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Fastperiodische Potentiale

von G. Scharf
Institut fiir Theoretische Physik der Universitit, Ziirich

(24. V. 65)

Summary. A detailed analysis of the Sturm-Liouville equation with an almost periodic
potential is given. By means of spectral-theoretic methods a representation theorem for the
solutions is derived, which generalizes FLoQUET’s theorem. Two different possibilities may occur.
In the first case the form of the solutions is analogous to the Floquet form, in the second case not.
The results are then applied to discuss the one-dimensional Schrédinger-problem of an electron
moving through a crystal lattice disturbed by lattice vibrations. Different circumstances are found
in the two cases. The method also works with Stepanoff almost periodic potentials as is shown in an
appendix.

Einleitung

Die fastperiodischen Funktionen sind eine natiirliche Verallgemeinerung der
periodischen Funktionen. IThre Untersuchung geht auf H. BoHR zuriick. Durch seine
grundlegenden Arbeiten und die Resultate von WEYL und BOCHNER liegt eine ge-
schlossene Theorie der (gleichmissig) fastperiodischen Funktionen vor. Auf diese
Theorie wird in der vorliegenden Arbeit hauptsichlich zuriickgegriffen.

Obwohl die fastperiodischen Funktionen viele Analogien zu den periodischen auf-
weisen, gelten die entsprechenden Sitze iiber lineare Differentialgleichungen mit fast-
periodischen Koeffizienten nicht. Das ist nicht iiberraschend, denn bei Integration
konnen sich fastperiodische Funktionen anders verhalten als periodische. Unter zu-
sdtzlichen Bedingungen kann man trotzdem die zum periodischen Fall analogen
Resultate erhalten. Solche Sitze beweist schon FAVARDY), der lineare inhomogene
Systeme von Differentialgleichungen 1. Ordnung untersucht, allerdings unter starken
Voraussetzungen iiber die Koeffizienten. BOCHNER 2) betrachtet das homogene System
mit dhnlichen Voraussetzungen. In den neueren Arbeiten %), 18), 20) werden zahlreiche
Sétze iiber periodische Koeffizienten auf fastperiodische iibertragen, wobei jedoch
deren samtliche Fourier-Exponenten positiv vorausgesetzt werden miissen. Leider
sind damit reelle Koeffizienten ausgeschlossen, so dass die physikalischen Bediirfnisse
unerfiillt bleiben.

In dieser Arbeit wird das Problem ohne Einschrinkungen fiir die Sturm-Liouville-
Gleichung behandelt. Als Hilfsmittel dienen spektraltheoretische Methoden. Im
1. Kapitel werden die wichtigsten Sdtze iiber fastperiodische Funktionen kurz zu-
sammengestellt, die spiter benotigt werden. Im 2. Kapitel wird das Spektrum der
singuldren Sturm-Liouville-Operatoren mit fastperiodischem Potential untersucht
sowle das oszillatorische Verhalten der Losungen, das eng damit zusammenhidngt. Im
3. Kapitel werden kanonische Formen der Losungen hergeleitet. Es ergibt sich, dass
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stets eine quadratische Form der Fundamentallsungen fastperiodisch ist. Im
Spektrum ist diese definit, semidefinit oder ausgeartet, sonst indefinit. Fithrt man
diese Form als unbekannte Funktion ein, so erhilt man ein Fundamentalsystem,
ausgedriickt durch eine unbekannte (reelle!) Funktion. Die Lésungen haben entweder
die der Floquet-Darstellung entsprechende Form oder eine andere, je nach dem Ver-
halten des Integrals einer fastperiodischen Funktion, das in der Lésungsformel auf-
taucht. Im ersten Fall befindet man sich noch in «der Ndhe» periodischer Funktionen,
im zweiten nicht. Das 4. Kapitel enthilt Beispiele zu diesen Resultaten.

Als physikalische Anwendung wird im 5. Kapitel das eindimensionale Schrédinger-
problem diskutiert, wobei man sich die Bewegung von Elektronen in einem Kristall
mit Gitterschwingungen vorstellen kann. Den beiden genannten Fillen entsprechen
verschiedene physikalische Verhiltnisse. Im ersten Fall findet man ein Verhalten,
wie man es von der Blochschen Theorie her kennt: Die Aufenthaltswahrscheinlichkeit
eines Elektrons in Gebieten der Ausdehnung x ist tiber das Gitter konstant, ausser
etwa Schwankungen iiber mikroskopische Distanzen, welche beliebig klein werden,
wenn man fiir ¥ Gitter(fast)perioden wihlt. Es tritt keine Streuung auf. Im zweiten
Fall schwankt die Aufenthaltswahrscheinlichkeit {iber makroskopische Distanzen.
Es liegt Streuung vor. Fiir x - oo wichst die Schwankung mit O(x1~%), 0 <o« <1,
was an die anomalen Dichteschwankungen eines Gases am kritischen Punkt erinnert.

In einem Anhang werden verallgemeinerte fastperiodische Potentiale im Sinne von
STEPANOFF kurz behandelt, auf welche sich die Ergebnisse unmittelbar ausdehnen
lassen. :

Durch die Betrachtung fastperiodischer Potentiale scheint sich ein Zugang zur
Theorie gestorter Kristallgitter zu er6ffnen, der frei von stérungstheoretischen
Methoden ist.

Der Verfasser ist Herrn Prof. Dr. A. THELLUNG fiir zahlreiche Diskussionen zu
herzlichem Dank verpflichtet, ferner dem Schweizerischen Nationalfonds fiir wissen-
schaftliche Forschung fiir finanzielle Unterstiitzung.

1. Fastperiodische Funktionen

In diesem Kapitel sollen die Begriffe und Sitze aus der Theorie der fastperiodi-
schen Funktionen vorangestellt werden, die wir spiter bendtigen. Beziiglich der Be-
weise und Details verweisen wir auf 1) und ) oder auf die Originalarbeiten.

Eine Menge von reellen Zahlen heisst relativ dicht, wenn eine Zahl/ > 0 existiert,
so dass jedes Intervall der Linge / mindestens ein Element der Menge enthilt. f(x) sei
eine stetige komplexe Funktion der reellen Verdnderlichen x, — oo < x < + oo.
Eine Zahl 7 heisst e-Translationszahl von f(x) zu e > 0, wenn | f(x + 7) — f(x) | < ¢
ist, fiir alle x €(— oo, + o0). f(x) heisst fastperiodisch, wenn die Menge der e-Trans-
lationszahlen 7.(f) relativ dicht ist, fiir alle ¢ > 0. Es existiert also eine Zahl I,
(«Inklusionsldnge »), so dass jedes Intervall der Linge /, mindestens ein 7,(f) enthilt.

Jede fastperiodische Funktion ist beschriankt und gleichmissig stetig in — oo <
x < 4+ co. Rationale Rechenoperationen mit fastperiodischen Funktionen fiihren
wieder auf f.p.-Funktionen. Gleichmissig stetige Funktionen von f.p.-Funktionen
sind f.p. Eine konvergente Folge von f.p.-Funktionen besitzt einen f.p.-Grenzwert,
falls die Konvergenz in (— oo, + oo) gleichmaissig ist.
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Falls die Ableitung einer {. p.-Funktion gleichmissig stetig ist, ist sie fastperiodisch.
Das unbestimmte Integral einer f.p.-Funktion ist fastperiodisch, falls es beschrankt
ist. Fiir jede fastperiodische Funktion existiert der Mittelwert

M {f)} = tim . [ f(x) dv

und hat die gewo6hnlichen Eigenschaften (Linearitdt, Translationsinvarianz, Mono-
tonie).

Zu jeder fastperiodischen Funktion f(x) gibt es hochstens abzdhlbar unendlich
viele reelle A, so dass der Mittelwert

von Null verschieden ist. Die A, sind die Fourier-Exponenten von f(x), die 4, die
Fourier-Koeffizienten. Die formal gebildete Reihe

heisst Fourier-Reihe.

Verschiedene f.p.-Funktionen haben verschiedene Fourier-Reihen. Die Fourier-
Reihe von Summe, Produkt oder Grenzwert einer gleichmissig konvergenten Folge
von f.p.-Funktionen erhidlt man durch formale Ausfiihrung der betreffenden Opera-
tion an der Fourier-Reihe. Die Fourier-Reihe der Ableitung oder des Integrals, sofern
diese ebenfalls fastperiodisch sind, entsteht durch gliedweise Differentiation bzw.
Integration.

Die Fourier-Koeffizienten erfiillen die Parsevalsche Gleichung:

1A= M {10 ).

Der Hauptsatz der Theorie ist der Approximationssatz: Jede fastperiodische Funktion
lasst sich durch endliche trigonometrische Polynome

L.
FLi%) :242’) et ?
n=1

gleichmassig beliebig genau approximieren. Die A sind in den Fourier-Exponenten
von f(x) enthalten.

Der Modul einer f.p.-Funktion ist der Modul ihrer Fourier-Exponenten A4, also
die Menge der endlichen Linearkombinationen mit ganzen Koeffizienten:

{midy+....+n,A,} nq,....0n, ganz, m natiirlict.

Von grosster Bedeutung fiir spater ist die Eigenschaft der Normalitat:

Satz (7.7): Eine Funktion f(x) ist genau dann fastperiodisch, wenn sie normal ist,
das heisst, wenn jede reelle Zahlenfolge 4%, eine Teilfolge %, enthdlt, so dass f(x + 4;)
gleichmissig in — oo << x << 4 oo konvergiert.
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Die f.p.-Funktionen g(x), die solche Grenzwerte g(x) = lim f(x + %,) sind, bilden
die Hiille H {f(x)} von f(x). oo

Es gilt H {g(x)} = H {f(x)}, das heisst, die Hiille ist durch einen Reprisentanten
bestimmt. Offensichtlich gehoren alle f(x + #) zu H. Ausser wenn f(x) periodisch ist,
liegen jedoch noch andere f. p.-Funktionen in H. Es gilt ein Satz von BoHR3):

Satz (1.2): g(x) gehort genau dann zur Hiille von

f(x) NZO‘OAH ez’.dnx’
n=1

wenn
2 ; % .
g(x) NZAn 6211”}1" ez/lnx
n=1
ist, wobei

Ak, =limA h, (mod27) n=1,2,...

k—o00

und 7, eine reelle Zahlenfolge ist, so dass die Limites existieren. Es gilt dann:

g(x) = lim f(x + &) .
k—co
Einen weiteren Satz von BonRr?), der sich auf den Logarithmus einer f.p.-Funk-
tion bezieht, werden wir spiter brauchen:
Satz (1.3): Falls
fw) = o'

fastperiodisch ist, ist @(x) von der Form ¢(x) = cx + (x), ¢ ist die sogenannte
Sdkularkonstante (wegen der astronomischen Anwendung), y(x) ist fastperiodisch.
Zwischen den Fourier-Exponenten und den Translationszahlen besteht ein Zu-

sammenhang:
Satz (71.4): -
fla) ~p A,
n=1

sel fastperiodisch.
Zu jedem 0 < ¢ < 7z und jedem natiirlichen N existiert ein ¢ > 0, so dass alle
e-Translationszahlen die NV Ungleichungen

| 4,7, | <6 (mod2m) n=1,2,...N

erfiillen.
Als Umkehrung von (1.4) gilt:
Satz (1.5): 0o
) ~ 3 4, e
n=1

sei fastperiodisch.
Zu jedem ¢ > 0 gibt es ein natiirliches N und ein 0 << § < 7z (im allgemeinen nicht
die gleichen wie im vorigen Satz), so dass jedes 7, das den N Ungleichungen

| A, 7| <6 (mod2zm) n=1,2,...N

geniigt, eine e-Translationszahl von f ist.
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Mit Hilfe dieser Sitze wollen wir eine Invarianz-Definition der Fastperiodizitdt
herleiten:

Satz (1.6): f(x) ist genau dann fastperiodisch mit dem Modul M, wenn
lim f(x + 7,) = £(%)

1—>00

gleichmissig in — oo << x << + oo fiir alle {7,} mit

limAz;, =0 (mod2n)

1—>00

fiir alle A € M (und die erste Gleichung fiir andere {z;} nicht gilt). Die Charakterisie-
rung der 7; ist ausfiihrlich wie folgt zu verstehen: Zu jedem 0 < § < 7 und N gibt
es ein z,, so dass

| 4,7, <6 (mod2sm) firalle n=1,2,...N, 4,e M
gilt, falls nur 7 > 4 ist.

Bewezss.

1. Die Notwendigkeit der Bedingung folgt aus Satz (1.5). Sei f(x) fastperiodisch
und ¢ = 1/j. Dann existieren N; und 0 < §; <z, so dass jedes 7 mit

|4,7| <6, (mod2m) n=1,2,...N;

7

eine 1/j-Translationszahl von f ist. Sei jetzt eine Folge 7; gegeben, so gilt von einer
Stelle 7, an

| A,7;| <6; (mod2zm) n=1...N,.

o

Daraus folgt
[+ 1) = f) | < fir i >,

und da 7 beliebig war, die gleichmissige Konvergenz:

lim f(x + ;) = f()

2. Sei jetzt die Bedingung erfiillt. Dann gilt also:
| +7)—fl) [ <e

fiir alle x, falls
|4,7;| <06 (mod2m) n=1,2,...N.

Die 7; sind also e-Translationszahlen, und zu zeigen ist nur noch, dass sie relativ dicht
liegen. Das besagt der folgende Satz iiber simultane diophantische Approximation 22):
Seien A,, A,, ... Ay und & > 0 gegeben.

Dann gibt es N ganze Zahlen g,, g,, ... gy und eine Konstante C(e, N), so dass
jedes Intervall 7 <t < T + C mindestens eine Losung der N Ungleichungen

4,7 —g,|<e n=12,...N
enthilt.

37 H. P. A. 38, 6 (1965)
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Auf die Normalitdtseigenschaft (1.1) bezieht sich der

Satz (1.7): f(x) sei fastperiodisch. g(x) habe die Eigenschaft, dass fiir alle {4,}, fiir
die f(x + &;) gleichméssig in — oo << x << + oo konvergiert, auch g(x + %,) gleich-
massigin — oo < x < + oo konvergiert. Dann ist g(x) fastperiodisch und Modul (g) C
Modul (f) 8).

Die bisher aufgezahlten Eigenschaften der fastperiodischen Funktionen konnten
wir aus Analogie zu den periodischen erwarten. Die wesentliche Abweichung von die-
ser Analogie wollen wir jetzt besprechen, sie tritt beim Integral auf. Wir wissen schon,
dass das unbestimmte Integral einer f.p.-Funktion fastperiodisch ist, falls es be-
schrankt ist. Dasist aber im allgemeinen nicht der Fall. Im Unterschied zu den periodi-
schen Funktionen gibt es fastperiodische Funktionen mit dem Mittelwert O (sonst ist
die Unbeschrinktheit trivial) und unbeschrinktem Integral. Ein Beispiel ist:

das wir im 4. Kapitel noch ausfiihrlicher betrachten werden.
Weitere Einsicht in diesen Sachverhalt erhalten wir durch Resultate von FAVARDS).

Satz (1.8): f(x) sei fastperiodisch, M{f} =0 und das Integral unbeschrinkt.
Dann gilt:

Fio) = [ 10 dt=o(| ]}

Es ist jedoch im allgemeinen keine Verschirfung auf O(| x |'-*) moglich, mit noch so
kleinem positiven o.
Satz (7.9): Falls sich die Fourier-Exponenten von f(x) bei 0 nicht hdufen und

M{f} = 0 ist, gilt (j)‘f(t) dt < C < oo fiir alle #.

Damit ist klar, weshalb sich die periodischen Funktionen so «harmlos» verhalten.
Andererseits verdient der Fall, dass 0 ein Haufungspunkt der Fourier-Exponenten ist,
1m folgenden ein besonderes Interesse.

Satz (1.710): Besitzt f(x) ein beschrinktes f.p.-Integral, so auch jedes g(x) €
H{f(x)}. Besitzt f(x) ein unbeschrinktes Integral, so auch jedes g € H{f}.

2. Das Spektrum fastperiodischer Potentiale

Allen folgenden Betrachtungen legen wir den Differentialausdruck
W) =—y"+Vx)y (2.1)

zugrunde, wobei V(x) reell und fastperiodisch ist. Weitere Voraussetzungen iiber V
werden wir nicht machen.

Da V(x) nach unten beschrinkt ist, ist (2.1) bei 4+ oo und — oo vom Grenzpunkt —
Typ 18). Infolgedessen definiert (2.1) einen selbstadjungierten Operator L in
L% — 0o, + o0), dessen Definitionsbereich aus allen Funktionen y € L%(— oo, + 00)
besteht, fiir die y und y’ absolut stetig und /(y) € L? ist. Ausser L werden wir noch die
von (2.1) in L?(0, + oo) und L%(0, — oo) erzeugten Operatoren L+und L-betrachten.
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Diese sind nur in einem Randpunkt singulir, fiir die Selbstadjungiertheit ist deshalb
jeweils eine Randbedingung bei 0 nétig. Die Definitionsbereiche sind:

L+: yeL? (0,4 oco) y(0) cosa + ¥'(0) sina = 0
L=:yelL? (0, —o00) y(0)cosa + v'(0) sinot = 0

mit den gleichen Differenzierbarkeitsvoraussetzungen.

Mit S = Py S’ bezeichnen wir jeweils das Spektrum dieser Operatoren, P sei das
Punktspektrum, S* das kontinuierliche Spektrum. S ist abgeschlossen. Eine oft ver-
wendete elementare Beschreibung des Spektrums stiitzt sich auf folgenden Satz von
HARTMAN und WINTNER!?):

Satz (2.7): Sei lim sup V(x) < co. Wenn

x—+ 00
y)=Ey

eine Losung y(x) besitzt, die fiir ¥ - + oo beschrinkt bleibt, so ist E € S;+ oder

y€L?0, o0) (oder beides). Jedoch gilt die Umkehrung hiervon im allgemeinen

nicht, so dass trotz E € S nurunbeschrinkte Lésungen auftreten konnen (vergleiche4.).
L+ und L~ definieren eine Zerlegung von L: Sei L’ die direkte Summe

L'=L+@ L-,

so ist L eine selbstadjungierte Erweiterung von L’. Daher folgt fiir die kontinuier-
lichen Spektren:
5r = B i S s (2.2)

Da bei fastperiodischen Funktionen + oo vor — oo in keiner Weise ausgezeichnet ist,
vermuten wir, dass die drei kontinuierlichen Spektren iibereinstimmen. Dieser Satz
gilt tatsdchlich.

Fiir den Beweis benotigen wir folgenden Satz iiber die Stérung des Spektrums bzw.
der Spektralschar 19) 28):

Satz (2.2): A sei ein selbstadjungierter, B ein beschriankter selbstadjungierter
Operator. A = [a, b] sei ein reelles Intervall.

A. Das Spektrum S, von A bestehe im Inneren von A aus Eigenwerten mit der
Summe der Vielfachheiten £ < oo. Der Abstand zwischen A und den iibrigen Teilen
des Spektrums sei grosser als 2 || B ||. Dann besteht das Spektrum S, , von 4 + B
in[a—|| B||,b+ || B|[] ebenfalls aus Eigenwerten mit Summe der Vielfachheiten .

B. Ist A€ S, so liegt in[A— || B ||, 4 + || B ||] wenigstens ein Punkt von S, ;.

C.Seia,b¢S,undd=Min{|a—4|,|b— 1]}

‘eSS4
a

e=Max{la| |b[}, 2[|B|[< o5

und seien P! bzw. P4+B) die Projektoren der Spektralscharen von 4 bzw. 4 + B
zum Intervall A. Dann gilt:

d+o+1
| P2 — PP || < =5 —(—a) || B]|.

Jetzt konnen wir unseren Satz beweisen:
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Satz (2.3): V(x) sei fastperiodisch. Dann gilt S; = S;. = S;- , und das Punkt-
spektrum von L ist leer (abgesehen von moglicherweise vorhandenen Eigenwerten,
die gleichzeitig in S’ liegen).

Beweis. Wir stiitzen uns auf die Invarianzdefinition der Fastperiodizitit (1.6). Wir
wihlen eine Folge ¢; = 0 und zugehorige Translationszahlen t;, so dass gilt:

Vix+1,)=V(x)

(der Doppelpfeil bedeutet gleichmissige Kovergenz in — oo << x < + o0). Es gilt
T; > + oo fiir 4 > oo, ausser wenn V(x) periodisch ist. In diesem Fall gilt der Satz
aber ohnehin (vergleiche 4.). Wir beweisen die Behauptung fiir L+ und wéhlen dafiir
T; > + oo.

L+ ist in L2(0, oo) definiert durch:

a2
e

l= + V(x)  y(0) cosa + y'(0) sinae = 0.

S;- sel das Spektrum, E, die isolierten Eigenwerte mit zugehorigen Eigenfunktioner
p(E,, x), die reell und normiert sein sollen:

[ (B, 2)2dn=1.
0
Wir definieren den selbstadjungierten Operator A% in L%— 7,, co) durch:
2
I = — —5;2 +V(x+1;) y(—rt,;) cosa+ v (—7;)sina=0.

Er besitzt das gleiche Spektrum wie L+, weil nur die Variable transformiert wurde
Die Eigenfunktionen sind:
w(i)(En» x) =y(E,, x + 7, .

Sie sind wegen
o0

[ T (B ]2 dx = [ [p(E,, 2)]tdx =1
0

-7;

ebenfalls normiert.
Es gilt12):
pyE,, x) -0 fiir 1 > o0 (2.3)

gleichmaéssig in jedem nach unten beschrinkten Intervall.
BY =V(x) —V({x+ 1)
ist ein selbstadjungierter, beschrénkter Operator,
|| BY || <e,,

den wir in L%(— 7;, co) betrachten.
Wir bilden den Operator L) = 4@ 4 B, Er ist definiert durch:

l=——5 +V(® v(—r1)cosa+ 9y (—1,)sina=0. (2.4)
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Sein Spektrum S; (i) ist gegeniiber S; . ein wenig gestért. Falls E€ S;. der Randpunkt
eines Teiles von S;. bzw. ein isolierter Eigenwert ist, so folgt fiir den entsprechenden
Randpunkt bzw. Eigenwert E® € S;):

1

E—e <EO<E+e. (2.5)

list bei — oo vom Grenzpunkt-Typ. Deshalb kann in (2.4) der Grenziibergang 7; - o¢
eindeutig durchgefiihrt werden, das heisst unabhingig von « und von der Art, wie
T; - oo geht?!). Dabei geht LY in L iiber. Aus (2.5) folgt mit (2.2):

S+ = S; .

Die isolierten Eigenwerte gehen in Regularitdtspunkte von L iiber: Sei ¢{}(E) die
Spektralmatrix von A®. Dann gilt in der Umgebung eines isolierten Eigenwertes E,
mit geniigend kleinem §:

VOE,, 9 = DIoME, +0) — ofl(E, - o u(E,, 2),

wobel #{)(E, x) ein Fundamentalsystem von /) y = E y ist:
wNE,0) = ul)'(E, 0) =1
uV'(E, 0) = u$(E, 0) = 0.

Fiir 7+ - oo und festes x folgt wegen (2.3) und Satz (2.2) C fiir die Spektralmatrix von
L® und schliesslich von L:

oxi(E, + 6) — Ukk(En —90)=0 k=12
und wegen

1 ij(A) (2 < 0;,;(A) o44(A)

44
auch

O;(Ey +6) — 0;(E, — 8) =0,

das heisst, £, ist ein Regularitiatspunkt von L.

Wir brauchen also von jetzt an unser Augenmerk nur noch dem kontinuierlichen
Spektrum zuzuwenden. Dieses besteht aus einer Folge von abgeschlossenen Inter-
vallen. Es gibt einen kleinsten Wert E* € S’. Dieser ldsst sich nach einem Satz von
HARTMANN und PuTNnaM 1) folgendermassen charakterisieren:

Wenn die Losungen von

Y +[E—-V(#)]y=0 (2.6)
fir

E > E* oszillatorisch
fiir

E < E* nicht oszillatorisch

sind, dann ist E* der kleinste Wert in S’.

Eine Losung heisst oszillatorisch, wenn sie Nullstellen beliebiger Grosse besitzt.
Auch hier herrschen bei fastperiodischen Potentialen einfache Verhiltnisse:

Satz (2.4): Wenn eine Losung y(x) von (2.6) zwei Nullstellen hat, so ist sie oszilla-
torisch, und die Nullstellen liegen relativ dicht.



582 G. Schart H. P. A.
Bewers. Sei y(x) eine nichttriviale Losung von (2.6) mit zwei Nullstellen:
Y(xg) = y(x1) = 0.
Wir wihlen zu ¢ > 0 eine Translationszahl 7 und betrachten die Gleichung
'+ [E—VEx+17)]y=0. (2.7)

Sei y,(x) eine Losung von (2.7) mit

vl =0  agleg = 5w

Wegen der stetigen Abhidngigkeit der Losung von den Koeffizienten existiert ein
d(e) > 0, so dass y,(x) eine Nullstelle innerhalb x;, — d < x < x, + & besitzt. Dann
besitzt y,(x — ), welches eine Losung von (2.6) ist, eine Nullstelle bei ¥ = x, + 7 und
innerhalb x;, + 7 — 0 < x < x; + 7 + 4. Auf Grund des Sturmschen Trennungssatzes
besitzt dann jede Losung von (2.6) eine Nullstelle innerhalb xy + v < x < x; + 7 + .
Da die 7 beliebig gross sind und relativ dicht liegen, ist das die Behauptung.

Wenn jede nichttriviale Lésung von (2.6) hochstens eine Nullstelle hat, nennt man
die Gleichung diskonjugiert. In diesem Fall existiert eine Losung, die iiberall positiv
ist. Nach unserem Satz sind bei fastperiodischen Potentialen Oszillation und Dis-
konjugation Alternativen. Im Spektrum haben wir also nur mit oszillatorischen
Loésungen zu tun mit Ausnahme des kleinsten Wertes (siehe unten).

Bei dieser Kenntnis konnen wir auf Oszillations- und Diskonjugations-Kriterien

zuriickgreifen:
Sei
y' 4+ Wx) y=0. (2.8)
Wenn
f W(x) dx = oo,

so ist (2.8) oszillatorisch 4).

Wenn W(x) <0, so ist (2.8) diskonjugiert.

Damit erhalten wir fiir die Lage von E* folgendes Resultat:

Sei der Mittelwert M{V (x)} = 0. Dann liegt der kleinste Wert E* des Spektrums
innerhalb

inf V(x) < E* <O0.

Der Diskonjugationsbereich ist abgeschlossen.

Uber die weitere Verteilung des Spektrums kénnen noch einige Aussagen gemacht
werden. Nach einem Satz von Purnam??) ist die Breite 4(E) der offenen Intervalle,
die nicht zum Spektrum gehoren (gaps), kleiner als:

A(E) < sup V(x) —inf V(x) .

Sie geht fiir E > co gegen Null, wofiir asymptotische Ausdriicke bekannt sind?).
Als Letztes betrachten wir das Spektrum von Potentialen, die zur Hiille gehoren.

Satz (2.5): Sei V(x) € H{V(x)}. Dann haben die zu V gehorenden Operatoren
L, L+ und L~ das gleiche kontinuierliche Spektrum wie L.
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Beweis. Seil

Vix+h)= V), i—oco.
Die von

W= — Ty VE+h), i=1,2,..

in L%(— oo, + o0) erzeugten Operatoren sind gleichmaissig konvergent gegen L. Weil
sie alle das gleiche (kontinuierliche) Spektrum wie L haben, folgt die Behauptung aus
Satz (2.2) und Satz (2.3).

3. Die kanonische Form der Losungen

In diesem Kapitel wenden wir uns der Hauptfrage zu. Wir verwenden dafiir die
funktionentheoretische Methode von WEYL?}) und TITCHMARSH?).
Wir betrachten die Gleichung

Y'+[A—V(@)]Y =0 (3.1)

tiir komplexe Werte von 4:
A=E-+iu.

Sei ¢(4, %), 6(4, x) ein Fundamentalsystem, ndmlich
$(2,0) =0(2,0) =1
¢'(4,0) =6(2,0) =0, (3.2)

so dass

W[, 0] = (4, x) 0'(4, x) — ¢'(4, x) B(4, x) = 1. (3.3)

Zunichst beschrianken wir uns auf das endliche Intervall 0 <{ ¥ < » und nehmen zwei
selbstadjungierte Randbedingungen an:

Y(0) =0 (3.4)
Y(b) cosf + Y'(b) sinff = 0. (3.5)

6(A, x) erfiillt (3.4), wir wihlen ,(2) so, dass
YO, x) = (A, ) + L (4) 6(4, %) (3.6)

der Randbedingung (3.5) geniigt. /,(4) ist eine meromorphe Funktion, ihre Pole liegen
auf der reellen Achse bei den Eigenwerten E®) des gewohnlichen Sturm-Liouville-
Problems (3.1), (3.4), (3.5). 6(E\", x) sind die zugehérigen Eigenfunktionen, die noch
nicht normiert sind. Die Pole bzw. Eigenwerte sind einfach.

Fiir zwei Losungen F(x) und G(x) von (3.1) zu verschiedenen Werten A4 und A’ folgt
aus der Greenschen Formel die wichtige Beziehung:

muxyﬁmmcmnmzuqfxﬂ_umﬁmﬂ. (3.7)
0
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W.[ ] bedeutet stets die Wronski-Determinante an der Stelle z. Wird (3.7) auf ¢®

angewandt, so folgt:
b

(A= 1) [ 904, x) yOX, ) dz = W, — W,.
0 |

Es ist W, = 0, weil beide Funktionen die gleiche Randbedingung bei & erfiillen, und
Wy = LX) — 4L(4),

also
[ 90,2 9o, ) dx = 2915 (3:8)
Fir
A=E® 4+ iu, ’=E® 444 und u, 4’ -0
ergibt sich daraus:

E® (% — fm i =h)
fg x E R x) dx = lim L&) L) (A=1)

u,u’ —0
- 1/, (A) = 1{(4) - Omn
— 1 I = — = =
Bov o T Rese &) 7,

Die Normierungskonstanten werden also durch die Residuen von /;(4) bestimmt. Die
normierten Eigenfunktionen zu (3.1), (3.4) und (3.5) sind damit:

v =V, 0(ED, ). (3.9
Die Greensche Funktion G®)(4, x, y) des Eigenwertproblems ist:

008, 2.0 04, 2) P4, y) x <y 3.10)
» X, Y = .
yO4, %) 04, y) x>y .

Sie besitzt folgende Entwicklung nach Eigenfunktionen:

(b) (b)
GO, x, ) 2 Vi E’j;)’l’ o) (3.11)

Jetzt gehen wir durch den Grenziibergang 6 - oo zum singuldren Problem {iber.
Da dieses bei + oo vom Grenzpunkt-Typ sein soll, existiert der Grenzwert

I(A) = m_(A) fir ImA + 0

eindeutig, das heisst unabhéngig von £ in (3.5). m_(4) ist eine analytische Funktion
von A, reguldr in der oberen (und unteren) Halbebene. Aus (3.6) wird

Y4, x) = ¢4, x) + m_(4) (4, x) € L2(0, co) (3:12)

ebenfalls eindeutig, das heisst, (3.12) ist bis auf Faktor die einzige Lésungin L2(0, cc)
von (3.1). Aus (3.8) ergibt sich fiir ' = A* = E — 7 u wegen m(A*) = [m(4)]*

TImm, (4)
f{qﬁl %) [2dy = 20 (3.13)
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Die normierte L2-Losung ist also:
Yo (4, x) =c (A) pt(, x) = ]/——W w4, x) . (3.14)

Ganz entsprechende Formeln gelten fiir das endliche Intervall 2 << x < 0, zum
Beispiel

P4, x) = @4, x) + 1,(A) 6(4, %) , (3.15)

woraus wir fiir 4 > — oo eine (bis auf Faktor) eindeutige Lésung in L%0, — oo) er-
halten:

v=(4, %) = ¢4, x) + m_(4) 6(4, x) € L%(0, — oc0) .
Fiir diese gilt analog zu (3.13):

0

f |y, 2) [y = — =B (3.16)
so dass -
Pl 1) = e (W) = | = g vl ) 3.17)

die normierte Losung ist. Wir berechnen noch die Wronski-Determinante
Wlps,p ] =cyc(m_—m,). (3.18)

Fiir das endliche Intervall @ < x <{ b schliesslich ist die Greensche Funktion
G@®0(2, x, y) aus (3.6) und (3.15) zu bilden. Wir erhalten:

P@(4, %) y®) (A, y)
W), ple)
G2, x, y) = Sl (3.19)
w®) (4, ) w(u) (%, )
Wipo), pm]  ~ = Y-

/
"2

Die Entwicklung nach Eigenfunktionen ,(x) beziiglich des Intervalls [a, b] lautet:

(ar b) = - Ya(®) Ya(¥)
G@b(}, x, y) nzjo o) (3.20)
Durch den Grenziibergang ¢ - — o0, b - + oo gehen wir zum zweifach singuldren

Eigenwertproblem iiber, dessen Greensche Funktion G(4, x, ¥) nach (3.18) und (3.19)
die Form hat:

y Loy (y) L oy Ayydy y
m_(A)—m_(A)  coc_ m_(A) —m_ () o
G4, x,y) = ) (3.21)
yi (A x)y_(4,9) 1 yrhr)y 4y x>
m_(A)—m (A  c.c.  m_(A)—m,(A) =Y

Diese Funktion wird bei den folgenden Uberlegungen eine wichtige Rolle spielen.
Weil m(4) + m_(A) ist (sonst wiire A ein Eigenwert des zweifach singuldren Problems),
ist G(4, x, y) reguldr in der oberen (und unteren) Halbebene. Auf der reellen Achse
treten Singularititen auf. Wir miissen das asymptotische Verhalten fiir # - 0 unter-
suchen.
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Dazu gehen wir von der Parsevalschen Gleichung fiir G aus, nach (3.20) gilt:

f’GM)]‘xV ) [Py = 2 IE, E—zu|2

x)
— 2 V’n + =

Fiir festes E’ und E” und festes x ergibt sich:

E.rr

dE
/dE/dy|G‘“’)l %, y) |2—2% f TE e

Sei jetzt — M < E' < E" <+ M, M > 1, dann kénnen wir abschétzen:
fur |E,| > 2 M:

S M 16 M
f(E E,) +u2\_/(1/215 24y < CEX S EX41

fur | E, | < 2 M:
E” 400
dE < dE _m _ m 4M+1
_/(E—E)2+u2 S J(E-E)R+u* uw S u EZ+1
E — 00
Also gilt:

gleichmaissig in a, b bei festem E’, E”, x
Deshalb gilt auch:

B deo
[AE [dy | G4, %, y) |*= O (u™)
E' —o0

und daher

e
de | G4, x,9) | = O (w72) (3:22)
"

mit Ausnahme hdéchstens einer Menge von y-Werten beliebig kleinen Masses. Aus-

fuhrlich ist fir x < y:

Gl %,3) = = [400, %) $(4, )]
o 00 ) $0, )]+ - (B, %) 04, )] (3.23)
t e (004, %) 62, 9)]
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Die Fundamentallésungen gehen bei festem x bzw. y fiir # - 0 gegen wohlbestimmte
reelle Werte. Da (3.22) fiir beliebiges x und y (dem Mass nach) gilt, erfiillen die
(eventuell singuldren) Koeffizienten in (3.23) einzeln:

E’I
1
— =1/
| f 4B | | = 0@ ) (3.24)
El
3 @
" — —1/2
f 4E | iy | = 06 (3.25)
o
E” A
m (4) . —1
Ede | = 0 ) (3.26)
und
3 & m_(h)
m (A) m_ _ 12 ,
de 1 | = 0w (3.27)
E
Diese Koeffizienten bilden die charakteristische Matrix M ;:
1 _
My() = Mall) = 2
M) = My(h) = o -t ™ (3.28)

2 m_—m,

Ihre Imagindrteile sind fiir # — 0 nicht singuldr sondern streben gegen die Elemente
o; der Spektralmatrix:
1

o;1(4) = — lim [ Im M;,(E + tu)dE
u—>0
A=[E E"]. (3.29)

Nach diesen Vorbereitungen kénnen wir fastperiodische Potentiale betrachten.
Wir verwenden dabei die bereits von FAVARD benutzte Normalitdtseigenschaft der
fastperiodischen Funktionen (Sitze 1.1 und 1.7).

Satz (3.7): Die Greensche Funktion auf der Diagonalen

_ytAa) y(4, #)
G(A, %, x) = ) = 7.0

= M;,(A) ¢*(4, x) + 2 My $ 6 + M, 02 (3.30)

ist fastperiodisch fiir Im 4 + 0.
Beweis. A. Wir wissen (3.14, 3.17), dass die Gleichung

Y+ A=V{x)]y=0 (3.31)
genau eine normierte Losung in L2(0, oo) und eine solche in L%(— oo, 0) besitzt:
wi(A %) = ¢, (4) p+(4, x) € L2 (0, o0) (3-32)

p_(A, x) =c_(A) p= (4, x) e L2 (— 00, 0) . (3.33)
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Diese sind linear unabhingig.
Sei {4} eine beliebige reelle Zahlenfolge, so dass

Vix + k) = V(x) € H{V (%)} (3.34)

(der Doppelpfeil bedeutet stets gleichmissige Konvergenz in — oo << x < + o0).
Auch die Gleichung

~

y'+A=Vx)]y=0

besitzt eindeutig die beiden normierten L2-Losungen (4, x) und ¢ _(4, x). Wegen der
Eindeutigkeit gilt:

p.(4, x) = lim ¢, (b)) wt(, x + h;) € L¥(0, o)

Y_(A, %) =limc, (h) y (4 x + h;) € L3(— oo, 0) (3.35)
gleichmdssig in jedem endlichen x-Intervall. Aus (3.35) sieht man, dass, falls zum
Beispiel 4; - oo geht, ¢; ,(h;) > oo ¢; (h;) - 0 gehen muss, damit die Normierung
erhalten bleibt. Die Art, wie die Normierungskonstanten wachsen bzw. abnehmen,
ist abhdngig von der speziellen Wahl der Folge {/;} in (3.34). Wir bilden die Wronski-
Determinante der (linear unabhingigen) Losungen (3.35):

W@Jﬂ 1;’—] :ilin;lc {CA—{-(hi) i (b)) Wipt, wol}.
Wegen der Konstanz der Wronski-Determinante folgt:

- W) 1
Bm de,, (k) 62_(h)} = e = 5 = komst.
Die Konstante ist nur von V(x) abhéngig, nicht aber von der speziellen Wahl der Folge
{h;}. Deshalb konvergiert

Lim {y* (A, %+ k) w (A x + h)} = wy, (4, x) p_(4, x) (3.36)
1—>-00 .
unabhingig von der speziellen Wahl der {4,} gleichmissig in jedem endlichen x-Inter-
vall.

B. Wir zeigen jetzt indirekt, dass die Konvergenz in (3.36) gleichmdssig in
— 00 < x < + oo ist. Dann haben wir nach Satz (1.1) bewiesen, dass w+(4, x) v (4, )
fastperiodisch ist.

Wire (3.36) nicht gleichmissig konvergent in (— oo, + o0}, so existiertenzwei Teil-
folgen %, und &; von 4; und eine Folge x;, so dass

1 wHd, 2+ k) w4, % + k) — pt(4, x; + kz) p (4, x; + k;) ‘ >0 >0 (3.37)

fur alle 7. Aus diesen Teilfolgen kénnten wir wegen der Normalitdt von V(x) bzw.

~

V(x) Teilfolgen k,, k; und x; auswihlen, so dass

Vix + %; + k) N\
Vie+x+ k) /

i

Vg +x;) = I

() e H{V(x)} .
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Auf die Gleichung mit I7'(x) und die zugehorigen 72-Loésungen kénnten wir die Schliisse
unter 4 noch einmal anwenden und erhielten das (3.36) entsprechende Resultat:
gleichmissig in jedem endlichen x-Intervall und unabhingig von der speziellen Wahl
der %;, x;, also auch

ﬂr?o fprAx+ 2+ k) (v + 2, + k) = 99,4, %) §_(4, %) . (3.39)

Fiir x = 0 bilden die beiden letzten Gleichungen einen Widerspruch zu (3.37).
Also ist p*(4, x) y—(4, x) fastperiodisch und damit auch G(4, %, x).
Nach Satz (1.7) haben wir gleichzeitig bewiesen, dass

Modul G(4, x, x) C Modul V(%) . (3.40)

Spiter werden wir sehen, dass sogar = gilt.

Wir interessieren uns jetzt fiir reelle A= E. Dabeisind die Félle, dass E im Spektrum
liegt oder nicht im Spektrum liegt, zu unterscheiden.

Satz (3.2): Sei E ¢ S’. Dann ist eine nicht ausgeartete, hyperbolische quadratische
Form der Fundamentallosungen fastperiodisch.

Bewers. Dieser Satz kann genauso bewiesen werden wie der vorige. Wegen der
folgenden Uberlegungen geben wir noch einen anderen Beweis. Nach Satz (3.1)
konvergiert

G, x+h;,x+ k) = G@, x, %) (3.41)

gleichmissig in — oo < x < + co. Nach Satz (2.5) ist E ¢ S;, wobei L der zu T}(x)
gehorende selbstadjungierte Operator ist. Also sind G und Gfiri=E reguldr. Daher
existieren Grenzwerte fiir # — 0 in (3.41):

lim lim G(E+iwu,x+h;,,x+ h)

u—>0 1—00

= lim lim G(E+iu,x+ h,x+h,;) (3.42)

i—>00 u—>0

= lim G(E,x + h;,x + h;) = G(E, x, %)

{—00
gleichmissig in jedem endlichen x-Intervall. Die Grenziibergdnge sind vertauschbar,
weil die Losungen bzw. G stetig von dem zweidimensionalen Parameter (4, 4;) ab-
hingen. Wegen der Unabhingigkeit von der speziellen Wahl der {;} schliessen wir wie
in Satz (3.1) B indirekt auf:

GE, %+ h;, x+ k) = G(E, %, %) .

Das bedeutet Fastperiodizitit von

G(E, %, x) = M1y (E) ¢* + 2 Myo(E) ¢ 0 + My(E) 6% (3.43)
Setzen wir die Werte aus (3.28) ein und untersuchen die Diskriminante, so folgt aus
my m_ 2 1 (m_+m_)?

(m_—m,)? 4 (m_—my)?’
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dass die Form (3.43) hyperbolisch ist (wir sagen absichtlich nicht «indefinit», weil
(3.43) im Diskonjugationsbereich positiv ist).

m.(E) = m_(E)

ist ausgeschlossen, weil keine diskreten Eigenwerte auftreten (Satz 2.3).

Satz (3.3): Sei E € S’. Dann ist eine quadratische Form der Fundamentallsungen
fastperiodisch, die elliptisch, parabolisch oder ausgeartet sein kann.

Beweis. Vor dem Grenziibergang # — 0 bilden wir jetzt in (3.41) den Imagindrteil:

Im G4, x + h;, x + h;) = Im G(4, %, %) . ' (3.44)

Im G = Im M,, Re ¢ + 2 Im M, Re (¢ 0)
+ Im M,, Re 62 + Re M,, Im ¢?
+ 2Re My, Im (¢ 0) + Re My, Im 62 . (3.45)

Fiir u — 0 gehen ¢2, 6% und ¢ 6 gegen reelle Werte. Deshalb gehen ihre Imagindrteile
mit O(u#) gegen Null. Beriicksichtigen wir die asymptotischen Resultate (3.24) bis
Ell

(3.27), so ergibt sich, dass nach Integration f dE die 3 letzten Terme in (3.45) mit
Ef

O(u!'2) gegen Null gehen. In den 3 ersten Termen treten die Elemente der Spektral-
matrix auf (3.29). Durch Vertauschen der Grenziiberginge folgt aus (3.44):

lim f{¢2E x 4 h;) doy(E) + 2 ¢ 0 doyy(E)

l——)OO

FONE, 5+ 1) dow(EV} — [ (GA(E, ) d(E)

+ 2 $0d5y,(E) + 02(E, %) do(E)} (3.46)

gleichmdssig in jedem endlichen x-Intervall, E’, E” fest. Wieder ergibt sich indirekt
wie in Satz (3.1) B die Gleichmissigkeit in — oo < x < + oo. Fast iiberall (in E)
existiert die quadratische Form:

a!a dol do
NE ) = i $*+ 250 60+ ,0 0%, (3.47)

die somit fastperiodisch ist. Auf der ausgeschlossenen Nullmenge kdnnen Ausartungen
auftreten.

Wir miissen noch die Diskriminante von (3.47) untersuchen. Aus

Imm,—Imm_

A = lim Im — s Jiy 0 RS

U0 m_—m, u—0 | m_—m, |

; m, -+ m_ ; Imm, Rem_— Rem,  Im m_
B=hm Im = ~—F""=_= lim = =

u—>0 2 m_-m, u—0 | m_—m, |
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erhalten wir:

: 1 I
AC— B=—lim —/ " ="= >0
#—0 Im_—m+|

wegen (3.13) und (3.16). Daher ist die Form (3.47) elliptisch, parabolisch oder aus-
geartet.

Nach diesen Ergebnissen ist es nun sehr leicht, Fundamentalsysteme fiir die
Differentialgleichung zu gewinnen. Dabei tritt die jeweils fastperiodische quadratische
Form als unbekannte Funktion auf. Diese Darstellung der Lésungen entspricht dann
vollstindig der Floquetschen Darstellung im Falle periodischer Koeffizienten und
geht in diese bei periodischem V(x) iiber.

1. Hyperbolisch-diskonjugierter Fall
Wir wihlen die Lésungen y,(x) und ye(x) so, dass die hyperbolische Form die
Gestalt
= y1(%) y2(%) = F() (3.48)

annimmt. F(x) kann wegen der Diskonjugiertheit (Satz 2.4) héchstens zweimal das
Vorzeichen wechseln. Kdme das jedoch einmal vor, so wegen der Fastperiodizitit von
F(x) unendlich oft. Also ist F(x) > 0 oder F(x) < O fuir alle x. Fiigen wir zu (3.48)

noch die Gleichung v () volx) — y’l (x) Vy(x) = 2 « (3.49)

hinzu, so ldsst sich das System elementar integrieren. Wir schreiben F(x) = ¢2(x) und
erhalten:

y1(%) = @(x) 3_qf(dtf¢2) Yo() = p(x) 3‘1[(4%’)- (3.50)

Darin ist @(x) oder « bis auf einen Faktor unbestimmt, denn die charakteristischen
Exponenten ) 1
A =limsup —log | y,(x) | £ =1,2
sind fest: 1
-42} >0. (3.51)
'

Wenn V' (x) periodisch ist, ist auch ¢(x) periodisch, weil Modul V(x) D Modul (¢?).
Dann ist

7LI=—ocM{;2}<O /'{zzocM{

+ o f ‘;% = - A x + periodische Funktion ,

und wir erhalten die Floquet-Darstellung.

2. Hyperbolisch-oszillatorischer Fall

In diesem Fall wechselt F(x) unendlich oft das Vorzeichen. Aus (3.48) und (3.49)
erhalten wir jetzt: :

w@) =+ | Fw) | em=f@m g >0
v, <0

x

yil#) = + Y F) | eJan s
vy < 0. (3.52)
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3. Elliptischer Fall
Jetzt ergeben sich aus

Vi) + y3(x) = ¢3() (3.53)
Vi Ya = Vi V2 =k (3.54)
die Fundamentall6sungen:
xdt . xdt
1) = pl) cos b [ 5 wulx) = gl sink [ (3.55)

Hierin ist wieder @(x) oder & bis auf einen Faktor unbestimmt. Setzen wir etwa

1
Mig)=1.
so ist & durch (3.54) festgelegt. Damit haben wir die Funktion E(k) definiert.
Wir gehen zu einem Potential der Hiille V(x) € H{V (x)} liber und zeigen

Satz (3.4): Sei
V(x + k) = V(x), dann folgt @(x + &,) = @(x),
und die Funktion E(k) ist fiir V(x) und 7 (x) die gleiche.
Die erste Behauptung ist die Gleichung (3.46), die zweite folgt dann aus (3.53) und

(3.54), weil Wronski-Determinante und Mittelwert translations-invariant sind und
alle Grenziiberginge kommutieren.

4. Parabolischer Fall

In diesem Fall ist eine Losung fastperiodisch, die zweite nicht:

T =1 SR
=L} |F| yZ:iV|F|J/f. (3.56)

Dieser Fall tritt in der Hillschen Differentialgleichung in den Randpunkten des
Spektrums auf.

Eine letzte Bemerkung machen wir itber die Moduln. Nach unseren Schliissen und
Satz (1.7) ist der Modul von F (x) bzw. ¢(x) enthalten im Modul von V (x). Andererseits
kénnen wir umgekehrt V' (x) durch diese Funktionen ausdriicken:

Daraus folgt:
Modul (V) € Modul (¢) .

Also sind die Moduln gleich:
Modul (V) = Modul (gj . (3.57)
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4. Beispiele

Die Resultate des vorigen Kapitels sollen an zwei Beispielen demonstriert werden,
die zwei extrem entgegengesetzte Moglichkeiten repriasentieren: Als erstes betrachten
wir ein periodisches, als zweites ein pathologisch fastperiodisches Potential.

Im Fall des periodischen Potentials kann man die Spektralzerlegung explizit her-
stellen. Daher konnen die wesentlichen Sitze (3.2) und (3.3) iiber die fastperiodischen

quadratischen Formen unabhingig vom vorigen Kapitel verifiziert werden.
Wir betrachten

y'+A-Vix)]y=0 (4.1)
mit periodischem V' (x):

Vix+d)=V(x) (4.2)
und komplexem A = E + ¢ . Wir wihlen zwei Fundamentalldsungen mit

¥1(2, 0) = ¥,(4,0) = 1
; Wy, ye] = 1. (4.3)
Y14, 0) = y,(4, 0) = 0

Bei Translation um 4 gehen diese Losungen wieder in Lésungen von (4.1) iiber:
V14, % + @) = ayy(A) ¥1(4, %) + o10(4) ¥.(4, %)
Vold, & + d) = a9:(4) ¥1(4, %) + aea(4) ¥5(4, %) . (4.4)
Aus der Translationsinvarianz der Wronski-Determinante folgt

det (x;,) =1 (4.5)
und weil V(%) reell ist

o; 5 (A%) = [o;(4)]*. (4.6)

Wir wollen die Eigenelemente der linearen Transformation (4.4) bestimmen. Die
charakteristische Gleichung

a>—2sa+1=0 25 =0y + %y (4.7)
besitzt die Losungen

— a4yt a,=2s ,
Ga=s+st—1 (4.8)
a;as=1.
Ausser wenn s reell ist und

s2—1 <0, (4.9)

was nur fiir Werte von A im Spektrum der Fall ist (vergleiche unten), gilt folgende
Unterscheidung der Eigenwerte (4.8) nach der Grosse ihres Betrages:

la, | >1, |a_|<1. (4.10)
Die zugehoérigen Eigenlésungen sind:
M = ¥y ~T ml;z(l) Va (4.11)
mit
yilh 2 +d)=a,(A) y. (4 %) (4.12)

38 H. P. A. 38, 6 (1965
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und _
My g = —20 L (4.13)

Aus (4.10) und (4.12) schliessen wir:
V44, %) = y1 + my(4) ¥, € L2(0, — o0)

Y&, x) = y1 + my(A) y5 € L*0, + o0) (4.14)
und daher
mo ) =my= "2 o () = my = itai&. (4.15)
21 21

. Damit erhalten wir die charakteristische Matrix:

1 _ Ooy Go1
Mll(ﬂ)_ m_—m, - a,—a_ - 21/52_1
1 m, +m_ 5 —
Mal) = M®) = 5 = = 05 (+.16)
. mm_ et
R e e

Wir sehen, dass die Bedingung (4.9) das Spektrum charakterisiert. Aus der Theorie
der Hillschen Differentialgleichung weiss man?3), dass (4.9) fiir eine Sequenz abge-
schlossener Intervalle

E,<E<E;, E,<EKE,,...
gilt. Dann ist

Vst —1 = (=) i}1 -2 firr By, <E <Ey,p, (4.17)
und wir bekommen aus (4.16) die Spektralmatrix:
2o Kgg — O
do  (=1)"+ 1 21 22 11
iE = 4n Jioe ( > | (4.18)
Ogg — Oyy  — 2 Oy

Es liegt ein rein kontinuierliches Spektrum vor. # ist der Bandindex.

Jetzt wollen wir die periodischen quadratischen Formen bestimmen und beginnen
mit dem hyperbolischen Fall. Falls E ¢ S ist, setzen wir a,_ = ¢** und erhalten aus
(4.11) und (4.12):

+oax

Yo =€ u, (x) =y, +mgy,.

u (x) sind periodisch. Dann ist

Yoy = (V1 + m_ys) (yy + my vs) = Y2+ (m, + m_) Yy Yo+ M M_ Y3

periodisch, und ebenso

VeV M, y? +2M, v,y + My, y;

m_—m,

in Ubereinstimmung mit Satz (3.2) und Gleichung (3.43). Falls E € S ist, setzen wir

a.2 = e*** und erhalten

¥y, = g u, (%) =y, + M55 - (4.19)
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u, (x) sind periodisch. Jetzt ist der Betrag von (4.19) periodisch, also
(Rey,)* + (Imy,)? = (v, + Rem, y5)% + (Imamy y,)?

— %31

~y1+ ’*%3’2———3’2

Multiplizieren wir noch mit
(=)™ 2oy

 4an l/]___szr ’

so 1st dieses gerade
do'n

f(E,x) AE 1_[‘2 9013 Y1V + -

doyy
dE yz

in Ubereinstimmung mit Satz (3.3) und Gleichung (3.47). Damit sind die allgemeinen
Sitze tiir periodische Potentiale verifiziert. |

Das zweite Beispiel soll auf die Besonderheiten hinweisen, die auftreten kénnen,
wenn 0 Haufungspunkt des Moduls von V' (x) ist. Wir gehen von der Funktion

o

f) =) 5 cos ¥ (4.20)
aus. Weil © " \
2‘;@2— =[(2) = 5 (4.21)

-1

3

eine Majorante ist, ist (4.20) fastperiodisch. Der Mittelwert ist:
M{f(x)}=0. (4.22)

Wir koénnen (4.20) wegen der gleichmissigen Konvergenz gliedweise integrieren und
erhalten:

ff t) dt = " sin —, (4.23)

n

gleichmaissig konvergent in jedem endlichen Intervall. Jedoch konvergiert (4.23) nicht
gleichmdssig in — oo < x < + oo, F(x) ist fiir x - co unbeschrinkt:

limsup F(x) = + oo, liminf F(x) = — o0 (4.24)

X—>00 X—00

und folglich nicht fastperiodisch.
Um das einzusehen, betrachten wir eine Teilsumme

N
Fy@) =) -sin " mit N=4m 1. (4.25)
n=1

Jeder Summand in (4.25) ist periodisch mit der Periode 2z %, F y(x) ebenfalls mit der
Periode
Py=2n[1,2,..N], (4.26)

wobei [1, 2, ... N] das kleinste gemeinsame Vielfache der Zahlen 1, 2, ... N ist. In
einem x-Intervall der Lange Py wird jede mogliche Lage der Perioden der einzelnen
Summanden relativ zueinander genau einmal eingenommen. Fiir die Summanden mit
n=4v+1,v=0,1,... mexistieren Stellen x = 7/2 (4 u + 1), so dass zum Beispiel
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die Maxima koinzidieren. Unter diesen Koinzidenzstellen gibt es mindestens eine %,

an der alle iibrigen Summanden positiv sind. Dort ist
Z 1 1 "H
Fabo) > 20 507 > % 20

was fiir N > oo wie die harmonische Reihe divergiert.
Aus (4.20) bilden wir

21 72 v 1 um -y o
g(x):22%2-cos%+f§~=ZE2—8”)+—3—>0
1

n+0
und setzen 1
® g(x)
" 2
Vix) - E=% + 2.
® AL R

Nach der Parsevalschen Gleichung ist

1 1l a6
IW{—(#-,;—} =2 El Py + 5 = Zgﬂi
und durch partielle Integration:

M {"”} M {‘?)'21 > 0.
¢ *
Weil V(x) den Mittelwert O haben soll, ergibt sich aus (4.29):

- [ 6 4 9
E—M{¢2}+45na

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

und
45 T p'2
2 . 2
T T em |E+M{¢2H'
Durch die Gleichungen (4.27), (4.28), (4.29), (4.32) ist unser Potential bestimmt:
30727 "
Vioj=aight 8-+ B

Nun kénnen wir zu den einzelnen Fillen Beispiele geben:

1. Hyperbolischer Fall
Sei 3
E<—-M {"’—2}
@

so ist nach (4.32) « reell, und die Losungen lauten:

% x
@) = = exlstt ) — 2 oL sa

Ve Ve

Sie sind diskonjugiert, und es existiert keine Losung der Form

e** ulx)
mit fastperiodischem #(x).

(4.33)



Vol. 38, 1965 Fastperiodische Potentiale 597

2. Elliptischer Fall
Sel 5
E>—M##,
14
so ist o« = 7 &, und die Losungen sind:

x . x

i) = L cos kfg at  yu(x) = 1 sin kfg dt .
Ve Ve

Es existiert keine Losung der Form

mit fastperiodischem #(x).

3. Parabolischer Fall

¢
B - M{T,
so lauten die Losungen:

1 dt 1 i
y1(x):¢:'i/§>0 3’2(x):99f?=%:fgdt.

y1(%) ist fastperiodisch, y,(x) ist unbeschrinkt. Der parabolische Fall bildet hier in
gewissem Sinn den Ubergang vom hyperbolischen zum elliptischen. Dass dieses nicht
immer so ist, zeigt das folgende Beispiel.

Se1

4. Ausgearteter Fall
Wir wihlen:

Vi) =) + 2100 — 5 C @)
und . )
E=—gl5=""T10"

Eine Lésung ist dann .
i (x) = Jroa _ o> g

Sie ist diskonjugiert und unbeschrinkt. Weil andererseits der charakteristische
Exponent ] 1
lim sup — log | yy(x) | = M {f(x)} =0

x—>00 X

ist, folgt, dass E der kleinste Wert E € S” ist (3.51). Die zweite Fundamentallésung
lautet: B
e @
Va(%) = ¥ e
Sie ist ebenfalls unbeschriankt. Es existiert keine beschriankte Losung, denn wire y(x)
eine solche, so miisste auch y'(x) beschrankt sein!?). Dann wire wegen (4.24) aber

lim inf [y; " — ;91 = 0.

Das ist unméglich, weil die Wronski-Determinante konstant ist.
Die Umkehrung von Satz (2.1) gilt also im allgemeinen nicht.
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5. Physikalische Diskussion

Als Anwendung unserer Resultate wollen wir die Bewegung eines Elektrons in
einem fastperiodischen Potential

Vi) =) A ' ¥ + kk. (5.1)
P

untersuchen (% & bedeutet den konjugiert komplexen Ausdruck). Das System sei un-
endlich gedacht. Wenn der Modul von V() diskret ist, liegt ein periodisches « Super-
gitter» vor, und wir erhalten die Blochsche Theorie. Diese spezielle Moglichkeit ist
stets mit eingeschlossen, doch liegt unser Interesse beim allgemeinen Fall: Wenn
V(r) wenigstens zwei rational unabhingige Fourier-Exponenten besitzt, ist der Modul
tiberall dicht. Das wollen wir annehmen.

Simultan mit (5.1) betrachten wir die Hiille:

H{V(n}={V(n}. (5-2)

Nach Satz (1.2) ist das ein Ensemble von Potentialen

Vir)=23 Age'® e %" + k k. (5.3)
R
mit
d,=lmA, h,(mod27), k=1,2,..., (5.4)
1—00

wobel {ki} irgendeine reelle Zahlenfolge ist, so dass (5.4) existiert. Das bedeutet
stochastische Phasen &, in (5.3) in folgendem Sinn: Wir wihlen eine Basis der {/,},
das heisst, eine endliche oder abzdhlbar unendliche Menge

A Ay, i h, . (5.5)

v

von linear unabhingigen 4,, so dass jedes 4, als endliche Linearkombination
Ak:7k1 ll+yk2l2+ “a +7kmk ka (5-6)

mit rationalen 7, ; dargestellt werden kann. Nach dem Kronneckerschen Approxima-
tionssatz miissen die Phasen d; in (5.4) dann folgendermassen gewdhlt werden: Die
Phasen 6% zu den linear unabhingigen 4, sind unabhingige stochastische Variable
(wir nehmen zum Beispiel Gleichverteilung mod 2 an), die Phase eines linear ab-
hiangigen Fourier-Exponenten (5.6) ist:

Harmonische sind kohdrent. Nach den Sétzen (2.5) und (3.4) sind das Spektrum und
die Funktion E (%) fiir alle Potentiale der Hiille die gleichen, das heisst unabhéngig von
den stochastischen Variablen. Das System besitzt also gut definierte Zustidnde.

Um zu veranschaulichen, wie dieses Modell auf reale Verhiltnisse zutreffen kann,
betrachten wir ein Kristallgitter, dessen Ionen Temperaturschwingungen ausfiihren.
Als Potential kénnen wir dann ansetzen:

Vir,8) = Volr) + 3 Cpe*u" =19 1 k k. (5.8)
k
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Vo(r) ist das ungestorte periodische Potential, w, und /1, sind Phononfrequenzen
beziehungsweise -wellenzahlen. Um ein zeitunabhingiges Potential zu bekommen,

setzen wir: ,
f—ty 4 (5.9)
VF

vp ist die Fermigeschwindigkeit. Dann erhalten wir das folgende Pseudopotential

V() =Volr) + ) Cre sl eu” + k& (5.10)
k

mit linear unabhingigen A, = A, — wfvp. Die klassische Gleichung (5.9) und das
Pseudopotential (5.10) sind dann gerechtfertigt, wenn wir ein Wellenpaket so kon-
struieren konnen, dass (a) das Elektron an der Fermigrenze einen Impuls kleiner
relativer Unschérfe besitzt und (b) das Pseudopotential innerhalb des Wellenpakets
angendhert mit dem wirklichen Potential (5.8) iibereinstimmt. (a) ist der Fall, wenn
wir ein Wellenpaket der rdumlichen Ausdehnung / so wihlen, dass

mopg> Ak~
oder

R
Ep> —, (5.11)

wo 7 = [[vp die Durchgangszeit des Wellenpakets durch einen festen Raumpunkt
bedeutet. (b) ist erfiillt, wenn
w, Tl

Beides ldsst sich befriedigen, wenn v so gewihlt werden kann, dass

h 1

Das ist in der Tat moglich, weil fiir Phononen die 1/w, mindestens von der Grossen-
ordnung 10-13 sec sind und andererseits in typischen Metallen, die wir im Auge haben,
h|Ep ~ 10715 — 10-16 sec betriigt.

Unserer Diskussion legen wir die Lésungen (3.55) zugrunde:

g’ Ll
@) =g cosk [ 5, v —g@sink [ 512)
1
th }=1, 5.13
1 @ ( )
damit % eindeutig bestimmt ist. ¢(x) ist eine fastperiodische Funktion mit dem Modul

des Gitters. Weil
@2(x) = y3(x) + y3(x)

Wir setzen

ist, gilt
kf—~*nN (5.14)

wobel N(x) die Zahl der Nullstellen einer reellen Losung von der unteren Grenze an
bis x bedeutet. N(x) ist also die Verteilungsfunktion der Nullstellen, die durch (5.14)
noch sinnvoll interpoliert ist.
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Nach dem Sturmschen Vergleichssatz nimmt die Zahl der Nullstellen in einem
festen endlichen Intervall monoton mit E zu. Daraus folgt wegen (5.13), dass &
monoton mit E wichst. Die natiirliche Beschreibungsweise fiir Elektronen (im Gegen-
satz zu Phononen) ist demnach das ausgedehnte Zonenschema.

Wir bilden jetzt aus (5.12) die komplexen Losungen:

x x
(%) = @, gikf(dt/tﬁi} tp;:(x) = @, 6—ikf(dt/¢,2c)_ (5.15)

Thr Betrag ist fastperiodisch, er ist durch (5.13) noch nicht normiert, denn nach der
Schwarzschen Ungleichung gilt:
1

2 Y
M > 51y

Der Modul von g, (x) ist iiberall dicht. Daher ist Null ein Haufungspunkt, und wir
miissen mit zwei verschiedenen Méglichkeiten rechynen, von denen bei einem diskreten
Modul nur eine vorhanden ist.

Im einen Fall kann y,(x) fastperiodisch sein. Nach Satz (1.3) ist dafiir notwendig
und hinreichend, dass

(5.16)

k/¥—+k + ) (5.17)

gilt, wobei f(x) eine fastperiodische Funktion mit dem Mittelwert O ist. Es muss also

| (dt]@?) — x beschrinkt sein. y;(x) hat dann die Form
0

Pulx) = uylx) ek, (5.18)
(%) ist fastperiodisch, komplex. Die Nullstellenzahl, von 0 an gezihlt, ist:
nw Nx)=kx+ 0(1), (5.19)

ihre relative Schwankung ist normal: AN/N = O(N~!). Eine konstante Nullstellen-
dichte ist fiir ebene Wellen und (bis auf mikroskopische Schwankung) fiir Bloch-
l6sungen charakteristisch und deutet auf konstante Aufenthaltswahrscheinlichkeit

hin. Wir werden sehen, dass die Losungen (5.18) sich ebenso verhalten, und nennen
diesen Fall s-Fall.

Im anderen Fall (n-Fall) ist y,(x) nicht fastperiodisch. Dann muss [ (d¢/@?) —x un-
beschrankt sein. Nach Satz (1.8) gilt fiir die Nullstellenzahl: h

aNx =kx+0x%, 0<<a<l. (5.20)

Ihre Schwankung ist unbeschrankt: AN = O(N1—2).
Wir schreiben die Losungen (5.15) in der Form

r

Wilr) = A) %7, A,00) = gyfp) eik] D0 (5.21)

und berechnen die Aufenthaltswahrscheinlichkeit eines Elektrons im Zustand & fiir
das Gebiet 0 ... X. Dazu wird die Schrédinger-Gleichung fiir v,

02 2
ik 4 S B — V()] =0 (5.23)
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nach % differenziert

2m dE 02 Owk 2m

- O‘Pk
Ve T T o e o BTV,

und (5.21) eingesetzt:

2 m dE N - Otpk . dz'lpk 02 ikr aAk 2m _ owk
‘h"z—’lpkjd—k—— —2?«0—1""17 072 _Fy—é— (3 k o )._H 72 (E V) ‘“"_ak
2m oy 0% iky 04
- =20 2T E )y, — In gy O (e kuokk)
_ - Oy 0 2m _ ikr 04k
— i g 2 V)] (e = ) (5.24)
1. 2. 3.

Diese Gleichung multiplizieren wir mit und integrieren iiber » von 0 bis x. Der erste
Term rechts liefert:

x

kb ; 0 ot
_ZZf’ll):T;!:,de: f(ip:—(;ik—wk )drmz(pk
0 0

—~2kx—chki

Der zweite Term in (5.24) wird zweimal partiell integriert:
J 0? 04
Vi g (0% i) dr
0

_ * 0 g OAk ik OAk ink ikr _OA’C Ozwk
- [ (o ) - e e are ok o

4,

Beim Einsetzen addieren sich der 3. und 5. Term zu Null, weil y; die Schrédinger-
Gleichung erfiillt:

2 dE

;;ﬁ /‘l%lgd""z"ex_?%

0

- [yfz g; (eikr 0{*;11;) — i O:;ik Og;,k ]0. (5_25)

Die Klammer ergibt ausgerechnet:

% ()Ak sk dzAk OA‘;!C OA

E " or ok Ok 07

[ 1=2ikA" + 4 (5.26)

Falls A,(r) periodisch ist, gibt sie keinen Beitrag, sofern x ein Vielfaches der Gitter-

periode ist. Wir setzen den Wert fiir A,(7) aus (5.21) ein und erhalten, indem wir alles

ausrechnen: B

1 0 1 ‘
[ ] =+~2k[(—§——1)d7—2k2()—k€ ((pg—l)dm
— [k~ o e+ T T (5.27)
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Das Auftreten der Integrale ist wesentlich.
Insgesamt erhalten wir aus (5.25):

d Rk dk "1

1. 2.

—0-- ’ __L — 1 0py Oy . 0%p; *
+ b f(cpg 1) Wt 7% [W or PR oron dk]o}‘ (5.28)
0
3. 4,

x ist der Hauptterm, die Integrale bestimmen die Fallunterscheidung, der 4. Term ist
stets fastperiodisch.

Im s-Fall sind nach (5.17) alle Terme ausser x fastperiodisch. Es existieren also
relativ dichte Translationszahlen beliebiger Giite. Wahlen wir fiir x eine Folge von
e-Translationszahlen t;, so ist:

[ 1w Pdr =M (g} (v, +0), [0] <e (5.29)
0 i=1,2,....
¢ kann durch geeignete Wahl der 7, beliebig klein gemacht werden. Weil die 7, relativ
dicht liegen, besitzen sie einen wohlbestimmten mittleren Abstand a, der als mikrosko-
pische’ Grosse anzusehen ist. Die Aufenthaltswahrscheinlichkeit ist dann bis auf
Schwankung tiber Distanzen der Grossenordnung a iiber das Gitter konstant.
Im n-Fall sind die Integrale in (5.28) nicht fastperiodisch. Dann gibt es keine relativ
dichten Translationszahlen, die Aufenthaltswahrscheinlichkeit schwankt {iber

makroskopische Distanzen. Fiir x - co nimmt die Schwankung im Gegensatz zum
s-Fall unbeschriankt zu (Satz 1.8):

[ 1wk |2dr = M {gi} x + O(x%)
0
0o, (5.30)

Ein weiterer Unterschied zwischen s- und #n-Fall zeigt sich bei Betrachtung der
Streuung am f.p.-Potential. Wir wihlen als Anfangszustand ein normiertes Wellen-
paket ¢(r, 0) und entwickeln nach Eigenfunktionen yz des zum f.p.-Potential ge-
hérenden Hamiltonoperators:

o) = [ (s, @) vilr) do(E), t=0.

Wir wollen die Impulsiibertragung bei dieser Wechselwirkung untersuchen. Deshalb
bilden wir den Erwartungswert des Impulses zur Zeit ¢:

(@ | Ploy = (yp, 9)* (yg, @) e EE 2 Py, dr do(E) do(E')  (5.31)

und fragen, wann dieser zeitlich konstant ist. Dafiir muss gelten:

f vy Pyy dr ~0(E" — E) (5.32)
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innerhalb des Energiebereiches des Wellenpaketes. Weil der Impulsoperator durch
ebene Wellen diagonalisiert wird, muss g notwendig fastperiodisch sein:

Pe(r 2, A,( (5.33)

Im #-Fall ist der Impuls also nicht erhalten. Im s-Fall miissten fiir (5.32) noch die
Fourier-Exponenten A, (E) in (5.33) bei verschiedenem E alle verschieden sein, denn

MZA An(E") O [A,(E") — A, (E)] 2 7.

Die 1,(E) haben nach (5.18) die Form 4,(E) = k(E) + 4, die 4, sind konstante F-
Exponenten aus dem Modul des Gitters. Weil £(E) monoton ist, gilt tatsachlich

A(E) = A,(E') fir E' + E .

Das ergibt den Hauptterm (5.32). Fiir gewisse E' = E + ¢,, ist jedoch eine Beziehung
I(E) = A, (E + ¢&,), m + n moglich. Dadurch entstehen Korrekturterme in (5.32):

[ g Py dr = By(E)8(E' — E) + By(E)0(E' — E —¢) + ...
(5.31) wird dadurch zeitlich fastperiodisch und nicht exakt zeitlich konstant:

@ | Pled>=p+3 B,e Mnt [ (e, 9)* (s, ,¢) do(E). (5.34)

Die Fastperioden 7 der zeitlichen Schwankungen haben die Grossenordnung 7 =~
h/e, . Mittelt man iiber Zeiten T >> 7, so ist der Impuls erhalten. Diese Mittelung ist
aber wegen der Unschirferelation fiir die Energie geboten: Um nidmlich den Anfangs-
zustand ¢ bis auf eine Unsicherheit < ¢, zu bestimmen, ist eine Messzeit T > 7
erforderlich. Damit ist der Zeitpunkt ¢ der spiteren Impulsmessung gegeniiber der
Energiemessung um 7" unscharf, dem wird durch die Mittelung Rechnung getragen.
In diesem Sinn gilt im s-Fall Impulserhaltung.

Im n-Fall wird (5.31) nicht f. p. in £. Dann konnen die Impulsschwankungen durch
Mittelung {iber mikroskopische Zeiten nicht beseitigt werden, der Impuls ist zeitlich
echt verdnderlich. Das Gitter muss Impuls aufnehmen. Im #-Fall kann daher ein
elektrischer Widerstand auftreten, was unsere Bezeichnungsweise begriindet.

Schliesslich muss der Einfluss der Phasen untersucht werden Sei T;( ) ein Potential
aus der Hiille V(#) € H {V(7)}, so folgt nach Satz (3.4) @(r) € H{gp(r)}. Nach Satz (1. 1())

besitzt | 692 bzw. j ((1/g?* — 1) daher das gleiche asymptotische Verhalten wie j @?

bzw. | ((1/¢* — 1). Die Fallunterscheidung ist also phasenunabhingig, der #-Fall setzt
unabhingig von den Phasen ein.

Auf die Gleichung (5.28) soll noch einmal hingewiesen werden. Mit Hilfe der
Schwarzschen Ungleichung (5.16) folgt:

1 dE hk

W aE =~
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Das bedeutet, dass die Gruppengeschwindigkeit im fastperiodischen (und natiirlich
auch periodischen) Potential stets kleiner ist als die Gruppengeschwindigkeit fiir ein
freies Teilchen mit gleichem £&.

6. Anhang
Stepanoff-fastperiodische Potentiale

Die Ergebnisse iiber gleichmissig fastperiodische Potentiale kénnen sofort auf die
weitere Klasse der Stepanoff-fastperiodischen Potentiale ausgedehnt werden.

Eine Funktion f(x) (der Klasse L?) heisst Sf-fastperiodisch, wenn die Menge der
SP-Fastperioden zu jedem & > 0 relativ dicht ist!)?%). Eine S?-Fastperiode 7 ist defi-

niert durch:
x+1

swp [+ [ 1/ +0—f0) Pay]P <o, p>1 (6.1)

—00<x< 400

x

mit festem endlichen /. Die Wahl von / ist unwesentlich, wir setzen / = 1.

Die Eigenschaften der S?-f.p.-Funktionen entsprechen weitgehend denen der
gleichmdssig {. p.-Funktionen, wenn man die Metrik der gleichmdssigen Konvergenz
durch die S#-Metrik ersetzt. So ist zum Beispiel ein S#-(f.p.)-Potential V' (x) S#-be-

schrankt:
x+1

sup [ | V(y) [P dy <K < oo (6.2)

x

und S#-normal?): Jede reelle Folge {4,} besitzt eine Teilfolge {A;} mit:

x+1
sup [ | V(y +h;) —V(y) [Pdy -0 fiir i >o0. (6.3)
Tatsdchlich wird bei den Beweisen in Kapitel 2 und 3 die gleichmissige Konver-
genz bzw. Beschranktheit nie voll ausgenutzt. Um den Grenzpunkt-Fall zu garantie-
ren, geniigt die wesentliche Beschrianktheit (6.2) von V(x) (vergleiche 6)). In Satz
(2.3) und (2.5) ist die Konvergenz dem Mass nach (oder die Konvergenz fast iiberall
einer Teilfolge) hinreichend, welche durch

r+1
sup [ | V(y+7,) — V(¥) |? dy -0 fiir 4 >o0
gesichert ist. Fiir den Satz (3.1) reicht die Konvergenz dem Mass nach (6.3) ebentfalls
hin. Das erkennt man beim Ubergang von der Differentialgleichung zu einem System
von zwei Integralgleichungen (vergleiche 2%)). Die Sdtze (3.2) und (3.3) samt ihren
Konsequenzen gelten deshalb allgemeiner:

Satz. Das Potential in der Sturm-Liouville-Gleichung sei S#-fastperiodisch. Dann
ist eine quadratische Form der Fundamentallssungen gleichmissig fastperiodisch.
Im Spektrum ist diese elliptisch, parabolisch oder ausgeartet, sonst hyperbolisch. Die
Losungen haben die frithere Form (3.50), (3.52), (3.55) oder (3.56).

Die physikalische Bedeutung dieser Erweiterung liegt darin, dass allgemeinere
Storungen der Periodizitit zugelassen werden koénnen, als sie durch gleichméssig
(f.p.)-Funktionen beschrieben werden. Nach (6.1) werden die Werte bei Translation
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lediglich im Integralmittel imitiert, nicht mehr punktweise, wie bei gleichmissig
fastperiodischen Funktionen. Dabei kann man an Kristallgitter mit Fehlstellen
denken.
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