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On the Theory of Multiple Coulomb Excitation

by M. Simonius, W. Bierter, A. Zwicky, and K. Alder
Institute of Theoretical Physics, University of Basel, Basel

(8. VII. 65)

Abstract. The theory of multiple Coulomb excitation is extended. This paper deals mainly
with the investigation of deviations from the sudden approximation, the computation of the
multiple excitation of an asymmetric rotator and an improved method for the treatment of
coupled rotational bands. Furthermore formulae for the angular distribution of deexcitation
gamma rays are derived. Numerical results of sample calculations are discussed.

1. Introduction
The theory of multiple Coulomb excitation was developed by K. Alder and

A. Winther in the semiclassical approximation (Reference1)) where the projectile is

moving on a classical orbit in the Coulombfield of the target nucleus. Except for the
excitation of vibrational states their calculations were made in the sudden approximation,

thus neglecting the finite excitation energy of the nuclear levels. The excitation
amplitudes have been evaluated so far for the surface vibrational model and the
rotational model of axial symmetric nuclei. Transitions between different rotational bands
have also been discussed (References *), 2)).

One of the main objects here is to investigate the deviations from the sudden

approximation. Besides pure rotational and vibrational states we further calculate the
multiple excitation of an asymmetric rotator and present new methods for the treatment

of coupled rotational bands. In addition we derive formulae for the angular
distribution of the deexcitation gamma rays.

At the end of this work we give some characteristic illustrations for the theoretical
predictions on the multiple Coulomb excitation. In order to facilitate the extraction of
important information from experiments we will give a more complete tabulation of
our numerical results separately (Reference 12)). All the calculations have been

performed without using the XefA^) or ^ 0 approximation (References 1>2)).

2. General Methods
A. Definitions

In the semiclassical approximation the interaction Hamiltonian HEft), if expanded
into multipoles*), can be written in the following form:

A /*= — A

*) For the angular momentum algebra the notation of reference 3 is used.
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where M(E k, pt) denotes the electric multipole operator of the target nucleus. The
parameter a is half the distance of closest approach in a head-on collision and is

given by

a ZlZ^l (2.2)

where Zx and Z2 axe the charge numbers of projectile and target nucleus respectively,
while v is the relative velocity and m the reduced mass. The orbital functions Rx axe
defined by

*'*.« - 4)- ]f^AÏ (^AÀL yUW. ftW) (")
where frpft), §pft), cpp(t)) are the polar cooidinates of the projectile moving on a classical
orbit. The corresponding orbital integrals Rxfß, |) are given by

R,,f&A) Je^'^'R^dt (2.4)

where ê is the scattering angle in the center of mass system. With the normalization
chosen in Equation (2.3) the R;/1 are dimensionless and obey the relation

Z\RlßV,S)r<l. (2.5)
f

Equality holds for the special case ê it and f 0. We further note the symmetry
relation

%(Z -!) (- 1)" **_„(*, I)* • (2.6)

The excitation amplitude a) from the initial state | i > to the final state j / > of the
nucleus is conveniently expressed in the interaction representation by

oo

-(»/») !u(t)dt

a)= <f\Te -°° |t> (2.7)

with the transformed Hamiltonian

H(t) emH°' HEft) e-m)H''. (2.8)

The symbol T stands for the time ordering, while H0 is the nuclear Hamiltonian.
We now introduce the characteristic parameter |,

a F — Ft ~ rr m n to Q\Snm —
v n V-^)

where Ek denotes the energy of the nucleus in the state | k >. If the relation

f,.sin-»{<l (2.10)

holds for all nuclear states involved in the excitation process we can use the sudden
approximation which is expressed by the relation fnm 0. The time ordering in
Equation (2.7) can then be dropped.
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B. Multiple Excitation for £ + 0

In order to take full account of the multiplicity of the excitation process even for
finite differences in the nuclear energy, it has been proposed (References 4), 5)) to
approximate the time ordered product in Equation (2.7) by an expansion in the
exponential function.

Starting from the Ansatz
t oo

- (•/»)/»(*')*' E (-ilKi"Gv{t)
Te -°° =ev~l (2.11)

and expanding both sides of this equation, we obtain the Gv by equating the coefficients

of each power of (— ijK) :

t

Gft) fdt' Hft')
- OQ

t t'

GS) y fdt'fdt" [Hft'), Hft")\
-CO - oo

t t' t"

Gft) y fdt' fdt" fdt"' [Eft'), [Hft"), Hft'")]]
- CO - CO — oo

t t t"

12 f fdt' dt"fdt'" l# (Z> [W- #('")]] (2.12)
12

- 00 - oo

Cutting off this expansion we can calculate the excitation amplitudes by the diagona-
lization method (Reference 1)). The matrix elements of Gv can then be expressed in
terms of quantities used for the perturbation treatment (Reference 6)).

C. Treatment of an Additional Small Interaction

In this section we will study the case where Hft) consists of two parts

Hft) Hft) + Hft) (2.13)

of which only one fHx) gives rise to multiple excitations whereas the other fH2) can be

treated as a perturbation. Starting from the Schrödinger equation in the interaction
representation

ihdJf H(t)<p (2.14)

we introduce the transformed Hamiltonian Hft),

t

(m H,(t')dt'
H Te

t

- (iß) fÈAt'W
Hft) Te -°° (2.15)
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and a new wave function xpft) by

cpft) Te
i/h,(.-(iß) J H,(t')dt'

fft).
The Schrödinger equation can then be rewritten as

i%ròAL Hrp.dt Y

H. P.A.

(2.16)

(2.17)

The formal integral of Equation (2.17), transformed according to Equation (2.16),
reads

cpft) Te
iß) JH, (t')dt' -(iß) }H(t')dt'

T e -°° cpf- oo)

This leads to the perturbation expansion

with

«/=Z</IZZ>
v>0

(2.18)

(2.19)

- (iß) f Hi (t)dt

T0=Te
t

Tx

¦" - (iß)J H, (t')dt' _ - (iß) fß, (t')dt

dlT e ' Hft) e "°° (2.20)

etc.
For the evaluation of the matrix elements one has to use the methods of Section

2.B and perform the time integration numerically. It leads however to a considerable

simplification if Hx can be treated in the sudden approximation.

It is possible to get a simpler expression for the excitation amplitudes if Hft)
commutes with Hft). In this case we have

and Equation (2.18) yields

</l

Hft) HS)

- (iß)
Te

f H, (l) dt -(iß) f H2(t)dl
Te -°° |*>

(2.21)

(2.22)

D. Choice of the Frame of Reference

We now introduce a specific frame of reference : The %-axis lies in the direction of
the vector-product v{ x «y of the initial and final velocity of the projectile and the
positive 2-axis bisects the angle between —v{ and vf (Reference 1)). This coordinate
system leads to several relations for the excitation amplitudes and the orbital integrals
Rx,-
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The invariance of HEft) with respect to reflexion in the scattering plane yields

4Zm;=(-1)J" + J/4$ (2-23)

and

*„_„=«*„ (2-24)

where An denotes the parity difference of the initial and final state. We further note
that AM 0 for & n and (- 1)A M 1 for f 0. The corresponding rules for the
orbital integrals are: RXflfn, |) 0 for pt 4= 0 and ÄA/J(#, 0) 0 for odd pt. From

K (- o (- !)" **,« (2-25)

we obtain

i?,^,-l) (-l)"^#,l) (2.26)

which means, according to Equations (2.6) and (2.24), that the orbital integrals are
real.

With the above choice of the frame of reference R^A^> f) *s giyen in terms of the
tabulated classical integrals I^A^'- f) (see References 6) and ')) by

«a,(*.ö =H^rri:,^(0.f ,0) ^(o.f-.o) V(*,fl (2.27)
fi

For the special case X 2 we find in particular

3 1/3
Ä2±l(#.f) -a- /V U«~*8 1 2 L2-2

Ri±i(#. « -/ 1/i (72o - y ^2 - t /2-2) • (2-28)

The orbital integrals for | 0 can be expressed in terms of elementary functions
(Reference 6)). They are compiled for X 2 in the appendix.

E. Angular Distribution of Deexcitation Gamma Rays

The angular distribution of the deexcitation gamma rays is given in terms of the

density matrices by (Reference 8))

»(«) =£q(M, Af) ofM, M') (2.29)

with

and

M,M'

9(M,M')=Y^~Za'f^a^i (2.30)

r + ifi J 7 *
oy(M,M')=2 27 j/yj^-(-I)7-

even A *

x Dìlfz - q) £Fk fX, X', If, I) dx dr (2.31)

,,-.1- y-MM' Xeven k ' ¦

43 H. P. A. 38, 7 (1965)
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The factors Fk are the usual geometrical coefficients known from the theory of y-y-
correlation *) and ôx denotes the amplitude of the 2;-pole y-transition from the excited
state with spin / to a state with spin If. The ZMunction in Equation (2.31) describes

a rotation of the frame of reference which turns the 2-axis into the direction of the
emitted y-quant. This leads to the following expression for the angular distribution:

w(*y. fY) x m. v, if z «i-i&jr Wotov z- °) (2-32)
evenÄ k'
x,r

where the coefficient gk K> is given by

.1/2A + 1 (-1)I + M y7 2 7+1 (2J, + 1) 4l-MFx
2/e + l (-1)/ + A/

y-, Ilk
(2/,+ l)

x Dk* (% *±* o) JV**'* a'iMi. (2.33)x* \2 2 1 -^ IM' IM v '

The direction <py, §y of the y-emission is described in a frame of reference with the
x-axis in the scattering plane and the 2-axis in the direction of the incoming particle.
For the case where only the direction of y-emission is measured, multiplication of
w(&y, cpf) by the differential Rutherford cross section and integration over <py, and &

leads to

Wf&y) °i E A* P* (C0S^) EF^> l'> h> J) Z ty (2-34)
even k X, X'

where aI is the total excitation cross section (Equation (4.2)). The particle parameter
Ak is defined by

Ak— G J

Gk i^^Jj- D'+'(_ i J, J) / *-* » sin- \ (2.35)

k* In JiAtxCy^fZ )27-î'*«*-^. (2-36)
Af,-

It must be noted here that the so called Xef/(&) ox pt 0 approximation (References
1), 2)) cannot be used in this case because of the appearance of interference terms.

3. Application to Nuclear Models

A. Vibrational States of Spherical Symmetric Nuclei

In Reference *) is shown that the multiple Coulomb excitation for vibrational
states can be treated for arbitrary |. We want to derive here the results of Referencex)
in another way which throws some light on the method described in Section 2.B.

For a tabulation see e.g. Reference 9).
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In the case of quadrupole vibrations the interaction Hamiltonian Hft) can be

expressed in terms of creation and annihilation operators b2fl and b2fl by

Hft) x HER^ft) fe—1 b2fl + f- iy «*•' &+_„) (3.1)

where £ is a coupling parameter defined by

ZXZ^R\
v a2 |/l0 n % fBC

The nuclear frequency m is given by

(3.2)

The parameters B and C denote the inertial parameter and the restoring force

respectively and R0 is the nuclear radius. Since [H(t), Hft')] is a pure imaginary
c-number, it is easy to verify by differentiation that G3 and all higher terms in
Equation (2.11) vanish. Introducing the real number g by

-A )2 G2(oo) i g (3.4)

we obtain for the excitation amplitudes

-ix£(-l)l'Rsu(6,e)(bst, + Hf.)
a\ eis < n^ | e " |0> (3.5)

where J n > | n2 nx n0 n_x n_2 > denotes a state with N phonons,

N=Enr- (3.6)

The exponential function in Equation (3.5) can be decomposed into a product:

g-<x27(-D'*ÄjM(#.« ft^ß + bif)

-izlX-DfK bin -iy.S(-i)"R^b -Wß)Z\R2f*
e " e " e " (3.7)

This can be verified by expanding the exponential functions and comparing the
coefficients of yf. Using the state function

IV-tf-^lO) 0-8)
li y ri/! <

we then find

-(x>ß)£\R (0,()\ ((-l)ßR (A f)l«u
a°„ =e,se » ß f- i yf /7 -[{ ' pEfyJllA. (3.9)

" " f Vnf!

In order to obtain the excitation amplitudes a%1M for the states | N IM > with a
defined spin / and N > 1, the \ N I M } must be expanded in terms of the | «,, >.
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For N 2 this leads to

(Z2/2)27|Ä,„(*, f)l
2 „ig;„Zz-<-•*>•

^Z«H(«>w- (3'10'

B. Coupled Rotational Bands

For axially symmetric nuclei transitions between rotational bands of different
intrinsic structure are treated in References x) and 2). The methods used there are
here generalized to include bands with different intrinsic quadrupole moments. For
equal intrinsic quadrupole moments a formula is given for the multiple transition
between the bands.

For pure rotational bands the Hamiltonian of the nucleus is given by

Ho Hmt + Hint (3.11)

where Hint and Hrot axe the Hamiltonians of the intrinsic structure and the rotational
energy, respectively. The eigenfunctions of H0 can be expressed as a product of a
rotational wave function | I K M > and an intrinsic wave function | n K > :

| / K M > | n K > ]j~r^ D'MK fx, ß,0)\nK>. (3.12)

The actual state functions of pure rotational bands are obtained from the
eigenfunctions (3.12) by symmetrization with respect to + K. The excitation amplitudes
auAff of the symmetrized state functions can, however, be expressed directly in terms
of the amplitudes buAff defined by

oo

- (iß) I' H(t)dt

b)K^=afKfMf\intKf\Te -« | «. K, > | I, K, M, > (3.13)

The following relations are found (see also Reference 2)) :

a''0 - fi*'-0

«;';£; =/2 &;;f; ìoxkì0xk, o

4k} %% + (-1)// + ^ bf,% bl%; + f- iz +K* bi -Kf

for Kt and Kf + 0 (3.14)

Equation (3.13) can be evaluated by the methods given in Section 2.C., where Hx
and H2 denote the diagonal and offdiagonal part of HE(t) respectively, with respect to
the intrinsic states. Thus we have

< n' K' | Hx\ n Ky < n' K' \ HE(t) \nK> ònn, ÒKK- (3.15)
and

< n' K' | H2 | n Ky < n' K' \ HEft) j n Ky (1 - ònn. ÔKK,). (3.16)
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The operator HEft) is here given by

hbW E^^AITA (2^17 rE V) K\' («. ß. 0) KAE K/Z (3-17)
X up'

where MintfE X, pt) is the operator of the electric multipole moment in the body fixed
system.

Using the relation

< n K | Mint (E X,0)\nKy j/-^ Q6 ôx_ 2 (3.18)

which also defines the intrinsic quadrupole moment Q0, we can express the matrix
elements of Hx by

<nrKr\Hx\ nr Kf> Hft) ± <Z> Ä^ Ä,„(/) &>> ß> 0) (379)
f

with a coupling parameter q defined by

ZgQk (3_20)

The evaluation of T0 (Equation (2.20)) now yields the excitation amplitudes b)'\
vyithin the ground state band. In the sudden approximation they are given by
(Reference x))

oo

-(iß) JH"(t)dt
b)KK=rItKMt\e -oo \IiKMf

E Z y"'- * /(2 /,¦ + 1) (2 / + 1) (2 7, + ÏT

x(-Üm)(-^o)^(''?) (3-21)

where «/M are the excitation amplitudes for Ii 0,

oo

-(iß) fn'(t)dt
aIMfû,q) H0M\e -°° I 0 0 0>

_ /J-M+1X
a «5 i/2'7ZTl/-Z±^! 1 1 Ji_"/,««%,„(»r^ + 1(/ (/_m)! 2M+iry+A\lM\

(I-M)ß

3 \ / M

IA-M \ I I-M \
x e~(tip)qR„(e,0) y V 2 /ml 2 '<2„

"¦" ^+t)»("T" + 1,-w,i,,!

x [2 »? ÄM(tf, 0)]-|(i/2) + m R22(», 0)

|/6 Ä„(*, 0)

(Mß) + In
(3.22)
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Here we used the notation

*- r%r * (* + 1) - (* + »» - 1) ¦ (3-23)

For backward scattering Equation (3.22) reduces to (Reference x))

i»/3)««/*(*. q) ÔMJ2 I+lf-2i q)'l2e-^

rl-I+1
2 / /7+2 r 3 \

2r(7+y
(3-24)

where jF, is a confluent hypergeometric function.
For small transition probabilities between the bands we can treat Hft) to first

order, i.e. evaluate only Tx (Equation (2.20)). Using

Hft) em)H"*' H'ft) <r«*>>W (3.25)

we obtain for the amplitudes bj under the condition \nikiy + | nf kf >

oo

oo -(iß)(l-(pß))fS'(t')dt'
b) yA <jf KfMf\ J dtT e '

— oo

/

-ain)(i+pß)) f 8'(t')dt'

x < nfKf | H.ft) | h, Kf e ~°° | I, Mi Kf (3.26)

An average coupling parameter q and a relative difference p of §,(,) and <Z' have been

introduced. They are defined by

q
f*AAAA (3.27)

and

p-*»-*". (3.28)

If we again neglect the differences in the rotational energy, H2 reduces to

Hft) em)H™tl Hft) e~ m)Hi"(1 (3.29)

and, since H' commutes with this operator, we find

oo

b) yAr If KfMf\ f dt <nf Kf \ Hft) \ n{ K, >

— oo

/ oo oo

-(ipß) fH' (i')dt' (ipßh) f {H'(t')-H'(-t'))df -(iß) f H'(t')dt'

xe ° e ° e -°° \l,K(Mt>. (3.30)

The matrix element of the last term of this equation is the amplitude b'fff'y* given by
Equations (3.21) and (3.22).
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Introducing the parameter yw which describes the strength of the 2A-pole coupling
between two bands by

xw Wv¥ xMffA. <-i K> i*« (£ *. n i * Kf> (3-31)

with pt' K{ — Kf, we obtain

<nfKf\ Hft) | », Kf è "">*' UEÌ2X+1 f] **„(*) ^ • (3-32)

Equation (3.30) can now be expanded in powers of p. In the lowest order (for small
values of p) one finds

£ (- i)*-*«^(2 //+ l) (2 7 + 1) (2A+ 1) yM

r,M,x

kX^-^AmL'^ "'''•'"' <•••>¦ (3J2

Since in our frame of reference we have

/T(0 - 7T(- *)=-§-?* RnW P?o + ^-lo } (3.34)

Equation (3.30) can be considerably simplified in the special case of backward
t

scattering. The matrix elements of exp (— ipj%\ H'(t') dt') can then be expressed
o

_
directly by Equation (3.24) where q is substituted by p q J Rwft') dt'.

o

The orbital integrals for | 0 used here are listed in the appendix. Table 2 shows
that even for deflection angles & + n the term given in Equation (3.34) contributes
not much and can therefore be treated in a low order.

Multiple transitions between the bands are easily treated if the intrinsic quadrupole
moments Q0 can be assumed to be equal for all bands involved in the excitation process.

Equation (2.22) then yields

CO

-(iß) f 3,(t)it

b)=E<IfKfMf\<nfKf\Te ~°°
I ni Ki> I J Ki M>

-(iß) f H'(t)dl
X <IK,M\e -°° j Ii Ki Mf. (3.35)

The second matrix element of Equation (3.35) is again given by Equations (3.21) and
(3.22) whereas the evaluation of the first part depends on the nature of the intrinsic
states. A first order treatment leads again to Equation (3.33). If the intrinsic structure
can be described by the vibrational model (ß- or y-vibrations) the methods discussed
in Section 3.A can be applied.
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C. Asymmetric Rotator

In order to describe the lower energy states of some even-even nuclei the model
of an asymmetric rotator was proposed (References 10), u)). If we restrict ourselves to
rotational states, the state functions | N I M > are given by

\NiMy ÉAiKTAAfêè= tâ* + (- l)Id"-kÏ (3-36)
g-?0 AnylA-oK,0

where the summation goes only over even K. By N we number the ascending
eigenvalues of the energy EN{ for a given spin I. The coefficients AfK and the energy Ef
depend on the parameters ß and y which describe the shape of the nucleus. The
interaction Hamiltonian for rotational states is given by

H'ft) \- q %E «,„(*) {DH cosy + ^ (DU + DIU)} (3.37)

where q is defined by Equation (3.20).
In the sudden approximation the excitation amplitudes afM from the ground state

i 100 > to a state I NIM > take the form

«/AT aNIM =EATK BMk\2 ~ V,0 • (3-38)
K -0

where the integral BMK is defined by

1/2 7+1 fff ~(m J H'lt)dt
bmk JLBtf-J J J DMKf<P>&. V) e -°° df> sin#' W dy ¦ (3-39)

0 0 0

The following symmetry relations have been used :

Kk (- I)7 K-k= f- I)7 B{MK B'_M_K. (3.40)

It is easy to see that BMK disappears for odd M or K.
In the special case of backward scattering Equation (3.39) is similar to the

corresponding relation of the symmetric rotator. We have (see Equation (3.22))

b'mk bk <Vo àr even for ê n (3.41)
with

ß^l/27+lj/g
r(±-^±){-i)iß±JA1-A r Z__., ..'3,,cos.e

I IA-K \ I I-K \

x E~~A~AT71A—\ f2iqcosyfl^m[2y-3 (3.42)
m,n /+ —+ 1 m\n\ '

\ 2 /m \ 2 Jn

The integral BMK (Equation (3.39)) can be computed for arbitrary scattering
angles by the following method: The interaction Hamiltonian H' (Equation (3.37))
is a sum of nine terms. Thus the exponential function in the integral (3.39) can be
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written as a product of nine exponential functions. These are expanded after having
extracted the constant factor exp (— (4 iß) q R20 cosy). The integration over cp and xp

leads then to two relations for the indices of summation and the integral over $' can
be evaluated after the substitution cos2(#/2) x according to

i

0

An appropriate rearrangement of the summations leads to

Bmk e~ (^»^(s.owjTß i q Rw(&, 0) cosyA
OL>lß;m,k>0

I -gM(».Q) \<*/»+««/ -tgy\(Kß)A2k
X '

'6RW(A,0)J V 2 J/3 i«»* [ ¦

f6 Rm(A, 0)

where S is defined by

cIMK ==(_i\I 1/(2 7+1) (lA-M)i(I-M) 7(7 + 70! (7-JQ
«mh [ ' - ~

(7+2 a+1)1

EX ^j (M+KAo)\(I-M-a)\(I-K-a)\o\
CT, fi, V, Q, /.

I M+K \17- r;— + a.-a-Q-vAAA-/n)

\a + Q + v + /i + Â-2(m + k) - !lM+K, ,/ M
m + ----ç>-/.

1

k A- —z — q — fiy. (m — v — fj,) \ (k — v — A) \ g\ v\ fi\ k\
(3.45)

The summation should be carried out in such a way that no factorial has a negative
argument. This implies for the indices m and k

Maxfo,--£)<»<i(«-4)
Max (0,-f-) <*<!(«-f). ,3.40,

The additional rule x > 7/2 (see Equation (3.44)) can be derived by partial integration
if in Equation (3.39) the Rodriguez formula for DMKfO, ¦&', 0) (Reference 3)) is used
after integration over cp and f*).

The coefficients S'a^kK have the following symmetry properties :

IMK_JKM_I -M K
x m k x k m x m+ (M/2) k

SIM -S =s' -M -K
xmk+fK/2) x m+fM/2) k+fKj2' y ' '

*) This can also be seen from selection rules in the perturbation expansion.
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For the two special cases of backward scattering and axial symmetry (siny 0)
we have m M 0 and k K 0 respectively. This reduces the multiple summation

in Equation (3.45) to the simple one over a. With the help of the formula (see

Equation (3.23))

_
JL\ (l + r-L + a)\(I + r-a)\

¦£•< x I \ r,] (I-L + n) (I-a\Vl
a (I-L + a)\(I-a)

7!

|7 + ,-Z-)!(/ + ,-7)!

we get thus again Equations (3.22) and (3.42). Equation (3.48) can be proved by
formal induction starting from the result for L 0. The sum vanishes for odd L,
and this implies that only even spin values occur.

4. Numerical Results

A. General Remarks

Using methods and formulas given in the preceding sections we have calculated
excitation probabilities Pf

1 Mi, Mf

total cross sections oy in units of a2 (Equation (2.2))

n

AL^A f sin&d& p ia o)
a2 A J sin4 (0/2) * K '

o

and the coefficients Ak for the angular distribution of the deexcitation y-rays (see

Equations (2.35) and (2.36)). However, because of the variety of the parameters
entering the calculations, it is not possible to present here all numerical results. We
will therefore give only typical examples which exhibit the nature of the models and
approximations used. For a detailed comparison with experiments a more complete
tabulation of results have been printed separately (Reference 12)). Some results have
been published previously (see References 13) and 14)).

For the interpretation of the results for finite | it has to be noted that, for a given
target and projectile, f decreases strongly with increasing coupling parameter q or x>

i.e.

t~\~\- (4-3)

Almost all results show the common feature : They do not depend so much on the
details of the chosen models but vary strongly with increasing |. Especially the
angular distribution of the deexcitation y-rays is very sensitive to a variation in £

(see Figure 2), since such a variation changes the distribution of the magnetic sub-
states.
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B. Vibrational States

In Figures 1 and 2 typical examples of the variation of total cross sections and of
the coefficients Ak as functions of f are shown. It may be noted that the cross sections

aNI fulfil the following relation (Reference *)) for | 0 and N 2:

5 °20 ~ ~2 °2
35

IS" (4.4)

where the total excitation cross section o"2 of states with principal quantum number
N 2 is given by

ff2=27ff2/- (4.5)

XT/.

3Vl8 %• N=2 1=4

¦te%« N=1 1=2

C <%' N=2

72 %* N=2 1=2

5 <%» N=2 1=0

.3 .4 .5 F

Figure 1

Vibrational states of spherical symmetric nuclei. Total cross sections cry / are shown as functions
of | for x 2.4 and principal quantum numbers N — 1 and 2. The dashed line represents the

total cross section a2 (Equation (4.5)).

Ak

.6

-.6

\ —**\ —A»

¦\ \ ,-N=2 1=4
1=2

.--'' ZZ ^^-N=l
• \

1=2

1=2

~^^~~^ZZ>- N=2
~ N=2

1=4
1=2

Figure 2

Vibrational states of spherical symmetric nuclei.

The coefficients A2 (fulldrawn lines) and Ai
(dashed lines) of the angular distribution of the
deexcitation y-rays are shown as functions of f
for % 2.4 and Principal quantum numbers

N 1 and 2.
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Table 1

Symmetrie rotator. Total cross sections ff/ in the form 07/a2 q! and the coefficients Ak (Equations
(2.35) and (2.36)) for the angular distribution of the deexcitation y-rays are listed for even-even
nuclei and | 0 as a function of q (Equation (3.20)). The excitation amplitudes from the initial
state | 000 > to the final state | 7 0 M > have been calculated according to Equation (3.22). The total
cross sections are given in form of a number followed (in parenthesis) by the power of ten by which

it should by multiplied.

7 2 7 4

a2la2 q2 ^2 A, afaV ^2 A,
0.0 .1425 (+1) .03240 .00083 .2846 -1) - .56848 .11379

0.5 .1402 (+1) .04284 - .00446 .2783 -1) - .56401 .10873

1.0 .1335 (+1) .07394 -.01975 .2602 -1) - .55035 .09345

1.5 .1236 + 1) .12473 -.04311 .2329 -1) - .52676 .06763

2.0 .1118( + 1) .19293 -.07109 .1997 -1) - .49202 .03094

2.5 .9947 + 0) .27412 - .09872 .1645 -1) - .44454 -.01677
3.0 .8791 (+0) .36141 -.12015 .1307 -1) - .38268 - .07480

3.5 .7779 + 0) .44628 -.13020 .1008 -1) -.30538 -.14081
4.0 .6939 + 0) .52092 -.12645 .7610 -2) - .21342 - .20965

4.5 .6260 + 0) .58101 -.11038 .5697 -2) -.11093 - .27279

5.0 .5713 (+0) .62681 - .08653 .4284 -2) - .00608 -.31957
5.5 .5264 + 0) .66188 - .06010 .3274 -2) .09070 - .34140

6.0 .4883 + 0) .69040 - .03481 .2561 -2) .17148 - .33675

6.5 .4554 (+0) .71523 -.01212 .2050 -2) .23488 -.31243
7.0 .4264 + 0) .73743 .00819 .1673 -2) .28562 - .27904

7.5 .4010 + 0) .75691 .02697 .1383 -2) .33006 -.24502

7 6 7 8

afa2 f A2 ^4 ff8/a2?8 ^2 A,
0.0 .4737 -3) -.75879 .30772 .5293 -5) -.85104 .45250

0.5 .4640 -3) - .75680 .30447 .5197 -5) - .85000 .45047

1.0 .4360 -3) -.75073 .29459 .4918 -5) - .84685 .44431

1.5 .3930 -3) - .74024 .27771 .4484 -5) - .84144 .43381

2.0 .3398 -3) -.72476 .25318 .3939 -5) -.83353 .41858

2.5 .2818 -3) - .70344 .22010 .3333 -5) -.82276 .39806

3.0 .2244 -3) - .67509 .17734 .2714 -5) - .80858 .37148

3.5 .1716 -3) - .63814 .12363 .2127 -5) - .79029 .33782

4.0 .1264 -3) -.59076 .05786 .1604 -5) - .76691 .29580

4.5 .8998 -4) -.53101 - .02030 .1165 -5) -.73717 .24388

5.0 .6232 (-4) - .45757 -.10927 .8144 -6) - .69948 .18039

5.5 .4240 -4) - .37092 - .20396 .5500 -6) - .65202 .10386

6.0 .2872 -4) -.27503 - .29453 .3603 -6) - .59302 .01380

6.5 .1965 (-4) -.17808 - .36761 .2306 -6) -.52156 -.08785
7.0 .1375 (-4) - .09018 -.41178 .1459 -6) - .43897 - .19484

7.5 .9906 -5) -.01815 - .42469 .9248 -7) -.35025 - .29546
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C. Rotational States of Axially Symmetric Nuclei

Results are given for the excitation of nuclei with ground state spin 7; 0

(even-even nuclei).
In Table 1 we give total cross sections and the coefficients Ak for excitation of the

ground state band (A 0) calculated in the sudden approximation. The total cross
sections af' £ for 7; =t= 0 (also for half integer values) can be derived easily from the

tabulated ar a°r'f, according to (Reference x) and Equation (3.21))

'i'k={^>f2 If+1)e If Iii
KKO

for |=0. (4.6)

The results of calculations with finite £ as outlined in Section 2.C are shown in
Figure 3. As a general parameter | we introduced f02 (Equation (2.9)) for the transition

from the ground state (7 0) to the first excited state (7 2). We have computed
the excitation probabilities Pf only for backward scattering fe n).

Some examples of transitions to other bands are presented in Figures 4 and 5

(see also Reference 14)).

:-o,2

Figure 3

Excitation of the groundstate band of axially symmetric even-even nuclei (7^ 0) for finite f.
The excitation probabilities Pj for backward scattering (# ti) are shown as functions of q for

| 0.2. For comparison we also show P0 for | 0 (dashed line).
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ola2/.2 X 2 $ 0,2

_^
3 \ \ K=2

\ N,\ ^\ S\ S\ S.

\ ^

2\ l=2^N
\ N.\ \

2 - \ v^\ "V.

\ N.

1 •7—d
/ 4 — -___^-^l„

/s *^A

o- 1 —* " "' ¦ i 1 1 ¦

c/a2/.2 A-3 1-0,2

s q

Figures 4 and 5

K=o

K=i
3

]\ \

Coupled rotational bands of even-even nuclei (It 0). Total cross sections in the form of ff//a2 yf
are shown as function's of q for f 0.2. For K ^ 0 the cross sections have to be multiplied by a

factor 2 because they were calculated with the amplitudes bj instead of aj (Equation (3.14)). The

excitation amplitudes! bj were calculated by use of Equation (3.33) for pure 2^-pole transitions
between the bands.

1.1

1.0 1 010%» 1=4 N=1

9

88 %» 1=2 N 1

10° 15" 20' 25° 30°
Y

Figure 6

Asymmetric rotator. Total excitation cross sections for states with spin 7 2 and 4 and AT 1

are given in the form! of a^/a2 q1 as functions of the asymmetry parameter y for q 3. The

amplitudes aK were calculated in the sudden approximation by use of Equations (3.38), (3.44),

and (3.45).
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.4

At 1 2 N 1

.2

0
A4 l 4 N 1

2
A, l 2 N 1

.4-

0*

2

-.2

-.4

5° 10° 15°

y

20° 25° 30°

Figure 7

Asymmetric rotator. The coefficients

A k for the angular distribution

of the deexcitation y-rays are
shown for the same parameter

values as in Figure 6.

PÜ

y 25
02 -

005_

N0 5

0.4-

0 3

0 2

Figure 8

Asymmetric rotator. The excitation

probabilities for backward
scattering (& n) - calculated in
the sudden approximation according

to Equations (3.38), (3.41),
and (3.42) - are shown for y

25° and N 1 and 2.
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D. Asymmetrie Rotator

Figures 6 and 7 show that the results for the lowest states (AT 1) belonging to a

given even spin do not depend strongly on the parameter y which describes the
deviation of the nuclear shape from axial symmetry. It has to be noted, however,
that for a non-axial nuclear shape other states (N > 2 or odd spins), which do not
exist for an axial shape can be excited considerably. In Figures 8 excitation probabilities

of states with different quantum numbers N can be compared for y 25° in the
case of backward scattering and | 0.

5. Summary

In this work we have given formulas and numerical results for the multiple
Coulomb excitation of rotational and vibrational states, for an asymmetric rotator
and for coupled rotational bands. Furthermore we have developed a formalism to
overcome the sudden approximation and to take into account finite ^-values to any
desired order.

We have only calculated the multiple excitation of rotational states for even-even
nuclei, but all the computations can also be made for odd nuclei. In the discussion of
coupled rotational bands we have not mentioned band mixing effects which play an
important role also in A-allowed transitions.

The calculations have been carried out on a IBM 1620 computer at the University
of Basel. We like to thank the staff of the 'Rechenzentrum' for their help and advice.

Appendix

The orbital integrals 7v\ for £ 0 can be expressed in terms of elementary
functions. The resulting formulas are given as functions of the parameter w defined
in Reference 6).

For X 2 we have

fXft) dt -ltg*» [-m 'm (cb-2)+cp] i"; (A.l)

>*.« * - j)/! tg3 \ [ 3- ~/2y fob + 2) - cp] £ (A.3)

<1

with

i yp *. I Ve? -1 sinh u,
cp arc tg A arc tg 1

coshw+e (A.4)
<P

Zh coshîw + £ _,
c cosœ — —r — (A.5)T rh e cosh w+1
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yp |/£2 — 1 sinh u

£ cosh w +1

__
3

_ cosh w- e (2- (3/e2))

£ £ COSÌ! W+l

(A.6)

(A.7)

The excentricitv e of the hyperbolic orbit is connected with the scattering angle û by

e sin-11 (A.8)

In particular we find

t + oo —> w +oo,cp= -j- - -—

t 0 ->w 0, cp 0

which leads to the following expression for the classical orbital integrals

oo
71—9

R2ft) dt R20fA 0) I tg2 Z [l + cos'

-OO

R2±2(t)dt=R2±2($,0)--

2 t&T-J

4 iV 2^Stg2^2 + S^2)_^tg

(A.9)

(A.10)

(AH)

Table 2

The orbital integrals for f 0 (Equations (A.10), (A.11), and (A.12) of the Appendix) and the
ratios R22jRia and Rfj R20 are listed as functions of A. The entries are given in the form of a

number followed (in parenthesis) by the power of ten by which it should be multiplied.

ê R20(&, 0) *«(*. 0) Rf(A, 0) RifR10 R!lllRW

10 .106927 -1) - .379251 -2) -.409160 (--2) - .354682 0) - .382654 0)

20 .401927 -1) -.122952 -1) -.143480 (--1) - .305907 0) - .356980 0)

30 .852013 -1) - .223075 -1) -.282408 (--1) -.261821 0) - .331460 0)

40 .142908 0) -.317582 -1) -.437671 (--1) - .222228 0) - .306260 0)

50 .21C765 0) - .393861 -1) -.593289 (--1) -.186872 0) - .281493 0)

60 .286350 0) - .445195 -1) -.736570 (--1) - .155472 0) - .257227 0)

70 .367298 0) - .469181 -1) -.857619 (--1) -.127738 0) - .233494 0)

80 .451270 0) - .466559 -1) -.949017 (--1) - .103388 0) - .210299 0)

90 .535951 0) - .440313 -1) -.100560 0) - .821553 -1) - .187629 0)

100 .619072 0) - .394953 -1) - .102428 0) - .637977 -1) -.165453 0)

110 .698439 0) - .335932 -1) - .100389 0) - .480975 -1) - .143734 0)

120 .771976
v 0) - .269146 -1) -.945065 (--1) - .348646 -1) -.122422 0)

130 .837767 0) - .200528 -1) -.850043 (--1) - .239360 -1) - .101465 0)

140 .894101 0) - .135686 -1) -.722512 (--1) -.151757 -1) - .808088 -1)
150 .939513 0) - .796142 -2) -.567408 (--1) - .847399 -2) - .603938 -1)
160 .972822 0) - .364468 -2) -.390695 (--1) - .374650 -2) -.401610 (-1)
170 .993161 0) - .927292 -3) -.199129 (--1) - .933678 (-3) - .200500 (-1)
180 1.000000 .000000 .000000 .000000 .000000

44 H. P. A. 38, 7 (1965)
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and
oo

fR2±xft) dt i R2±2(ê, 0) Zi|/| tg, *. (2 + C0S2Z_ _ _Z_). (A.12)
0

Numerical values of these integrals are given in Table 2 as a function of ¦&. There we
have also listed the ratios R22jR20 and R'2XIR20 which are a mesure of how the term
with pt 0 dominates in the excitation.
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