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On the Theory of Multiple Coulomb Excitation

by M. Simonius, W. Bierter, A. Zwicky, and K. Alder
Institute of Theoretical Physics, University of Basel, Basel

(8. VII. 65)

Abstract. The theory of multiple Coulomb excitation is extended. This paper deals mainly
with the investigation of deviations from the sudden approximation, the computation of the
multiple excitation of an asymmetric rotator and an improved method for the treatment of
coupled rotational bands. Furthermore formulae for the angular distribution of deexcitation
gamma rays are derived. Numerical results of sample calculations are discussed.

1. Introduction

The theory of multiple Coulomb excitation was developed by K. ALDER and
A. WINTHER in the semiclassical approximation (Reference!)) where the projectile is
moving on a classical orbit in the Coulombfield of the target nucleus. Except for the
excitation of vibrational states their calculations were made in the sudden approxima-
tion, thus neglecting the finite excitation energy of the nuclear levels. The excitation
amplitudes have been evaluated so far for the surface vibrational model and the rota-
tional model of axial symmetric nuclei. Transitions between different rotational bands
have also been discussed (References 1), 2)).

One of the main objects here is to investigate the deviations from the sudden
approximation. Besides pure rotational and vibrational states we further calculate the
multiple excitation of an asymmetric rotator and present new methods for the treat-
ment ot coupled rotational bands. In addition we derive formulae for the angular
distribution of the deexcitation gamma rays.

At the end of this work we give some characteristic illustrations for the theoretical
predictions on the multiple Coulomb excitation. In order to facilitate the extraction of
important information from experiments we will give a more complete tabulation of
our numerical results separately (Reference 12)). All the calculations have been
performed without using the y,.+(#) or u = 0 approximation (References 12)).

2. General Methods
A. Definitions

In the semiclassical approximation the interaction Hamiltonian H(f), if expanded
into multipoles*), can be written in the following form:

4Z€ Z 1)|
=2l v a l/211+1 2i-1n LRM M*(E 2, p) (2.1)

*) For the angular momentum algebra the notation of reference 3 is used.
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where M(E A, p) denotes the electric multipole operator of the target nucleus. The
parameter a is half the distance of closest approach in a head-on collision and is
given by

Zy 8"

a =
m 2

(2.2)
where Z, and Z, are the charge numbers of projectile and target nucleus respectively,
while v is the relative velocity and m the reduced mass. The orbital functions R; , are
defined by

— vat 1/ &  @2A-1)1!
Rzﬂ(‘):@;‘(})aﬁl/z“l g Yaudt), 9,(0) (2.3)

where (7,(?), 4,(¢), ¢,(¢)) ate the polar coordinates of the projectile moving on a classical
orbit. The corresponding orbital integrals R, (¢, &) are given by

o0

R, (8,8 — f FEMER () dt (2.4)

M
-
where 9 is the scattering angle in the center of mass system. With the normalization
chosen in Equation (2.3) the R;, are dimensionless and obey the relation

DR, @8 P<1. (2.5)

Equality holds for the special case # = & and & = 0. We further note the symmetry
relation

R; (0, — &) = (= )" R, (8, &*. (2.6)

The excitation amplitude & from the initial state | 7 > to the final state | / > of the
nucleus is conveniently expressed in the interaction representation by

_ — (i) f H (t)at
a;:<f\’fe - }z’> (2.7)
with the transformed Hamiltonian
H(t) = lHt [ (1) o= (10 Hat (2.8)

The symbol T stands for the time ordering, while H, is the nuclear Hamiltonian.
We now introduce the characteristic parameter &,

a Ey—Ey

é:n m = o i (29)
where E, denotes the energy of the nucleus in the state | £ >. If the relation
£ sint P L1 (2.10)
nm 2 *

holds for all nuclear states involved in the excitation process we can use the sudden
approximation which is expressed by the relation &,,, = 0. The time ordering in
Equation (2.7) can then be dropped.
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B. Multiple Excitation for &£ + 0

In order to take full account of the multiplicity of the excitation process even for
finite differences in the nuclear energy, it has been proposed (References %), ®)) to
approximate the time ordered product in Equation (2.7) by an expansion in the ex-
ponential function.

Starting from the Ansatz

t fo'e]
—am faweyar X (-imre,w
g —= —e”~1 (2.11)

and expanding both sides of this equation, we obtain the G, by equating the coeffi-
cients of each power of (— #/k):

= ft dat H(t')

t’

:—i—jdt'fdt” 1), He")|

— 00
2 Fid

e % f dt’ f dt" f ae [H (), (H("), "))

4

o fwa fdtm[g i), 2l @12)

— 00 — 00

Cutting off this expansion we can calculate the excitation amplitudes by the diagona-
lization method (Reference 1)). The matrix elements of G, can then be expressed in
terms of quantities used for the perturbation treatment (Reference ¢)).

C. Treatment of an Additional Small Interaction

In this section we will study the case where H (f) consists of two parts

~ ~

H(t) = H,(t) + H,() (2.13)

of which only one (ﬁ 1) gives rise to multiple excitations whereas the other (I-} o) can be
treated as a perturbation. Starting from the Schrodinger equation in the interaction
representation

L 0 ~
ik O‘f = H(t) g (2.14)

we introduce the transformed Hamiltonian H (?),

t t
~ wm [ B wyae | . —tmy [E@rar
H=—|Te —= H) Te (2.15)
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and a new wave function y(f) by

[ ~(4/7) j{fll(t’)dt’] .
o) =|Te oy (2.16)

The Schrodinger equation can then be rewritten as

iR —Hy. (2.17)

The formal integral of Equation (2.17), transformed according to Equation (2.16),
reads

t ‘
[ — (i/R) fﬁl (f’)df':l — (¢/k) f}:{ @) at
pit)=1Te e @(— 00) . (2.18)

This leads to the perturbation expansion

a, =D <f|T, | (2.19)
r>=0
with
o0
_am [ By
Ty=Te ~%
o o0 H
; wmgmmw- iy [
Ty=—p fmre Hytye (2.20)
etc.

For the evaluation of the matrix elements one has to use the methods of Section
2.B and perform the time integration numerically. It leads however to a considerable

simplification if H , can be treated in the sudden approximation.
It is possible to get a simpler expression for the excitation amplitudes if H,(¢)
commutes with H »(?). In this case we have

H({t) = H,()) (2.21)
and Equation (2.18) yields

o0
—am [ dwar
— 00

oo
~wmfﬁmm]
- Te

a}:<f|{re i, (2.22)

D. Choice of the Frame of Reference

We now introduce a specific frame of reference: The x-axis lies in the direction of
the vector-product »; x v, of the initial and final velocity of the projectile and the
positive z-axis bisects the angle between —v; and v, (Reference )). This coordinate
system leads to several relations for the excitation amplitudes and the orbital integrals
R;,. |
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The invariance of Hg(f) with respect to reflexion in the scattering plane yields

il 22)
and

R

A—p
where An denotes the parity difference of the initial and final state. We further note

that AM = 0 for ¥ =z and (— 1)4¥ = 1 for & = 0. The corresponding rules for the
orbital integrals are: R, ,(m, &) =0 for 4+ 0 and R, (¢, 0) = 0 for odd u. From

=Ry, | (2.24)

R,, (=)= (= 1)* R,,() (2.25)
we obtain

R (@, — &) = (= )" Ry ,(8, §) (2.26)

which means, according to Equations (2.6) and (2.24), that the orbital integrals are
real.

With the above choice of the frame of reference R; (¢, &) is given in terms of the
tabulated classical integrals I, (2, &) (see References ) and 7)) by

R, (0,8 = ‘“ ) ”2,1) (0,2,0) Diu(0, 2,0) Lu(0,8) . (227

For the special case A = 2 we find in particular

Roy(9, &) = ( 2 " 122+% Iz—z)

Ry11(0,8) = __83_ Vg (Izz - Izwz)

-31/3 1 1
R2ﬁ:2(?9: ‘E) = 8 ]/7 (Izo -7 122 — 2 12—2) . (2‘28)

The orbital integrals for £ = 0 can be expressed in terms of elementary functions
(Reference ¢)). They are compiled for A = 2 in the appendix.

E. Angular Distribution of Deexcitation Gamma Rays

The angular distribution of the deexcitation gamma rays 1s given in terms of the
density matrices by (Reference #))

= Yo (M, M) o,(M, M) (2.29)

M, M
with

oM, M) = 55— Za aw (2.30)

and

‘ 2k+1 I 1k
oM, M) =2 Y /5y (= 1)HM(—MI\/I’%)

even k
x Di(z —q) 3 F (A X, I, 1) 6,0, . (2.31)
AX
43 H. P. A, 38, 7 (1965)



674 M. Simonius, W. Bierter, A. Zwicky and K. Alder H. P. A.

The factors F, are the usual geometrical coefficients known from the theory of y-y-
correlation *) and d; denotes the amplitude of the 2*-pole y-transition from the excited
state with spin I to a state with spin I,. The D-function in Equation (2.31) describes
a rotation of the frame of reference which turns the z-axis into the direction of the
emitted y-quant. This leads to the following expression for the angular distribution:

w@d,, @)= D E@ 1, I, 1)6,0, ng,, DX (g, 3, 0) (2.32)

evenk
A,

where the coefficient g, ,- is given by

B Rl [ M I Ik
Sk’ l 27+1 '”2’"1 v el} e — MM x

e DS (3, 222 0] 3ot plitts, (2.33)

M;

The direction g,, 9, of the y-emission is described in a frame of reterence with the
x-axis in the scattering plane and the z-axis in the direction of the incoming particle.
For the case where only the direction of y-emission is measured, multiplication of
w(¥,, @,) by the differential Rutherford cross section and integration over ¢, and ¢
leads to

—0; D) A, P, (cosd) ZF 1) 90,6, (2.34)

even k

where o 1s the total excitation cross section (Equation (4.2)). The particle parameter
A, is defined by

G,
A, =-2F,
k GO
— e I TRk [ . P
— _ 1\ +M —4 Y
Gk-—]/2k+1x’M§’M’( 1) (—MM’ %) 6[ sin? di sin 5 (2.35)
px (. a+d LM% I;M;
XD20(2,~2,0) o af iAo (2.36)

g

It must be noted here that the so called g, () or u = 0 approximation (References
1), 2)) cannot be used in this case because of the appearance of interference terms.

3. Application to Nuclear Models
A. Vibrational States of Spherical Symmetric Nuclei

In Reference 1) is shown that the multiple Coulomb excitation for vibrational
states can be treated for arbitrary & We want to derive here the results of Reference 1)
in another way which throws some light on the method described in Section 2.B.

*) For a tabulation see e.g. Reference 9).
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In the case of quadrupole vibrations the interaction Hamiltonian H () can be
expressed in terms of creation and annihilation operators b3, and b, by

B Ry (t) (e by, 4 (— 1) b ) (3.1)

where y 1s a coupling parameter defined by

o AhERS -
vaV10xn)BC

The nuclear frequency w is given by

S IR (3.3)

The parameters B and C denote the inertial parameter and the restoring force

respectively and R, is the nuclear radius. Since [H (1), H (¢')] is a pure imaginary
c-number, it is easy to verify by differentiation that G, and all higher terms in
Equation (2.11) vanish. Introducing the real number g by

= g N2 .
(55) Gutoo) =g 34
we obtain for the excitation amplitudes

, —ix X (V"R , (8,8 (b2 +b2p)
ay =e¢in,le * e 10> (3.5)
o

where | n, > = | nyny ngn_y n_, > denotes a state with N phonons,
N = Z% " (3.6)
u
The exponential function in Equation (3.5) can be decomposed into a product:

e—z‘x%f(— DHRE, (9,8) (b2p + bop)

—ix D (-DH R b5 —ixZ(-DF R, by, ~(2)Z 1R, 12

=g ¥ e M e 4 ; (3.7)

This can be verified by expanding the exponential functlons and comparing the
coefficients of 4*. Using the state function

(b3,)"n
=T |0y (3.8)
we then find
- X| R (3,8 "
ah = et AR (—i g U2 R @, 7% (3.9)
u Vnu!

In order to obtain the excitation amplifudes ay ;u for the states | N I M > with a
defined spin / and N > 1, the | N I M > must be expanded in terms of the |, >.
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For N = 2 this leads to

s ~(2 TR, (9E)
2 I+1 i 2
Apyy = —— =ighece :
22 I (3.10)
& (u w —M) Ry, (9, &) Ry (8, ) .

B. Coupled Rotational Bands

For axially symmetric nuclei transitions between rotational bands of different
intrinsic structure are treated in References ') and 2). The methods used there are
here generalized to include bands with ditferent intrinsic quadrupole moments. For
equal intrinsic quadrupole moments a formula is given for the multiple transition
between the bands.

For pure rotational bands the Hamiltonian of the nucleus is given by
HO - Hfrot + Him‘ (3'11)

where H,,, and H,, are the Hamiltonians of the intrinsic structure and the rotational
energy, respectively. The eigenfunctions of H, can be expressed as a product of a
rotational wave function | I K M » and an intrinsic wave function | » K >:

271+1

]IKM>|nK>:]/--4n Dl (0, B,0) |2 K>. (312

The actual state functions of pure rotational bands are obtained from the eigen-
functions (3.12) by symmetrization with respect to + K. The excitation amplitudes
av K Ki of the symmetrized state functions can, however, be expressed directly in terms
of the amplitudes bz & defined by

o ~ (/) [H@at
brki= I, K, M| <n K, |Te - |n, K;>| I, K, M;>. (3.13)

The following relations are found (see also Reference 2)):

ao = bio
a;':fg;‘:l/z b’f'é{; for K, or K, =0
ap K= pp iy (— IR K g K (= 1)t K b
for K; and K, + 0. (3.14)

Equation (3.13) can be evaluated by the methods given in Section 2.C., where H,
and H, denote the diagonal and offdiagonal part of H(f) respectively, Wlth respect to
the intrinsic states. Thus we have

<n’K’]H1]nK>=<n’K’!HE(t)inK>6m,6KK, (3.15)
and

(W K |Hy | nK>=<w' K | Hg() | n K> (1 — 8,0 O x07) - (3.16)
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The operator Hg(#) is here given by

4z 1/ @ ; ,
HE(t):Zl: v;g l/ﬂi{_ Zﬂ. 1)” ZRA;‘ D * ﬁ O) mt( Ju) (317)

where M, (E A, u) is the operator of the electric multipole moment in the body fixed
system.

Using the relation

-
(WK | My, (E2,0) | n K> = l/ﬂ Q00 2 (3.18)

‘which also defines the intrinsic quadrupole moment Q,, we can express the matrix
-elements of H, by

<n, K, |Hy|n K,>=H,(t) :——g')ﬁERZ'u (t) D2g(, B, 0) (3.19)

with a coupling parameter ¢ defined by

Z1¢Q0
4hva

(3.20)

The evaluation of T, (Equation (2.20)) now yields the excitation amplitudes b7 %
‘within the ground state band. In the sudden approximation they are given by
(Reference 1))

o0
_ — (i) f H' (t)dt
bik=<I;KMy|e  -= | 1, K M;»

_ ;'(_ V4K 2L +1) @I+1) @1 +1)

I, 1, I\[ I I,I
P 3.21
X(_ MfMtM)( KKo)aIM(ﬂ QJ ( )

‘where a;,, are the excitation amplitudes for I, = 0,

— (i/h) H' (t)dt
ary®,q)=AOM|e  -& 000>

I-M+1
| - (= )("1)(I—M)/2
(T+M)!
61’ even M evenVZI + 1 (I M)

=

M+1 i) _j}{ !
2 F(I+ = (2 )

I+M
>< e" (4”3)qu0( 10)27 ’
", (I+ ) ( ) m!n!

(2124 [ = Raal®, 0) 1112+ 20
X [214 q Ry, 0)] [w%dm] ,

(3.22)
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Here we used the notation

P(+m)

For backward scattering Equation (3.22) reduces to (Reference 1))

ary(7, q) = 5M,.,}/2 I+1 (—2ig)l2e- iR

p(fft}_)
g — £ L IFI(I L, L, Ziq) (3.24)
2 F(I + 2)

where ,F, is a confluent hypergeometric function.
For small transition probabilities between the bands we can treat H,(f) to first
order, i.e. evaluate only 7, (Equation (2.20)). Using

H’(t) e 8(i!ﬁ) Hyott H'(t) e”(€/ﬁ) Hpott (325)

we obtain for the amplitudes 4} under the condition | n; k; > + | nyk,>

(0.0}
_ oo — (i/h) (1 - (p/2)) [ ()t
i —1
by = <d; K; M| [dtTe

!
. — (i/R) (1+p/2)) fﬁ (t') at’
<uK B0 |nKpe = [LMEy.  (20)

An average coupling parameter g and a relative difference # of ¢ and ¢") have been

introduced. They are defined by
_ 48 +50

5 (3.27)
and ,
B gl
p _ g — gi) ‘ (328)
q
If we again neglect the differences in the rotational energy, H o Teduces to
ﬁz(t) = (M Hint? [T (f) ¢~ IR Hintt (3.29)
and, since H' commutes with this operator, we find
b = <IKM1[dt<nf K,| Hyt) | n; K;>
t 00 [e]
—-(i;{)/h)fH’ ydr (i p/2n) f (H'(t") ~ H' (—t"))dt’ u(i/h)fH’(t’)dt’
X e 0 % 0 e =% | I, K; M ;> . (3.30)

The matrix element of the last term of this equation is the amplitude b7;f# ]’ given by
Equations (3.21) and (3.22).
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Introducing the parameter ¥ which describes the strength of the 2%-pole coupling
between two bands by

w_ Vi6mZie (A-1)!

x vat @iy K | M (B4 ) [ n, Kp> (3:31)
with 4’ = K; — K., we obtain
Cny K | Hylt) | m Kp = @955 S22 +1 4P R, () DX . (3.32)
A p

Equation (3.30) can now be expanded in powers of . In the lowest order (for small
values of ) one finds

B=—i X (=) K@+ 1) 21 +1)2A+1) ¥

I, M,
! Ifl I If Z I; Ki M; 3 22
X (u K, Kf#’) Rzu('ﬁ, E) (— MMf‘LL) bIK,-M ('ﬁ, q) - (3.33)

Since in our frame of reference we have
r ! 8 D
H'(f) — H'(— ¥ = 39 ki R21(t){D?: + Dz—*lo} ’ (3.34)

Equation (3.30) can be considerably simplitied in the special case of backward
i

scattering. The matrix elements of exp (— 2 p/i [ H'(t') d#') can then be expressed
0

i

directly by Equation (3.24) where ¢ is substituted by ¢ | §2o(t') dat’ .
0

The orbital integrals for £ = 0 used here are listed in the appendix. Table 2 shows
that even for deflection angles # % = the term given in Equation (3.34) contributes
not much and can therefore be treated in a low order.

Multiple transitions between the bands are easily treated if the intrinsic quadrupole
moments @, can be assumed to be equal for all bands involved in the excitation proc-
ess. Equation (2.22) then yields

e o]

_ f(i/ﬁ)fﬁa(z)dt
b= <I,K,M,|<(n,K,|Te |n; K> | T K; M>
™
— (ifh) 7011'(:)@1
><<IK,-M!6 —o |IiKiM,->. (3:35)

The second matrix element of Equation (3.35) is again given by Equations (3.21) and
(3.22) whereas the evaluation of the first part depends on the nature of the intrinsic
states. A first order treatment leads again to Equation (3.33). If the intrinsic structure
can be described by the vibrational model (f- or y-vibrations) the methods discussed
in Section 3.A can be applied.
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C. Asymmetric Rotator

In order to describe the lower energy states of some even-even nuclei the model
of an asymmetric rotator was proposed (References 10), 11)). If we restrict ourselves to
rotational states, the state functions | N I M > are given by

_ Y2I+1

nyirae, i+ (=17 D g (3.36)

|INIM)y= 2 AZ e
where the summation goes only over even K. By N we number the ascending eigen-
values of the energy EY for a given spin I. The coefficients 4%, and the energy EY
depend on the parameters # and y which describe the shape of the nucleus. The
interaction Hamiltonian for rotational states is given by

4 -
H'{f)=+5q 7732 R, () {D20 cosy + —= (D22 + D il (3.37)
u

l/

where ¢ is defined by Equation (3.20).
In the sudden approximation the excitation amplitudes a},, from the ground state
| 100 > to a state | N I M > take the form

I ,
Aty = aniy = EA Bj/IKl/Z Ok,0 (3-38)
K=o

where the integral B, x is defined by

27 n 2n 09
21+1 — (ifh) [ H'(t)dt
Bix = %ijff Dy el &, w)e - de sind’ di’ dy . (3.39)
0 0 0

The following symmetry relations have been used:
BJIWKZ(”]-) Bf;l F = 1) B! MK*BIM K- (3.40)

It is easy to see that Bj, x disappears for odd M or K.
In the special case of backward scattering Equation (3.39) is similar to the
corresponding relation of the symmetric rotator. We have (see Equation (3.22))

e (44/3) qcos y

B = B S s for $=n (3.41)
with
I—-K+1
- F( . + )(_1)1/2
.

Bi,:]/ZI—!-ll/E[j_LK;‘ zK+1r(I+ %)(f)!_
(I+K +1)m(_%£-m)2n

3 K )
Eip 15
m,n (—f—z)m(z +1/)nm.n.

The integral Bi, x (Equation (3.39)) can be computed for arbitrary scattering
angles by the following method: The interaction Hamiltonian H' (Equation (3.37))
is a sum of nine terms. Thus the exponential function in the integral (3.39) can be

tgy ) (K[2)+2n

X (24 g cosy) ”2‘“”(2]/3 (3.42)
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written as a product of nine exponential functions. These are expanded after having
extracted the constant factor exp (— (4 ¢/3) ¢ Ry, cosy). The integration over g and ¢
leads then to two relations for the indices of summation and the integral over 4’ can
be evaluated after the substitution cos?(#/2) = x according to

1
n m n!lm! .
fdx(l—x) T (3.43)

An appropriate rearrangement of the summations leads to

B:QIK — (45/3)qu0(19,0)¢05?2(8 i ¢ Ryp(®, 0) cosy)*
oa=1[2;m, k>0
— Ryy(9,0) \(M/2+2m [ —¢ Kj2)+2k
R
20

where S is defined by

SIMK _ (_ 1yt V@I+1) (I+M)! (I-M)! (I+K)! (=K1
wne; (I+2a+1)!

M+ K "
(—1)"“‘““*9(-——}—— +a+a+9+v~4—u) !

fle;” (M+EK+o)!(I-M—-0)! (I-K—o0)!a!
L, V, 0y /-
M+ K
I—”’_24“'+0!. o—p— v+l+,u
X s e - e
M+ K "
[oc+9+v+,u+/t 2(m+k)———;:~—— (m+ —*—Q—A)'
1
X (3.45)

(k+12< ~g—p,)1 m—v—p)! (h=v=A)! glvlp! A

The summation should be carried out in such a way that no factorial has a negative
argument. This implies for the indices m and %

M 1 M
(o) <m <o %)

Max (0, AL %(cx - %) (3.46)

The additional rule &« >> I/2 (see Equation (3.44)) can be derived by partial integration
if in Equation (3.39) the Rodriguez formula for D4, (0, ¢, 0) (Reference 2)) is used
after integration over ¢ and y*).

The coefficients ST K have the following symmetry properties:

JMEK_JEM_ I -M K
a«m k akm am+(M2)k
IM -K I —M —K

w mh(Kj2) " “a me (M]2) k+(K[2 3at)

*} This can also be seen from selection rules in the perturbation expansion.
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For the two special cases of backward scattering and axial symmetry (siny = 0)
we have m = M = 0 and # = K = 0 respectively. This reduces the multiple summa-
tion in Equation (3.45) to the simple one over ¢. With the help of the formula (see
Equation (3.23))

2(_ 19 L\ (I+v-L+a)! (I+7-0)!
) - (I-L+o0)! (I-0)!

a

(I+r— —2‘—)!(1+7-—L)!

_ (1 _
*2(2)@/2)( My p( L)!

WIi——)!
2

for even L (3.48)

we get thus again Equations (3.22) and (3.42). Equation (3.48) can be proved by
formal induction starting from the result for L = 0. The sum vanishes for odd L,
and this implies that only even spin values occur.

4. Numerical Results

A. General Remarks

Using methods and formulas given in the preceding sections we have calculated
excitation probabilities P,

2, (4.1)

1 .
P, = Tf”_—l_Mg;JJ a

total cross sections o, in units of 4% (Equation (2.2))

24

(o3 o 1 sin® dd
a4 f sint (9/2) L (#4)
0

and the coefficients A, for the angular distribution of the deexcitation y-rays (see
Equations (2.35) and (2.36)). However, because of the variety of the parameters
entering the calculations, it is not possible to present here all numerical results. We
will therefore give only typical examples which exhibit the nature of the models and
approximations used. For a detailed comparison with experiments a more complete
tabulation of results have been printed separately (Reference 12)). Some results have
been published previously (see References 13) and 14)).

For the interpretation of the results for finite & it has to be noted that, for a given
target and projectile, & decreases strongly with increasing coupling parameter g or %,
le.

§~%~%. (4.3)

Almost all results show the common feature: They do not depend so much on the
details of the chosen models but vary strongly with increasing & Especially the
angular distribution of the deexcitation y-rays is very sensitive to a variation in &
(see Figure 2), since such a variation changes the distribution of the magnetic sub-
states.
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B. Vibrational States

In Figures 1 and 2 typical examples of the variation of total cross sections and of
the coefficients 4, as functions of & are shown. It may be noted that the cross sections
oy fulfil the following relation (Reference 1)) for § = 0 and N = 2:

5 0y = “Z* O22 = % Oz = O3 (4.4)
where the total excitation cross section g, of states with principal quantum number
N = 2 is given by

Te :;10'21- (4.5)

x-cla?

3%g T2 N=2 I1=4
\f % ‘/ul N=1 =2
S g2 N=2

72 Yt N=2 122

50/ N=2 1=0

0 1 2 3 4 5 E
Figure 1
Vibrational states of spherical symmetric nuclei. Total cross sections ¢y ; are shown as functions

of & for ¥y = 2.4 and principal quantum numbers N = 1 and 2. The dashed line represents the
total cross section o, (Equation (4.5)).

Ay
6
i Al
-——=h,
41

Figure 2

Vibrational states of spherical symmetric nuc-
lei. The coefficients 4, (fulldrawn lines) and A4,
(dashed lines) of the angular distribution of the
deexcitation y-rays are shown as functions of &
for y = 2.4 and Principal quantum numbers
0 1 2 3 4 5 3 N =1and 2.
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Table 1

Symmetric rotator. Total cross sections o7 in the form or/a? ¢f and the coefficients 4; (Equations

(2.35) and (2.36)) for the angular distribution of the deexcitation y-rays are listed for even-even

nuclei and § = 0 as a function of ¢ (Equation (3.20)). The excitation amplitudes from the initial

state | 000 > to the final state | I 0 M » have been calculated according to Equation (3.22). The total

cross sections are given in form of a number followed (in parenthesis) by the power of ten by which
it should by multiplied.

I=2 I =4

q oyla® ¢* A, Ay 04/a* ¢* 4, Ay
0.0 1425 (+1) 103240 .00083 2846 (—1)  —.56848 11379
0.5 1402 (+1) 04284 —.00446 2783 (—1)  —.56401 10873
1.0 1335 (+1) 07394 —.01975 2602 (—1)  —.55035 09345
1.5 1236 (+1) 12473 —.04311 2329 (=1)  —.52676 06763
2.0 1118 (+1) 19293 —.07109 1997 (1)  —.49202 03094
25 9947 (4 0) 27412 —.09872 1645 (—1)  —.44454 —.01677
3.0 .8791 (+0) 36141 —.12015 1307 (—=1)  —.38268 —.07480
3.5 779 (+0) 44628 —.13020 1008 (—1)  —.30538 —.14081
4.0 .6939 (+0) .52092 —.12645 7610 (—2)  —.21342 —.20965
4.5 .6260 (+0) .58101 —.11038 5697 (- 2) —.11093 -.27279
5.0 .5713 (4 0) 62681 —.08653 4284 (-2)  —.00608 —.31957
5.5 .5264 (+0) 66188 —.06010 3274 (- 2) .09070 — 34140
6.0 4883 (+0) 69040 —.03481 12561 (- 2) 17148 —.33675
6.5 4554 (4 0) 71523 —.01212 2050 (- 2) .23488 —.31243
7.0 4264 (+0) 73743 .00819 1673 (-2) .28562 - .27904
7.5 4010 (+0) 75691 02697 1383 (-2) .33006 —.24502

I=6 I=38

og/a® q° 4, A, ogla* 8 A, A,

0.0 4737 (=3)  —.75879 30772 5293 (—5)  —.85104 45250
0.5 4640 (—3)  —.75680 30447 .5197 (- 5) —.85000 45047
1.0 4360 (—3)  —.75073 .29459 4918 (—5)  —.84685 44431
1.5 3930 (—3) —.74024 27771 4484 (—5)  —.84144 43381
2.0 .3398 (- 3) ~ JoAT6 .25318 3939 (-5)  —.83353 41858
2.5 .2818 (- 3) —.70344 22010 3333 (—5) — 82276 .39806
3.0 2244 (- 3) —.67509 17734 2714 (- 5) —.80858 .37148
35 1716 (-=3)  —.63814 12363 2127 (=5)  —.79029 .33782
4.0 1264 (- 3) —.59076 05786 1604 (- 5) —.76691 .29580
4.5 8998 (—4)  —.53101 —.02030 1165 (- 5) —~.73717 .24388
5.0 6232 (—4)  —.45757 —.10927 8144 (—6)  —.69948 18039
5.5 4240 (—4)  —.37092 —.20396 .5500 (—6) —.65202 .10386
6.0 2872 (—4)  —.27503 —.29453 .3603 (—6) —.59302 .01380
6.5 1965 (—4)  —.17808 - .36761 .2306 (—6) — 52155 —.08785
7.0 1375(—4)  —.09018 — 41178 1459 (- 6) —.43897 —.19484
7.5 9906 (—5)  —.01815 — 42469 9248 (—7)  —.35025 —.29546
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C. Rotational States of Axially Symmetric Nucle

Results are given for the excitation of nuclei with ground state spin I; =0
(even-even nuclei).

In Table 1 we give total cross sections and the coefficients A, for excitation of the
ground state band (K = 0) calculated in the sudden approximation. The total cross
sections af,j;,’; for I, = 0 (also for half integer values) can be derived easily from the
tabulated o; = 6% § according to (Reference 1) and Equation (3.21))

I,K T. I, I\®
4 foi e
GI;,K*(ZIfJF 1)) ( 0) ay for §=0. (4.6)

I

The results of calculations with finite & as outlined in Section 2.C are shown in
Figure 3. As a general parameter & we introduced &, (Equation (2.9)) for the transi-
tion from the ground state (I = 0) to the first excited state (I = 2). We have computed
the excitation probabilities P, only for backward scattering (& = m).

Some examples of transitions to other bands are presented in Figures 4 and 5
(see also Reference 14)).

£=0,2
1.01
\
\
\
\
‘\
R
\ (-]
1
‘\
E=0y
1
\
\
\
\
5 \
\
\
1
\\ L
B/
\
\
\
\
\
S _’,’
P S
P6 -~ -
0 : —
] 1 2 3 4 5 6 7 9
Figure 3

Excitation of the groundstate band of axially symmetric even-even nuclei (I; = 0) for finite &.
The excitation probabilities Py for backward scattering (& = n) are shown as functions of ¢ for
& = 0.2. For comparison we also show P, for £ = 0 (dashed line).
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o/a?;? A-2 £8-0,2 ala?y? A=3 §=0,2

Figures 4 and 5

Coupled rotational bands of even-even nuclei (I; = 0). Total cross sections in the form of o7/a® x*
are shown as functions of g for £ = 0.2. For K # 0 the cross sections have to be multiplied by a
factor 2 because they |were calculated with the amplitudes b; instead of affv' (Equation (3.14)). The

excitation amplitudes bi were calculated by use of Equation (3.33) for pure 2*-pole transitions
between the bands.

1.1 1.1

1.07 1.0

106/q2 1=4 N=1

9] L 9
81 Pz 1=2 N=1 -8
7 L 7
0 5° 10°  15°  20° 25°  30°
Y
Figure 6

Asymmetric rotator.rjotal excitation cross sections for states with spin / = 2and4and N =1
are given in the form of o**y {a® ¢! as functions of the asymmetry parameter ¢ for ¢ = 3. The

amplitudes ajVM were calculated in the sudden approximation by use of Equations (3.38), (3.44),
and (3.45).
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4] -,
A 1=2 N=1
2 .2
L
0.
| Aq1=4 N=1 0
T
—2{ ™ N -
Az 1=4 N=1 -____—____________'___L
e il -
o s 10" 18 20° 25 30°
Y
N
PI
Y = 25°
02

01

0.05

Figure 7

Asymmetric rotator. The coeffi-
cients 4, for the angular distribu-
tion of the deexcitation y-rays are
shown for the same parameter
values as in Figure 6.

Figure 8

Asymmetric rotator. The excita-
tion probabilities for backward
scattering (& = n) — calculated in
the sudden approximation accor-
ding to Equations (3.38), (3.41),
and (3.42) — are shown for y =
25°and N = 1 and 2.
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D. Asymmetric Rotator

Figures 6 and 7 show that the results for the lowest states (N = 1) belonging to a
given even spin do not depend strongly on the parameter y which describes the
deviation of the nuclear shape from axial symmetry. It has to be noted, however,
that for a non-axial nuclear shape other states (V > 2 or odd spins), which do not
exist for an axial shape can be excited considerably. In Figures 8 excitation probabili-
ties of states with different quantum numbers N can be compared for y = 25° in the
case of backward scattering and § = 0.

5. Summary

In this work we have given formulas and numerical results for the multiple
Coulomb excitation of rotational and vibrational states, for an asymmetric rotator
and for coupled rotational bands. Furthermore we have developed a formalism to
overcome the sudden approximation and to take into account finite &-values to any
desired order.

We have only calculated the multiple excitation of rotational states for even-even
nuclei, but all the computations can also be made for odd nuclei. In the discussion of
coupled rotational bands we have not mentioned band mixing effects which play an
important role also in K-allowed transitions.

The calculations have been carried out on a IBM 1620 computer at the University
of Basel. We like to thank the staff of the ‘Rechenzentrum’ for their help and advice.

Appendix

The orbital integrals R,, for § =0 can be expressed in terms of elementary
functions. The resulting formulas are given as functions of the parameter w defined
in Reference ©).

For 4 = 2 we have

Zg
= 3 P [
fR%(x) d=— 3ty (o €O -2 +e] (A.1)
4 )
1, 7
o~ 31 2 & b bt
| f Rualt) @t = — 2)/5 20 3 o . (4.2)
t, o )
= 31/3 U} A
fR2i2(t) @t = — gl/—z‘ tg? = "@HS(@]QT (cb+2) — ?7] L (A.3)
ty i
with
@ = arc tg Z-e- = arc tg (—V%}%i};ﬂ) (A.4)
¢ = CcosQp = B . BwE (A.5)

v,  ecoshw+1
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- Sin(p _ »yﬁ ]/sz 1 sinhw (A.6}

Yp £ cosh w+ 1

b 3 e coshw—eg (2- (3/82))” (A7.7)

e cosh w+ 1

The excentricity ¢ of the hyperbolic orbit is connected with the scattering angle & by

€ =sin™! —g—. (A.8)
In particular we find
t=+oo—>w=-—+oo,p=-t ”;'9
t=0 —-w=0, =20 (A.9)

which leads to the following expression for the classical orbital integrals:

fﬁzo(t) &t = Roof8,0) = § tg2 7 [1 4 cost

P T—9 9
e i ] (A.10)
fRz*z dt — Ry (8, 0) AM—l/—t 2 l“s”‘; (%/2) —L;ﬁ tg‘;] (A.11)

Table 2

The orbital integrals for & = 0 (Equations (A.10), (A.11), and (A.12) of the Appendix) and the
ratios R,y/Ry, and R,/ R,, are listed as functions of §. The entries are given in the form of a
number followed (in parenthesis) by the power of ten by which it should be multiplied.

?9' RZO('&’ O) R22(ﬂ’ O) R;l(ﬁ' 0) R22/R20 R;I/R20

10 106927 (—=1)  —.379251 (—2) —.409160 (—2) ~—.354682( 0) —.382654( 0)
20 401927 (—1)  —.122952 (—1) —.143480 (—1) —.305907 ( 0) —.356980( 0)
30 852013 (—1)  —.223075(—1) —.282408(—1) —.261821( 0) —.331460( 0)
40 142908 ( 0)  —.317582(—1) —.437671(—1) —.222228( 0) —.306260( 0)
50 216765 ( 0)  —.393861 (—1) —.593280 (—1) —.186872( 0) —.281493( 0)
60 286350 ( 0)  —.445195(—1) —.736570 (—1) —.155472( 0) —.257227( 0)
70 367208 ( 0)  —.469181 (—1) - .857619(—1) —.127738( 0) —.233494( 0)
80 451270 ( 0)  —.466559 (—1) —.949017 (—1) —.103388( 0) —.210299( 0)
90 535951 ( 0)  —.440313(—1) —.100560( 0) —.821553(—1) —.187629( O0)
100 619072 ( 0)  —.394953 (—1) —.102428( 0) —.637977(—1) —.165453( 0)
110 698439 ( 0)  —.335932(—1) —.100389( 0) — .480975(—1) —.143734( 0)
120 J71976 ( 0)  —.269146 (—1) —.945065 (—1) —.348646 (—1) —.122422( 0)
130 837767 ( 0)  —.200528 (—1) —.850043 (—1) —.239360(—1) —.101465( 0)
140 894101 ( 0)  —.135686 (—1) —.722512(—1) —.151757(—1) — .808088 (—1)
150 939513 ( 0)  —.796142(—2) —.567408 (—1) — .847399 (—2) —.603938 (—1)
160 972822 ( 0)  —.364468 (—2) —.390695(—1) —.374650 (—2) —.401610 (—1)
170 993161 ( 0)  —.927292(—3) —.199129 (—1) —.933678(—3) —.200500 (—1)
180  1.000000 .000000 .000000 .000000 .000000

44 H.P.A. 38, 7 (1965)
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and

o0

= - 3i1/2 , , @ ) 2
fRZj: l(t) dt =1 R2i2(79: O) = ;V?) th ‘2— (2 < 00527 — SI—H(W) . (A..].Z)

0

Numerical values of these integrals are given in Table 2 as a function of ©}. There we
have also listed the ratios Ryy/R, and Ry, /R,, which are a mesure of how the term
with 4 = 0 dominates in the excitation.
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