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Fastperiodische Potentiale

von G. Scharf

Institut für Theoretische Physik der Universität, Zürich

(24. V. 65)

A detailed analysis of the Sturm-Liouville equation with an almost periodic
potential is given. By means of spectral-theoretic methods a representation theorem for the
solutions is derived, which generalizes Floçjuet's theorem. Two different possibilities may occur.
In the first case the form of the solutions is analogous to the Floquet form, in the second case not.
The results are then applied to discuss the one-dimensional Schrödinger-problem of an electron
moving through a crystal lattice disturbed by lattice vibrations. Different circumstances are found
in the two cases. The method also works with Stepanoff almost periodic potentials as is shown in an
appendix.

Einleitung
Die fastperiodischen Funktionen sind eine natürliche Verallgemeinerung der

periodischen Funktionen. Ihre Untersuchung geht auf H. Bohr zurück. Durch seine

grundlegenden Arbeiten und die Resultate von Weyl und Bochner liegt eine
geschlossene Fheorie der (gleichmässig) fastperiodischen Funktionen vor. Auf diese
Fheorie wird in der vorliegenden Arbeit hauptsächlich zurückgegriffen.

Obwohl die fastperiodischen Funktionen viele Analogien zu den periodischen
aufweisen, gelten die entsprechenden Sätze über lineare Differentialgleichungen mit
fastperiodischen Koeffizienten nicht. Das ist nicht überraschend, denn bei Integration
können sich fastperiodische Funktionen anders verhalten als periodische. Unter
zusätzlichen Bedingungen kann man trotzdem die zum periodischen Fall analogen
Resultate erhalten. Solche Sätze beweist schon Favard9), der lineare inhomogene
Systeme von Differentialgleichungen 1. Ordnung untersucht, allerdings unter starken
Voraussetzungen über die Koeffizienten. Bochner2) betrachtet das homogene System
mit ähnlichen Voraussetzungen. In den neueren Arbeiten 14),18), 20) werden zahlreiche
Sätze über periodische Koeffizienten auf fastperiodische übertragen, wobei jedoch
deren sämtliche Fourier-Exponenten positiv vorausgesetzt werden müssen. Leider
sind damit reelle Koeffizienten ausgeschlossen, so dass die physikalischen Bedürfnisse
unerfüllt bleiben.

In dieser Arbeit wird das Problem ohne Einschränkungen für die Sturm-Liouville-
Gleichung behandelt. Als Hilfsmittel dienen spektraltheoretische Methoden. Im
1. Kapitel werden die wichtigsten Sätze über fastperiodische Funktionen kurz
zusammengestellt, die später benötigt werden. Im 2. Kapitel wird das Spektrum der
singulären Sturm-Liouville-Operatoren mit fastperiodischem Potential untersucht
sowie das oszillatorische Verhalten der Lösungen, das eng damit zusammenhängt. Im
3. Kapitel werden kanonische Formen der Lösungen hergeleitet. Es ergibt sich, dass
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stets eine quadratische Form der Fundamentallösungen fastperiodisch ist. Im
Spektrum ist diese définit, semidefinit oder ausgeartet, sonst indefinit. Führt man
diese Form als unbekannte Funktion ein, so erhält man ein Fundamentalsystem,
ausgedrückt durch eine unbekannte (reelle!) Funktion. Die Lösungen haben entweder
die der Floquet-Darstellung entsprechende Form oder eine andere, je nach dem
Verhalten des Integrals einer fastperiodischen Funktion, das in der Lösungsformel
auftaucht. Im ersten Fall befindet man sich noch in «der Nähe» periodischer Funktionen,
im zweiten nicht. Das 4. Kapitel enthält Beispiele zu diesen Resultaten.

Als physikalische Anwendung wird im 5. Kapitel das eindimensionale Schrödinger-
problem diskutiert, wobei man sich die Bewegung von Elektronen in einem Kristall
mit Gitterschwingungen vorstellen kann. Den beiden genannten Fällen entsprechen
verschiedene physikalische Verhältnisse. Im ersten Fall findet man ein Verhalten,
wie man es von der Blochschen Fheorie her kennt : Die Aufenthaltswahrscheinlichkeit
eines Elektrons in Gebieten der Ausdehnung x ist über das Gitter konstant, ausser
etwa Schwankungen über mikroskopische Distanzen, welche beliebig klein werden,
wenn man für x Gitter (fast) perioden wählt. Es tritt keine Streuung auf. Im zweiten
Fall schwankt die Aufenthaltswahrscheinlichkeit über makroskopische Distanzen.
Es liegt Streuung vor. Für x -> oo wächst die Schwankung mitO(^1_a), 0 < x < 1,

was an die anomalen Dichteschwankungen eines Gases am kritischen Punkt erinnert.
In einem Anhang werden verallgemeinerte fastperiodische Potentiale im Sinne von

Stepanoff kurz behandelt, auf welche sich die Ergebnisse unmittelbar ausdehnen
lassen.

Durch die Betrachtung fastperiodischer Potentiale scheint sich ein Zugang zur
Fheorie gestörter Kristallgitter zu eröffnen, der frei von störungstheoretischen
Methoden ist.

Der Verfasser ist Herrn Prof. Dr. A. Fhellung für zahlreiche Diskussionen zu
herzlichem Dank verpflichtet, ferner dem Schweizerischen Nationalfonds für
wissenschaftliche Forschung für finanzielle Unterstützung.

1. Fastperiodische Funktionen

In diesem Kapitel sollen die Begriffe und Sätze aus der Fheorie der fastperiodischen

Funktionen vorangestellt werden, die wir später benötigen. Bezüglich der
Beweise und Details verweisen wir auf 1) und 5) oder auf die Originalarbeiten.

Eine Menge von reellen Zahlen heisst relativ dicht, wenn eine Zahl IAO existiert,
so dass jedes Intervall der Länge / mindestens ein Element der Menge enthält, ffx) sei

eine stetige komplexe Funktion der reellen Veränderlichen x, — oo < x A + oo.
Eine Zahl t heisst e-Franslationszahl von f(x) zu e > 0, wenn | ffx + r) — ffx) | < e

ist, für alle xe(— oo, +oo). f(x) heisst fastperiodisch, wenn die Menge der e-Frans-
lationszahlen rff) relativ dicht ist, für alle e > 0. Es existiert also eine Zahl le

(«Inklusionslänge »), so dass jedes Intervall der Länge le mindestens ein rff) enthält.
Jede fastperiodische Funktion ist beschränkt und gleichmässig stetig in — oo <

x < + oo. Rationale Rechenoperationen mit fastperiodischen Funktionen führen
wieder auf f. p.-Funktionen. Gleichmässig stetige Funktionen von f. p.-Funktionen
sind f.p. Eine konvergente Folge von f. p.-Funktionen besitzt einen f. p.-Grenzwert,
falls die Konvergenz in (— oo, + oo) gleichmässig ist.
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Falls die Ableitung einer f. p.-Funktion gleichmässig stetig ist, ist sie fastperiodisch.
Das unbestimmte Integral einer f. p.-Funktion ist fastperiodisch, falls es beschränkt
ist. Für jede fastperiodische Funktion existiert der Mittelwert

T

M{ffx)}= limi fffx)dx
T->co J

0

und hat die gewöhnlichen Eigenschaften (Linearität, Franslationsinvarianz,
Monotonie).

Zu jeder fastperiodischen Funktion ffx) gibt es höchstens abzählbar unendlich
viele reelle A„, so dass der Mittelwert

Mx{ffx)e-'Ay} An

von Null verschieden ist. Die An sind die Fourier-Exponenten von ffx), die An die
Fourier-Koeffizienten. Die formal gebildete Reihe

f(x)~£AneiAn*
n l

heisst Fourier-Reihe.
Verschiedene f. p.-Funktionen haben verschiedene Fourier-Reihen. Die Fourier-

Reihe von Summe, Produkt oder Grenzwert einer gleichmässig konvergenten Folge
von f. p.-Funktionen erhält man durch formale Ausführung der betreffenden Operation

an der Fourier-Reihe. Die Fourier-Reihe der Ableitung oder des Integrals, sofern
diese ebenfalls fastperiodisch sind, entsteht durch gliedweise Differentiation bzw.
Integration.

Die Fourier-Koeffizienten erfüllen die Parsevalsche Gleichung:

CO

£\An\* M{\ffx)f}.
M-l

Der Hauptsatz der Fheorie ist der Approximationssatz : Jede fastperiodische Funktion
lässt sich durch endliche trigonometrische Polynome

Nv

PM)=Z^eiA»x
n l

gleichmässig beliebig genau approximieren. Die Af1 sind in den Fourier-Exponenten
von ffx) enthalten.

Der Modul einer f.p.-Funktion ist der Modul ihrer Fourier-Exponenten An, also
die Menge der endlichen Linearkombinationen mit ganzen Koeffizienten:

{nxAx + + nmAm} «,,....nm ganz, m natürlich.

Von grösster Bedeutung für später ist die Eigenschaft der Normalität :

Satz fl.1) : Eine Funktion/(#) ist genau dann fastperiodisch, wenn sie normal ist,
das heisst, wenn jede reelle Zahlenfolge hk eine Feilfolge Â; enthält, so dass/(# + hf
gleichmässig in— oo <. x <. +oo konvergiert.
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Die f. p.-Funktionen g(x), die solche Grenzwerte gfx) Uni ffx + hj) sind, bilden
die Hülle H {ffx)} von ffx).

' ^°°
Es gilt H {gfx)} H {ffx)}, das heisst, die Hülle ist durch einen Repräsentanten

bestimmt. Offensichtlich gehören allef(x + r) zu H. Ausser wenn/(#) periodisch ist,
liegen jedoch noch andere f.p.-Funktionen in H. Es gilt ein Satz von Bohr3) :

Satz (7.2) : gfx) gehört genau dann zur Hülle von

oo

ffx)~ZAneiAnf

gfx)~jrAneiA»ht

ist, wobei

A„ h„ lim A„ hk (mod 2 ti) n 1, 2,
ft—TOO

und hk eine reelle Zahlenfolge ist, so dass die Limites existieren. Es gilt dann :

gfx) lim/(* + hf)
k—>00

Einen weiteren Satz von Bohr4), der sich auf den Logarithmus einer f.p.-Funk¬
tion bezieht, werden wir später brauchen:

Satz (1.3): Falls

f(x) =ei,pM

fastperiodisch ist, ist cpfx) von der Form cp(x) cx + xp(x), c ist die sogenannte
Säkularkonstante (wegen der astronomischen Anwendung), xpfx) ist fastperiodisch.

Zwischen den Fourier-Exponenten und den Franslationszahlen besteht ein
Zusammenhang :

Satz (1.4):

ffx)~£AneiA»*
» i

sei fastperiodisch.
Zu jedem 0 < ò < n und jedem natürlichen N existiert ein s > 0, so dass alle

£-Franslationszahlen die N Ungleichungen

| Anre | < ô (mod2ti) n=l,2,...N
erfüllen.

Als Umkehrung von (1.4) gilt:
Satz (7.5) : ^

f(x)~ZAn<iAn'
n l

sei fastperiodisch.
Zu jedem e > 0 gibt es ein natürliches N und ein 0 < ô < n (im allgemeinen nicht

die gleichen wie im vorigen Satz), so dass jedes t, das den N Ungleichungen

\A„r\<ô (mod2tt) « 1,2, ...N

genügt, eine e-Franslationszahl von/ist.
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Mit Hilfe dieser Sätze wollen wir eine Invarianz-Definition der Fastperiodizität
herleiten :

Satz (7.6) : ffx) ist genau dann fastperiodisch mit dem Modul M, wenn

lim/(z + T{) =f(x)
i—*oo

gleichmässig in — oo < x < + oo für alle {t,} mit

lim Art 0 (mod 2 ti)
i—>oo

für alle As M (und die erste Gleichung für andere {t^} nicht gilt). Die Charakterisierung

der r,- ist ausführlich wie folgt zu verstehen: Zu jedem 0 < ô < ti und N gibt
es ein ia, so dass

| A„ xt | < ò (mod 2 n) für alle n 1,2, N, AneM

gilt, falls nur i > i0 ist.

Beweis.

1. Die Notwendigkeit der Bedingung folgt aus Satz (1.5). Sei ffx) fastperiodisch
und e ljj. Dann existieren N, und 0 < ôj < ti, so dass jedes r mit

| 4,t | < öj (mod 2ti) n 1,2, ...Nj
eine l//-Franslationszahl von/ist. Sei jetzt eine Folge t; gegeben, so gilt von einer

| An T; | < ôj (mod 2 7t) w=l...JV...
Stelle i0 an

Daraus folgt
I ffx + r,) - ffx) | < - für i > i0, V «

und da j beliebig war, die gleichmässige Konvergenz :

lim/(* + r,-) =ffx)
i—>00

2. Sei jetzt die Bedingung erfüllt. Dann gilt also:

\f(x + Xt)-f(x)\<e
für alle x, falls

| A„Tj | < ó (mod 27t) »=1,2, ...JV.

Die T; sind also e-Franslationszahlen, und zu zeigen ist nur noch, dass sie relativ dicht
liegen. Das besagt der folgende Satz über simultane diophantische Approximation 22) :

Seien AX,A2, AN und e > 0 gegeben.
Dann gibt es N ganze Zahlen gx, g2, gN und eine Konstante C(e, N), so dass

jedes Intervall T < x < T + C mindestens eine Lösung der N Ungleichungen

|4,T-g.|<e «=1,2,... N
enthält.

37 H. P. A. 38, 6 (1965)
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Auf die Normalitätseigenschaft (1.1) bezieht sich der

Satz f1.7):ffx) sei fastperiodisch. g(x) habe die Eigenschaft, dass für alle {hf, für
die fix + h{) gleichmässig in — oo < x < + oo konvergiert, auch gfx + h,)
gleichmässig in— oo < x < + oo konvergiert. Dann ist gfx) fastperiodisch und Modul fg) Ç
Modul (/) 8).

Die bisher aufgezählten Eigenschaften der fastperiodischen Funktionen konnten
wir aus Analogie zu den periodischen erwarten. Die wesentliche Abweichung von dieser

Analogie wollen wir jetzt besprechen, sie tritt beim Integral auf. Wir wissen schon,
dass das unbestimmte Integral einer f. p.-Funktion fastperiodisch ist, falls es
beschränkt ist. Das ist aber im allgemeinen nicht der Fall. Im Unterschied zu den periodischen

Funktionen gibt es fastperiodische Funktionen mit dem Mittelwert 0 (sonst ist
die Unbeschränktheit trivial) und unbeschränktem Integral. Ein Beispiel ist :

oo

ffx) U—r cos —
n l

das wir im 4. Kapitel noch ausführlicher betrachten werden.
Weitere Einsicht in diesen Sachverhalt erhalten wir durch Resultate von Favard 8).

Satz [1.8): ffx) sei fastperiodisch, M{f} 0 und das Integral unbeschränkt.
Dann gilt :

Ffx) ffft)dt of\x\).
0

Es ist jedoch im allgemeinen keine Verschärfung auf Of\ x I1-™) möglich, mit noch so
kleinem positiven a.

Satz (7.9): Falls sich die Fourier-Exponenten von ffx) bei 0 nicht häufen und
X

M{f} 0 ist, gilt j fft) dt<C<ooinx alle x.
o

Damit ist klar, weshalb sich die periodischen Funktionen so «harmlos»verhalten.
Andererseits verdient der Fall, dass 0 ein Häufungspunkt der Fourier-Exponenten ist,
im folgenden ein besonderes Interesse.

Satz (7.70): Besitzt ffx) ein beschränktes f.p.-Integral, so auch jedes gfx) s
H{ffx)}. Besitzt ffx) ein unbeschränktes Integral, so auch jedes g e H{f}.

2. Das Spektrum fastperiodischer Potentiale

Allen folgenden Betrachtungen legen wir den Differentialausdruck

ify) - y" + Vfx) y (2.1)

zugrunde, wobei Vfx) reell und fastperiodisch ist. Weitere Voraussetzungen über V
werden wir nicht machen.

Da Vfx) nach unten beschränkt ist, ist (2.1) bei + oo und — oo vom Grenzpunkt -
Typ 16)- Infolgedessen definiert (2.1) einen selbstadjungierten Operator L in
L2f— 00, + 00), dessen Definitionsbereich aus allen Funktionen y e L2f— 00, + 00)
besteht, für die y und y' absolut stetig und Ify) e L2 ist. Ausser L werden wir noch die
von (2.1) in L2f0, + 00) und L2f0, — 00) erzeugten Operatoren L+ und. Z,- betrachten.
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Diese sind nur in einem Randpunkt singular, für die Selbstadjungiertheit ist deshalb
jeweils eine Randbedingung bei 0 nötig. Die Definitionsbereiche sind:

L+ : yeL2 (0, + oo) y(0) cosa + y'(0) sina 0

L- : yeL2 (0, - oo) yfO) cosa + y'(0) sina 0

mit den gleichen Differenzierbarkeitsvoraussetzungen.
Mit S P y S' bezeichnen wir jeweils das Spektrum dieser Operatoren, P sei das

Punktspektrum, S' das kontinuierliche Spektrum. S ist abgeschlossen. Eine oft
verwendete elementare Beschreibung des Spektrums stützt sich auf folgenden Satz von
Hartman und Wintner12) :

Satz (2.7) : Sei lim sup Vfx) < oo. Wenn
x—> + oo

Ify) Ey
eine Lösung yfx) besitzt, die für x -> + oo beschränkt bleibt, so ist E e S'L+ oder

ye£2(0, oo) (oder beides). Jedoch gilt die Umkehrung hiervon im allgemeinen
nicht, so dass trotz E s S nurunbeschränkte Lösungen auftreten können (vergleiche 4.).

L+ und L~ definieren eine Zerlegung von L : Sei L' die direkte Summe

L' L+® L-
so ist L eine selbstadjungierte Erweiterung von L'. Daher folgt für die kontinuierlichen

Spektren:
SL S'L+ u SL- (2.2)

Da bei fastperiodischen Funktionen + oo vor — oo in keiner Weise ausgezeichnet ist,
vermuten wir, dass die drei kontinuierlichen Spektren übereinstimmen. Dieser Satz

gilt tatsächlich.
Für den Beweis benötigen wir folgenden Satz über die Störung des Spektrums bzw.

der Spektralschar 19) 28) :

Satz (2.2): A sei ein selbstadjungierter, B ein beschränkter selbstadjungierter
Operator. A [a, b] sei ein reelles Intervall.

A. Das Spektrum SÄ von A bestehe im Inneren von A aus Eigenwerten mit der
Summe der Vielfachheiten k < oo. Der Abstand zwischen A und den übrigen Feilen
des Spektrums sei grösser als 2 11 B \ \. Dann besteht das Spektrum SA+B von A + B
in [a — || B ||, b + || B ||] ebenfalls aus Eigenwerten mit Summe der Vielfachheiten k.

B. Ist X s S'A, so liegt in [X — || B \\, X + \ \ B \|] wenigstens ein Punkt von S'A+B.
C. Sei a,b £ SA und d Min {\ a — X \, \ b — X \}

teSA

e Max{|«|,|è|}, 2\\B\\<-d-XTr,
und seien PM bzw. P^+b) ,jje Projektoren der Spektralscharen von A bzw. A + B
zum Intervall A. Dann gilt :

||P^+B)-P'i)||<Z±|2±Z(è_a) || b ||

Jetzt können wir unseren Satz beweisen :
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Satz (2.3) : Vfx) sei fastperiodisch. Dann gilt S'L S'L+ S'L- und das
Punktspektrum von L ist leer (abgesehen von möglicherweise vorhandenen Eigenwerten,
die gleichzeitig in S' liegen).

Beweis. Wir stützen uns auf die Invarianzdefinition der Fastperiodizität (1.6). Wir
wählen eine Folge et -> 0 und zugehörige Franslationszahlen t,- so dass gilt :

Vfx + rt) =» Vfx)

(der Doppelpfeil bedeutet gleichmässige Kovergenz in — oo < x < + oo). Es gilt
r,; ->- 4- oo für i -> oo, ausser wenn Vfx) periodisch ist. In diesem Fall gilt der Satz
aber ohnehin (vergleiche 4.). Wir beweisen die Behauptung für L+ und wählen dafür
T; -> + oo.

L+ ist in L2(0, oo) definiert durch:

d2
l - -j-i + Vfx) yfO) cosa + y'(0) sina 0

SL+ sei das Spektrum, En die isolierten Eigenwerte mit zugehörigen Eigenfunktionei.
ipfEn, x), die reell und normiert sein sollen:

oo

f [xpfEn, x)]2 dx 1

0

Wir definieren den selbstadjungierten Operator AM in L2f— xit oo) durch:

lli) ~i + V{-x + T;) y(~ Ti) cosoc + y'(~ Ti) sina ° •

Er besitzt das gleiche Spektrum wie L+, weil nur die Variable transformiert wurde
Die Eigenfunktionen sind:

¥i\En,x) xpfEn,x + xi)
Sie sind wegen

oo oo

/ [xp {E„,x + T;)]2 dx f (xpfEn, x)]2 dx 1

-*• «

ebenfalls normiert.
Es gilt12):

y>MfE„, x) -> 0 für i -> oo (2.3)

gleichmässig in jedem nach unten beschränkten Intervall.

ß(0 Vfx) - Vfx + Xi)

ist ein selbstadjungierter, beschränkter Operator,

II Bii) II <e«.

den wir in L2(— r{, oo) betrachten.
Wir bilden den Operator L(i) A{i) + £?<*>. Er ist definiert durch:

d2



Vol. 38, 1965 Fastperiodische Potentiale 581

Sein Spektrum SL(i) ist gegenüber Si+ ein wenig gestört. FallsPeSL+ der Randpunkt
eines Feiles von S'L+ bzw. ein isolierter Eigenwert ist, so folgt für den entsprechenden
Randpunkt bzw. Eigenwert £<*> s SLw :

E-Ei <£«><£ + £;. (2.5)

l ist bei — oo vom Grenzpunkt-Fyp. Deshalb kann in (2.4) der Grenzübergang xt -> oo

eindeutig durchgeführt werden, das heisst unabhängig von a und von der Art, wie
T,- -> oo geht21). Dabei geht L(i) in L über. Aus (2.5) folgt mit (2.2) :

Z+ -Z ¦

Die isolierten Eigenwerte gehen in Regularitätspunkte von L über: Sei of1(E) die
Spektralmatrix von Aw. Dann gilt in der Umgebung eines isolierten Eigenwertes En
mit genügend kleinem ò :

xp«(En, x) =2><*i(E„ + Ô)- afk(En - Ò)A2 uf(En, x)
k

wobei AffE, x) ein Fundamentalsystem von /<*>y E y ist:

uffE.O) ui]'fE,0) 1

Af'fE.O) u2i\E, 0) 0.

Für i -> oo und festes « folgt wegen (2.3) und Satz (2.2) C für die Spektralmatrix von
Lw und schliesslich von L :

okkfEn + Ô)- akkfEn -ò) 0 k=l,2
und wegen

\ajkfA) \2<ajjfA)akkfA)
auch

ajkfEn + ô)-ajkfEn-ô)=0,
das heisst, En ist ein Regularitätspunkt von L.

Wir brauchen also von jetzt an unser Augenmerk nur noch dem kontinuierlichen
Spektrum zuzuwenden. Dieses besteht aus einer Folge von abgeschlossenen
Intervallen. Es gibt einen kleinsten Wert E* e S'. Dieser lässt sich nach einem Satz von
Hartmann und Putnam 10) folgendermassen charakterisieren :

Wenn die Lösungen von
y" + [E- Vfx)] y 0 (2.6)

für

für
E > E* oszillatorisch

E A E* nicht oszillatorisch

sind, dann ist E* der kleinste Wert in S'.
Eine Lösung heisst oszillatorisch, wenn sie Nullstellen beliebiger Grösse besitzt.

Auch hier herrschen bei fastperiodischen Potentialen einfache Verhältnisse :

Satz f2.4) : Wenn eine Lösung y fx) von (2.6) zwei Nullstellen hat, so ist sie
oszillatorisch, und die Nullstellen liegen relativ dicht.
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Beweis. Sei yfx) eine nichttriviale Lösung von (2.6) mit zwei Nullstellen:

y(x0) y(xx) 0

Wir wählen zu e > 0 eine Franslationszahl x und betrachten die Gleichung

y" +[E-Vfx + x)]y 0. (2.7)

Sei yfx) eine Lösung von (2.7) mit

y>o) ° ZW y'fxo) ¦

Wegen der stetigen Abhängigkeit der Lösung von den Koeffizienten existiert ein
(5(e) > 0, so dass yfx) eine Nullstelle innerhalb xx — ô A x A xx + ô besitzt. Dann
besitzt yfx — t), welches eine Lösung von (2.6) ist, eine Nullstelle bei x x0 + x und
innerhalb xx + x — ôAxAxx+x + ô. Auf Grund des Sturmschen Frennungssatzes
besitzt dann jede Lösung von (2.6) eine Nullstelle innerhalb x0 + x < x < xx + x + ò.

Da die x beliebig gross sind und relativ dicht liegen, ist das die Behauptung.
Wenn jede nichttriviale Lösung von (2.6) höchstens eine Nullstelle hat, nennt man

die Gleichung diskonjugiert. In diesem Fall existiert eine Lösung, die überall positiv
ist. Nach unserem Satz sind bei fastperiodischen Potentialen Oszillation und Dis-
konjugation Alternativen. Im Spektrum haben wir also nur mit oszillatorischen
Lösungen zu tun mit Ausnahme des kleinsten Wertes (siehe unten).

Bei dieser Kenntnis können wir auf Oszillations- und Diskonjugations-Kriterien
zurückgreifen :

Sei

y" + Wfx) y 0 (2.8)
Wenn

00

f Wfx) dx oo

so ist (2.8) oszillatorisch2*).
Wenn Wfx) < 0, so ist (2.8) diskonjugiert.
Damit erhalten wir für die Lage von E* folgendes Resultat :

Sei der Mittelwert M{Vfx)} 0. Dann liegt der kleinste Wert E* des Spektrums
innerhalb

inf Vfx) < E* < 0

Der Diskonjugationsbereich ist abgeschlossen.
Über die weitere Verteilung des Spektrums können noch einige Aussagen gemacht

werden. Nach einem Satz von Putnam17) ist die Breite AfE) der offenen Intervalle,
die nicht zum Spektrum gehören (gaps), kleiner als:

A(E) <supF(*) -inf Vfx)

Sie geht für E -> oo gegen Null, wofür asymptotische Ausdrücke bekannt sind11).
Als Letztes betrachten wir das Spektrum von Potentialen, die zur Hülle gehören.
Satz f2.5) : Sei Vfx) e H{Vfx)}. Dann haben die zu F gehörenden Operatoren

L, L+ und L- das gleiche kontinuierliche Spektrum wie L.
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Beweis. Sei

Vfx + hf) =>• Vfx) i -? oo
Die von

lii)=--£*+V(x + hi)' * i.2,...

in L2(— oo, + oo) erzeugten Operatoren sind gleichmässig konvergent gegen L. Weil
sie alle das gleiche (kontinuierliche) Spektrum wie L haben, folgt die Behauptung aus
Satz (2.2) und Satz (2.3).

3. Die kanonische Form der Lösungen

In diesem Kapitel wenden wir uns der Hauptfrage zu. Wir verwenden dafür die
funktionentheoretische Methode von Weyl23) und Fitchmarsh21).

Wir betrachten die Gleichung

Y" +[X- Vfx)] Y 0 (3.1)

für komplexe Werte von X:

X E + iu
Sei c/>fX, x), OfX, x) ein Fundamentalsystem, nämlich

<f>fX, 0) d'fX, 0) 1

cf>'fX, 0) 6fX, 0) 0 (3.2)

so dass

W[cf>, 6] cf>(X, x) 6'fX, x) - cf>'fX, x) 6fX, x) 1. (3.3)

Zunächst beschränken wir uns auf das endliche Intervall 0 < x < b und nehmen zwei

selbstadjungierte Randbedingungen an:

YfO) 0 (3.4)

Y(b) cos/j + Y'(b) sin/3 0 (3.5)

8(X, x) erfüllt (3.4), wir wählen IfX) so, dass

xpWfX, x) $fX, x) + IfX) 6fX, x) (3.6)

der Randbedingung (3.5) genügt. IfX) ist eine meromorphe Funktion, ihre Pole liegen
auf der reellen Achse bei den Eigenwerten E{f> des gewöhnlichen Sturm-Liouville-
Problems (3.1), (3.4), (3.5). 8fE^\ x) sind die zugehörigen Eigenfunktionen, die noch
nicht normiert sind. Die Pole bzw. Eigenwerte sind einfach.

Für zwei Lösungen Ffx) und Gfx) von (3.1) zu verschiedenen Werten X und X' folgt
aus der Greenschen Formel die wichtige Beziehung:

b

fX - X') f Ffx) Gfx) dx WffF, G] - WfF, G] (3.7)
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Wz[ ] bedeutet stets die Wronski-Determinante an der Stelle z. Wird (3.7) auf y>(6)

angewandt, so folgt :

b

fX - X') f xpWfX, x) xp»\X', x) dx=Wb-W0.
0

Es ist Wb 0, weil beide Funktionen die gleiche Randbedingung bei b erfüllen, und

W0 lfX')-lfX),
also

yt»(A, x) xpWfX', x) dx ^Zf^ ¦ (3-8)

*¦ £* + i u, X' E[f> + i u' und
Für

ergibt sich daraus:

lim 1AA)-^lhW

u, u

m-hd')

,Jm n

X-X' ResE)?>(h) rn
'

Die Normierungskonstanten werden also durch die Residuen von IfX) bestimmt. Die
normierten Eigenfunktionen zu (3.1), (3.4) und (3.5) sind damit:

Vtf> - f.BiEV.x) (3.9)

Die Greensche Funktion G^fX, x,y) des Eigenwertproblems ist:

f 6fX, x) xiA\X, y) x < y
&»\X, x,y) \ (3.10)

xp^fX, x)6fX,y) x > y

Sie besitzt folgende Entwicklung nach Eigenfunktionen :

G»\X,x,y)=£^J™ (3.11)
n-0 »

Jetzt gehen wir durch den Grenzübergang b -> oo zum singulären Problem über.
Da dieses bei + oo vom Grenzpunkt-Fyp sein soll, existiert der Grenzwert

IfX) -> m+fX) für Im X + 0

eindeutig, das heisst unabhängig von ß in (3.5). m+(X) ist eine analytische Funktion
von X, regulär in der oberen (und unteren) Halbebene. Aus (3.6) wird

xp+fX, x) cj>(X, x) + m+(X) 6(X, x) e L2(0, oo) (3.12)

ebenfalls eindeutig, das heisst, (3.12) ist bis auf Faktor die einzige Lösungin L2(0, oo)

von (3.1). Aus (3.8) ergibt sich für X' X* E — i u wegen m(X*) [m(X)]*
oo

f\xpAX,x)\2dx=IiaAAi^. (3.13)
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Die normierte L2-Lösung ist also :

V+(A, *) c+(A) xp+fX, x) y Im
*

(A)
y+(A, *)

585

(3.14)Im >», (A)

Ganz entsprechende Formeln gelten für das endliche Intervall a < % < 0, zum
Beispiel

^'(A, *) cj>fX, x) + l2(X) dfX, x) (3.15)

woraus wir für a -> — oo eine (bis auf Faktor) eindeutige Lösung in L2(0, — oo)
erhalten :

xp-fX, x) cf>fX, x) + mAX) 6(X, x) e L2f0, - oo)

Für diese gilt analog zu (3.13) :

u

j \wAlx) ' dx —
Im m_(X)

so dass

xpAk x) c_(A) xp-(X, x) j/- Im UmJ^ xp-fX, x)
Im m_(X)

die normierte Lösung ist. Wir berechnen noch die Wronski-Determinante

W [xp+, xp_ c, c_ (m_ m,

(3.16)

(3.17)

(3.18)

Für das endliche Intervall a < x < b schliesslich ist die Greensche Funktion
G{a'bfX, x,y) aus (3.6) und (3.15) zu bilden. Wir erhalten:

&a-b)(X, x, y)

xli(a)(X,x)xjjlp)(X,y)

WffAAfA]
y(6>(A, x) xfW(X, y)

x < y

x A y.
(3.19)

W[yi{b), tpW]

Die Entwicklung nach Eigenfunktionen xpfx) bezüglich des Intervalls [a, b] lautet:

& vfx) v>n(y)-Al,x,y)=Z-nW-x (3.20)

Durch den Grenzübergang a ^- — oo, è->+oo gehen wir zum zweifach singulären
Eigenwertproblem über, dessen Greensche Funktion GfX, x,y) nach (3.18) und (3.19)
die Form hat :

VAh x) xp+(X, y) 1 V~(A, x) xp+(X, y)

GfX, x, y)
m_(X) - m+(X)

xp+{X, x) xp_(X, y)
m_(X) — m+(X)

m_(X) -rnfX)
xp+{X, x) xp-(X, y)

m_\X) — mAX)

x < y

x y y.
(3.21)

Diese Funktion wird bei den folgenden Überlegungen eine wichtige Rolle spielen.
Weil mAA) + mAfX) ist (sonst wäre X ein Eigenwert des zweifach singulären Problems),
ist GfX, x, y) regulär in der oberen (und unteren) Halbebene. Auf der reellen Achse
treten Singularitäten auf. Wir müssen das asymptotische Verhalten für u -+ 0

untersuchen.
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Dazu gehen wir von der Parsevalschen Gleichung für G(a,6) aus, nach (3.20) gilt:
b

J\G^(X,x,y)\2dy=i;^BïAr

-E v»(*)

^0 (E-En)2A-u2

Für festes E' und E" und festes x ergibt sich:

r rI dE ldy\a»»\X,x,y) \2 £ xpl

E"
r dE

x)
(E-EA2Au2 *

É' 'a """ É'

Sei jetzt — M<F'<£"<4-M, M>1, dann können wir abschätzen:

für |E„| >2M:
E" E"

f dE f dE SM 16 M
J (E-Ef2 + u2 ^ J (lj2En)2 + u2 ^ E% ^ El+1 '

E' E'

für \EA <2M:

Also gilt :

E" -loo
/" d£ f dE n n 4A72+1

J (E-En)2AA ** 7 (E-£„)2 + «2 "7^7" £1+1"
£' - co

¦.o\~fdy\G^b\i,x,y)

-¦ 0 { u-1} für u -> 0

gleichmässig in a, è bei festem £', £", *.
Deshalb gilt auch:

E" +0O

fdEJdy\ GfX,x,y) |2 0 (w"1)
E' -oo

und daher
E"

[dE | G(A, x, y) | O (»-1'2) (3.22)
£'

mit Ausnahme höchstens einer Menge von y-Werten beliebig kleinen Masses.
Ausführlich ist für x < y :

G(A' *• y) Aròm-+ ^ *) ^A> y)]

[0(A, *) ^(A, y)] + -^+^- [^(A, *) 0(A, y)) (3.23)

[0(A, x) 0(A, y)}

m_ — m_i

m m.
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Die Fundamentallösungen gehen bei festem x bzw. y für u -> 0 gegen wohlbestimmte
reelle Werte. Da (3.22) für beliebiges x und y (dem Mass nach) gilt, erfüllen die

(eventuell singulären) Koeffizienten in (3.23) einzeln:

(3.24)

(3.25)

(3.26)
J W_W — rn+\nl

E'
und

dE Ofu-1'2)
m_(X) - mAX)

m_(X)
0(dE

m_(X) - mAX)

mAX)
Ofu-M)dE

m_(X) — mAX)

mAX) (X) 12dE 0
m_(X) — mAX)

(3.27)

Diese Koeffizienten bilden die charakteristische Matrix M,Jiiuen ui e ciiaraKierisL sene iviaiii x mjk.

MxfX) -
1

M22(X) m+m_
m_ — m+ m_ — rn+

M,JX) - M2X(X) i- rn+A-m_ (3.28)

Ihre Imaginärteile sind für u -> 0 nicht singular sondern streben gegen die Elemente

ajk der Spektralmatrix:

oJk(A) — lim / Im MjfE + i u) dE
A

A [E', E"] (3.29)

Nach diesen Vorbereitungen können wir fastperiodische Potentiale betrachten.
Wir verwenden dabei die bereits von Favard benutzte Normalitätseigenschaft der

fastperiodischen Funktionen (Sätze 1.1 und 1.7).
Satz (.3.7): Die Greensche Funktion auf der Diagonalen

GfX, x, x)
xp+(X, x) xp-(X, x)

m_(X) — m.fX)

MxfX) cf>2fX, x) + 2Mx2cf>8 + M22d2 (3.30)

ist fastperiodisch für Im A 4= 0.

Beweis. A. Wir wissen (3.14, 3.17), dass die Gleichung

y" + [X- Vfx)] y 0 (3.31)

genau eine normierte Lösung in L2(0, oo) und eine solche in L2f— oo, 0) besitzt:

xpAX, x) cAX) xp+fX, x) e L2 (0, oo) (3.32)

y>AX, x) c_(k) xp-fX, x) e L2 f- oo, 0) (3.33)
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Diese sind linear unabhängig.
Sei {hf eine beliebige reelle Zahlenfolge, so dass

Vfx + h,) => Vfx) e H {Vfx)} (3.34)

(der Doppelpfeil bedeutet stets gleichmässige Konvergenz in — oo < x < + oo).
Auch die Gleichung

y" + [A - Vfx)] y 0

besitzt eindeutig die beiden normierten L2-Lösungen xpAX, x) und y7(A, x). Wegen der

Eindeutigkeit gilt :

Y>+(A, x) lim cx+fhj) xp+fX, x + ht) e L2f0, oo)
i—>oo

x}AX, x) lim cx_(ht) xp-fX, x + h{) e L2(- oo, 0) (3.35)
Î—>oo

gleichmässig in jedem endlichen «-Intervall. Aus (3.35) sieht man, dass, falls zum
Beispiel h{ -> oo geht, cA+(Af) -> oo cA_(A£) -> 0 gehen muss, damit die Normierung
erhalten bleibt. Die Art, wie die Normierungskonstanten wachsen bzw. abnehmen,
ist abhängig von der speziellen Wahl der Folge {hf in (3.34). Wir bilden die Wronski-
Determinante der (linear unabhängigen) Lösungen (3.35) :

W[x}+, ~xpA Hm {ci+(h{) c,_fK) WAp+- fA} ¦
i—>oo

Wegen der Konstanz der Wronski-Determinante folgt :

lim {c, .(*,) c, (*,)} Zrh' H 4- konst.

Die Konstante ist nur von Vfx) abhängig, nicht aber von der speziellen Wahl der Folge
{hf. Deshalb konvergiert

lim {xp+ (A, x + h;) xp-fX, x + hf} w xpAX, x) xpA^> x) (3.36)
i—>00

unabhängig von der speziellen Wahl der {hf gleichmässig in jedem endlichen «-Intervall.

B. Wir zeigen jetzt indirekt, dass die Konvergenz in (3.36) gleichmässig in
— oo < x < + oo ist. Dann haben wir nach Satz (1.1) bewiesen, dass xp+fX, x) xp~fX, x)
fastperiodisch ist.

Wäre (3.36) nicht gleichmässig konvergent in (— oo, + oo), so existierten zwei
Feilfolgen k{ und k'. von hi und eine Folge xi, so dass

| xpAX, x, + K) xp-fX, x, + k,) - xpAX, x, + k':) xp-fX, x, + k'i)\>d>0 (3.37)

für alle i. Aus diesen Feilfolgen könnten wir wegen der Normalität von Vfx) bzw.

Vfx) Feilfolgen kj: k'j und Xj auswählen, so dass

Vfx + x, + kf) %* Vfx + Xj)=^Vfx)eH{Vfx)}.
Vfx + x. + k) /
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Auf die Gleichung mit Vfx) und die zugehörigen L2-Lösungen könnten wir die Schlüsse
unter A noch einmal anwenden und erhielten das (3.36) entsprechende Resultat:

lim {xp+fX, x + Xj + kf xp-fX, x + Xj + kj)} w y>+(X, x) yi_(A, x) (3.38)

gleichmässig in jedem endlichen «-Intervall und unabhängig von der speziellen Wahl
der kj, Xj, also auch

lim {xp+fX, x + Xj + k'i) xp-fX, x + Xj + k'f} w xp+(A, x) ^_(A, x) (3.39)

Für x 0 bilden die beiden letzten Gleichungen einen Widerspruch zu (3.37).
Also ist xp+fX, x) xp-fX, x) fastperiodisch und damit auch GfX, x, x).
Nach Satz (1.7) haben wir gleichzeitig bewiesen, dass

Modul GfX, x, x) Ç Modul Vfx) (3.40)

Später werden wir sehen, dass sogar gilt.
Wir interessieren uns jetzt für reelle A E. Dabei sind die Fälle, dass E im Spektrum

liegt oder nicht im Spektrum liegt, zu unterscheiden.
Satz {3.2) : Sei E £ S'. Dann ist eine nicht ausgeartete, hyperbolische quadratische

Form der Fundamentallösungen fastperiodisch.
Beweis. Dieser Satz kann genauso bewiesen werden wie der vorige. Wegen der

folgenden Überlegungen geben wir noch einen anderen Beweis. Nach Satz (3.1)

konvergiert
GfX,x + hitx + ht) => GfX.x.x) (3.41)

gleichmässig in — oo < x < + oo. Nach Satz (2.5) ist E $ S~, wobei L der zu Vfx)

gehörende selbstadjungierte Operator ist. Also sind G und G für A E regulär. Daher
existieren Grenzwerte für u -> 0 in (3.41) :

lim hm GfE + i u, x + h{,x + ht)
M->0 4—>00

hm hm GfE + iu,x + h„ x + h,) (3.42)
i—>oo u—>0

lim GfE, x + hit x + ht) GfE, x, x)
î—5-0O

gleichmässig in jedem endlichen «-Intervall. Die Grenzübergänge sind vertauschbar,
weil die Lösungen bzw. G stetig von dem zweidimensionalen Parameter (A, h{)

abhängen. Wegen der Unabhängigkeit von der speziellen Wahl der {kf schliessen wir wie
in Satz (3.1) B indirekt auf:

GfE, x + hf,x + ht) => GfE, x, x)

Das bedeutet Fastperiodizität von

GfE, x, x) MxfE) $2 + 2 M12fE) <f>0 + M22(E) 82. (3.43)

Setzen wir die Werte aus (3.28) ein und untersuchen die Diskriminante, so folgt aus

m+m_ 1 (m+A-mA2
(m_ — m+)2 A (m_ — «4
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dass die Form (3.43) hyperbolisch ist (wir sagen absichtlich nicht «indefinit», weil
(3.43) im Diskonjugationsbereich positiv ist).

m+fE) mAE)

ist ausgeschlossen, weil keine diskreten Eigenwerte auftreten (Satz 2.3).
Satz f3.3) : Sei E e S'. Dann ist eine quadratische Form der Fundamentallösungen

fastperiodisch, die elliptisch, parabolisch oder ausgeartet sein kann.
Beweis. Vor dem Grenzübergang u -> 0 bilden wir jetzt in (3.41) den Imaginärteil;

Im G(X, x + h,,x + ht) => Im GfX, «, «) (3.44)

Im G Im Mxx Re cf2 + 2 Im MX2 Re fcf> 8)

+ Im M22 Re 82 + Re Mxx Im cf>2

+ 2 Re MX2 Im fcj> 8) + Re M22 Im 02. (3.45)

Für u -> 0 gehen cf>2, 82 und <f> 8 gegen reelle Werte. Deshalb gehen ihre Imaginärteile
mit Ofu) gegen Null. Berücksichtigen wir die asymptotischen Resultate (3.24) bis

E"

(3.27), so ergibt sich, dass nach Integration f dE die 3 letzten Ferme in (3.45) mit
E'

Ofu112) gegen Null gehen. In den 3 ersten Fermen treten die Elemente der Spektralmatrix

auf (3.29). Durch Vertauschen der Grenzübergänge folgt aus (3.44) :

lim [ {cj>2fE, x + hs) daxfE) + 2cf>8 daX2fE)
'-*°°E'

E" _

+ 82fE, x + hi) da22(E)} [ (cf>2fE, x) daxxfE)
E'

+ 2 ~cf)8dàX2fE) + Q2fE, x) dà22fE)} (3.46)

gleichmässig in jedem endlichen «-Intervall, E', E" fest. Wieder ergibt sich indirekt
wie in Satz (3.1) B die Gleichmässigkeit in — oo < « < + oo. Fast überall (in E)
existiert die quadratische Form:

ffE, x) §ä cf,2 + 2% cf, 8 + "V 82, (3.47)

die somit fastperiodisch ist. Auf der ausgeschlossenen Nullmenge können Ausartungen
auftreten.

Wir müssen noch die Diskriminante von (3.47) untersuchen. Aus

T 1 Imi»,- Im mhm Im hm —;——M_>o m_—m+ u—*a \m_ — m+\2

r, T 1 m.+m Iva m. Rem — Re m. Im mB hm Im — ± — hm —
u—»o 2 m_ — m+ u—*0 \m_ — m+\2

„ T m,m im I2 Im m, — I m, |2 Im
C — hm Im r- — hm -—— ¦—±——Jf

M_»o m_ — m, u->o \m_ — mA
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erhalten wir :

A C - B2 - lim *»**+**»- > o
M-i-o \m_-m+ \*

wegen (3.13) und (3.16). Daher ist die Form (3.47) elliptisch, parabolisch oder
ausgeartet.

Nach diesen Ergebnissen ist es nun sehr leicht, Fundamentalsysteme für die

Differentialgleichung zu gewinnen. Dabei tritt die jeweils fastperiodische quadratische
Form als unbekannte Funktion auf. Diese Darstellung der Lösungen entspricht dann
vollständig der Floquetschen Darstellung im Falle periodischer Koeffizienten und
geht in diese bei periodischem V(x) über.

1. Hyperbolisch-diskonjugierter Fall

Wir wählen die Lösungen yfx) und y2(x) so, dass die hyperbolische Form die
Gestalt

yifx) yfx) Ffx) (3.48)

annimmt. Ffx) kann wegen der Diskonjugiertheit (Satz 2.4) höchstens zweimal das
Vorzeichen wechseln. Käme das jedoch einmal vor, so wegen der Fastperiodizität von
Ffx) unendlich oft. Also ist Ffx) > 0 oder Ffx) < 0 für alle «. Fügen wir zu (3.48)
noch die Gleichung ^^ __ y[{%) ^ 2 % (349)

hinzu, so lässt sich das System elementar integrieren. Wir schreiben Ffx) cp2fx) und
erhalten :

X X

yfx) cpfx) g-<*/w) yfx) (pfx) ea/w. (3.50)

Darin ist <p(x) oder x bis auf einen Faktor unbestimmt, denn die charakteristischen
Exponenten x

Xk lim sup — log yfx) I k 1, 2
*—*00 x

sind fest: i % f -i >

Xx=-xM\AA<o X2 xM 7 >o. (3.51)

Wenn Vfx) periodisch ist, ist auch cpfx) periodisch, weil Modul Vfx) D Modul (cp2).

Dann ist
X

fz x / --^ 7:A« + periodische Funktion

und wir erhalten die Floquet-Darstellung.

2. Hyperbolisch-oszillatorischer Fall

In diesem Fall wechselt F(x) unendlich oft das Vorzeichen. Aus (3.48) und (3.49)
erhalten wir jetzt:

yifx) ± i\Ffx) | e-ayW) yx > o

yi<o
X
r

y2(«) ±l/|F(«) | fjwm y2>0

y2<0. (3.52)
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3. Elliptischer Fall
Jetzt ergeben sich aus

y\(x) + yifx) cp2fx) (3.53)

Vi y2 - y'i Vi k (3-54)
die Fundamentallösungen :

X X

yfx) cpfx) cos kj Z yfx) cp(x) sin kj -Z. (3.55)

Hierin ist wieder cpfx) oder k bis auf einen Faktor unbestimmt. Setzen wir etwa

so ist k durch (3.54) festgelegt. Damit haben wir die Funktion Efk) definiert.

Wir gehen zu einem Potential der Hülle Vfx) e H{Vfx)} über und zeigen

Satz f3.4) : Sei

Vfx + h{) => Vfx), dann folgt cpfx + h{) => cpfx)

und die Funktion Efk) ist für Vfx) und Vfx) die gleiche.
Die erste Behauptung ist die Gleichung (3.46), die zweite folgt dann aus (3.53) und

(3.54), weil Wronski-Determinante und Mittelwert translations-invariant sind und
alle Grenzübergänge kommutieren.

4. Parabolischer Fall

In diesem Fall ist eine Lösung fastperiodisch, die zweite nicht :

X

Vi ± f\F\ y2 ± ]/JF\ /1 • (3-56)

Dieser Fall tritt in der Hillschen Differentialgleichung in den Randpunkten des

Spektrums auf.

Eine letzte Bemerkung machen wir über die Moduln. Nach unseren Schlüssen und
Satz (1.7) ist der Modul vonF(«) bzw. (pfx) enthalten im Modul von Vfx). Andererseits
können wir umgekehrt Vfx) durch diese Funktionen ausdrücken:

Vfx) - E ¦

?1 +Ì7
cp cpfl-

cp" k2

cp <p*

Daraus folgt :

Modul (F) Ç Modul fcp)

Also sind die Moduln gleich:

Modul (V) Modul fcp) (3.57)
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4. Beispiele

Die Resultate des vorigen Kapitels sollen an zwei Beispielen demonstriert werden,
die zwei extrem entgegengesetzte Möglichkeiten repräsentieren : Als erstes betrachten
wir ein periodisches, als zweites ein pathologisch fastperiodisches Potential.

Im Fall des periodischen Potentials kann man die Spektralzerlegung explizit
herstellen. Daher können die wesentlichen Sätze (3.2) und (3.3) über die fastperiodischen
quadratischen Formen unabhängig vom vorigen Kapitel verifiziert werden.

Wir betrachten
y" + [X- V(x)] y 0 (4.1)

mit periodischem F(«) :

Vfx + d) Vfx) (4.2)

und komplexem X E + i u. Wir wählen zwei Fundamentallösungen mit

yfX, 0) y'fX, 0) 1

W[yx,y2] l. (4.3)
yfX, 0) yfX, 0) 0

Bei Franslation um d gehen diese Lösungen wieder in Lösungen von (4.1) über:

yfX, x + d) au(A) yfX, x) + xX2fX) yfX, x)

yfX, x + d) x2XfX) yfX, x) + x22(X) yfX, x) (4.4)

Aus der Franslationsinvarianz der Wronski-Determinante folgt

det fxik) 1 (4.5)
und weil Vfx) reell ist

*,*(A*) [xikfX)]\ (4.6)

Wir wollen die Eigenelemente der linearen Fransformation (4.4) bestimmen. Die
charakteristische Gleichung

a2 - 2 s a + 1 0 2s xxx + x22 (4.7)

besitzt die Lösungen
ax + a2 2 s

«i,2 s ± Y s2- 1 ' (4.8)
ax a2 1

Ausser wenn s reell ist und
s2 - 1 < 0 (4.9)

was nur für Werte von A im Spektrum der Fall ist (vergleiche unten), gilt folgende
Unterscheidung der Eigenwerte (4.8) nach der Grösse ihres Betrages:

| a+ | > 1, | «_ | < 1 (4.10)

Die zugehörigen Eigenlösungen sind:

y±=yx + mx.2fX)y2 (4.11)
mit

y±(X, x + d) a±(X) y±(X, x) (4.12)

38 H. P. A. 38, 6 (1965
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und
mV2

ai;2~a" (4.13)
«21

Aus (4.10) und (4.12) schliessen wir:

y+(^> x) yx + rnfX) y2 e L2f0, — oo)

y_(A, x) =yx + mfX) y2 e L2(0, + oo) (4.14)
und daher

m+(X) m2=
a- "» mAX) =mx= rA^AïA.. (4.15)

K21 a21

Damit erhalten wir die charakteristische Matrix :

MXX(X) - -AAA _ —pA=.
m_ — m+ a+—a_ 2\/s2— 1

MX2fX) M2X(X) 4- -m-+Z"7 _ü?*z^_ (4-16)"v ' 21V ' 2 m_-m+ 4j/s2_ x
v '

m_-m+ 2\'s2-l
Wir sehen, dass die Bedingung (4.9) das Spektrum charakterisiert. Aus der Fheorie
der Hillschen Differentialgleichung weiss man13), dass (4.9) für eine Sequenz
abgeschlossener Intervalle

E0 <£ <EX, E2 <£ <£3,
gilt. Dann ist

l/s^T (- l)»+i i /fZy für E2n<E< E2n+X, (4.17)

und wir bekommen aus (4.16) die Spektralmatrix:

da (-1)"+1 1 /2 a21 x22 — xxx \
d£ 4 71 1/1 _ s2

(4.18)
x9

Es liegt ein rein kontinuierliches Spektrum vor. n ist der Bandindex.
Jetzt wollen wir die periodischen quadratischen Formen bestimmen und beginnen

mit dem hyperbolischen Fall. Falls E $ S ist, setzen wir a± e±a und erhalten aus
(4.11) und (4.12): ±axy± e±ax u±(x) =yx + m^y2.

u±fx) sind periodisch. Dann ist

y+ y_ fyx + m_ y2) (yx + m+ y2) y\ + fm+ + mf yx y2 + »»+ m_ y\

periodisch, und ebenso

J_Zyw+ Mu yi + 2 Mi2 vi y2 + m22 yt

in Übereinstimmung mit Satz (3.2) und Gleichung (3.43). Falls E e S ist, setzen wir
ai;2 e± ,k un<i erhalten

y±=e±i'"'u+fx) yx + mx.j2y2. (4.19)
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u±(x) sind periodisch. Jetzt ist der Betrag von (4.19) periodisch, also

(Re y+)2 + (Im yf2 (yx + Re mx y2)2 + (Im mx y2)2

_ 2 »22-«11 _ «X2_ 2
— 71 + r 71/2 „ 72 •

a21 a21

Multiplizieren wir noch mit
(-1)"+1 2a21

4ji j/l —s» '

so ist dieses gerade

f(E x) - -^- v2 4- 2-^=- v v 4- -^ v2J{£-' X>~ dE Vl + Z
dE yi V2 + dE y*

in Übereinstimmung mit Satz (3.3) und Gleichung (3.47). Damit sind die allgemeinen
Sätze für periodische Potentiale verifiziert.

Das zweite Beispiel soll auf die Besonderheiten hinweisen, die auftreten können,
wenn 0 Häufungspunkt des Moduls von Vfx) ist. Wir gehen von der Funktion

oo

/w=ricosi- (4-2°)
n^l

aus. Weil
00 1 2

«=i

eine Majorante ist, ist (4.20) fastperiodisch. Der Mittelwert ist:

M {ffx)} 0 (4.22)

Wir können (4.20) wegen der gleichmässigen Konvergenz gliedweise integrieren und
erhalten :

F(x)= \}ft)dt=X1nsinA> (4.23)
o "=1

gleichmässig konvergent in jedem endlichen Intervall. Jedoch konvergiert (4.23) nicht
gleichmässig in — oo < « < 4- oo, F(x) ist für « ->- oo unbeschränkt :

lim sup F(x) + oo lim inf F(x) — oo (4.24)
x—>00 x—>oo

und folglich nicht fastperiodisch.
Um das einzusehen, betrachten wir eine Feilsumme

Tl7 i *fn(x)=2J -jr sin— mitA 4w+l. (4.25)
«-i

Jeder Summand in (4.25) ist periodisch mit der Periode 2 Tin, FN(x) ebenfalls mit der
Periode

Pn 2tc[1,2,...N] (4.26)

wobei [1, 2, N] das kleinste gemeinsame Vielfache der Zahlen 1, 2, N ist. In
einem «-Intervall der Länge PN wird jede mögliche Lage der Perioden der einzelnen
Summanden relativ zueinander genau einmal eingenommen. Für die Summanden mit
n 4 v + 1, v 0, 1, m existieren Stellen « nj2 (4 pt + 1), so dass zum Beispiel
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die Maxima koinzidieren. Unter diesen Koinzidenzstellen gibt es mindestens eine «0,
an der alle übrigen Summanden positiv sind. Dort ist

m - j m+1
\Axo) > Zt AvA-1 > 4~ 2* A

»=1

was für ]V -> oo wie die harmonische Reihe divergiert.
Aus (4.20) bilden wir

00
1 2 1 2

<?(*) 227i cos 7 + T Z"i ßiW"' + T > ° <4-27>

und setzen

^ g(*) (4-28)

^*>-* £ + £¦ <4-29)

Nach der Parsevalschen Gleichung ist

M 6
TT'4(-14 2fz + z

und durch partielle Integration:

M{y}=M{Ç}>0- (430)

Weil F(«) den Mittelwert 0 haben soll, ergibt sich aus (4.29) :

-£ M{Ç}+45-4«2 <4-31)

" — &[* + »&}]¦ (4-32)

Durch die Gleichungen (4.27), (4.28), (4.29), (4.32) ist unser Potential bestimmt:

3g'2-2j
4g2

Vfx) =x2g2+ J* '*-*- + E. (4.33)

Nun können wir zu den einzelnen Fällen Beispiele geben:

1. Hyperbolischer Fall

so ist nach (4.32) a reell, und die Lösungen lauten:

yifx) ~~ e^ldt yfx) -Z e-«fi*t •

Ve Vs

Sie sind diskonjugiert, und es existiert keine Lösung der Form

eax ui%\

mit fastperiodischem ufx).
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2. Elliptischer Fall

E>-M{£\.
so ist a i k, und die Lösungen sind:

X - X

yifx) -i= cos k l g dt yfx) --_- sink I g dt.
VS J 17 J

Es existiert keine Lösung der Form
eihx ufx)

mit fastperiodischem ufx).

3. Parabolischer Fall

so lauten die Lösungen :

yx(«) (p
_Z > 0 yfx) ç? f-^ -p /g ^

yx(«) ist fastperiodisch, y2(«) ist unbeschränkt. Der parabolische Fall bildet hier in
gewissem Sinn den Übergang vom hyperbolischen zum elliptischen. Dass dieses nicht
immer so ist, zeigt das folgende Beispiel.

Wir wählen :

und

Eine Lösung ist dann

4. Ausgearteter Fall

F(«) =/'(«)+/2(«)-Zf(4)

"2- 2j »i ~ 180 '

yx(«) A>* eFW>0.

Sie ist diskonjugiert und unbeschränkt. Weil andererseits der charakteristische
Exponent

lim sup. log I yfx) I M {/(«)} 0
x—>oo #

ist, folgt, dass £ der kleinste Wert EeS' ist (3.51). Die zweite Fundamentallösung
lautet :

Vifx) 71/ ¦

Sie ist ebenfalls unbeschränkt. Es existiert keine beschränkte Lösung, denn wärey(«)
eine solche, so musste auch y'fx) beschränkt sein12). Dann wäre wegen (4.24) aber

lim inf [yx y' — y'x y] 0
X—>oo

Das ist unmöglich, weil die Wronski-Determinante konstant ist.
Die Umkehrung von Satz (2.1) gilt also im allgemeinen nicht.
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5. Physikalische Diskussion

Als Anwendung unserer Resultate wollen wir die Bewegung eines Elektrons in
einem fastperiodischen Potential

Vfr) =2JAketAKr +kk. (5.1)
k

untersuchen fk k bedeutet den konjugiert komplexen Ausdruck). Das System sei
unendlich gedacht. Wenn der Modul von Vfr) diskret ist, liegt ein periodisches «Super-
gitter» vor, und wir erhalten die Blochsche Fheorie. Diese spezielle Möglichkeit ist
stets mit eingeschlossen, doch liegt unser Interesse beim allgemeinen Fall: Wenn
Vfr) wenigstens zwei rational unabhängige Fourier-Exponenten besitzt, ist der Modul
überall dicht. Das wollen wir annehmen.

Simultan mit (5.1) betrachten wir die Hülle:

H {Vfr)} {Vfr)}. (5.2)

Nach Satz (1.2) ist das ein Ensemble von Potentialen

Vfr) =£AkeidkelAkr + kk. (5.3)

mit
òk lim A, hi (mod 2 ti), k 1, 2, (5.4)

i—>oo

wobei {hf irgendeine reelle Zahlenfolge ist, so dass (5.4) existiert. Das bedeutet
stochastische Phasen ôk in (5.3) in folgendem Sinn: Wir wählen eine Basis der|/lÄ},
das heisst, eine endliche oder abzählbar unendliche Menge

XX,X2,...XVI... (5.5)

von linear unabhängigen Xv, so dass jedes Ak als endliche Linearkombination

Ak rkXXx + rk2X2+ + rkmkXmk (5.6)

mit rationalen rkj dargestellt werden kann. Nach dem Kronneckerschen Approximationssatz

müssen die Phasen ök in (5.4) dann folgendermassen gewählt werden: Die
Phasen â® zu den linear unabhängigen Xj sind unabhängige stochastische Variable
(wir nehmen zum Beispiel GleichVerteilung mod2yr an), die Phase eines linear
abhängigen Fourier-Exponenten (5.6) ist :

àk rkiòV + rk2ò™+... + rkmkò^. (5.7)

Harmonische sind kohärent. Nach den Sätzen (2.5) und (3.4) sind das Spektrum und
die Funktion Efk) für alle Potentiale der Hülle die gleichen, das heisst unabhängig von
den stochastischen Variablen. Das System besitzt also gut definierte Zustände.

Um zu veranschaulichen, wie dieses Modell auf reale Verhältnisse zutreffen kann,
betrachten wir ein Kristallgitter, dessen Ionen Femperaturschwingungen ausführen.
Als Potential können wir dann ansetzen :

Vfr, t) Vfr) +£Ck ei/ik"-iakt + k k. (5.8)



Vol. 38, 1965 Fastperiodische Potentiale 599

V0fr) ist das ungestörte periodische Potential, cok und Ak sind Phononfrequenzen
beziehungsweise -wellenzahlen. Um ein zeitunabhängiges Potential zu bekommen,
setzen wir:

t t0+—. (5.9)" VF

vF ist die Fermigeschwindigkeit. Dann erhalten wir das folgende Pseudopotential

Vfr) Vfr) +£Cke-imAeiAA + kk (5.10)
k

mit linear unabhängigen A'k Ak — coJvF. Die klassische Gleichung (5.9) und das

Pseudopotential (5.10) sind dann gerechtfertigt, wenn wir ein Wellenpaket so
konstruieren können, dass (a) das Elektron an der Fermigrenze einen Impuls kleiner
relativer Unscharfe besitzt und (b) das Pseudopotential innerhalb des Wellenpakets
angenähert mit dem wirklichen Potential (5.8) übereinstimmt, (a) ist der Fall, wenn
wir ein Wellenpaket der räumlichen Ausdehnung l so wählen, dass

mvF^>hA k ~ -y
oder

EF>~, (5.11)

wo t Ijvp die Durchgangszeit des Wellenpakets durch einen festen Raumpunkt
bedeutet, (b) ist erfüllt, wenn

«a r < 1

Beides lässt sich befriedigen, wenn x so gewählt werden kann, dass

n .iEf<r<AAf
Das ist in der Fat möglich, weil für Phononen die l/a)Ä mindestens von der Grössenordnung

10~13 sec sind und andererseits in typischen Metallen, die wir im Auge haben,
nfEp ~ IO"15 - IO-16 sec beträgt.

Unserer Diskussion legen wir die Lösungen (3.55) zugrunde:

X X

yfx) cpfx) cos k f~, yfx) cpfx) sin £/-)§-. (5.12)

Wir setzen

M{±) 1, (5.13)

damit k eindeutig bestimmt ist. cpfx) ist eine fastperiodische Funktion mit dem Modul
des Gitters. Weil

cp2fx) y{fx) + yifx)
ist, gilt

kj± =TiNfx), (5.14)

wobei N(x) die Zahl der Nullstellen einer reellen Lösung von der unteren Grenze an
bis « bedeutet. N(x) ist also die Verteilungsfunktion der Nullstellen, die durch (5.14)
noch sinnvoll interpoliert ist.
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Nach dem Sturmschen Vergleichssatz nimmt die Zahl der Nullstellen in einem
festen endlichen Intervall monoton mit E zu. Daraus folgt wegen (5.13), dass k

monoton mit E wächst. Die natürliche Beschreibungsweise für Elektronen (im Gegensatz

zu Phononen) ist demnach das ausgedehnte Zonenschema.
Wir bilden jetzt aus (5.12) die komplexen Lösungen:

X X

xpfx) cpk
e'*/l*/<> xp*(x) cpk

e-ikfwAf
_ (5.15)

Ihr Betrag ist fastperiodisch, er ist durch (5.13) noch nicht normiert, denn nach der
Schwarzsehen Ungleichung gilt :

M<W2>>M{iW 1- (5-16)

Der Modul von cpfx) ist überall dicht. Daher ist Null ein Häufungspunkt, und wir
müssen mit zwei verschiedenen Möglichkeiten rechnen, von denen bei einem diskreten
Modul nur eine vorhanden ist.

Im einen Fall kann xpfx) fastperiodisch sein. Nach Satz (1.3) ist dafür notwendig
und hinreichend, dass

kjd± kx+f(x) (5.17)

0

gilt, wobei/(«) eine fastperiodische Funktion mit dem Mittelwert 0 ist. Es muss also
X

{ (dtjcpD — x beschränkt sein, xpfx) hat dann die Form
0

-tpfx) ufx) eikx. (5.18)

ufx) ist fastperiodisch, komplex. Die Nullstellenzahl, von 0 an gezählt, ist:

n Nfx) kx + Ofl) (5.19)

ihre relative Schwankung ist normal: AN/N =OfN~1). Eine konstante Nullstellen-
dichte ist für ebene Wellen und (bis auf mikroskopische Schwankung) für Bloch-
lösungen charakteristisch und deutet auf konstante Aufenthaltswahrscheinlichkeit
hin. Wir werden sehen, dass die Lösungen (5.18) sich ebenso verhalten, und nennen
diesen Fall s-Fall. x

Im anderen Fall (w-Fall) ist xpfx) nicht fastperiodisch. Dann muss J (dt/cp^) — «
unbeschränkt sein. Nach Satz (1.8) gilt für die Nullstellenzahl: °

ti Nfx) kx + Ofx1-") 0 < x < 1 (5.20)

Ihre Schwankung ist unbeschränkt: AN O(Ari_0t).
Wir schreiben die Lösungen (5.15) in der Form

r

xpfr) Afr) e^ A fr) epfr) *'*/<WfÏ>-i>* (5.21)

und berechnen die Aufenthaltswahrscheinlichkeit eines Elektrons im Zustand k für
das Gebiet 0 X. Dazu wird die Schrödinger-Gleichung für xpk

^L + ^A[Ek- Vfr)] xpk 0 (5.23)
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nach k differenziert

2 m dE
~~W V* Ah

g8 ggg
Ör2 ÖA

2 m
n2 fE-V)

und (5.21) eingesetzt:

rAAw ÜL Ol di?k
_ ,-- d*V*

dk
àAk\
dk j ¦A (£

1AA(E-
%2 [n -v&

Òr

2i^A + >-^-r{E-Viy,,

2. 3.

d*

JA
AA

- 2 * -3*
Or

rkrlfke
dk

(5.24)

Diese Gleichung multiplizieren wir mit xp* und integrieren über r von 0 bis «. Der erste
Ferm rechts liefert :

2i[xptdfAdr
dr

dxp]

dr
dr*J \Ak-df-Vk

0 0

Der zweite Ferm in (5.24) wird zweimal partiell integriert:

2kx

fk
d2

AA

[ft 4t" (t

4.

ÒA h,i kr «

ikr M'A kr dA* (fyjM *
dk dk d»- J o

dr e
ikràAk d2xp*

dk dr2

Beim Einsetzen addieren sich der 3. und 5. Ferm zu Null, weil xp* die Schrödinger-
Gleichung erfüllt :

2 m dE
~HT ~dkj ' Vk

ò

f\ 2dr 2kx

F* dr V dk
e

dk dr Jo

Die Klammer ergibt ausgerechnet :

[ ] 2ikA*k4f +At d2A*
* dk dr dk

dAK dA*
dk dr

(5.25)

(5.26)

Falls Afr) periodisch ist, gibt sie keinen Beitrag, sofern « ein Vielfaches der
Gitterperiode ist. Wir setzen den Wert für Afr) aus (5.21) ein und erhalten, indem wir alles
ausrechnen :

o

dr

d2cpk àçpk dcpky
dr dk dr dk J o

' (5.27)
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Das Auftreten der Integrale ist wesentlich.
Insgesamt erhalten wir aus (5.25) :

Wk \2dr zsz.mz*0

1. 2.

dk J [cp2 A ar+ 2 k [ dr dk
0

^k dr dk

3. 4.

:i (5.28)

x ist der Hauptterm, die Integrale bestimmen die Fallunterscheidung, der 4. Ferm ist
stets fastperiodisch.

Im s-Fall sind nach (5.17) alle Ferme ausser « fastperiodisch. Es existieren also
relativ dichte Franslationszahlen beliebiger Güte. Wählen wir für « eine Folge von
e-Franslationszahlen t,- so ist :

J\xpk\2dr M{cpl}fXi + ô), \d\<e (5.29)
0 »-1,2,....

e kann durch geeignete Wahl der t,- beliebig klein gemacht werden. Weil die x{ relativ
dicht liegen, besitzen sie einen wohlbestimmten mittleren Abstand a, der als mikroskopische

Grösse anzusehen ist. Die Aufenthaltswahrscheinlichkeit ist dann bis auf
Schwankung über Distanzen der Grössenordnung a über das Gitter konstant.

Im «-Fall sind die Integrale in (5.28) nicht fastperiodisch. Dann gibt es keine relativ
dichten Franslationszahlen, die Aufenthaltswahrscheinlichkeit schwankt über
makroskopische Distanzen. Für « -> oo nimmt die Schwankung im Gegensatz zum
s-Fall unbeschränkt zu (Satz 1.8) :

/ \xfk\2dr M{cp2k}x + 0(x1-«)

0 < x < 1 (5.30)

Ein weiterer Unterschied zwischen s- und «-Fall zeigt sich bei Betrachtung der
Streuung am f. p.-Potential. Wir wählen als Anfangszustand ein normiertes Wellenpaket

cpfr, 0) und entwickeln nach Eigenfunktionen xpE des zum f. p.-Potential
gehörenden Hamiltonoperators :

?fr) =f(V>B><P) VeWME), t 0.

Wir wollen die Impulsübertragung bei dieser Wechselwirkung untersuchen. Deshalb
bilden wir den Erwartungswert des Impulses zur Zeit t:

(cpt\P\ cpf ffxpE- 9)* (We- -
<P) e~m {E'~E)t V*e P We- dr dafE) dafE') (5.31)

und fragen, wann dieser zeitlich konstant ist. Dafür muss gelten:

/ We P We' dr ~ ôfE' - E) (5.32)
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innerhalb des Energiebereiches des Wellenpaketes. Weil der Impulsoperator durch
ebene Wellen diagonalisiert wird, muss xpE notwendig fastperiodisch sein :

VEfr)=ZAn(E)ea^r. (5.33)
n

Im «-Fall ist der Impuls also nicht erhalten. Im s-Fall mussten für (5.32) noch die

Fourier-Exponenten XfE) in (5.33) bei verschiedenem E alle verschieden sein, denn

- * fvEfrVE'dr=Z;<fE) AJE') /V<WXmfE') A^E>dr
n, m

ZK(E) AJE') XJE') ô [XJE') - XfE)] 2 tx
n,m

Die XfE) haben nach (5.18) die Form XfE) k(E) + An, die An sind konstante F-
Exponenten aus dem Modul des Gitters. Weil kfE) monoton ist, gilt tatsächlich

XfE) #= XfE') für E' 4= E

Das ergibt den Hauptterm (5.32). Für gewisse E' E + em ist jedoch eine Beziehung
XJE) XmfE + em), m+ n möglich. Dadurch entstehen Korrekturterme in (5.32):

/ V>1 P Wfj dr BfE) ÒfE' - E) + BfE) ÒfE' -E-sx) +
(5.31) wird dadurch zeitlich fastperiodisch und nicht exakt zeitlich konstant:

(<Pt\P\9A P+ZBm *-«*>V f fxpE, cp)* fxpE+em, cp) dafE) (5.34)
m

Die Fastperioden x der zeitlichen Schwankungen haben die Grössenordnung x x
Ä/em. Mittelt man über Zeiten T ^> x, so ist der Impuls erhalten. Diese Mittelung ist
aber wegen der Unschärferelation für die Energie geboten : Um nämlich den Anfangszustand

cp bis auf eine Unsicherheit < sm zu bestimmen, ist eine Messzeit T > x
erforderlich. Damit ist der Zeitpunkt t der späteren Impulsmessung gegenüber der
Energiemessung um T unscharf, dem wird durch die Mittelung Rechnung getragen.
In diesem Sinn gilt im s-Fall Impulserhaltung.

Im «-Fall wird (5.31) nicht f.p. in t. Dann können die Impulsschwankungen durch
Mittelung über mikroskopische Zeiten nicht beseitigt werden, der Impuls ist zeitlich
echt veränderlich. Das Gitter muss Impuls aufnehmen. Im «-Fall kann daher ein
elektrischer Widerstand auftreten, was unsere Bezeichnungsweise begründet.

Schliesslich muss der Einfluss der Phasen untersucht werden. Sei Vfr) ein Potential
aus der Hülle Vfr) e H{Vfr)}, so folgt nach Satz (3.4) q>(r) e H{cpfr)}. Nach Satz (1.10)XX X

besitzt J <p2 bzw. J ((1 jcp2) — 1) daher das gleiche asymptotische Verhalten wie J" cp2

X

bzw. J" ffljcp2) — 1). Die Fallunterscheidung ist also phasenunabhängig, der «-Fall setzt
unabhängig von den Phasen ein.

Auf die Gleichung (5.28) soll noch einmal hingewiesen werden. Mit Hilfe der
Schwarzsehen Ungleichung (5.16) folgt:

1 dE hk
h dk ^ m
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Das bedeutet, dass die Gruppengeschwindigkeit im fastperiodischen (und natürlich
auch periodischen) Potential stets kleiner ist als die Gruppengeschwindigkeit für ein
freies Feilchen mit gleichem k.

6. Anhang

Stepanoff-fastperiodische Potentiale

Die Ergebnisse über gleichmässig fastperiodische Potentiale können sofort auf die
weitere Klasse der Stepanoff-fastperiodischen Potentiale ausgedehnt werden.

Eine Funktion ffx) (der Klasse Lp) heisst Sf-fastperiodisch, wenn die Menge der
Sf-Fastperioden zu jedem e > 0 relativ dicht ist1)25). Eine Sf-Fastperiode x ist
definiert durch:

x+l

[|/|/(y + r)-/(y)|^y](1/rt<£, p>l (6.1)sup
-oo<*< + oo

mit festem endlichen l. Die Wahl von / ist unwesentlich, wir setzen 1=1.
Die Eigenschaften der S^-f.p.-Funktionen entsprechen weitgehend denen der

gleichmässig f. p.-Funktionen, wenn man die Metrik der gleichmässigen Konvergenz
durch die S^-Metrik ersetzt. So ist zum Beispiel ein S*-(f.p.)-Potential F(«) S^-be-
schränkt :

x + l
sup / ] Vfy) |p dy < K < oo (6.2)

X X

und S*-normal27) : Jede reelle Folge {hk} besitzt eine Feilfolge {hf mit:
x + l

sup f | Vfy + hi) - Vfy) jp dy -> 0 für i -» oo (6.3)
X X

Fatsächlich wird bei den Beweisen in Kapitel 2 und 3 die gleichmässige Konvergenz

bzw. Beschränktheit nie voll ausgenutzt. Um den Grenzpunkt-Fall zu garantieren,

genügt die wesentliche Beschränktheit (6.2) von Vfx) (vergleiche 16)). In Satz

(2.3) und (2.5) ist die Konvergenz dem Mass nach (oder die Konvergenz fast überall
einer Feilfolge) hinreichend, welche durch

x+l
sup J | Vfy + x,) — Vfy) \p dy -> 0 für i ->oo

X X

gesichert ist. Für den Satz (3.1) reicht die Konvergenz dem Mass nach (6.3) ebenfalls
hin. Das erkennt man beim Übergang von der Differentialgleichung zu einem System
von zwei Integralgleichungen (vergleiche 26)). Die Sätze (3.2) und (3.3) samt ihren
Konsequenzen gelten deshalb allgemeiner :

Satz. Das Potential in der Sturm-Liouville-Gleichung sei SP -fastperiodisch. Dann
ist eine quadratische Form der Fundamentallösungen gleichmässig fastperiodisch.
Im Spektrum ist diese elliptisch, parabolisch oder ausgeartet, sonst hyperbolisch. Die
Lösungen haben die frühere Form (3.50), (3.52), (3.55) oder (3.56).

Die physikalische Bedeutung dieser Erweiterung liegt darin, dass allgemeinere
Störungen der Periodizität zugelassen werden können, als sie durch gleichmässig
(f.p.)-Funktionen beschrieben werden. Nach (6.1) werden die Werte bei Franslation
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lediglich im Integralmittel imitiert, nicht mehr punktweise, wie bei gleichmässig
fastperiodischen Funktionen. Dabei kann man an Kristallgitter mit Fehlstellen
denken.
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