen dünnen Film. Ein Elektron, welches bei A startet, trägt nach zweimaliger
Spiegelreflexion an der Filmoberfläche zum Strom im Punkte B bei. Denkt man sich den Film
zweimal an der jeweils rechts liegenden Seite gespiegelt, so geht A in A" über und der Weg des

Elektrons kann durch die Gerade, welche A " mit B verbindet, beschrieben werden.

In jedem Film sollen die unter b) beschriebenen Prozesse ablaufen. Neu kommt
gegenüber b) dazu, dass für Elektronen, welche eine Zwischenwand erreichen, eine
Wahrscheinlichkeit p besteht, dass sie ihren Weg geradlinig fortsetzen können. Die
restlichen verlieren sich infolge diffuser Streuung im Meer der Elektronen mit isotroper
Geschwindigkeitsverteilung.

Auf Grund dieser Überlegungen und unter Anwendung von Formel (3) findet man
folgenden Ausdruck für Jx:

.-r/2

/,(*. 0
A Q l

dd
+dß

I dz' sfz', t) e

-dß

l cos 6

oo -(>>-i)d

+ E\P" f dz'sfz', t) e

n 1
-(»+h)d

AAA
l cosO

+ (»+i)<* \z--z\

pn

+(»-i).
dz'sfz', t) e 'cose]j. (4)
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Die Summe enthält zu jedem n die Beiträge der links und rechts genau «-fach
gespiegelten Filme. Da sfz', f) für jedes z' im Intervall (— oo, + oo) auf ein efz', t) mit
z' im Intervall (— dj2, + dj2) zurückgeführt werden kann (Umkehrung der Spiegelungen),

können sämtliche Integrale über z' auf Integrale mit den Grenzen — dj2 und
+ dj2 reduziert werden. Für einen einzelnen Summanden von (4) lässt sich daher
schreiben :

-{n-i)d \z'-z\ +(n + i)d _ J^-z|
P" f dz' sfz', t) e

lcos0 +P" f dz' sfz', t) e
lcos6

-(n+i)d +(n-i)d
+dß 2 nd

2r{ dz'sxfz',t)e-^cosn(J^yjA). (5)

-dß

Wird (5) in (4) eingesetzt und werden die geometrischen Reihen, welche dabei
entstehen, summiert, so folgt:

nß +dß \z'-z\ -—
3 /'" j0 sin3e f ^,^_, A f„-TS5-+ r P° ":Oä0

t'M-Tfi j ä6^ J dz'exfz',t){e
\ — fö e l cos e

d

•[«••"'-<"-(T=T) + — (T=r)]}- ""
Definiert man :

nß \z'-z\ 7_ d

,s 3 f ,„ sin3e f ~'ü^» pe lms(> r "Tcose / z'-z \gfz, z)=-4lJdQ — e{e + _^j_ \P * cosh (7^)
0 ]_ _ J)2 e l COS 0

so lässt sich (6) vereinfacht angeben:

—(Z;-)]i o

Adß

Jfz, t) -J J dz' sfz', t) gfz, z') (8)

-dß

d) Berücksichtigung der Maxwellschen Gleichungen

Aus den ersten beiden Maxwellschen Gleichungen kann durch Elimination des

Magnetfeldes folgende - gleich auf die geometrischen Verhältnisse eines Filmes
zugeschnittene - Differentialgleichung gewonnen werden :

-0jr exZ t) N -fi /*Z *) ¦ (9)

Elimination von J aus (8) und (9) ergibt :

+dß
JI „ /. rt _ ä d

dz-

-2/2

sfz, t)=f ± J dz' sfz', t) gfz, z') (10)
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Im Grenzfall sehr kleiner freier Weglängen geht gfz, z') in eine Deltafunktion òfz' — z)

über. Aus Gleichung (10) wird daher in diesem Grenzfall:

Sr efz, t) -* dFt sfz, t) (11)

Diese Differentialgleichung gleicht formal der Wärmeleitungsgleichung und hat
nachstehende, allgemeine, die Randbedingungen erfüllende Lösung: (Randbedingungen

: verschwindendes Magnetfeld an der Probenoberfläche)

oo

efz, t)=£Ai e-l* sin ((2 i - 1) ^), (12)
i — 1

wobei

T. i^Z* (13)T' (2i-l)ìQnì ¦ '

Eine Eigenfunktion von (11) hat daher die Gestalt: e~tlTi sin ((2 i — l)n zjd). In
Analogie dazu lässt sich die i-te Eigenfunktion von (10) schreiben :

oo

^tlT'iEBin^(f2n-l)^A). (14)

Die Summe in (14) beschreibt eine allgemeine, die Randbedingungen erfüllende
Ortsfunktion, welche mit einer bestimmten, noch nicht bekannten Zeitkonstanten x\
abklingt. Wird sx in (10) durch (14) ersetzt, so folgen die Gleichungen:

A Iß
Bti sin ((2 i - 1) *7) Z-l>^ J^ f dz> g(z, z')EBin sin ((2 „ _ 1} j£

-dß "-1 -

(15)

Wird jede Gleichung mit sin (f2j — l)jizjd) multipliziert und wird nachher über z

integriert, so resultiert das Gleichungssystem :

^ +dß +dß

*„^^ 4 - -grEBt« J dz J dz' gfz, z')
K_1 -dß -dß

¦ sin ((2 i - 1) -f) sin ((2 / - 1) ^) 0 (16)

Das Gleichungssystem (16) hat nur nichttriviale Lösungen für die B, wenn die
Determinante verschwindet. Daher liessen sich die A aus der Säkulargleichung
berechnen. Sie lassen sich aber in eleganterer Weise finden, wenn aus (16) die Matrix
(Aff) hergeleitet wird, da dann die Eigenwerte dieser Matrix gerade den gesuchten x\

entsprechen.
+dß +dß

A<- ,*(2Ah2.--1) 4 / * / dz'g(z,z') sin ((2 i-D^f)
-dß -dß

sm ((2,-l)^f). (17)



Vol. 38, 1965 Berechnungen über den Ladungstransport in dünnen Filmen 807

Nach Einsetzen von (7) in (17) können die im Matrixelement A u enthaltenen Integrale
fast vollständig ausgerechnet werden. Es bleibt in einem Term ein Integral über cos0.

In Analogie zu Formel 25 von Sondheimer5) wurden ljt für cos0 und k für djl
substituiert. Ferner wurde A{j wegen (13) durch /i0 d2jon2 dividiert, damit die Eigenwerte

der so gebildeten Matrix (M(,) gerade die relativen WiderständeqzJq, welche
den einzelnen Eigenfunktionen von (10) zugeschrieben werden können, darstellen.

3/2**/ws fr i w»(2t-l)* + Aa in .AI
Mo- -(^T1)(^_ir{^[--(27rï)^+ -J+kf2T-W -«ctan(T(2,-l))|

2 k T + «-«*) (f-t-1) 1

+ (-Di+j+i wd-p)j ^ (1+^^)[(2i_1)2+^^[(2/_1)2+^]r
(18)

e) Die numerischen Rechnungen

Die numerische Auswertung gestaltete sich relativ einfach, da das Rechenzentrum
der ETH in entgegenkommender Weise zwei Unterprogramme zur Verfügung stellte.
Das eine berechnete nach der Methode von Romberg (Eine Beschreibung dieser
Methode gab zum Beispiel Stiefel7).) die Integrale, während das andere die Eigenwerte

der symmetrischen Matrix (Mtj) bestimmte. Den dazu verwendeten Algorithmus

beschrieben Forsythe and Henrici8). Da die Matrix (Mtj) von unendlicher
Ordnung ist, kann man prinzipiell die Eigenwerte nicht exakt berechnen. Es zeigte
sich aber, da die Matrix (M(j) schon fast diagonal ist, dass die Berücksichtigung dreier
Zeilen und Spalten genügt, um eine relative Genauigkeit von 10~4 zu erreichen.

Für die numerischen Integrationen wurde die Integrationsvariable t jeweils durch
u-% substituiert, weil dadurch die Stützwerte in der Umgebung der kritischen Stelle

(Maximum des Integranden für sehr grosse t) gehäuft werden.

III. Die Resultate

Unsere Tabellen gelten für ein Sommerfeldmodell, das heisst für ein quadratisches

Dispersionsgesetz mit kugelförmigen Energieflächen. Eine Berechnung für
ellipsoidförmige Energieflächen (bei p 0) ist in einer früheren Arbeit gegeben
worden1). Es wird eine ortsunabhängige Relaxationszeit vorausgesetzt, was allerdings für
die Berechnung des Ladungstransportes in dünnen Proben nicht mehr gerechtfertigt
ist, wenn viele Kleinwinkelstreuungen der Elektronen auftreten (Olsen9)).

Die numerische Auswertung wurde so weit getrieben, dass die letzte Stelle der in
den Tabellen aufgeführten Zahlen bis auf Rundungsfehler als gesichert betrachtet
werden kann. Dabei zeigte es sich, dass die in J) angewandte Näherung (Vernachlässigung

der Ausserdiagonalterme in der Matrix Mu (18)) Fehler bis zu 1,5 °/00

ergaben, was jedoch wesentlich kleiner als die im Experiment erreichbare Genauigkeit
ist.

In der Tabelle 1 wird der Effektivwert oT des spezifischen Widerstandes für
Wirbelströme in dünnen Filmen dividiert durch den spezifischen Widerstand q einer
dicken Probe des gleichen Materials als Funktion von Ijd für sieben verschiedene Werte
des Oberflächenstreuparameters p tabelliert, während in Tabelle 2 eine Erweiterung
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Tabelle 1

Die für ein Sommerfeldmodell berechneten relativen Wirbelstromwiderstände qzjq dünner Filme
bei variablem p und dß.

d Dicke der Probe. / mittlere freie Weglänge der Elektronen, p Wahrscheinlichkeit für
Spicgelreflexion an der Probenoberfläche, q spezifischer elektrischer Widerstand einer unbe¬

grenzten Probe. Qr effektiver Wirbelstromwiderstand.

dß p 0 0,1 0,3 0,5 0,7 0,9 1

k > 1 1 + 3/4- (l-p)jk
100

50
20
10

5

2

1,8
1,5
1,2
1,0
0,8
0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,002
0,001
0,0001

1,0077
1,0160
1,0434
1,0975
1,2293
1,7049
1,7979
1,9857
2,270
2,556
2,987
4,284
9,467
1,809X10
3,532X10
8,699X10
1.731X102
3.453X102
8,619X102
1.723X103
1.722X104

1,0070
1,0144
1,0394
1,0892
1,2118
1,6612
1,7498
1,9292
2,202
2,476
2,891
4,141
9,152
1,750X10
3,418X10
8,422X10
1.676X102
3.344X102
8,347 X102
1.668X103
1,667X10*

1,0055
1,0114
1,0316
1,0729
1,1781
1,5804
1,6614
1,8260
2,078
2,333
2,719
3,889
8,603
1,647X10
3,220X10
7,938X10
1.580X102
3,153X102
7.870X102
1.573X103
1.572X104

1,0040
1,0083
1,0238
1,0571
1,1461
1,5075
1,5819
1,7343
1,9686
2,207
2,570
3,674
8,137
1,559X10
3,051X10
7,527X10
1.499X102
2,991 X102
7.466X102
1,493 X103
1,492 X104

1,0025
1,0053
1,0162
1,0417
1,1157
1,4413
1,5102
1,6521
1,8719
2,097
2,440
3,487
7,735
1,484X10
2,906X10
7,173X10
L428X102
2,851 X102
7.117X102
1,423 X103
1,422X10"

1,0009
1,0023
1,0086
1,0267
1,0868
1,3810
1,4451
1,5781
1,7854
1,9985
2,324
3,323
7,384
1,418X10
2,779X10
6,862X10
1.367X102
2.728X102
6,811 X102
1.362X103
1,361 X104

1,0002
1,0008
1,0049
1,0193
1,0729
1,3528
1,4148
1,5438
1,7455
1,9533
2,272
3,248
7,224
1,388X10
2,721X10
6,721X10
1,339X102
2.672X102
6,672 X IO2

1.334X103
1.333X104

k <g 1 1,722/Ä 1,667/k 1,572/A 1,492/A 1,422/A 1,361/A 1,333//?

Pr/Q

p-0

-0

X

Qt Pf

W

1 10

l/d *¦ Flgur 2

Graphische Darstellung der Tabellen 1 und 2.
d Dicke des Filmes. / mittlere freie Weglänge der Elektronen, p Wahrscheinlichkeit für
Spiegelreflexion an der Probenoberfläche, q spezifischer elektrischer Widerstand einer
unbegrenzten Probe. Qp effektiver Gleichstromwiderstand. Qr effektiver Wirbelstromwiderstand.
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Tabelle 2

Die für ein Sommerfeldmodell berechneten relativen Gleichstromwiderstände QpJQ dünner Filme
hei variablem p und dß. qf effektiver Gleichstromwiderstand. Übrige Bezeichnungen wie bei

Tabelle 1.

k dß p 0 jO 0,1 p 0,3 p 0,5 p 0,7 P-- 0,9 p l
k > 1 1 + 3/8- (l-p)jk
100

50

20
10

5

2

1,8
1,5
1,2
1,0
0,8
0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,002
0,001
0,0001
0,00001

1,0038
1,0076
1,0191
1,0390
1,0810
1,2208
1,2477
1,3017
1,3824
1,4623
1,5799
1,9161
3,096
4,782
7,728
1,533X10
2,648X10
4,658X10
1.004X102
L819X102
1.384X103
1.116X104

1,0034
1,0068
1,0172
1,0349
1,0723
1,1953
1,2188
1,2659
1,3363
1,4059
1,5083
1,8011
2,826
4,286
6,825
1,335X10
2,287X10
3,997x10
8,560X10
L544X102
1.165X103
9.340X103

1,0026
1,0053
1,0133 •

1,0270
1,0554
1,1467
1,1640
1,1987
1,2503
1,3013
1,3764
1,5915
2,346
3,417
5,269
9,981
1,680X10
2,896X10
6,115X10
1.094X102
8,101 X102
6.420X103

1,0019
1,0038
1,0095
1,0191
1,0389
1,1014
1,1131
1,1366
1,1715
1,2061
1,2572
1,4041
1,9251
2,668
3,950
7,184
1,182X10
2,002X10
4,156X10
7,361X10
5,331 XlO2
4+80X103

1,0011
1,0023
1,0057
1,0114
1,0230
1,0589
1,0656
1,0790
1,0990
1,1188
1,1482
1,2337
1,5444
1,9958
2,778
4,741
7,526
1,240X10
2,506X10
4,372X10
3,064 XlO2
2.350X103

1,0004
1,0008
1,0019
1,0038
1,0076
1,0190
1,0212
1,0254
1,0318
1,0382
1,0476
1,0758
1,1832
1,3483
1,6455
2,405
3,477
5,327
1,002X10
1,680X10
1,086 XlO2
8.008X102

1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000

k <i 1 A(l-p)ß(l + p) kln{llk) (gilt nur für p < 1) 1,0000

WQ

Qt Qf

Qf/Q

70°70°

Figur 3

Graphische Darstellung der Tabellen 3 und 4.
6 Grenzwinkel für Spiegelreflexion: Elektronen, deren Geschwindigkeitsvektor mit der
Oberflächennormalen einen Winkel zwischen 0 und 90° einschliesst, werden spiegelreflektiert, die

übrigen diffus gestreut. Übrige Bezeichnungen wie in Figur 2.
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der schon von Fuchs10) berechneten spezifischen Gleichstromwiderstände qf auf
sieben verschiedene ^-Werte gegeben wird. Die beiden Tabellen sind in Figur 1 auch
noch graphisch dargestellt.

Es zeigt sich, dass qf viel stäiker von p abhängt als qt ¦ Dies ist folgendermassen zu
erklären. Bei einer Spiegelreflexion an der Probenoberfläche wird das Elektron seine

Driftgeschwindigkeit behalten, ein solcher Stoss also im Gleichstromfall keinen
Einfluss auf den Ladungstransport ausüben. Dementsprechend wird qf für p 1

unabhängig von der Filmdicke, gleich dem spezifischen Widerstand q einer dicken
Probe des gleichen Materials. Im Wirbelstromfall heben sich andererseits je zwei

Elektronen, die - ohne Stösse zu erleiden - in entgegengesetzter Richtung von
Oberfläche zu Oberfläche fliegen, wegen der Antisymmetrie des elektrischen Feldes1) für
den Ladungstransport gegenseitig auf. Daran vermag auch das Auftreten von
Spiegelreflexionen nichts zu ändern. Spiegelreflexionen haben deshalb nur bei denjenigen
Elektronen, welche nicht von Wand zu Wand fliegen, einen Einfluss auf den
Ladungstransport. Dementsprechend tritt hier auch für p 1 ein starker « Size-Effekt » auf.

Tabelle 3

Die für ein Sommerfeldmodell berechneten relativen Wirbelstromwiderstände qzjq dünner Filme
bei variablem 0 und dß.

0 Grenzwinkel für Spiegelreflexion: Elektronen, deren Geschwindigkeitsvektor mit der
Oberflächennormalen einen Winkel zwischen 0 und 90° einschliesst, werden spiegelreflektiert, die

übrigen diffus gestreut. Übrige Bezeichnungen wie bei Tabelle 1.

k dß 0 45° 0 60° 0 70° 0 80° 0 85° 0 88° 0 89°

k > 1 1 + 3/4 • sin40/Ä

100 1,0021 1,0044 1,0061 1,0073 1,0076 1,0077 1,0077
50 1,0045 1,0093 1,0126 1,0150 1,0157 1,0159 1,0160
20 1,0141 1,0261 1,0346 1,0410 1,0428 1,0433 1,0434
10 1,0367 1,0606 1,0784 1,0922 1,0961 1,0973 1,0974

5 1,1008 1,1459 1,1841 1,2165 1,2260 1,2288 1,2292
2 1,3808 1,4494 1,5377 1,6478 1,6893 1,7023 1,7043
1,8 1,4414 1,5098 1,6033 1,7287 1,7787 1,7948 1,7971
1,5 1,5676 1,6338 1,7343 1,8888 1,9579 1,9811 1,9846
1,2 1,7656 1,8267 1,9312 2,124 2,226 2,263 2,268
1,0 1,9705 2,026 2,130 2,352 2,491 2,545 2,554
0,8 2,286 2,334 2,432 2,684 2,880 2,968 2,983
0,5 3,257 3,290 3,368 3,642 3,988 4,222 4,268
0,2 7,227 7,241 7,279 7,466 7,950 8,882 9,283
0,1 1,388X10 1,389X10 1,391X10 1,402X10 1,439X10 1,571X10 1,702X10
0,05 2,721X10 2,722X10 2,723X10 2,729X10 2,751X10 2,864X10 3,077X10
0,02 6,721X10 6,721X10 6,721X10 6,724X10 6,734X10 6,796X10 6,970X10
0,01 1.339X102 1.339X102 1,339X102 1.339X102 L339X102 1,343 XlO2 1.354X102
0,005 2.672X102 2.672X102 2.672X102 2.672X102 2.672X102 2.674X102 2.680X102
0,002 6.672X102 6,672 XlO2 6,672 XlO2 6,672 XlO2 6,672 XlO2 6,673 XlO2 6,676 XlO2
0,001 1,334X10» 1.334X103 1.334X103 1.334X103 1.334X103 1,334X103 1.334X103

k <i 1 (4/3)jk
e < 90°

Die Kolonnen 0

Tabelle 1.

0° und 0 90° entsprechen genau den Kolonnen p 1 und p 0 von
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Tabelle 4

Die für ein Sommerfeldmodell berechneten relativen Gleichstromwiderstände qfIq dünner Filme
bei variablem 6 und dß.

QF — effektiver Gleichstromwiderstand. 0 Grenzwinkel für Spiegelreflexion: Elektronen,
deren Geschwindigkeitsvektor mit der Oberflächennormalen einen Winkel zwischen 0 und 90°
einschliesst, werden spiegelreflektiert, die übrigen diffus gestreut. Übrige Bezeichnungen wie bei

Tabelle 1.

k dß 0 45° 0 60° 0 70° 0 80° 0 85° 0 88° 0 89°

k > 1 1 + 3/8- sin4 0//e

100 1,0009 1,0021 1,0029 1,0035 1,0037 1,0038 1,0038
50 1,0019 1,0042 1,0059 1,0071 1,0074 1,0075 1,0076
20 1,0047 1,0107 1,0148 1,0180 1,0188 1,0191 1,0191
10 1,0095 1,0215 1,0301 1,0366 1,0383 1,0389 1,0389

5 1,0191 1,0440 1,0621 1,0758 1,0797 1,0808 1,0810
2 1,0448 1,1102 1,1623 1,2045 1,2166 1,2202 1,2207
1,8 1,0486 1,1213 1,1803 1,2288 1,2429 1,2470 1,2476
1,5 1,0556 1,1419 1,2149 1,2770 1,2953 1,3007 1,3015
1,2 1,0642 1,1691 1,2634 1,3479 1,3735 1,3810 1,3821
1,0 1,0712 1,1924 1,3074 1,4162 1,4503 1,4603 1,4618
0,8 1,0794 1,2215 1,3657 1,5135 1,5623 1,5770 1,5791
0,5 1,0946 1,2805 1,4974 1,7683 1,8754 1,9095 1,9145
0,2 1,1145 1,3687 1,7352 2,412 2,855 3,053 3,085
0,1 1,1225 1,4081 1,8609 2,909 3,911 4,586 4,730
0,05 1,1268 1,4304 1,9382 3,301 5,056 6,877 7,470
0,02 1,1295 1,4446 1,9906 3,617 6,304 10,79 13,41
0,01 1,1304 1,4495 2,009 3,742 6,909 13,68 19,42
0,005 1,1309 1,4520 2,019 3,808 7,266 15,90 25,54
0,002 1,1312 1,4535 2,024 3,850 7,501 17,67 31,80
0,001 1,1313 1,4540 2,026 3,864 7,584 18,36 34,69
0,0001 1,1314 1,4545 2,028 3,877 7,660 19,03 37,82
0,00001 1,1314 1,4545 2,028 3,878 7,668 19,10 38,16

k <( cos 0 2/(3 • cos©-- cos3 0)

0 < 90°

Die Kolonnen 0

Tabelle 2.
0° und 0 90° entsprechen genau den Kolonnen 1 und p 0 von

In Tabelle 3 sind qtJq für sieben verschiedene Werte des Grenzwinkels ö

(Spiegelreflexionen für alle Elektronen, die so flach auf die Oberfläche auftreffen, dass der
Winkel zwischen der Auftreffrichtung und der Normalen zur Oberfläche grösser als
0 ist) tabelliert. Diese beiden Tabellen sind in Figur 2 auch noch graphisch dargestellt.
Auch hier ist wiederum pr viel weniger von p abhängig als qf Auffallend ist, dass

schon für 6 88° (wenn also nur diejenigen Elektronen Spiegelreflexionen erleiden,
die sehr flach auf die Oberfläche auftreffen) eine spürbare Reduktion des «Size-
Effektes» von qf gegenüber dem Fall mit 6 90° (völlig diffuse Streuung aller
Elektronen) auftritt. In sehr dünnen Proben können nur die sehr flach auftreffenden
Elektronen lange freie Weglängen hinter sich haben und damit stark zum Ladungs ¦

transport beitragen. qf wird deshalb besonders stark vom Charakter der Oberflächenstreuungen

dieser Elektronen abhängen.
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Es sei uns hier gestattet, Herrn Prof. Dr. P. Grassmann, dem Vorstand des

Institutes für kalorische Apparate und Kältetechnik der Eidgenössischen Technischen

Hochschule, für seine wohlwollende Unterstützung unseren herzlichen Dank
auszusprechen. Besonders liegt es uns daran, Herrn Prof. Dr. J. L. Olsen, der uns
auch die Anregung zu dieser Arbeit gab, für viele interessante Diskussionen zu danken.
Ausserdem sind wir Herrn Prof. Dr. H. Rutishauser und Herrn Dr. H. Thomas
(IBM Forschungslaboratorium, Rüschlikon/ZH) für viele wertvolle Hinweise zu
tiefem Dank verpflichtet. Diese Arbeit wurde dank der finanziellen Unterstützung
durch den Schweizerischen Nationalfonds ermöglicht.
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