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Algebraic Aspects of Crystallography
Space Groups as Extensions

by Edgar Ascher

Institut Batteile, Genève, Switzerland

and Aloysio Janner
Instituut voor Theoretische Fysica, Katholieke Universiteit, Nijmegen, Nederland

(24. III. 65, modilied introduction 12. V. 65)

A-dimensional space groups G" axe obtained from extensions of a finitely generated
free abelian group U" by a finite group K, with cp: K -> Aut(C7") a monomorphism.
Conversely, any group Gn appearing in an extension 0^-Un->G"^-K^-l with cp

as above is a «-dimensional space group. Fo determine all space groups of a given
dimension, one has to calculate the second cohomology group H^(K, Z"), taking for
the pair (K, cp) one representative from each arithmetic crystal class. Isomorphic space
groups belong to the same second cohdmology group ; they are related by automorphisms

x °f 2,n that belong to the normalizer of cp(K) in G L(n, Z). If, furthermore,
Xe S Lfn,Z), the space groups are identified, otherwise they form enantiomorphic
pairs. Fhe elements of the theory of group extensions as far as needed in this paper are
outlined in an appendix, and morphisms of group extensions are discussed in some
detail.

Introduction

Space groups are at the basis of our understanding of the physical properties of
crystals. Well-known since the work of Fedorov and Schönflies, of Bieberbach1)
and Frobenius2), they have been the subject of several detailed studies (we cite only
those that have been particularly useful to us3)4)5)) and still continue to occupy an

important place in present-day research. Although everything about these groups is

implicitely known since the beginning of this century, an explicit and detailed
knowledge of their algebraic structure is valuable for a theory of physical phenomena
in crystals.

Fhere are 230 space groups in three dimensions. None is a direct product of
rotations and translations (contrary to what may be read in some recent publications),
but 73 of them are semi-direct products of their rotational and translational parts.
Fhe structure of the remaining 157 space groups may be given a precise algebraic
characterization through the concept of group extension, of which the semi-direct
product is but a special case.
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It is well known that the translations (the free abelian group with three generators)
form a normal and maximal abelian subgroup T of a space group G and that the
quotient GjT is isomorphic to a so-called abstract crystallographic point group K.
Now every group G with the property GjT K is an extension of the group T by a

group X6)7)8). Fhus every space group is an extension of the group of translations T
by an abstract crystallographic point group K. Fhe remarkable feature, however, is

that the converse is also true, namely that any such extension is a space group10).
Furthermore it turns out that all inequivalent space groups belonging to a given
arithmetic crystal class form an abelian group, denoted H^fK, T) and called the
second cohomology group u) 12). Here cp is an one-to-one homomorphism (monomor-
phism) from if in to the group GLf3,Z)oi three-dimensional integer matrices with
determinant fz 1 and cpfK) is a representative of the given arithmetic crystal class.

Consequently one finds exactly all inequivalent space groups by calculating the second

cohomology group for each arithmetic crystal class.

It thus becomes manifest that the theory of group extensions, together with the
pertinent part of homological algebra, is a natural framework for the theory of space

groups and their representations9). Fhis program will be carried out in a series of

papers, for which this first one should lay the foundation.
In subsequent publications it will be shown that non-primitive translations, a

characteristic feature of space groups, arise quite naturally when the latter are

presented as group extensions. Fhe determination of the possible translations
associated with the elements of an abstract crystallographic point group K leads to the
usual method of constructing space groups by solving "Frobenius congruences"2).
Fhis method will be shown to be equivalent to that given here, viz. the determination
of all inequivalent extensions19). It will also be demonstrated that taking explicitely
into account the structure of space groups as extensions gives the theory of their
representations greater transparency.

Lately an interest has arisen in generalisations of space groups among which the
magnetic (or black and white) space groups23) are the simplest ones. It will be shown
that the theory of group extensions is a reliable guide for all these cases.

Finally it should be mentioned that in the research on the symmetries underlying
elementary particle physics, group extensions play an important role24)25). Fhe study
undertaken in this and subsequent papers should prove instructive also in this field,
where the problems are less accessible to intuition than is the case for crystal physics.

1. Space Groups as Extensions
In this section, we want to show that «-dimensional space groups appear in

extensions of a finitely generated free abelian group U" by a finite group K, with
cp:K+>- Aut(L7") a monomorphism, and that any such extension gives «-dimensional
space groups only. Fhe following proposition shows that the fact of cp being a

monomorphism is equivalent to U" being maximal abelian in the extension.
x a

Proposition 1. Let 0^^4^G—^P->lbean extension with A abelian. Fhe
homomorphism cp : B -A- Aut(^4) is a monomorphism if and only if the image x A is a

maximal abelian subgroup of G.

Proof: Let x A be maximal abelian in G. Fake g e G. If gfx a) fx a)g, for any
a e A, then g e x A (since the group generated by x A and g is abelian, and thus
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contained in x A). Let x be an element of Ker cp. By definition (see A7) :

x fcpxo a) rfx) • x a • rfx)"1 (1.1)

Consequently, rfx) ¦ x a ¦ rfx)~x x a, since cp x is the identity automorphism. Fhen
rfx) ex A and x e e B; in other words: cp is a monomorphism.

Suppose now cp is a monomorphism, and let g e G commute with any x a, (a e A).
Fhen x a gfx a) g_1 x (epa go a), i.e. cp a g is the identity monomorphism. Fhus,
a g se B; consequently, g ex A, showing that x A is maximal abelian in G.

Fhere is another property related to normal, maximal abelian subgroups that we
shall use.

Proposition 2. If, in a commutative diagram with exact rows :

a- ¦ A
X
-> G

a
B

Aj /4 \r
¦A' -> G' -> B'O-^A'-^-G'-^ B'-> 1

x' a'

A' is abelian, x A is maximal abelian in G and pi is a monomorphism, then v is a
monomorphism.

Proof : Let r be a choice of representatives for the cosets of x A in G, and let
xe B. Fhen, unless x e, pi rfx) does not belong to Im ^'. Indeed, if b' e A', then
pi rfx) x' b' leads to

fi \xa • rfx)] — x' Xa ¦ x' b' x'fX a • b') x'fb'- Xa) fi [rfx) • xa]

which is in contradiction with x A being maximal abelian in G. Fherefore, a' pt rfx) e

entails a e. Now a' pi rfx) v a rfx) v x. Fhus, v x e' entails x e, i.e. v is a

monomorphism.

'Definition 1. Fhe euclidean group, the group of rigid motions of «-dimensional
euclidean space, i. e. the group that leaves the euclidean metric invariant, is the semi-
direct product given by the extension :

0^ Rn^>EnX 0(n, RJ -> 1 fcp') (1.2)

For the mapping cp' of the extension, we take the natural monomorphism (i. e. the
injection of a subgroup) of Ofn, R) into Aut(P"), the group of automorphisms of the
abelian group R" R x R X X R («factors). By Ofn, R), we mean the orthogonal

n

group of the quadratic form 2 r\ with r{ e R. Fhe abelian group Rn may also be given,
t-i

in a natural way, the structure of a «-dimensional real vector space. Let G Lfn, R) be
the group of automorphisms of the real vector space Rn. Fhen generally G Lfn, R) C
Aut(P"). In our case, however, since cp' is the natural monomorphism, we have
cp'fOfn, R)] CGL(n,R).

An infinite crystal admits, by definition, only discrete translations ; therefore, the

group of rigid motions of an infinite crystal, the space group, is a subgroup of the
euclidean group that contains only discrete translations. More precisely, we have:
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Definition 2. A «-dimensional space group G" is a subgroup of E" satisfying the
following conditions :

(a) U" DJLf- RnnG" S Z" (group isomorphism),
fß) the elements of U" generate R" considered as real vector space.

Proposition 3. Fhe subgroup U" C G" of Definition 2 has the following properties :

(i) U" is free abelian (of rank w)

(ii) U" is normal in G"

(iii) U" is maximal abelian in G"

(iv) G"/C7Ä is finite.
Proof :

a) Property (i) is part of the definition.
b) Proof of (ii). For any geG":

g U"g-1 =gfRnn G") g-1 g Rng-1ng G"g-1 R"OGn= U".

c) Construction of a commutative diagram. We define

x : U" -> Gn; x' : Rn -> E" and pr. Gn —> En

as natural monomorphisms ;

a: G" -> GfU" and a' : E" -> Ofn, R)

as canonical epimorphisms. Furthermore, we introduce a monomorphism X : U" -> R"

by /u x x' X. Fhis is possible by virtue of condition (a). Utilizing the monomorphisms
we have just introduced, this condition takes the following precise form:

(x) fx' Rn) fi (fi G") pi x U" x' X U".

One arrives at the form given in Definition 2 after the identification of a group with
its monomorphic image. (Fo simplify the notation, we shall sometimes make such

identifications.)
Now we show that there are homomorphisms v : GnjU" ->0(n, R) and A : Aut (£7") ->

G Lfn, R) such that the diagram (1.3) is commutative:

0

0

U"
v

G"
v

GfU"
v

R* -+ E"-> Ofn, R)
x' a'

AntfUn)
\A

G Lfn, R)

> 1. (1.3)

Fhe lower extension is that of Definition 1.
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We are in the situation of diagram (A44), and, in the manner shown there, we
define a homomorphism v : GnjUn -> Ofn, R) having the property:

a' pi v a (1.4)

We have now constructed a commutative diagram of the type (A33). Formula
(A62) applies, and we have

V xeGn\Un, Vae Un: Xfcpxoa)=cp'vxoXa. (1.5)

We construct a monomorphism A from Ant(Un) onto Aut (A U") according to (A41) :

if ^e Aut({7"), then A%(Xa) X(x a) for any a e U". Owing to condition (ß) oi
Definition 2, the definition of A x may be extended by linearity from X Un to R" (as

real vector space) so that we have A : Ant(U") -> G Lfn, R). If now % cp x, then,
according to (1.5) :

A cp cp' v (1.6)
and GnjU" operates on R".

d) Proof of (iii). Let g be an element of G" that commutes with any element of
x U". Fhen age Ker cp. Utilizing condition fß) of Definition 2 one finds that v a g
Ker cp'. Fhis leads to a' /i g v a g e, and therefore vage Ker cp' Im x'. But
this means, by (öc), that g e x U". Fhus x U" is maximal abelian in G". Note that now
by Propositions 1 and 2, cp and v axe monomorphisms.

e) Proof of (iv). We have shown that the group cp(G"IUn) C Aut fU") has the
following properties :

- it leaves an element of U" fixed, since cpfGnIUn) is a group of automorphisms of U";
- by Definition 1, the group cp' [Ofn, R)} leaves the metric of R" invariant. Let A be a

subgroup of cp' [Ofn, R)] and Y a subgroup of R" that the elements of X map onto
itself. Fhen X leaves the metric of Y invariant. Fherefore, cpfGnjU") leaves the
metric of U" Zn invariant.
A group with the above two properties is finite13). Hence cpfG"jUn) is finite, and so

is also GnjUn DZ K. Fhus, if is a finite group that is isomorphic to a subgroup of
GLfn.Z) =; AutfU").

Proposition 4. Any normal and free abelian subgroup of a group G" with a

subgroup U" satisfying (ii) to (iv) is contained in U".
Proof : Let F be a free abelian and normal subgroup of G", and v e V. Since K is

finite, there exists an integer p > 0, such that vp e Un. For p one may take k, the
order of the group K. Indeed, let a v x, then fa v)k a vk e, which shows that
vke U". Fake ue Un and consider the commutator w v^1 u-1 v u. Fhen v w
w1 v ue V, and fv w)k fu~x v u)k u~x vk u vk. Since V is free abelian, this
entails v w v and w e. Fhus, u v v u, and therefore V C U".

Corollary 4. A subgroup U" of Gn with properties (i) to (iv) is unique.
Proof : Let U" and V" be two such subgroups. Fhen V" fulfils the conditions of the

preceding proposition; therefore, V" C U". Fhe same is also true for U", whence
JJn q y.

So far we have shown :

- that a space group G" is a group containing a uniquely determined subgroup Un

with properties (i) to (iv), or equivalently,
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- that a space group G" appears in an extension of the group U" Z" by a finite
group if, with cp: K -a» Aut (Un) ~ G Lfn, Z) being a monomorphism.
We now show that, conversely, any such extension gives space groups only.

Proposition 5. Let E" be the euclidean group with the subgroup Rn (x' : Rn >¦> E") ;

let G" be a group with a subgroup U" fx : U" >-> G") satisfying conditions (i) to (iv) of
Proposition 3. Fhen there is a monomorphism fi:Gn -> E" such

(aj) that pi maps the subgroup p< U" into the subgroup »' R",
fx2) that, A being the restriction of fi to U", one has

fixU" x' XU"= fx' Rn) n (^ G") and

fßx) that A G" generates the real vector space Rn.

Proof: We shall first of all construct a subgroup X U" C. R" generating the real
vector space R", a monomorphism pi, and a commutative diagram (1.7) with exact
rows:

0
X cs

G" -> G" ^ K

Aut(G")

G Lfn, R)

0 R- _> M" --> K
x a

(1.7)

Let X : U" -> P" be a monomorphism such that A G" generates P" considered as real
vector space. In the same way as is done in part c of the proof of Proposition 3, we

construct a monomorphism A : Aut(C7") ->G Lfn, R) C Aut(Pn). We now put
cp Acp. Fhe mapping cp then is a monomorphism that operates on the vector space
R" in such a way that (see 1.5) :

V a e U", V xe K: Xfcp xo a) cp xo Xa (1.8)

We now fix a mapping r : K -> G" and consequently also a factor set m : K x K -> G"

fulfilling the conditions (A4) and (A14). Putting

V x, ß e K : mfx, ß) =2»(a, (1.9)

we fix a factor set if x K -a- Rn. Fhe mappings cp and m determine an extension of

P"byif:
0 -> P" --> M" -^ K -> 1, (^)

Since 93 is a monomorphism, ^ P" is maximal abelian in M". Since if is finite and since
R" is divisible and does not contain elements of finite order, the extension of R" by K
splits (A32). We are in the situation of diagram (A46). Since conditions (1.8) and (1.9)

hold, the mapping /7 G" -> M" defined by fifa, x) (X a, x) is a homomorphism that
makes the diagram (1.7) commutative. By (A34, iii), fi then is a monomorphism.
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Fhe next step is to construct a commutative diagram with a monomorphism
jj, : Mn -> E", with an automorphism X of R" and with the extension of R" by Ofn, R),
as considered in Definition 1, giving the «-dimensional euclidean group E".

0

0

P» -> Af» -A- K -* 1

V \i \/

i" V

^Z G L(», P)

V Y

<P' GLfn.R)

Rn ^ En^
x' a'

Ofn, R) -> 1 (1.10)

9?(if is a finite subgroup of G Lfn, R) ; any such group is P-equivalent to a subgroup
of Ofn, P)14). Fhis means that there is an automorphism X of P" inducing an

automorphism A oi G Lfn, R):
ÄffK)=~XyfK)X-1 (1.11)

such that A cpfK) is contained in cp'[Ofn, P)]. We define v by cp' v A cp. Clearly,
v is a monomorphism and

A<pxoXa cp'vxoXa Xfcpxo a) (1.12)

We now have a diagram of type (A46) with X an automorphism and v a monomorphism.
Since both extensions are split - otherwise not, see (A60) - we may define a homomorphism

Ji : M" -> E" that makes the diagram (1.10) commutative. Fhe homomorphism jù

will then be a monomorphism. Fhe explicit definition of Ji is as follows. In Af" and in E",
we choose representatives in such a way as to have trivial factor sets in both cases.
Fhen we define jù by

fifa, x) (X x, v x) (1-13)

Putting now X X

(1.3).

X, jj. pi pi, and A A A, we arrive at the commutative diagram

2. Identifications

In the previous section, we have shown that a space group G" appears in an
extension

0 -> U" X G" X K -> 1 fcp) (2.1)

with U" free abelian, K finite and cp : K -> Aut(G") G Lfn, Z) a monomorphism.
Fhe crucial point of the theory is that, in accordance with corollary 4, the subgroup
x U" of a given G" is uniquely determined. Fhis enables us to give the extension a
canonical form : we put if Gn\x Zn and take for a the natural epimorphism. Owing
to the uniqueness of x Zn, if, and a depend only on G" and not on the monomorphism x.
Fhe isomorphism U" S Zn, however, is determined only up to an automorphism x
oi Z" fx relates a choice of generators of U" to another one). Fhus, only the injective
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part of (2.1) is variable, and it is necessary to investigate only the possible
monomorphisms x : Z" ->G" and to see how they give rise to monomorphisms cp: K ->
GLfn,Z).

If the same space group G" appears in two extensions

0-+Zn^Gn-+K->l and 0 -> Z* -Z G" -» K -> 1,

it is clear that x and x differ by an automorphism % of Z" (>e xjr). From the
morphism :

0- x a
-> Z« ^r G" -> if -

zj j

->1 (cp)

0--> Z" -> G" -> if ->1 (cl)

one finds, referring to (A62) :

F oc e if : <pa ^(<p *);r7
i.e. the subgroup (p(ff) C G Lfn, Z) is defined only up to an inner automorphism of
GL(n,Z). A given space group G" therefore determines a class of conjugate finite
subgroups of G L(«, Z).

A slightly more general situation is obtained if instead of identical space groups
one considers isomorphic ones. Again, owing to corollary 4, we are able to construct,
as in (A44), a morphism of group extensions (2.2), where, by virtue of (A34, vii) 00 is in
fact an isomorphism.

From (A62), we find

O^Z»-Ig"-Ij\-> 1 (Z
v v v

xi V j i<»YYY0 -> Z"-^ Gn-±K-
X ff

> 1

V xe if: cp a) x %(cp a) r 1

(2.2)

(2.3)

Fhus, K and K determine the same class of conjugate finite subgroups of G Lfn, Z).
Such a class is called an arithmetic crystal class16). Fwo pairs (if, cp) and (if, cp) axe

equivalent and belong to the same arithmetic crystal class if there exist an isomorphism
w : K -> K and an automorphism % of Z" such that (2.3) holds. We have thereby
proved the following proposition :

Proposition 6. A given space group determines an arithmetic crystal class.

Isomorphic space groups determine the same arithmetic crystal class.

Jordan's theorem16) implies that the number of classes of conjugate finite
subgroups of G Lfn, Z) is finite. Hence, the number of arithmetic crystal classes is finite.
(For « 2, there are 13; for « 3, there are 73 arithmetic crystal classes.)

Faking one representative from each arithmetic crystal class, one obtains a finite
family of non-conjugate finite subgroups of G Lfn, Z), called the arithmetic crystallographic

point groups.
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Some of these latter, say <pfKx) and cp2fK2), may still be isomorphic without being
conjugate. If the quotient group K G"jxZn is considered as abstract group, i.e. if
isomorphic groups are identified, one obtains a family of finite groups, called the
abstract crystallographic point groups. Fheir number is at most equal to the number
of arithmetic crystal classes. (For « 2, there are 9 ; for « 3, there are 18 abstract
crystallographic point groups.) Now we may characterize a «-dimensional arithmetic
crystal class as a class of Z-equivalent «-dimensional faithful integral representations
of an abstract crystallographic point group if.

Up to now we have considered a given space group (or two isomorphic space
groups) and we have determined the possible cpfK) that may arise. Now we want to
find all possible space groups G" appearing in an extension 0->Z"->G"->if->l,
taking for K an abstract crystallographic point group. Fhe question is whether we
must consider all possible monomorphisms cp: K -+G Lfn, Z). From the preceding
discussion, it follows that we need to take only one representative of each arithmetic
crystal class ; for each group G" arising from one representative of a given arithmetic

crystal class, there is an isomorphic group Gn arising from another representative.
Fhus, to determine all space groups of a given dimension, one has to calculate the
second cohomology groups H^fK, Z"), taking for the pair (if, cp) the arithmetic
crystallographic point groups. Fhis means that one admits only those automorphisms x
of Z" that lead to : _ ,„cp(K) <p(K) %[cpfK)] r1 ¦ (2-4)

In other words, only automorphisms of Zn that belong to the normalizer N **?¦

N [cpfK) C G Lfn, Z)] of cpfK) in G Lfn, Z) axe admitted.
Fhe preceding discussion may be summarized as follows:

Corollary 6.

Let

and
0->Z»^G»^i(^l fcp)

O^zZcZk^I fcp)

be two extensions (with the same monomorphism cp and %p : G" -> G" an isomorphism.
Fhen (owing to corollary 4)

y> x Z" x Zn ;

furthermore, if X is the isomorphism defined by X x~x xp x, then X is an element of
N[cp(K) cGL(n,Z)}.

Note that isomorphic groups may always be made to appear in the same extension.
Fhe automorphism x still play a rôle in our theory because we are interested in

isomorphic space groups and not in equivalent extensions. Indeed, non-equivalent
extensions - i.e. different elements of H*(K, Z") - may give isomorphic space groups.
Fhe following proposition shows how to recognize the case of non-equivalent but
isomorphic space groups.

Proposition 7. Fwo extensions of the same type give isomorphic space groups G"

and G" fip : Gn -> G") if and only if it is possible to choose a representative m: K x K ->
Z" of the equivalence class of G", a representative m : K x K -> Z" of the equivalence
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class of G", an automorphism co of if, and an automorphism xe N oî Z", such that :

V x, ß e K : mfm x, m ß) x mfx, ß) (2.5)
and

V x e K, V a e Z": xfcp xo a) cpca xo y^a (2.6)

Note that x determines co.

Proof : We shall first prove the necessity of the conditions. If G" and G" are
isomorphic, (owing to corollary 4), we are able to construct the following commutative
diagram with x e N :

O ^ Z" -Z G" -^ if ^ 1 fcp)
v v v

X Y tp Y Y COYYY0 -> Z" -^ G" --> K -> 1 (cp) (2.7)
X ff

Let r be a choice of representatives of the cosets of Z" C G". Fhen the factor set m
given by x mfx, ß) rfx) rfß) rfx ß)"1 is a representative of the equivalence class of

the extension G". Equally, let r be a choice of representatives for the cosets of Z" C Gn.

Fhen the factor set m - given by ~x mfx, ß) rfx) rfß) rfx /?)_1 - is a representative of

the equivalence class of the extension G". For a given choice of r, a possible choice of r
is given by (see A47) :

r co xpr (2.8)

Fhen, according to (A49) and (A50) :

Xfcp xo a) cp co xo x a and x w(a- ß) rn fw x, co ß)

Fhis shows that the condition is necessary.
Fo show that the condition is sufficient, we start with the diagram

0-rZZG"-lx->l (cp)

V V

xi j cu

0 -> Z" --> G" -+ K -> 1 (cp), (2.9)
x a

where x e N and (2.5) as well as (2.6) are fulfilled. We then show that (2.9) determines

a monomorphism xp:G" -> G" such that the diagram is commutative.
Let r be a choice of representatives for the cosets Z" C G", and r such a choice in

G"; these choices being such that (2.5) and (2.6) are fulfilled.
We are now in a situation analogous to that of diagram (A46). Fherefore, a mapping

xp:Gn -^-Gn defined by xpfa, x) (xa,u> x) is a homomorphism.
On account of the Short Five Lemma (A34, vi), it then is an isomorphism, and

Proposition 7 is proved.
Consider the abelian group of w-cochains CffK, Z") {fm} and the automorphisms

X of Z" and co of K related by (2.6).
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Fhe mapping x* ¦ Cm -> Cm defined by X* fmfa-v ¦ ¦ • > aJ fmfoi <*i> •••><"«J ~
formula (2.5) is a particular case of this mapping - is an automorphism of Cm(if, Z")
that maps cocycles onto cocycles and coboundaries onto coboundaries, and thus
induces (for every m) an automorphism of HffK, Z").

Returning now to the case m 2, we say that two elements belong to the same
orbit of P^if, Z") relative to N N [cpfK) C G Lfn, Z)] if it is possible to choose

representatives m and m of their respective cohomology classes and a x e N such that
there is a a» e Aut(P) fulfilling (2.5) and (2.6). Since 2-cohomologous 2-cocycles belong
to the same orbit, this definition does not depend on the choice of representatives.
Fhe orbits constitute a partition of H*(K, Z") into disjoint classes, and there is a
one-to-one correspondence between the non-isomorphic space groups associated with
the arithmetic crystallographic point group (if, cp) and the set of orbits of H^fK, Zn)
relative to N. Fhis set generally has no group structure.

In crystallography, it is customary to identify not all isomorphic space groups ap-
pearingin extensions 0 ->Z* ->G" ->K ->1 but only those having the "same orientation' '.

G Lfn, Z) has a subgroup S Lfn, Z) of index two consisting of the automorphisms
of Z" with determinant 4- 1. Fhe orbits of H\(K, Z") relative to N+ N [cpfK) C
G Lfn, Z)] n 5 Lfn, Z) constitute another partition of H^fK, Z") into disjoint classes.
Fhere is a one-to-one correspondence between this set of orbits and the
non-isomorphic space groups of same orientation associated with the arithmetic crystallographic

point group fK,cp). An orbit of HffK,Zn) relative to N is also an orbit
relative to N+ if for each pair of elements in the orbit relative to N there is at least
one element x+ of 2V+ and aco e Aut(if) fulfilling (2.5) and (2.6). If this is not the case, the
orbit relative to N is split into two orbits relative to N+, called an enantiomorphic pair.

If in G Lfn, Z), instead of the subgroup cpfK), one considers a conjugate subgroup
cpfK), then, in the induced isomorphism between H*(K, Z") and P|(if, Z"), the partition

into orbits relative to N+ is left unchanged. Fhus, by restricting oneself to one
representative of each arithmetic crystal class, no oriented space group has been lost.

Eleven enantiomorphic pairs are known in three dimensions ; there is no such pair
in two dimensions. According to Buerger18), the members of any of these pairs
cannot be distinguished by any known experimental means.

We have seen that the arithmetic crystal classes play a fundamental rôle in
crystallography. Nevertheless, the notion of geometric crystal class3) is more customary.

Fhe geometric crystal classes arise from the circumstance that the euclidean

group E" determines a class of conjugate subgroups of G Lfn, R) that are isomorphic
to Ofn, R). In Definition 1, we choose one fixed representative of that conjugation class.

Subgroups of G Lfn, R), e.g. cp' [Ofn, P)], are also determined only up to conjugation
in G L(n, R). A «-dimensional geometric crystal class then is a class of P-equivalent
«-dimensional faithful real representations of a finite group K. In other words,
if yl: Aut(Z") ->GI(«, P) is the monomorphism resulting from a monomorphism
X: Z" -> P" such that X Z" generates the real vector space P" and if furthermore cp and
cp are two monomorphisms from K into G Lfn, Z), then cpfK) and cpfK) are geometrically

equivalent if there exists a y e G Lfn, R) such that:

V x e K : A lp co x yfA cp x) y1 (2.10)

where co is an automorphism of K.
36 H. P. A. 38, 6 (1965)
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Z-equivalence implies P-equivalence. Fhe converse is not true. Hence, a geometric
crystal class may give rise, in general, to several arithmetic crystal classes. Again,
some of the non-conjugate finite subgroups of A [G Lfn, Z)] may still be isomorphic.
Fhus, an abstract crystallographic point group may give rise to several geometric
crystal classes. (For n 2, there are 10; for « 3, there are 32 geometric crystal
classes.) Furthermore, a finite subgroup of G Lfn, Z) - and also an abstract crystallographic

point group - is isomorphic to a (finite) subgroup of Ofn, R), but the converse
is not true.

Faking one representative from each geometric crystal class, one obtains a finite
family of groups called the geometric crystallographic point groups (usually, these

groups are simply called crystallographic point groups).
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Appendix
1. Extensions of Groups

A group G is called an extension of a group A fe, a, b, by a group B
fe, x, ß, (i) if G contains a normal subgroup A'(A' O G) that is isomorphic to
A (A' A), and (ii) if GJA' ~ B. We thus have a sequence

A Z> G ->->• B (Al)

of a monomorphism x : A >->¦ G fx A A') and an epimorphism a : G ->-> B.
x a

A sequence of groups and group homomorphisms, P —> Q -^- R, such as sequence
(Al) for instance, is called a 0-sequence (or a differential sequence) if Im x C Ker a'-

it is called an exact sequence if Im x Ker a. A longer sequence

A"-1 -»/!"-> An+1 ->
is called a 0-sequence (or an exact sequence) if every triplet A"-1 -> A" -> An+1 is a

0-sequence (or an exact sequence, respectively). Fhe fact that in (Al) x is a
monomorphism and a is an epimorphism may be expressed by saying that the sequence

l-> AX gX B ^i (A2)

is exact. An exact sequence of five groups with the two outside groups equal to unity
is called a short exact sequence. A short exact sequence 1 -> A ->G^-P^-lis but
another name for an extension of a group A by a group B. More generally, if

.Xn -i ôn-j xn S xn+lôn+>...
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is part of an exact sequence, the relation

holds Kexô„+x X»lïmôn_x (A3)

If G is an extension of A by B, the group G can be partitioned into cosets A got A,
fgeG). By denoting rfx) a representative of the coset corresponding to xe B, we
choose a one-to-one mapping r:B^-G with the property that a r is the identity
mapping of B onto itself ; consequently, r a maps every element of a coset on a fixed
element of that coset, the representative. For a fixed r, the elements of G can be

uniquely represented as g x a ¦ r(x). Fhe product r(x) r(ß) lies in the coset with
representative r(x ß) ; thus, there are unique elements mfx., ß) e A such that

rfx) rfß) x mfx, ß) • rfx ß) (A4)

It is convenient to choose rfe) e. Fhis choice leads to

V x e B : mfe, e) mfx, e) mfe, x) e (A5)

Fhere is no loss of generality by assuming these conditions fulfilled, and we shall do so

henceforth. Fhe mapping m : B x B -> A is called factor set of the extension G.

A factor set satisfying the conditions (A5) is called normalized. Since x A is a normal
subgroup of G, conjugation in G (say with an element geG) yields an automorphism
0 g of A according to

x[0goa]=gfxa)g-1. (A6)

Fhe mapping 0 : G -> Aut(/1) of G into the group of all automorphisms of A is a

homomorphism. More particularly, conjugation by an element rfx) e G yields also an
automorphism cp x of A :

x[cp xo a] rfx) ¦ x a ¦ rfx)-1 (A7)

If rfs) e, then cp s is the identity mapping i.
With the aid of the mapping cp : B -> Ant(A), the multiplication of two elements

of G can be written :

[x a ¦ r(x)] [x b ¦ r(ß)] x [a(cp xob) mfx, ß)] ¦ rfx ß) (A8)

Fhe mapping cp is generally not a homomorphism. Indeed, owing to (A4) :

[fcp x) fcp ß)]oa mfx, ß) [cpfx ß) o a] mfx, ßA1 (A9)

Furthermore, the mapping cp depends on the choice of representatives r. Instead of
taking rfx) as representative of the coset x A-rfx), we may take as well any element
r'fx) satisfyingV ' y 6

r'fx) x cfx) ¦ rfx) cfx) e A (AIO)

Fhen
r fx) ¦ x a • r'fx)'1 x [cp' x o a] x [cfx) fcpxo a) c(oc)"1]

and
cp' xo a cfx) fcpxo a) cfxA1 (All)

Fhus, to every element xe B, there corresponds in fact an automorphism of A modulo
an inner automorphism of A, i.e. an element of the quotient group AutfA)jIfA)
%fA). Fhe group 3I(/1) is called group of automorphism classes, or group of outer
automorphisms. According to (A9), the mapping W : B -> 9t(/l) is a homomorphism,
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so that we have the following diagram of three short exact sequences [C(A) denotes
the center of A] :

1

I
C(A)

Y

1 -> A -> G -» fi -> 1

j 0>j j<P

1 -> 1(A) -> Ant(A) ~> %(A) -> 1 (A12)

i
1

Fhe diagram, furthermore, is commutative. A diagram of groups and group homo-
morphisms is called commutative if any two paths along directed arrows from one

group to another group yield the same (composite) homomorphism.
A further consequence of (AIO) is that we get a new factor set m' : fi x B ->- A

that is related to the old one by :

mfx, ß) cfx) [cpxo c(ß)] mfx, ß) cfx ß)-1 (A13)

Fo preserve the normalization of the new factor set, we must choose cfs) e.

Fhere is a further relation concerning the factor set. From the associativity of
multiplication applied to the product rfx) rfß) rfy), it follows that

cpxo mfß, y) mfx, ß) mfx ß, y) mfx, ß y)"1 (A14)

We call system of mappings fcp, m) from B to A (or simply system) the two mappings
cp: B -> Aut(/1) and m: B x B -> A obeying to (A9) and (A14). A system fcp, m)
from B to A such that cp e i, and mfe, e) mfx, s) mfe, x) e is called normalized.
A given extension of A by B determines a set of systems of mappings from B to A.

Fwo systems fcp, m) and (9?', m!) from B to A are called equivalent if there exists
a mapping c : B -> A such that (All) and (A13) are satisfied. It may be verified that
the equivalence thus defined is reflexive, symmetric, and transitive. Equivalent
systems from B to A determine a unique mapping W : B -> 21(^4). Any system from
B to A is equivalent to a normalized one. A given extension G of A by B determines

- up to equivalence - a unique system from B to A.
Fwo extensions, 1^-/1 -> G -> B -> 1 and 1 -> A -> G' ->- fi ->-1, the first one

with system (9?, m) and the second one with system fxp', m') axe equivalent if the
systems fcp, m) and fxp', m!) are equivalent. Fhe equivalence of extensions thus defined
does not depend on the choice of fcp, m) and fcp', m').

Given two groups A and B and a system fcp, m) from B to A, the set G [A, B, cp, m]
oi all pairs fa, x) with a e A, xe B and with the multiplication law given by

fa, x) (b, ß) fa [cpxo b] mfx, ß),xß) (A15)

is a group. Furthermore, if x : A -+ G is defined by x a fa, e) and if a : G -> B is
X ff

defined by afa, x) x, then 1—^A^G^B^-lis exact (i. e. G is an extension of A
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by B). Any system fcp, rn) determined by this extension is equivalent to the system
fcp, m) ; the particular choice r:B->G defined by r(x) (e, x) leads to the initial
system fcp, m).

Let G be an extension of A by B and fcp', m') a system from B to A thereby
determined. Fhe extension G is said to split if fcp', m') is equivalent to a system
fcp, mfj from B to A such that mfx, ß) e e A for any x, ß e B. Such a system (cp, mf)
is called a split system, and m0, a trivial factor set. From (A13) we find, by putting
m'fx, ß) e:r mfx, ß) [cpxo cfß)]-1 cfx)-1 cfx ß) (A16)

Fhe extension G is said to be the direct product extension if fcp', m') is equivalent to a
system fi, m0) where i is the identity automorphism of A. In a split extension, the
mapping r : B -> G may be chosen to be a monomorphism, a right inverse of the
epimorphism a : G -> B; the set rfB) of coset representatives then is a subgroup of G

that is isomorphic to B; furthermore, from (A9), cpfx ß) fcp x) fcp ß), i.e. the mapping
cp: B -> Aut(/1) then is a homomorphism. A group G [A, B, cp, m0] with multiplication
law (A15) is called a semi-direct product of A by B, and is noted A X,, B. A group
G [A, B, i, m0] with multiplication law (A15) is called the direct product A x fi, of
A by B.

Henceforth in this paragraph, we suppose that A is an abelian group (written
additively). Fhen the diagram (A12) collapses into

X ff
0-> A ->• G-^ B-> 1,

*\ W
Aut (4) (A17)

where cp: B -> Aut(yl) is now a homomorphism that does not depend anymore on the
choice of representatives for the cosets of x A QG. Fhrough cp, the group fi operates
on A. Fhus, B is a group of operators for A, and A is given the structure of a fi-module.

If (cp, m) and (9?', m') are two systems from B to A, determined by an extension of
A by B, then cp cp', as is seen from (All). Fhus, instead of equivalent systems, we
may speak of equivalent factor sets, satisfying (A13). Fhe set Ext(^l, B, cp) of all
equivalence classes of extensions

0-^^-^G->fi^l (cp) (A18)

of an abelian group A by a group B with fixed cp has a simple structure, as we shall see

presently.
If mx and m2 are factor sets for an extension of A by B, then m3 mx + m2,

defined by

Vx.ßeB: mfx, ß) mfx, ß) + mfx, ß) m2(oc, ß) + mfx, ß) (A19)

is again a factor set. By computing cpy 0 mfx, ß), one verifies that (A14) is indeed
satisfied. Fhe factor sets form an abelian group FV(A, B). Fhe mapping/: B x B -> A
defined by

ffx, ß) cfx) +cpxo cfß) - cfx ß) (A20)

where c is a one-to-one mapping form B into A, also is a factor set. Comparison with
(A13) shows that/is the difference between two equivalent factor sets. One may also
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see that /is equivalent to the factor set of a split system. Fhe set of all/is a subgroup
TV(A, B) of FV(A, B). Fhe set Ext(4, B, cp) of all equivalence classes of extensions is

an abelian group, and we have :

Ext(A, B, cp) F,(A,B)IT9(A,B) (A21)

Extensions belonging to the same group Ext (4, B, cp) axe called extensions of the
same type.

Given a 0-sequence of abelian groups and group homomorphisms
On di <52

Xo-l X1-AX*-A... (A22)

we have, by definition, d„+x ôn 0. Fhe òn are called differentiation homomorphisms
(or coboundary operators). We define

Im ô„_x B", Ker ô„ Z". (A23)

Fhen, B" C Z" C A", so that we can construct

H" ZnjB". (A24)
Consider now the mappings :

f:BxBx---xB-+A.
n times (A25)

Fhe/" are called «-cochains and form an abelian group C9(B, A). By definition, we

put C° A. Since, through cp, B operates on A, it operates also on C^fB, A). We

subject/" to the normalization conditions f"(xx, x2, x„) 0 whenever, at least one
of the Xj equals e. We now define mappings òn : C^ -> C^+1 by :

fòj") (x0, xx,..., x„) (- l)"-1/"(a0, xx, xn_x) A- x0f"(xx, x2,..., xn)

n

+ 2J(- ^'/"(«o.Oi. ¦•• *«-a. «t-i««.a*+i. ••• •<*¦») ¦ (A26)
* i

For « 0, 1, 2, we find :

(^/0) (a) a/0 __ /0 e ç1, (A27)

(Z/1) (a, /?) =/Ma) + xffß) -ffx ß)eCl, (A28)

(<S2/2) (*,ß, Y) ~Pf*-ß) -Pf* ß-Y) +Pfx,ßy) + xPfß,y)eCl. (A29)

It can be shown that òn+x òn 0, so that

A -> Cj(B, 4) -> C»(£, 4) -> Cl(B, A) -> - (A30)

is a 0-sequence. We than can define B^(B, A), Z^fB, A), and H^fB, A) by (A23) and
(A24). Fhe elements of B^(B,A) axe called «-coboundaries, those of Z^fB,A) are
called «-cocycles, whereas H"fB, A) is the «-th cohomology group of the 0-sequence
(A30). Fwo 2-cocycles that differ by a 2-coboundary are called 2-cohomologous.
KyfB, A) is the set of cohomology classes of 2-cocycles. Comparison of (A14) and
(A29) shows that a factor set is a 2-cocycle; comparison of (A13) and (A28) shows
that the difference between two equivalent factor sets is a 2-coboundary. Fo the
equivalence classes of extensions, there correspond the cohomology classes of
2-cocycles. Hence, the group Ext(/1, B, cp) is isomorphic to the second cohomology group
HV(B, A)19)20) :

ExtfA, B, cp) s H^B, A). (A31)
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We utilize also the following properties of cohomology groups21) :

If K is a finite group of order k, then for « > 0 the order of every
element of BffK, A) divides k. If, furthermore, the abelian group A
is finitely generated, the group H^fK, A) is finite. \ (A32)
If K is finite and A is a divisible abelian group with no elements of
finite order, then for « > 0, H^fK, A) 0.

2. Morphisms of Group Extensions

Consider the following commutative diagram with exact rows

i (v)

1 fcp') (A33)
x a

and with the mappings cp: B —~ Aut(4) and cp': B' -> Aut(^4'). Fhe triplet P(A, fi, v) of

group homomorphisms is called a morphism of the upper extension to the lower one.
Since diagrams such as (A33) are repeatedly encountered in our investigations, we
develop here some formulas pertaining to it. (In this section, A and A' are not
necessarily abelian groups.)

We have following simple rules

(i) If pi is an epimorphism, so is v.

(ii) If fi is a monomorphism, so is X.

(iii) If X and v axe monomorphisms, so is pi.

(iv) If X and v are epimorphisms, so is pi.
(v) If pi is an isomorphism, X is a monomorphism and v is an epimor- ; (A34)

phism. (Consequence of (i) and (ii).)
(vi) If X and v axe isomorphisms, so is pt. (Consequence of (iii) and (iv).)
(vii) If any two of the three mappings X, pi, and v axe isomorphisms,

so is the third one.

Propositions (iii), (iv), and (vi) are the content of the Short Five Lemma22).
Let r : B -+ G be a choice of representatives of the cosets of x A < G, and r' : B' -> G'

such a choice for the cosets of x' A' O G'. From the commutativity: v a — a' ju we
deduce :

v a' ptr (A35)

Furthermore, a' r' v a' fi r, so that

VxeB:[a' fi rfx)] [a' r'fv xJA1 s' e B'
Fhus

fi rfx) r'fv a)-1 e Ker a' Im x'

Consequently, there is an element of A' that may depend on x, and that we denote
ufx) e A', such that

fi rfx) r'fv a)-1 x' ufx)

For a fixed mapping r, the possible mappings / are related by :

V xe B: /i rfx) x' ufx) ¦ r'fv x) (A36)
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Special cases arise from special choices of ufx). If r' and r axe normalized so that
r'fe') rfe) e, then

ufe) e (A37)

With the help of (A36), the action of the homomorphism fi can be written more
explicitly :

fifa, x) fi[x a ¦ rfx)] fixa • pi rfx) x' X a • x' ufx) ¦ r'fv x)

x [X a ¦ ufx)] ¦ r'fv x) fX a • ufx), v x) (A38)

We now look how cp and cp' are related.

x' Xfcp xo a) pi xfcp xo a) pi [rfx) ¦ x a ¦ rfx)'1]

fi rfx) • fi x a • fi rfx)"1 x' ufx) ¦ r'fv x) • x' X a • r'fv x)'1 ¦ x ufx)'1

x' ufx) • x'fcp' v x o X a) ¦ x' ufx)'1

x [ufx) fcp' v x o X a) ufxA1]
Fhus

Xfcp xo a) ufx) fcp' v xo Xa) ufx)'1 (A39)

Finally, we want to establish a relation between the factor sets m: B x B -> A and
m! : B' x B' -> A'.

/i [rfx) rfß)] fi[x mfx, ß) • rfx ß)] fi x mfx, ß) ¦ fi rfx ß)

x' X mfx, ß) ¦ x' ufx ß) ¦ r'fv x ¦ v ß) x' [X mfx, ß) ¦ ufx /?)] • r'fvx ¦ v ß).

fi [rfx) rfß)] fi rfx) ¦ pi rfß) x' ufx) ¦ r'fv x) • x' ufß) • r'fv ß)

x' {ufx) [cp' vxo ufß)] m'fv x, v ß)} • r'fv x ¦ v ß)

Comparison of the two results shows that

X mfx, ß) ufx) [cp' vxo ufß)] m'fv x, v ß) ufx ß)-1 (A40)

Let A be a monomorphism. We now are able to define a mapping yl from Aut(/1) onto
Aut(A/l) in the following way: Let x be any element of Aut(/1), and let a be any
element of A. Put x a- b ; then A x maps X a onto Xb, i.e.

VaeA:fAX)fXa)=XfXa) or fAX)X XX- (A41)

A x is indeed, by definition, a mapping XA -a»XA. We show that it is an automorphism :

Ax[Xa-Xb]=Ax [Xfa b)] X x(a b) X X a ¦ X X b A yfX a) ¦ A X(X b).

Furthermore, from
« fA x) fi «) Hx a)

one concludes that e x a, that e a, and that X a e'.

Now we show that the mapping A is an isomorphism from Aut (A) onto Aut (X A),
i. e. if A x is the identity mapping on X A, then x is the identity mapping on A. Indeed,
from X a (A x) (X a) X(x a), one concludes that a x a.

In the particular case of x <p x, we find

VaeA:AcpxoXa Xfcp xo a) or (Acpx) X Xfcp x) (A42)
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Combination of (A39) and (A42) gives

(Acp xo Xa) u(x) u(x) (cp' v xo Xa) (A43)

We now discuss three useful cases of incomplete morphisms, and how they can be

completed.
First case:

1 -> A -Z G 4- B -> 1 (cp)

%-i ßi
1 -> A' -> G' -> B' ~> 1 (cp') (AU)

x' ff'

Fake two elements g and h that belong to the same coset of x A C G. Fhen g A-1 ex A
and fi(g Â-1) (fi g) (pi h)-1 e fix A Qx' A', thereby showing that /i g and /u h belong
to the same coset of x' A' QG'. Fhe homomorphism pt thus induces a mapping
v: B -> B' that is implicitly defined thus : if a g x and fig g', then a' g' x v x.
Hence, a'fig vx vag and a' fi v a. Besides a g x, fi g g', and a' g' v x,
we put also a h ß, /u h h'', and a' h' v ß. We then consider g h. Since a(g h)
a g • a h xß, we have a' /i(g h) v(x ß). But we find also a' fi(g h) a' fi g • a' pi h

fv x) fv ß) Fhus, vfx ß) fv x) fv ß), and v is a homomorphism.
Second case:

v. n
i M

1 fcp') (A45)

Let fi by a homomorphism such that fix A Ç_x' A' and explicitly given by fifa, x)
fa' ufx), oc'). (Compare with (A38).)

We define the two mappings X : A -> A' and v : B -> B' by a' X a and x' v x.
Fhus, fifa, x) fX a-ufx), v a). Putting a e, one finds fix a x' Xa. Calculating
a' fifa, x) a'fX a • ufx), v x) v x v afa, a), one finds a' pi va. We now show that
A is a homomorphism: fifxa-xb) fixfab) x'Xfab), but also pifxa-xb)
pi x a ¦ fi xb x'A a ¦ x'Xb x 'fi a • Xb). Since x' is a monomorphism, this shows
that Xfa b) X a ¦ Xb. Fhe mapping v is also a homomorphism. We calculate

a' pi [rfx) rfß)] a' fi[x mfx, ß) ¦ rfx /3)] a' fix mfx, ß) • a' fi rfx ß)

a' x' X mfx, ß) • vfx ß) vfx ß) ;

but we have also
cr' /i [rfx) rfß)] a' fi rfx) • a' fi rfß) fv x) fv ß),

A
X
-> G

ßi

ff
fi

A' -+ G'
x' ff'

B'

so that vfxß) (vx) fvß).
Fhird case:

l-ri-lc^B-rl fcp)

&i vi
l-> A'-*- G'~>B'^ 1 ftp'). (A46)

x' a'
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We define a mapping fi: G -> G' by fifa, x) fi a-ufx), v x). As in the case of the
preceding diagram, one shows that ptx x' X and a' /n v a hold. Fo show that /i is a

homomorphism, it is necessary to suppose that the two mappings cp and cp' verify
(A39), and that the two factor sets m and m' verify (A40). Under these conditions

/i {x a ¦ rfx) ¦ xb ¦ rfß)} fi {x [afp x o b) mfx, ß)] ¦ rfx ß)}

x' Xfafcp xo b) mfx, ß)] ¦ x' ufx ß) ¦ r' [vfx ß)]

x' [X a ¦ Xfcp xo b) ¦ X mfx, ß) ¦ ufx ß)] • r'fv x- v ß)

x' {X a • ufx) [cp' v xo Xb] ufx)'1 ufx) [cp' v x o ufß)] m'fv x, v ß) ufx ßA1 ufx ß)} •

• r'fv x. • v ß)

x' [X a ¦ ufx)]- r'fv x) ¦ x' X b • r'fv x)-1 r'fv x) ¦ x ufß) ¦ r'fx ßA1 x' m'fv x, v ß) •

• r'fv x • v ß)

x' [X a ¦ ufx)] ¦ r'fv x) • x [X b • ufß)] ¦ r'fv ß) /n[x a ¦ rfx)] ¦ fi [x b • rfß)]

We now consider special cases of diagram (A33).
a) It is always possible to choose r' (for given r) so as to obtain ufx) e' for all

xe B. Fhen:

fi rfx) r'fv x) (A47)

fifa, x) fX a, v x) (A48)

Xfcp xoa)=cp'vxoXa or Xfcp x) fcp' v x) X (A49)

X mfx, ß) m'fv x, v ß) (A50)
If X is a monomorphism : ,._...A cp cp' v (A51)

b) Let X and v be the identity homomorphisms :

1 -> A X G X B -> 1 fcp)

II /4 II

1-j-A-^G'->B->1 fcp') (A52)
xf G'

Fhen, by (A34), fi is an isomorphism. Furthermore:

fi rfx) x' ufx) ¦ r'fx) (A53)

/ifa, x) fa ufx), x) (A54)

cp xo a ufx) fcp' xo a) ufx)-1 (A55)

mfx, ß) ufx) [cp' x o ufß)] mfx, ß) ufx ßY1 (A56)

Comparison of (A55) and (A56) with (All) and (A13), respectively, reveals that the
diagram (A52) represents the case of two equivalent extensions. (Fhe difference
between the two sets of formulas is purely notational, the rôle of the primed and of the
unprimed extension being exchanged.)
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Conversely, let

and

x ff
A -+ G-» B

A X G' X B -> 1 (cp')

be two equivalent extensions, i. e. there exists a mapping c : B ->- A such that the
respective systems from B to A, (cp, m) and (cp', m'), axe related by (All) and (A13).
Let r:B-^G and r' : B -> G' be choices of representatives that lead, by (A4) and
(A7), to these systems.

We now show that the mapping fi defined by

VaeA, V xe B: fi[xa ¦ rfx)] x' [a cfx)-1] • r'fx) (A57)

is an isomorphism that makes the diagram (A52) commutative. Using (A8), (All), and
(A13), we first show that pi is a homomorphism:

fi [x a ¦ rfx)- x b ¦ rfß)] /i {x[a fcp xo b) mfx, ß)] • rfx ß)}

x' {a [cpxo b] mfx, ß) cfx ß)-1} • r'fx ß)

x' {a cfx)-1 [cp' xo b] [cp' xo cfß)-1] m'fx, ß)} ¦ r'fx ß)

x [a cfx)-1] ¦ r'fx) ¦ x' (b cfß)-1] ¦ r'(ß)

fi[x a • rfx)] ¦ fi[xb • r(ß)]

Putting in (A57) x e, one obtains pi x a x a, i.e. p, x x'. Furthermore:

a' fi[x a • r(x)] a' {fc! [a cfx)-1] ¦ r'(x)} x a [x a ¦ r(x)]

i.e. cr' fi a. Fhe diagram (A52) that we have constructed is commutative.
Diagram (A52) may thus be taken as abstract definition of the equivalence of two

extensions.
c) Let G' be a split extensions of A' by B'. Fhen the representatives / may be

chosen in such a way that r' : B' -> G' is a monomorphism and that m'(x', ß') e' for
all oc', ß' e B'. With such a choice, (A40) becomes:

X mfx, ß) ufx) [cp'vxo ufß)] ufx ß)'1 (A58)

Concerning split extensions, we have the following rules:
If, in diagram (A33), v is an isomorphism and if the unprimed extension splits,

then so does the primed extension. (A59)
Proof : Let r be a choice of representatives for the cosets of x A <l G such that

r : B -A» G is a monomorphism. Fhen the mapping r' : B' -> G' defined by r' fir v'1
is a homomorphism, and a' r' a' fir r-1 v a r v-1 i. Hence, r' is a monomorphism
and a possible choice of representatives of x' A ' < G'. Fhus, the primed extension splits.

If, in diagram (A33), X is an isomorphism and if the primed extension splits, then
so does the unprimed extension. (A60)

Proof: For G', we choose m'fx!, ß') e' for any oc', ß' e B'. Fhen, by (A58) :

X mfx, ß) ufx) fp' v xo ufß)] ufx ßA1
Now we define

Y xe B: ufx) X cfxA1
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Fhen, using (A39), we find

X mfx, ß) =X[cpxo cfß)]-1 ¦ X cfx)-1 ¦ X cfx ß)

mfx, ß) cpxo cfß)-1 cfx)-1 cfx ß)

Comparison with (A16) shows that G is a split extension,
d) Let A be an additively written abelian group. Fhen

/ifa, x) fXa + ufx), v x) from (A38) (A61)

Xfcp xoa)=cp'vxoXa or Xfcp x) X"1 cp' v x from (A39) (A62)

X mfx, ß) m'fv x,v ß) + u(x) + cp' vxo ufß) - ufx ß) from (A40) (A63)

If A is a monomorphism :

A cp cp' v from (A43) (A64)
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