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Algebraic Aspects of Crystallography

Space Groups as Extensions

by Edgar Ascher
Institut Battelle, Genéve, Switzerland

and Aloysio Janner

Instituut voor Theoretische Fysica, Katholieke Universiteit, Nijmegen, Nederland

(24. 111. 65, modilied introduction 12. V. 65)

N-dimensional space groups G” are obtained from extensions of a finitely generated
free abelian group U” by a finite group K, with ¢ : K - Aut(U") a monomorphism.
Conversely, any group G appearing in an extension O - U* > G* - K > 1 with ¢
as above 1s a n#-dimensional space group. To determine all space groups of a given
dimension, one has to calculate the second cohomology group H2(K, Z7), taking for
the pair (K, @) one representative from each arithmetic crystal class. Isomorphic space
groups belong to the same second cohdmology group; they are related by automor-
phisms y of Z” that belong to the normalizer of ¢(K) in G L(n, Z). If, furthermore,
x€ S L(n,Z), the space groups are identified, otherwise they form enantiomorphic
pairs. The elements of the theory of group extensions as far as needed in this paper are
outlined in an appendix, and morphisms of group extensions are discussed in some
detail.

Introduction

Space groups are at the basis of our understanding of the physical properties of
crystals. Well-known since the work of FEDOROV and SCHONFLIES, of BIEBERBACH?)
and FROBEN1US?2), they have been the subject of several detailed studies (we cite only
those that have been particularly useful to us?®)%)?%)) and still continue to occupy an
important place in present-day research. Although everything about these groups is
implicitely known since the beginning of this century, an explicit and detailed
knowledge of their algebraic structure is valuable for a theory of physical phenomena
in crystals.

There are 230 space groups in three dimensions. None is a direct product of
rotations and translations (contrary to what may be read in some recent publications),
but 73 of them are semi-direct products of their rotational and translational parts.
The structure of the remaining 157 space groups may be given a precise algebraic
characterization through the concept of group extension. ¢f which the semi-direct
product is but a special case.
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It is well known that the translations (the free abelian group with three generators)
form a normal and maximal abelian subgroup T of a space group G and that the
quotient G/T is isomorphic to a so-called abstract crystallographic point group K.
Now every group G with the property G/T =~ K is an extension of the group T by a
group K9)7)8). Thus every space group is an extension of the group of translations T
by an abstract crystallographic point group K. The remarkable feature, however, is
that the converse is also true, namely that any such extension is a space group!?).
Furthermore it turns out that all inequivalent space groups belonging to a given
arithmetic crystal class form an abelian group, denoted H:(K, T) and called the
second cohomology group'!) 12). Here ¢ is an one-to-one homomorphism (monomor-
phism) from K into the group G L(3,Z) of three-dimensional integer matrices with deter-
minant + 1 and ¢(K) is a representative of the given arithmetic crystal class. Conse-
quently one finds exactly all inequivalent space groups by calculating the second
cohomology group for each arithmetic crystal class.

It thus becomes manifest that the theory of group extensions, together with the
pertinent part of homological algebra, is a natural framework for the theory of space
groups and their representations®). This program will be carried out in a series of
papers, for which this first one should lay the foundation.

In subsequent publications it will be shown that non-primitive translations, a
characteristic feature of space groups, arise quite naturally when the latter are
presented as group extensions. The determination of the possible translations as-
sociated with the elements of an abstract crystallographic point group K leads to the
usual method of constructing space groups by solving “Frobenius congruences” 2).
This method will be shown to be equivalent to that given here, viz. the determination
of all inequivalent extensions??). It will also be demonstrated that taking explicitely
into account the structure of space groups as extensions gives the theory of their
representations greater transparency.

Lately an interest has arisen in generalisations of space groups among which the
magnetic (or black and white) space groups?3) are the simplest ones. It will be shown
that the theory of group extensions is a reliable guide for all these cases.

Finally it should be mentioned that in the research on the symmetries underlying
elementary particle physics, group extensions play an important role24)2s). The study
undertaken in this and subsequent papers should prove instructive also in this field,
where the problems are less accessible to intuition than is the case for crystal physics.

1. Space Groups as Extensions
In this section, we want to show that z-dimensional space groups appear in
extensions of a finitely generated free abelian group U” by a finite group K, with
@ : K - Aut(U") a monomorphism, and that any such extension gives #-dimensional
space groups only. The following proposition shows that the fact of ¢ being a mono-
morphism is equivalent to U” being maximal abelian in the extension.

Proposition 7. Let O — A % 62 B> 1be an extension with 4 abelian. The
homomorphism ¢ : B - Aut(4) is a monomorphism if and only if the image x 4 is a
maximal abelian subgroup of G.

Proof: Let % A be maximal abelian in G. Take geG. If g(x a) = (x a)g, for any
ac A, then gex A (since the group generated by » A and g is abelian, and thus
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contained in % 4). Let « be an element of Ker ¢. By definition (see A7):
x(poaoa)=r()--xa-rx)1. (1.1)

Consequently, 7(«) - % @ - 7(x)~' = % a, since ¢ « is the identity automorphism. Then
7(x) €% A and a = ¢ € B; in other words: ¢ is a monomorphism.

Suppose now g is a monomorphism, and let g € G commute with any % a, (a € 4).
Then xa=g(xa)g'=x(pogoa),ie @ogis the identity monomorphism. Thus,
o § = ¢ € B; consequently, g € x A, showing that » 4 is maximal abelian in G.

There is another property related to normal, maximal abelian subgroups that we
shall use.

Proposition 2. If, in a commutative diagram with exact rows:

% o
A-+»A—-> G —->B—=1

ANeooomy
O—-A'"—->G =B —>1.
» o’
A’ is abelian, ¥ A is maximal abelian in G and ¢ is a monomorphism, then » is a mono-
morphism.

Proot: Let » be a choice of representatives for the cosets of ¥ 4 in G, and let
o € B. Then, unless « = ¢, u7(«) does not belong to Im »'. Indeed, if 8" € A’, then
pr(er) =2 b leads to
plra-r)]=xda -0 =uRa-0)=x#'(b"-Aa)=pr() - xa],

which is in contradiction with »# 4 being maximal abelian in G. Therefore, o' u 7(x) = &’
entails « = &. Now o’ u7(oe) =vor(x) =va. Thus, va=¢ entails a = ¢, i.e. v is a
monomorphism.

‘Definitron 7. The euclidean group, the group of rigid motions of n-dimensional
euclidean space, i.e. the group that leaves the euclidean metric invariant, is the semi-
direct product given by the extension:

0>R5ES0mR) -1 (¢). (1.2)

For the mapping ¢’ of the extension, we take the natural monomorphism (i.e. the
injection of a subgroup) of O(%, R) into Aut(R"), the group of automorphisms of the
abelian group R* = R X R X ... X R (nfactors). By O(n, R), we mean the orthogonal

group of the quadratic form X' 7% with 7, R. The abelian group R* may also be given,
i-1

in a natural way, the structure of a #-dimensional real vector space. Let G L(n, R) be
the group of automorphisms of the real vector space R*. Then generally G L(n, R) C
Aut(R"). In our case, however, since ¢’ is the natural monomorphism, we have
¢ [O(n, R)] C G L(n, R), -

An infinite crystal admits, by definition, only discrete translations; therefore, the
group of rigid motions of an infinite crystal, the space group, is a subgroup of the
euclidean group that contains only discrete translations. More precisely, we have:
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Definition 2. A n-dimensional space group G” is a subgroup of E* satisfying the
following conditions:

() Um Rt Re O G > Z* (group isomorphism),

(B) the elements of U” generate R* considered as real vector space.

Proposition 3. The subgroup U” C G" ot Definition 2 has the following properties:
(i

Un is free abelian (of rank #)

)
(i) U"is normal in G*
(i) Uris maximal abelian in G*
(iv) Gn/U" is finite.
Proof:

a) Property (i) is part of the definition.

b) Proof of (ii). For any g e G":
plpl=p(RENF)gl=p g iNptigl=REFGE= 0%,
c) Construction of a commutative diagram. We define
%x: U= G %' Rr— E* and pu:G"— E"
as natural monomorphisms;
o:G"— G"/U" and ¢’: E" — O(n, R)

as canonical epimorphisms. Furthermore, we introduce a monomorphism4: U” - R?
by u % = ' A. This is possible by virtue of condition (x). Utilizing the monomorphisms
we have just introduced, this condition takes the following precise form:

(@) (' RO (uG)=uxUr=2x AU

One arrives at the form given in Definition 2 after the identification of a group with
its monomorphic image. (To simplify the notation, we shall sometimes make such
identifications.)

Now we show that there are homomorphisms» : G*/U” > O(n, R) and A : Aut(U"?) -
G L(n, R) such that the diagram (1.3) is commutative:

0— Ul 0% GrU» — 1
\ v V'
s > Aut(U")
A u v l/,l
l ¥ 5 GL(n R)

7

00— R* - E»— O(n, R) — 1. (1.3)
GI

%I

The lower extension is that of Definition 1.
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We are in the situation of diagram (A44), and, in the manner shown there, we
define a homomorphism » : G*/U” - O(n, R) having the property:

c'u=vo. (1.4)

We have now constructed a commutative diagram of the type (A33). Formula
(A62) applies, and we have

VaeG|UVaeclUr: Alpaoa)=¢ vaolda. (1.5)

We construct a monomorphism A from Aut(U?) onto Aut(Ad U") according to (A41):
if ye Aut(U"), then A y(Aa) = A(x a) for any ae U". Owing to condition () of
Definition 2, the definition of A y may be extended by linearity from 4 U” to R" (as
real vector space) so that we have A : Aut(U") - G L(n, R). If now y = ¢ «, then,
according to (1.5):

Ap=¢'v, (1.6)
and G"/U" operates on R".

d) Proof of (iii). Let g be an element of G" that commutes with any element of
» U". Then o g € Ker . Utilizing condition (f) of Definition 2 one finds thatveo g =
Ker ¢’. This leads to 6’ u g = vog = €, and therefore v 0 g € Ker ¢" = Im x’. But
this means, by (), that g € ¥ U». Thus » U” is maximal abelian in G". Note that now
by Propositions 1 and 2, ¢ and » are monomorphisms.

e) Proof of (iv). We have shown that the group ¢(G*/U") C Aut(U") has the
following properties:

— it leaves an element of U" fixed, since p(G*/U") is a group of automorphisms of U”;

~ by Definition 1, the group ¢'[O(n, R)] leaves the metric of R* invariant. Let X be a
subgroup of ¢’'[O(n, R)] and Y a subgroup of R* that the elements of X map onto
itself. Then X leaves the metric of Y invariant. Therefore, @(G*/U") leaves the
metric of U? & Z” invariant.

A group with the above two properties is finite!3). Hence ¢(G"/U") is finite, and so
is also G*/U" P K. Thus, K is a tinite group that is isomorphic to a subgroup of
G L(n, Z) = Aut(U").

Proposition 4. Any normal and free abelian subgroup of a group G* with a sub-
group U" satisfying (ii) to (iv) is contained in U=,

Proot: Let V be a free abelian and normal subgroup of G*, and v € V. Since K is
finite, there exists an integer p > 0, such that v# € U”. For p one may take &, the
order of the group K. Indeed, let o v = «, then (¢ v)* = ¢ v* = ¢, which shows that
v*e Ur. Take u e U" and consider the commutator w =v'u'vu. Then vw=
wlvueV, and (vw)f = (ulvwu)k=u"'v¥u=t Since V is free abelian, this
entails v w = v and w = e. Thus, # v = v u, and therefore V' C U™

Corollary 4. A subgroup U” of G* with properties (i) to (iv) is unique.

Proof: Let U and V" be two such subgroups. Then V* fulfils the conditions of the
preceding proposition; therefore, V* C U". The same is also true for U", whence
UurC vn

So far we have shown:

— that a space group G” is a group containing a uniquely determined subgroup U”
with properties (i) to (iv), or equivalently,
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— that a space group G" appears in an extension of the group U" = Z” by a finite
group K, with ¢ : K - Aut(U") = G L(n, Z) being a monomorphism.
We now show that, conversely, any such extension gives space groups only.
Proposition 5. Let E" be the euclidean group with the subgroup R* (x' : R*>-> E");
let G* be a group with a subgroup U” (% : U" > G") satistying conditions (i) to (iv) of
Proposition 3. Then there is a monomorphism p : G" = E" such
(ay) that g maps the subgroup x U” into the subgroup x’ R,
() that, A being the restriction of u to U”, one has

wrUr=3"AU"= (x R") O (u G"), and

(p,) that A U™ generates the real vector space R".

Proof: We shall first of all construct a subgroup AU C R generating the real

vector space R", a monomorphism u, and a commutative diagram (1.7) with exact
TOWS!

% o
O—-Ur— Gr—> K—1

~F Aut(on
i I lz
Y 7 GLnR)
O— R—>M"—> K—1. (1.7)

Let 2: U? > R be a monomorphism such that AU generates R” considered as real
vector space. In the same way as is done in part ¢ of the proof of Proposition 3, we

construct a monomorphism A : Aut(U?) >G L(n, R) C Aut(R"). We now put

Q= A @. The mapping ¢ then is a monomorphism that operates on the vector space
R in such a way that (see 1.5):

VaeU? VoaeK:i(qoocoa):q?ocoZa,. (1.8)

We now fix a mapping 7 : K = " and consequently also a factorset m: K x K - U”"
fulfilling the conditions (A4) and (A14). Putting

Vo, BeK:m,f) =Aim B), (1.9)
we fix a factor set K x K — R" The mappings ¢ and m determine an extension of
R* by K:

O—R—M —K-—1, (9).
ed o

Since @ is a monomorphism, % R” is maximal abelian in M". Since K is finite and since
Rn is divisible and does not contain elements of finite order, the extension of R" by K
splits (A32). We are in the situation of diagram (A46). Since conditions (1.8) and (1.9)
hold, the mapping u : G* - M defined by u(a, o) = (1 @, &) is a homomorphism that
makes the diagram (1.7) commutative. By (A34, iii), # then is a monomorphism.
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The next step is to construct a commutative diagram with a monomorphism

i M" > E* with an automorphismi of R* and with the extension of R* by O(#n, R),
as considered in Definition 1, giving the n-dimensional euclidean group E™.

% c
O— Rt— M" > K —>1

v v ¥ o
N G Lm, R
A ,;c v \\]///I
" _y G Lt R
0~ R — E*— O(n, R) > 1 (1.10)

@(K) is a finite subgroup of G L(n, R); any such group is R-equivalent to a subgroup
of O(n, R)). This means that there is an automorphism 2 of R inducing an auto-
morphism A of G L(n, R):

ABEK) = AP (K) it (1.12)

such that /IE(K) is contained in ¢'[O(n, R)]. We define » by ¢’ » = A @. Clearly,
y is a monomorphism and

;Iaocoiamqo’vocoia:i@aoa). (1.12)

We now have a diagram of type (A46) with Aan automorphism and » a monomorphism.
Since both extensions are split — otherwise not, see (A60) — we may define a homomor-
phism x : M - E” that makes the diagram (1.10) commutative. The homomorphism u
will then be a monomorphism. The explicit definition of z is as follows. In M" and in E”,

we choose representatives in such a way as to have trivial factor sets in both cases.
Then we define g by

~

fla, @) = (Ao, v o) . (1.13)

Putting now 22 = 4, 7 =p, and A A = A, we arrive at the commutative diagram
(1.3).

2. Identifications

In the previous section, we have shown that a space group G* appears in an
extension

0> SK>1 (@ 2.1)

with U" free abelian, K finite and ¢ : K > Aut(U") =~ G L(n, Z) a monomorphism.
The crucial point of the theory is that, in accordance with corollary 4, the subgroup
»z U" of a given G" is uniquely determined. This enables us to give the extension a
canonical form: we put K = G"[» Z* and take for ¢ the natural epimorphism. Owing
to the uniqueness of x Z7, K, and ¢ depend only on G” and not on the monomorphism z.
The 1somorphism U” =~ Z», however, is determined only up to an automorphism yx
of Z" (y relates a choice of generators of U” to another one). Thus, only the injective
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part of (2.1) is variable, and it is necessary to investigate only the possible mono-
morphisms »: Z* - G" and to see how they give rise to monomorphisms ¢: K >
G L{n, Z).

It the same space group G" appears in two extensions

x c x o
O—>72r—->G"—>K-—>1and O —- 2" > G"—> K-> 1,

it is clear that x» and % differ by an automorphism y of Z" (x = » y). From the
morphism:

02255 K51 (9

AR |

O— 2" G"—> K—1 @)
oA

(o)

one finds, referring to (A62):
VaeK :pa=ylea)y !,

i.e. the subgroup @(K) C G L(n, Z) is defined only up to an inner automorphism of
G L(n,Z). A given space group G”* therefore determines a class of conjugate finite
subgroups of G L(n, Z).

A shightly more general situation is obtained if instead of identical space groups
one considers 1somorphic ones. Again, owing to corollary 4, we are able to construct,
asin (A44), a morphism of group extensions (2.2), where, by virtue of (A34, vii) w is in
fact an isomorphism.

0255 K1 (9
v V Vv
PR o
Y Y Y
O—>72"=>G—=K—=1 (p. (2.2)
® g

From (A62), we find
VacK:gwa=ylpa) z7. (2.3)

Thus, K and K determine the same class of conjugate finite subgroups of G L(n, Z).

Such a class is called an arithmetic crystal class!®). Two pairs (K, ¢) and (I_{, @) are
equivalent and belong to the same arithmetic crystal classif there exist an isomorphism

w: K - K and an automorphism y of Z" such that (2.3) holds. We have thereby
proved the following proposition:

Proposition 6. A given space group determines an arithmetic crystal class. Iso-
morphic space groups determine the same arithmetic crystal class.

JORDAN’s theorem ) implies that the number of classes of conjugate finite sub-
groups of G L(n, Z) is finite. Hence, the number of arithmetic crystal classes is finite.
(For n = 2, there are 13; for » = 3, there are 73 arithmetic crystal classes.)

Taking one representative from each arithmetic crystal class, one obtains a finite
tamily of non-conjugate finite subgroups of G L(n, Z), called the arithmetic crystallo-
graphic point groups.
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Some of these latter, say ¢,(K;) and g,(K,), may still be isomorphic without being
conjugate. If the quotient group K = G*/xZ" is considered as abstract group, i.e. if
isomorphic groups are identified, one obtains a family of finite groups, called the
abstract crystallographic point groups. Their number is at most equal to the number
of arithmetic crystal classes. (For # = 2, there are 9; for #n = 3, there are 18 abstract
crystallographic point groups.) Now we may characterize a #-dimensional arithmetic
crystal class as a class of Z-equivalent #-dimensional faithful integral representations
of an abstract crystallographic point group K.

Up to now we have considered a given space group (or two isomorphic space
groups) and we have determined the possible ¢(K) that may arise. Now we want to
find all possible space groups G" appearing in an extension O > Z" > G" > K -1,
taking for K an abstract crystallographic point group. The question is whether we
must consider all possible monomorphisms ¢ : K -G L(n, Z). From the preceding
discussion, it follows that we need to take only one representative of each arithmetic
crystal class; for each group G* arising from one representative of a given arithmetic

crystal class, there is an isomorphic group G* arising from another representative.
Thus, to determine all space groups of a given dimension, one has to calculate the
second cohemology groups H2(K, Z"), taking for the pair (K, ¢) the arithmetic crys-

tallographic point groups. This means that one admits only those automorphisms yx
of Z» that lead to:

P(K) = oK) = 7lp(K)] 27" . (2.4)
In other words, only automorphisms of Z» that belong to the normalizer N 2
N [¢(K) C G L(n,Z)] of p(K) in G L(n, Z) are admitted.

The preceding discussion may be summarized as follows:

Corollary 6.

Let

“ ag

O— 2" G"— K—1 (¢
and

O I 2T 5 K sl (@)

be two extensions (with the same monomorphism ¢ 1) and ¢ : G* - G" an isomorphism.
Then (owing to corollary 4)

wx Zr = Z";

furthermore, if 4 is the isomorphism defined by 4 = %'y %, then 4 is an element of
N [p(K) C G L{n, Z)].
Note that isomorphic groups may always be made to appear in the same extension.
The automorphism y still play a réle in our theory because we are interested in
isomorphic space groups and not in equivalent extensions. Indeed, non-equivalent
extensions —i.e. different elements of H2(K, Z") — may give isomorphic space groups.
The following proposition shows how to recognize the case of non-equivalent but iso-

morphic space groups.
Proposition 7. Two extensions of the same type give isomorphic space groups G"

and G (w:G" > E") if and only if it is possible to choose a representative s : K X K -
Z" of the equivalence class of G*, a representative m : K X K -> Z" of the equivalence
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class of G*, an automorphism w of K, and an automorphism y € N of Z7, such that:

Vo BeK:mwa, of) =y m B) (2.5)
and
VaeK VaecZ:ylpaoa) =pwaoya. (2.6)

Note that y determines w.

Proof: We shall first prove the necessity of the conditions. If G* and G" are iso-
morphic, (owing to corollary 4), we are able to construct the following commutative
diagram with y € N:

0>2beSK>1 (9
! o} |
R
0—>2">G—=>K—>1 (9. (2.7)
»® o

Let » be a choice of representatives of the cosets of Z# C G*. Then the factor set m
given by x m(a, 8) = r(a) 7(f) r(x f)~* is a representative of the equivalence class of

the extension G*. Equally, let 7 be a choice of representatives for the cosets of Z» C Gn.

- —

Then the factor set m — given by % m(a, ) = 7(«) 7(8) 7(« )t — is a representative of
the equivalence class of the extension G». For a given choice of 7, a possible choice of 7
is given by (see A47):

rTo=yr, (2.8)
Then, according to (A49) and (A50):
ylparoa)=pwaoya and ymx f) =m@a, of).

This shows that the condition is necessary.
To show that the condition is sufficient, we start with the diagram

02565851 (@

ST

O—2r—G—=>K-—=1 (p), (2.9)
X o

where y € N and (2.5) as well as (2.6) are fulfilled. We then show that (2.9) determines

a monomorphism ¢ : G* - G" such that the diagram is commutative.
Let # be a choice of representatives for the cosets Z» C G*, and 7 such a choice in

G"; these choices being such that (2.5) and (2.6) are fulfilled.

We are now in a situation analogous to that of diagram (A46). Therefore, a mapping
p:G" > G" defined by p(a, o) = (x @,  «) is a homomorphism.

On account of the Short Five Lemma (A34, vi), it then is an isomorphism, and
Proposition 7 is proved. _

Consider the abelian group of m-cochains C7' (K, Z*) = { f'} and the automorphisms
z of Z® and w of K related by (2.6).
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The mapping x*: Cm - C™ defined by x* f™(ay, ..., a,) =(0ay,..., 0 a,) -
formula (2.5) is a particular case of this mapping — is an automorphism of C™(K, Z")
that maps cocycles onto cocycles and coboundaries onto coboundaries, and thus
induces (for every m) an automorphism of H (K, Z").

Returning now to the case m = 2, we say that two elements belong to the same
orbit of Hy(K, Z") relative to N = N [p(K) C G L(n, Z)] if it is possible to choose
representatives # and m of their respective cohomology classes and a y € N such that
there is a w € Aut(K) fulfilling (2.5) and (2.6). Since 2-cohomologous 2-cocycles belong
to the same orbit, this definition does not depend on the choice of representatives.
The orbits constitute a partition of H2(K, Z7) into disjoint classes, and there is a
one-to-one correspondence between the non-isomorphic space groups associated with
the arithmetic crystallographic point group (K, ¢) and the set of orbits of H2(K, Z”)
relative to N. This set generally has no group structure.

In crystallography, it is customary to identify not all isomorphic space groups ap-
pearinginextensions 0 ->Z" -G" - K —1but only those having the “‘same orientation”’.

G L(n, Z) has a subgroup S L(n, Z) of index two consisting of the automorphisms
of Z» with determinant + 1. The orbits of HZ(K, Z") relative to Nt = N [¢(K) C
G L(n, Z)] NS L(n, Z) constitute another partition of H, t;‘i(K , Z") into disjoint classes.
There is a one-to-one correspondence between this set of orbits and the non-iso-
morphic space groups of same orientation associated with the arithmetic crystallo-
graphic point group (K, ¢). An orbit of HZ(K, Z") relative to N is also an orbit
relative to N+ if for each pair of elements in the orbit relative to N there is at least
one element ¥+ of N+and aw e Aut(K) fulfilling (2.5) and (2.6). If thisis not the case, the
orbit relative to IV is split into two orbits relative to N+, called an enantiomorphic pair.

If in G L(n, Z), instead of the subgroup ¢(K), one considers a conjugate subgroup
@(K), then, in the induced isomorphism between H 3(K , Z%) and H%(K , Z"), the parti-
tion into orbits relative to N+ is left unchanged. Thus, by restricting oneself to one
representative of each arithmetic crystal class, no oriented space group has been lost.

Eleven enantiomorphic pairs are known in three' dimensions; there is no such pair
in two dimensions. According to BUERGER®), the members of any of these pairs
cannot be distinguished by any known experimental means.

We have seen that the arithmetic crystal classes play a fundamental role in
crystallography. Nevertheless, the notion of geometric crystal class?) is more custom-
ary. The geometric crystal classes arise from the circumstance that the euclidean
group E” determines a class of conjugate subgroups of G L(n, R) that are isomorphic
to O(n, R). In Definition 1, we choose one fixed representative of that conjugation class.
Subgroups of G L(n, R), e.g. ¢’ [O(n, R)], are also determined only up to conjugation
in G L(n, R). A n-dimensional geometric crystal class then is a class of R-equivalent
n-dimensional faithful real representations of a finite group K. In other words,
if A: Aut(Z") > G L(n, R) is the monomorphism resulting from a monomorphism
A Z" > R* such that A Z" generates the real vector space R” and if furthermore ¢ and
@ are twomonomorphisms from K into G L(n, Z), then ¢(K) and @(K) are geometric-
ally equivalent if there exists a y € G L(n, R) such that:

VaeK:dgoa=pdea)y! (2.10)

where @ is an automorphism of K.

36 H. P. A. 38, 6 (1965)
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Z-equivalence implies R-equivalence. The converse is not true. Hence, a geometric
crystal class may give rise, in general, to several arithmetic crystal classes. Again,
some of the non-conjugate finite subgroups of A [G L(»n, Z)] may still be isomorphic.
Thus, an abstract crystallographic point group may give rise to several geometric
crystal classes. (For # = 2, there are 10; for # = 3, there are 32 geometric crystal
classes.) Furthermore, a finite subgroup of G L(n, Z) — and also an abstract crystallo-
graphic point group — is isomorphic to a (finite) subgroup of O(%, R), but the converse
1s not true.

Taking one representative from each geometric crystal class, one obtains a finite
family of groups called the geometric crystallographic point groups (usually, these
groups are simply called crystallographic point groups).
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Appendix
1. Extensions of Groups
A group G 1is called an extension of a group 4 = (e, a, b, ...) by a group B =

(e, a, B, ...), (i) if G contains a normal subgroup A'(4" <1 G) that is isomorphic to
A (A"~ A), and (ii) if G/A’ =~ B. We thus have a sequence

X

AsSs G>> B (A1)
of a monomorphism x: 4 >> G (x A = A’) and an epimorphism ¢: G >» B.

b o
A sequence of groups and group homomorphisms, P A Q — R, such as sequence
(A1) for instance, is called a O-sequence (or a differential sequence) if Im » C Ker o;
it is called an exact sequence if Im » = Ker ¢. A longer sequence

L AL s An s Al s

is called a 0-sequence (or an exact sequence) if every triplet A*t > A" > A"+ is a
0-sequence (or an exact sequence, respectively). The fact that in (Al) x» is a mono-
morphism and ¢ is an epimorphism may be expressed by saying that the sequence

1> A5 C> Bl (A2)

is exact. An exact sequence of five groups with the two outside groups equal to unity
is called a short exact sequence. A short exact sequence 1 >4 -G > B - 11s but
another name for an extension of a group 4 by a group B. More generally, it

...Xﬂ~16“_“ani’l X"+1%+1=..
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is part of an exact sequence, the relation
holds. Keré,,; = X*Iméd,, (A3)
If G is an extension of 4 by B, the group G can be partitioned into cosets 4 g of 4,
(g €G). By denoting 7(a) a representative of the coset corresponding to a € B, we
choose a one-to-one mapping 7: B - G with the property that ¢ 7 is the identity
mapping of B onto itself; consequently, » ¢ maps every element of a coset on a fixed
element of that coset, the representative. For a fixed 7, the elements of G can be
uniquely represented as g = a - #(a). The product #(«) 7(8) lies in the coset with
representative 7(« () ; thus, there are unique elements m (e, §) € A such that

() 7(B) = % m(ex, B) - 7(ex f) . (A4)
It is convenient to choose 7(g) = e. This choice leads to
VaeB:me) =m,e) =mea) =e. (A5)

There is no loss of generality by assuming these conditions fulfilled, and we shall do so
henceforth. The mapping m: B X B > A is called factor set of the extension G.
A factor set satisfying the conditions (A5) is called normalized. Since » A is a normal
subgroup of G, conjugation in G (say with an element g € G) yields an automorphism

Dgof A ding t
go accoraing to - [@ go a] - g(x a) g_l " (A6)

The mapping @ : G > Aut(4) of G into the group of all automorphisms of 4 is a
homomorphism. More particularly, conjugation by an element #(«) € G yields also an
automorphism ¢ o of 4:

2[paoal =rle) - xa-rie)t. (A7)

If 7(¢) = e, then ¢ ¢ is the identity mapping 7.
With the aid of the mapping ¢ : B - Aut(4), the multiplication of two elements
of G can be written:

e a - r(@)] (% b- ()] = % [alp 20 B) mia, B)] - r(a B) (A8)
The mapping ¢ is generally not a homomorphism. Indeed, owing to (A4):
[ a) (@ B)]oa=mla B) [@p)oal mx ). (A9)

Furthermore, the mapping ¢ depends on the choice of representatives 7. Instead of
taking 7(«) as representative of the coset » A-7(x), we may take as well any element
7' () satisfyin

(o) satistying 7o) = xe(a) - r{a) , cle) €4 . (A10)
Then ,

() - xa- (@)t =x (@ aoal = x[c(a) (pooa) )],
and
p'ooa=c) (pooa)cle)?. (A11)

Thus, to every element « € B, there corresponds in fact an automorphism of 4 modulo
an inner automorphism of A4, i.e. an element of the quotient group Aut(4)/I(4) =
A(A). The group M(A4) is called group of automorphism classes, or group of outer
automorphisms. According to (A9), the mapping ¥': B - A(A4) is a homomorphism,
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so that we have the following diagram of three short exact sequences [C(A4) denotes
the center of A]:

)
:)>.<—-E<—+-t

v

G — B —1
D e

) = Aut(4) — A(4) — 1. (A1Z)

'

v

":):-%

1

— <

The diagram, furthermore, is commutative. A diagram of groups and group homo-
morphisms is called commutative if any two paths along directed arrows from one
group to another group yield the same (composite) homomorphism.

A further consequence of (A10) is that we get a new factor set m': B x B > A
that is related to the old one by:

m'(a, B) = o(e) [p o0 c(B)] m(a, B) cle ) . (A13)
To preserve the normalization of the new factor set, we must choose c(g) = e.

There is a further relation concerning the factor set. From the associativity of
multiplication applied to the product 7(«) #(f) #(y), it follows that

@ xom(B,y) = m(a, f) mxp,y) ma fy). (A14)

We call system of mappings (g, m) from B to A (or simply system) the two mappings
@: B > Aut(4) and m: B x B > A obeying to (A9) and (Al4). A system (g, m)
from B to 4 such that ¢ ¢ = 7, and m(e, &) = m(a, &) = m(e, «) = eis called normalized.
A given extension of A by B determines a set of systems of mappings from B to 4.

Two systems (@, m) and (¢’, m') from B to A are called equivalent if there exists
a mapping ¢ : B - A such that (A11) and (A13) are satisfied. It may be verified that
the equivalence thus defined is reflexive, symmetric, and transitive. Equivalent
systems from B to 4 determine a unique mapping ¥': B - (4). Any system from
B to A is equivalent to a normalized one. A given extension G of 4 by B determines
— up to equivalence — a unique system from B to 4.

Two extensions, 1 >4 >G> B >1and 1 >4 > G > B > 1, the first one
with system (@, m) and the second one with system (¢', »') are equivalent if the
systems (@, m) and (¢', m’) are equivalent. The equivalence of extensions thus defined
does not depend on the choice of (¢, m) and (¢', m').

Given two groups 4 and B and a system (g, m) from B to A, the set G [4, B, ¢, m]
of all pairs (a, o) with a € 4, « € B and with the multiplication law given by

(@, @) (b, B) = (a [paob] m(ax, B), « f) (A15)
is a group. Furthermore, if #: A4 - G is defined by xa = (a,¢) and if 0:G > B is

defined by o(a, o) = «, then1 — 4 56 —U> B —1isexact (i.e. G 1s an extension of 4
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by B). Any system (p, m) determined by this extension is equivalent to the system
(, m); the particular choice 7: B - G defined by 7(x) = (e, «) leads to the initial
system (@, m).

Let G be an extension of 4 by B and (¢', m') a system from B to A thereby
determined. The extension G is said to split if (¢/, ') is equivalent to a system
(@, my) from B to A such that my(«, B) = e € A for any «, 8 € B. Such a system (¢, #,)
is called a split system, and m,, a trivial factor set. From (A13) we find, by putting

m'(a, f) = e:
mia, ) = [@a o c(B)]™ e(a)~ cla ) - (A16)

The extension G is said to be the direct product extension if (¢, m') is equivalent to a
system (%, m,) where 7 is the identity automorphism of 4. In a split extension, the
mapping 7 : B - G may be chosen to be a monomorphism, a right inverse of the
epimorphism o : G - B; the set #(B) of coset representatives then is a subgroup of G
that is isomorphic to B; furthermore, from (A9), (. ) = (¢ @) (@ f), i.e. the mapping
@ : B > Aut(4) then is a homomorphism. A group G [4, B, ¢, m,] with multiplication
law (A15) is called a semi-direct product of 4 by B, and is noted 4 Xy B. A group
G [A, B, i, my] with multiplication law (A15) is called the direct product 4 x B, of
A by B.

Henceforth in this paragraph, we suppose that 4 is an abelian group (written
additively). Then the diagram (A12) collapses into

b o
O—A—-G—-B-—+>1,

';D\ \ch

Aut(A) (A17)

where ¢ : B - Aut(4) is now a homomorphism that does not depend anymore on the
choice of representatives for the cosets of x A C G. Through g, the group B operates
on A. Thus, B is a group of operators for 4, and 4 is given the structure of a B-module.

If (p, m) and (¢, m') are two systems from B to 4, determined by an extension of
A by B, then ¢ = ¢’, as is seen from (A11). Thus, instead of equivalent systems, we
may speak of equivalent factor sets, satisfying (A13). The set Ext(4, B, ¢) of all
equivalence classes of extensions

O—>A4—>G—>B—=1 (¢ (A18)

of an abelian group A by a group B with fixed ¢ has a simple structure, as we shall see
presently.

If m, and m, are factor sets for an extension of A by B, then my = m, + m,,
defined by

Va, B eB:mya, f) = mx, f) + myle, B) = my(a, f) + my(a, p),  (AL9)

is again a factor set. By computing ¢ y 0 m4(a, ), one verifies that (A14) is indeed
satisfied. The factor sets form an abelian group F, (4, B). The mapping f: B X B > A4

defined by flo B) = cla) + potoclB) — clac ) (A20)

where c is a one-to-one mapping form B into 4, also is a factor set. Comparison with
(A13) shows that fis the difference between two equivalent factor sets. One may also
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see that fis equivalent to the factor set of a split system. The set of all fis a subgroup
T,(4, B) ot F,(A, B). The set Ext(4, B, ¢) of all equivalence classes of extensions is

an abelian group, and we have:
Ext(4, B, ¢) = F(4,B)|T,(4,B). (A21)

Extensions belonging to the same group Ext(4, B, ¢) are called extensions of the
same type. '
Given a 0-sequence of abelian groups and group homomorphisms

Oy 0y Jy
X0 — X1 — X2 — .., (A22)

we have, by definition, 6,., d, = 0. The §, are called differentiation homomorphisms
(or coboundary operators). We define

Imd, = B% Kerd, = 2% (A23)
Then, B* C Z» C X", so that we can construct
Hn — Zn/Bn . (}&24)

Consider now the mappings:
friBx Bx - xB—>A.

n times (A25)

The fm are called #n-cochains and form an abelian group C;(B, 4). By definition, we
put C) = A. Since, through ¢, B operates on A, it operates also on Cy(B, 4). We
subject f” to the normalization conditions f*(«,, o5, ... , &,) = 0 whenever, at least one
of the «; equals e. We now define mappings o, : C; - C;™ by:

(0, /") (o, 001, vy 0ty) = (— 1)%7 fP(org, 00y, v, 0yy) + 0o fH(otg, O, v s )
‘!‘2(_ 1)f f™(otgs Otys v vn s Bygy gy Oy, Oypys vv s Oy) - (A26)
t=1

Forn=0,1, 2, wefind:

(86/%) (o) = o f* — f € C, (A27)
01/ (& B) = fH(o) + 2 fH(B) — fH p) € Cy, (AZ8)
(0212 (o B, %) = — [ ) — 22 B ) + fole, By) T /2(B.¥) €Cp. (A29)

It can be shown that §,., 6, = 0, so that
A —Cy(B, A) — C3(B, A) — C3(B, A) — -~ (A30)
is a 0-sequence. We than can define B(B, 4), Z,(B, A), and H;(B, A) by (A23) and
(A24). The elements of B (B, A) are called n-coboundaries, those of Z;(B, A) are
called n-cocycles, whereas H (B, A) is the n-th cohomology group of the 0-sequence
(A30). Two 2-cocycles that differ by a 2-coboundary are called 2-cohomologous.
HE(B, A) is the set of cohomology classes of 2-cocycles. Comparison of (Al4) and
(A29) shows that a factor set is a 2-cocycle; comparison of (A13) and (A28) shows
that the difference between two equivalent factor sets is a 2-coboundary. To the

equivalence classes of extensions, there correspond the cohomology classes of 2-co-
cycles. Hence, the group Ext(4, B, ¢) is isomorphic to the second cohomology group

H(B, 4)*)): Ext(d, B, ¢) = HX(B, 4). (A31)
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We utilize also the following properties of cohomology groups?):

If K is a finite group of order %, then for » > 0 the order of every
element of H)(K, A) divides £. If, furthermore, the abelian group 4
is finitely generated, the group H (K, A) is finite. (A32)
If K is finite and A is a divisible abelian group with no elements of
finite order, then for n > 0, HJ(K, A) = 0.

2. Movphisms of Group Extensions

Consider the following commutative diagram with exact rows

* (o)
14— G—-B—=1 (¢

Aeoowyoovy
1-A4"—>G—=B —1 (¢) (A33)
® o’
and with the mappings ¢ : B > Aut(4) and ¢": B’ > Aut(4’). The triplet I'(4, u, v) of
group homomorphisms is called a morphism of the upper extension to the lower one.
Since diagrams such as (A33) are repeatedly encountered in our investigations, we
develop here some formulas pertaining to it. (In this section, 4 and 4’ are not
necessarily abelian groups.)
We have following simple rules
(1) If p is an epimorphism, so is ».
(i1) If w is a monomorphism, so is 4.
(iii) If A and » are monomorphisms, so is u.
(iv) If 2 and » are epimorphisms, so is u.
(v) If w is an isomorphism, 4 is a monomorphism and » is an epimor- ; (A34)
phism. (Consequence of (i) and (ii).)
(vi) If Aandw are isomorphisms, so is u. (Consequence of (iii) and (iv).)
(vii) If any two of the three mappings 4, p, and v are isomorphisms,
so is the third one.

Propositions (iii), (iv), and (vi) are the content of the Short Five Lemma22).

Let7 : B - G be a choice of representatives of the cosetsofx 4 <1 G,and?': B’ > G’
such a choice for the cosets of »’ A" <{ G'. From the commutativity: vo =o' u we
deduce:

v=oc ur. (A35)
Furthermore, ¢’ " v = ¢’ w7, so that

VaeB: o' ur@] o' »va)]1=¢€B .

Thus
pr(e r’(va) e Kero' = Im .

Consequently, there is an element of A’ that may depend on «, and that we denote
u(x) € A’, such that

wr(e) v(ve) = 2" ula) .
For a fixed mapping 7, the possible mappings " are related by:

VaeB:ure) =x ul) - 7va). (A36)
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Special cases arise from special choices of #(«). If # and » are normalized so that
r'(¢') = r(e) = e, then we) = e (A37)
With the help of (A36), the action of the homomorphism g can be written more
explicitly:
wa, o) =pxa-ve)=puxa-uriw =»2Aa- - ua) - -rva) =
=x'[Aa-ul@]-rva)= (Aa-ulx),ra . (A38)
We now look how ¢ and ¢’ are related.

wAMpaoa)=prlpaoa)=pulrie)-xa-r@)?]=
=pur(e) uxa-purie = u@) - -ryva) xAda-rve)l-xule)!=
= ula) - #'(@vaolda) x ulw)?=

= 2" [u(o) (" veeolda) uln)].
Thus AMpooa) =u(x) (' vaolda) uw?. (A39)

Finally, we want to establish a relation between the factor sets m: B X B - 4 and
m':B" x B">A4".
pr(@) r(B)] = w [ m(a, B) - r(w B)] = p e m(a, B) - pr(e f) =

=x' Am(o, ) %' u(a ) - r'va-vf) =2 [Am(x, B) - u(e f)]- ' (vo-vp).
plrle) 7(B)] = pr(e) - pr(B) = o' ula) - (v o) - 2" u(B) - 7'(v B) =

— o {ula) [¢ vao u(B)] m'(va,v )} - Pva-v ).

Comparison of the two results shows that

Am(a, f) = u(@) [¢" v oo u(B)] m'(ve, v B) ula f). (A40)

Let A2 be a monomorphism. We now are able to define a mapping A from Aut(4) onto
Aut(4 A) in the following way: Let y be any element of Aut(4), and let a be any
element of A. Put y a = b; then A y maps 14 onto 1 b, i.e.

VaeA:(Ady)(Aa)=4(xa) or (Ax)di=~2y. (A41)
A y isindeed, by definition, a mapping A A -1 A. We show that it is an automorphism:
AylAa-2b)=Ay[AMabd)]=Ayab)=Aya-Axb=AyAa)-AxAb).

Furthermore, from
’ ¢ = (A y) (ha) =24y a)
one concludes that e = y a, that ¢ = 4, and that 1 a = ¢'.

Now we show that the mapping A is an isomorphism from Aut(A4) onto Aut(d 4),
i.e.if A y is the identity mapping on 4 4, then y is the identity mapping on A. Indeed,
from 2 a = (A %) (A a) = A(y a), one concludes that a = y a.

In the particular case of y = ¢ «, we find

VacA:Apaoda=Agpaoa) or (Apa)i=~Aigpax). (A42)
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Combination of (A39) and (A42) gives

(Apaoda) ule) =u@) (vaola). (A43)
We now discuss three useful cases of incomplete morphisms, and how they can be
completed.
First case:

% o
1-A4—-G—-B—>1 (¢

Nooosy
lsd" >G> B-=1 [, (A44)
X o
Take two elements g and % that belong to the same coset of x A C G. Thenghtex A
and pu(gh) = (ug) (uh)reux A Cx A, thereby showing that u g and u 4 belong
to the same coset of x" A’ C G'. The homomorphism u thus induces a mapping
v: B - B’ that is implicitly defined thus:if¢ g = aandu g = g', theno’ g =o' = v a.
Hence, o' pg=va=vo0gand 6’y =vo. Besidesog=o, ug=¢,and o' g =va,
we put also 0 h =, uh=Fh', and ¢’ ' = » B. We then consider g 4. Since o(g &) =
6g-0h=oaf, wehave o' u(gh) =v(af). But we find also o’ u(gh) =o' ug-o uh
= (va) (v f) . Thus, v(«x f) = (v &) (v f), and v is a homomorphism.
Second case:

e o
l-A4—->G—-B—-1 (p

2

1-4"- G —- B —1 (¢). (A45)

%l UI

Let u by a homomorphism such that u % 4 C #’ A" and explicitly given by u(a, «) =
(a" u(a), o). (Compare with (A38).)

We define the two mappings1: 4 > A’ andv: B > B'bya'=Aaand o’ =»«.
Thus, p(a, o) = (2 a-u(x), v «). Putting o« = ¢, one finds px a =’ 1 a. Calculating
o ula, o) =o' (Aa-ul®),va) =va=rada, ), onefinds ¢’ u = » . We now show that
A is a homomorphism: u(x a-%b) = ux(ab) =" Alab), but also u(xa-xb) =
pra -unb=x"lra-»"ib=x'(la-2b). Since »' is a monomorphism, this shows
that A(a ) = A a - 1 b. The mapping » is also a homomorphism. We calculate

o' [r(@) 7(B)] = o' w [ mlax, B) - 7(o B)] = 0" e m(a, B) - " pr(x f) =
=o' %' Am(a, B) - v(x f) = v(x B);

but we have also
o 1 o) 7)) = o' ) - o i r(B) — () (v B),

so that (o ) = (v &) (v ).
Third case: 5 .
l1-4—-G—-B—1 (¢
A\L v\l,

1->A"—>G—=B —1 (§). (A46)

® o’
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We define a mapping u:G -G’ by pu(a, o) = (A a-u(x), v «). As in the case of the
preceding diagram, one shows that u » = ' 2 and ¢’ 4 = » ¢ hold. To show that yisa
homomorphism, it is necessary to suppose that the two mappings ¢ and ¢’ verify
(A39), and that the two factor sets m and m' verify (A40). Under these conditions
plma-r(e) -2 br(B)} = u {x [alpwod) mix, B)] - rlx f)} =
= »' Ala(p o b) mlx, B)] - x u(o B) - 7' [v( B)] =
=% [Aa-Apood)-Amx, f) - ulwf)] - r(vo v f) =
=x'{la-ulw) @ vaoldb] uew)u) ¢ vaoulB)]m e vp) uw)* uep)}-
rve-vf) =
=x'[Aa-u@]-7wva) -2 Ab-rva)lr'va) - » u) -r@p) ' m' e vp)-
rra-vf) =
= [Aa- u@] - r'0o) - b u()] - r'(vf) = p[wa-rl@] - wlxbr(B)].
We now consider special cases of diagram (A33).

a) It is always possible to choose #’ (for given 7) so as to obtain u(a) = ¢’ for all
o€ B. Then:

ur(e) =rvao) (A47)
wa, ) = (ha,va) (A48)
AMpooa)=¢'vaoia or Alpa)= (¢ va)l (A49)
Amla, ) =m'(va, v f) . (A50)
If 4 is a monomorphism: )
Ap=9¢'v. (A51)

b) Let 4 and » be the identity homomorphisms:

14565 B>1 (9
ok

1-A4-—>G-—>B—>1 (¢). (A52)

»’ o’

Then, by (A34), u is an isomorphism. Furthermore:

wrla) = # ulx) - r'() (A53)

wla, o) = (@ u(a), o) (A54)
gaoa—u) (¢ oo a)u)? (A55)

m(e, ) = u(e) [@" o 0 u(f)] m' (o, B) wle B)~ . (A56)

Comparison of (A55) and (A56) with (A11) and (A13), respectively, reveals that the
diagram (A52) represents the case of two equivalent extensions. (The difference
between the two sets of formulas is purely notational, the role of the primed and of the
unprimed extension being exchanged.)
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Conversely, let

154565 B>1 (9
and

% o’
1-4—-G—-B—1 (¢)

be two equivalent extensions, i.e. there exists a mapping ¢: B - A such that the
respective systems from B to 4, (@, m) and (¢, m’'), are related by (A11) and (A13).
Let »: B> G and #': B - G’ be choices of representatives that lead, by (A4) and
(A7), to these systems.

We now show that the mapping u defined by

VacAd, VaeB:u[xa-r)]=x"[acle)™]- 7(x) (A57)

1s an isomorphism that makes the diagram (A52) commutative. Using (A8), (A11), and
(A13), we first show that u is a homomorphism:

plea-r)xb-r(B)] =p{xlalpaod)mx f)] rxp)}=
= o {a[paob] mlo, B) ol f) 1} - #'(a f) =
= %' {acl) ¢ a0 b] [¢ aoc(B) ] m'(e, B)}- 7' (@ f) =
= %" lacl)] - 7'(a) - " [be(B)] -7 (B) =
—plea-r@)]-uind-rp).
Putting in (A57) o = ¢, one obtains u x @ = % a, i.e. u » = »'. Furthermore:
cdulea-r)]=o{«lac)™] - 7r@)}=a=0clxa-r)],

l.e. ¢’ 4 = 0. The diagram (A52) that we have constructed is commutative.
Diagram (A52) may thus be taken as abstract definition of the equivalence of two
extensions,
c) Let G’ be a split extensions of A’ by B’. Then the representatives ' may be
chosen in such a way that ' : B’ - G’ is a monomorphism and that m/(a’, ') = ¢’ for
all o', §" € B'. With such a choice, (A40) becomes:

Am(a, B) = ulw) [¢" v oo u(f)] ulx )1 (A58)

Concerning split extensions, we have the following rules:
If, in diagram (A33), » is an isomorphism and if the unprimed extension splits,
then so does the primed extension. (A59)
Proof: Let 7 be a choice of representatives for the cosets of » 4 <{ G such that
7. B - G is a monomorphism. Then the mapping " : B’ - G’ defined by ' = g r v=!
is a homomorphism, and ¢’ 7 = ¢’ u7 v = v ¢ 7 v~ = 1. Hence, 7’ is a monomorphism
and a possible choice of representatives of x’ A’ <] G'. Thus, the primed extension splits.

If, in diagram (A33), A is an isomorphism and if the primed extension splits, then
so does the unprimed extension. (A60)
Proof: For G', we choose m’'(2/, ') = ¢ for any &', ' € B’. Then, by (A58):

hom(a, B) = ula) [¢f v o ou(B)] ulo f) 1.

N defi
oW we detine VaeB:ule) =4c(e)t.
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Then, using (A39), we {ind
Amla, B) = Alpaoc(B) - Aelx)t- Ae(xp)
m(a, f) = gaoc(f)~t cla)t e f) -

Comparison with (A16) shows that G is a split extension.
d) Let 4 be an additively written abelian group. Then

wia, o) = (Aa+ u@),va) from (A38) (A61)
Mpaoa)=¢'vaolda or Alpa) A1 = ¢ va from (A39) (A62)
Am(o, B) =m'(va, v B) + u(e) + @' voou(f) — u(x f) from (A40). (A63)

If A is a monomorphism:

and

A@=¢"v from (A43) . (A64)
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