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Zur Unizität der Gravitationstheorie
von Walter Wyss

Seminar für Theoretische Physik der ETH, Zürich

(23. V. 65)

Abstract. A linearized lorentzcovariant theory of gravitation leads, when coupled to the
energy-momentum tensor of a model of matter, directly to the Einstein gravitation theory. This
rests on the existence of an unique extension of the linear gaugegroup to the general covariance-
pseudogroup of the Minkowskispace.

1. Einleitung

Man möchte mit den Methoden der klassischen lorentzkovarianten Feldtheorien
eine Theorie der Gravitation aufstellen1)2), etwa nach dem Muster der
Elektrodynamik. Dazu bedienen wir uns des Lagrangeschen Formalismus. Dieser garantiert
nämlich die Gültigkeit von Actio Reactio, also die Rückwirkung der Gravitation
auf die Materie. Aus den empirisch bekannten Eigenschaften dieser Wechselwirkung
lässt sich nun das Transformationsverhalten des Gravitationsfeldes bestimmen, das
heisst zu welcher Darstellung [m, s] der Überlagerungsgruppe der inhomogenen
Lorentzgruppe es gehört. Zum vornherein kann man den Fall des halbganzen Spins
ausschliessen, da ja das Gravitationsfeld direkt beobachtbar ist. Ferner muss unsere
Theorie als Grenzfall die Newtonsche Gravitationstheorie enthalten, denn diese kann
gewisse Gravitationsphänomene mit hoher Genauigkeit erklären. Dies bedeutet aber
schon, dass das Gravitationsfeld neutral ist und zur Ruhemasse Null gehört. Die
entsprechenden einfachsten Fälle, der des Spins s 0 und s 1, geben jedoch keine
richtige Beschreibung der Gravitation. Dem Fall [0, 0] entspricht die Nordströmsche
Theorie; diese liefert aber keine Lichtablenkung am Sonnenrand. Das Feld [0, 1] ist
uns bekannt als dasjenige der Elektrodynamik. Das Gravitationsfeld weist aber nur
anziehende Kräfte auf, wogegen die Elektrodynamik solche beiderlei Vorzeichens
liefert. Es bleiben also noch die Felder [0, s], s > 2 als Aspiranten für das Gravitationsfeld

übrig. Nun liefert aber das Äquivalenzprinzip einen weiteren Hinweis. Das
Erfahrungsgesetz von der Gleichheit der trägen und schweren Masse zeigt, dass der
Energig-Impuls-Tensor der Materie als Quelle des Gravitationsfeldes anzusehen ist.
Verlangt man deshalb, dass für die Erzeugung eines Gravitationsfeldes durch ein
materielles System allein dessen Energie-Impuls-Tensor T massgebend ist, so muss
unser Feld zur Darstellung [0, 2] gehören. Der Symmetrie von T wegen können wir
das Gravitationsfeld ip fx), xeM (Minkowskiraum), oder kurz tp, ebenfalls als

symmetrisch annehmen.
Wir beginnen nun mit einer linearen freien Theorie für das ip-Feld. Da bekanntlich3)

jedem freien Feld zur Ruhemasse m 0 eine Eichgruppe zugeordnet ist, so
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besitzt speziell unser yj-Feld eine solche. Wir bezeichnen sie mit E(£) ; f sind dabei
Vektorfelder über M. Diese Eichgruppe liefert nach dem Noether-Hilbertschen Theorem4)

eine Identität in den y-Bewegungsgleichungen.
Koppelt man, gemäss unserer Forderung, das ^j-Feld direkt an den Energie-

Impuls-Tensor T eines Materiemodells, so führt die erwähnte Identität auf eine
Inkonsistenz. Die Idee dieser Arbeit ist nun, die Bewegungsgleichungen als Anfang
einer Entwicklung aufzufassen, bezüglich welcher diese Inkonsistenz von höherer
Ordnung ist. Will man die Bewegungsgleichungen so modifizieren, dass sie eine

Ordnung höher konsistent bleiben, so ist man gezwungen, nichtlineare Terme in ip

einzuführen und unsere Identität zu modifizieren. Diese Modifikation ist eindeutig
und führt, nach dem Noether-Hilbertschen Theorem, auf eine Erweiterung £(£) der

Eichgruppe £(£). £(|) erweist sich als isomorph zur Kovarianzpseudogruppe K(M)
des Minkowskiraumes. Identifiziert man diese beiden Gruppen, so ist unsere Theorie
die Einsteinsche Gravitationstheorie mit g r) + ip„v.

Ich danke meinen verehrten Lehrern Prof. M. Fierz und Prof. R. Jost für die
freundliche Unterstützung während der Ausführung dieser Arbeit.

2. Das freie Gravitationsfeld

Wir beschreiben das Gravitationsfeld durch ein symmetrisches Tensorfeld ip.
Da dieses Feld weiter nicht eingeschränkt wird, transformiert es sich nach der
reduziblen Darstellung

D 2[0, 0] e [0, 1] © [0, 2]

der inhomogenen Lorentzgruppe P'+. Die zu ip gehörende Eichgruppe EfÇ) besteht
deshalb aus den Transformationen

T(f) Wrv VpV+ $»* + £*.?• i2-1)

wobei | ein beliebiges Vektorfeld ist. EfÇ) ist also eine Abelsche Gruppe.
Die Absicht, eine lineare freie Gravitationstheorie aufzustellen, deren

Feldgleichungen höchstens zweite Ableitungen der Felder enthalten, führt uns auf eine

Lagrangefunktion Lfip), die aus bilinearen Ausdrücken im Feld und dessen ersten
Ableitungen ip„va dp ipßv aufgebaut ist. Der allgemeinste Ansatz für Lfip) setzt sich aus

folgenden linear unabhängigen lorentzinvarianten Ausdrücken zusammen :

h rßw\ h w»v*rva h w,i„«wv: z <z>z
h WßVW„ h W,iVaW*°v h w"t,*W'A (2-2)

Das Herauf- und Herunterziehen der Indizes geschieht immer mit dem Minkowski-
tensor, den wir mit tq und dessen Inverses mit r)'"' bezeichnen.

Man bemerkt nun aber, dass die Invarianten Ii und I7 lagrangeabhängig sind,
das heisst sie unterscheiden sich nur um eine Divergenz

w^r°v r\r„v + z [w^r" + v,v;] •
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Wir brauchen deshalb nur die ersten sechs Invarianten zu berücksichtigen.

Lfip)=YAiIi (2.3)
~i

ist daher der allgemeinste Ansatz für die Lagrangefunktion des linearen Gravitationsfeldes.

Die zum Variationsprinzip ô f Lfip) dx 0 gehörige Eulersche Ableitung

AWaß) L Z L
dV*ß " dV«ßa

bezeichnen wir mit — Gaßfip). Die Bewegungsgleichung lautet:

Gaßfip) 0 (2.4)
Man findet

- Gaß 2 Ax rfß f^ + 2A2 ipaß

-2A3ip«ß°a-Aif«°ßn-Aiipß°«a

-2A,rfßY;v-A,rfßif\a
-Aeip»^. (2.5)

Die Invarianz bezüglich E(£) verlangt

G"(V) G"(T(S) ip), (2.6)
oder eingesetzt

-4AX rfß f„ - 2 A2 (^ + f») +2A3 (£«ßaa + £<""'„)

+ Ai (l?°ßa + £"«„) + Ai (£"»«„ + S°ßaa)

+ AAir1-ße;a + A,rfß(Aavcr + rva)
+ 246f/Z0, (2.7)

Ein Koeffizientenvergleich liefert das bestimmende Gleichungssystem für die
Koeffizienten A ; :

Ax A2 0,
2A3 + Ai 0,

Ai + ^6 0

2Ab + A6 0. (2.8)

Da in der Lagrangefunktion (2.3) ein gemeinsamer Faktor unwesentlich ist, so kann
man einen Koeffizienten willkürlich vorgeben, etwa

A^\- (2.9)

Damit folgt

A*=~J 48=—« A, \ (2.10)
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und somit (2.5)

G*ß I [rßOg + ^«ß _ roßa _ ^^ + vaß {r^ _ rrv}] _ (£ n)
sowie (2.3)

i(v) T *W ^" - y Z- V"" - T VV VV + T VV /" • (2-12)

Nach dem Noether-Hilbertschen Theorem entspricht der Eichgruppe E (g) eine

Identität in den Bewegungsgleichungen.
Es sei nämlich

Ó j Lfip) dx f e(ipxß) Lfip) oipaß= 0

und
0W<zß £zß + £ßcc-

Damit folgt
-fG*ß(Lß + eß«)dx=-2fG«ßtCißdx

-2\ dßfcyßna)dx

+ 2 f Gaßß f„ dx

oder, da f beliebig,
Gaßß=0. (2.13)

Es ist nun bemerkenswert, dass auf Grund der Bewegungsgleichungen (2.4) (2.11)

Gaßfip)=0 (2.14)

und einer speziellen Eichung (die sog. Hilberteichung)

W T(£) V

irreduzibel ist, das heisst nach [0, 2] transformiert.
Dies ist der Fall, wenn

z; zz °- i2-")

Dazu muss | die Differentialgleichungen

tA --\wA (2.16)

^\=-ip^\+\iff (2.17)

erfüllen. Durch Spurbildung in (2.14) erhält man zusätzlich

- vV, + ZZ- ° -

das heisst die Gleichungen (2.16) (2.17) sind verträglich.
Wir schliessen diesen Abschnitt mit der zusammenfassenden Bemerkung, dass im

Lagrangeformalismus die Eichgruppe E(£) eindeutig eine lineare Theorie bestimmt.
In der Hilberteichung transformiert sich das Feld sogar irreduzibel, und zwar nach
der Darstellung [0, 2] der Gruppe P'+
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3. Ankoppelung an ein Materiemodell

Der folgenden Untersuchung liegt das skalare Klein-Gordonfeld ohne
Selbstkopplung zur Masse m als Materiemodell zugrunde. Die zugehörige Lagrangefunktion
lautet

Lfcf>) tP/lcf>X-m*cf>z. (3.1)

Aus dem Variationsprinzip

ô f Lfcf) dx 0

folgt die Eulersche Gleichung

efcp) Ltf) - 2 Kfcf>) 0 (3.2)

mit
d d

e\<p) yw ~ °a l0f
und

K(tf>) (d/ld» + m2)cf>. (3.3)

Für den kanonischen Energie-Impuls-Tensor

TW)r^-cf>fi-ô*pL(cf>) (3.4)

findet man

oder
Taßfcf>) 2tj>« f - Vaß (^ ff - m2 c/>2) (3.5)

Dieser Tensor ist symmetrisch und hat die Eigenschaft

T«ßf<f>)a 2Kfcp)<f,ß. (3.6)

Wir koppeln nun unser lineares Gravitationsfeld an das obige Materialmodell, und

zwar, wie in der Einleitung gefordert, mittels des Energie-Impuls-Tensors (3.5). Die

Lagrangefunktion im Variationsprinzip

ô f Lfip, cj>)dx 0

hat dann die Struktur

Lfip, eli) Lfip) + L(<f>) + W(ip, cp) (3.7)

Dabei sind Lfip) und Lfcjf durch (2.12) und (3.1) gegeben. Wfip, cj>) ist eine lorentz-
invariante Grösse und muss die Bedingung

iWaß)Wff,cpA -^T^fct>) (3 A
2

erfüllen. Die Kopplungskonstante ist dabei speziell normiert.

Um den allgemeinsten Ansatz für Wfip, tp), der der Bedingung (3.8) genügt, zu
bestimmen, bedenke man, dass in (3.7) nur die Felder und deren erste Ableitungen
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auftreten dürfen und dass Taßfcf>) kein ip und keine zweiten Ableitungen von cf>

enthält. Wir verbleiben deshalb mit

Wfip, cpf Bx ip\ cf>2 + B2 ip'f f cp, + B3 ^ ipTcpf. (3.9)

Die Bedingung (3.8) liefert

und damit

Bx=-\m2, B2 \, Bs=-1 (3.10)

Wfip, fl _ ^^'^ + ± ip^ (f fa - m2 ft) (3.11)

Also haben die Eulerschen Bewegungsgleichungen zur Lagrangefunktion (3.7) die
Gestalt

efipaß) Lfip,4) -G^-\ T«ß(cp) 0 (3.12)

ef<f>) Lfip, cf>) -2 Kfcf>) - 2 Kfxp, <j>) 0 (3.13)

KfW, c?) y W"„ m - d^'fa) + \W\r </>" ¦ (3-14)

mit

Diese Gleichungen sind nun aber auf Grund von (2.13) und (3.6) widerspruchsvoll;
~s folgt nämlich aus (3.12)

aße(w«ß)Lfw,cp) --2 T«ßfcp)ß

--Kffafa. (3.15)

— Kftfr) (f>P verschwindet jedoch nach (3.13) nicht, ausser wenn ip 0. Diese Inkonsistenz

wird behoben, indem man die Gleichungen (3.12) und (3.13) als Anfang einer
Entwicklung auffasst. Dabei soll (3.12) der Term niedrigster Ordnung sein. Erklärt
man die Ordnung einer Grösse und ihrer Ableitungen als gleich, so folgt aus (3.12),
dass ip und cp2 die gleiche Ordnung haben (erste Ordnung).

Die rechte Seite von (3.15) geht dann nach (3.13) über in

-K(cp)cp« K(ip,cpAcp«

und ist in unserer Terminologie von zweiter Ordnung. In diesem Sinne sind die

Gleichungen (3.12) und (3.13) verträglich; die Inkonsistenz tritt erst in zweiter
Ordnung auf.

4. Konsistenz in zweiter Ordnung

Die Absicht ist nun, der Lagrangefunktion (3.7) einen zusätzlichen Wechsel-

wirkungsterm W von höherer als zweiter Ordnung beizufügen, so dass die
Bewegungsgleichungen bis zur zweiten Ordnung konsistent sind. Wir setzen deshalb

L(ip,$) L(ip,cp) + W. (4.1)
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Die zugehörigen Eulerschen Gleichungen lauten

e(faß) Lfip, fa - G«ß -\ T«ß + efipaß) W 0, (4.2)

Afa Lfip, <f>) -2 K$) - 2 Kfip, cf) + effa W 0 (4.3)

Durch Divergenzbildung in (4.2) folgt dann mit (3.6)

Z efipaß) Lfip, cjf -Kffa f + da efipxß) W (4.4)

Könnte man jetzt W so einrichten, dass die Beziehung

dae(ipaß)W=-K(ip,faf (4.5)

gilt, dann würden unsere Bewegungsgleichungen konsistent in zweiter Ordnung;

- K(fa cpß - Kfip, <f>) cf>ß

wäre dann nämlich nach (4.3) mindestens von dritter Ordnung.
Die Frage ist nun, ob ein W existiert, das der Bedingung (4.5) genügt. Dazu

musste W quadratisch in ip und linear in cf>2 sein ; ausserdem dürfen keine Ableitungen
von ip auftreten, denn Kfip, cp) enthält nur erste Ableitungen in ip. Der allgemeinste
Ansatz mit diesen Eigenschaften lautet

W s Wfip, ip, cp) Cx cp2 ip»v ¥>„, + C2 cp2 iA, f\ + C3 fa t, ¥a VW

+ c4 r ^ ip\ ipa„+c5 p ippa fa r, + c6 r w,v wva k ¦ (4-6)

da efipaß) Wfip, ip, fa berechnet sich zu

ì l \ un jn ^ ÒW(ip,y>,0)
à* Aw.ß) Wfip, ip, fa da ^—

2Cx[2cpfaip«ß + faip«ßa)

+ 2C2[2c/>fafv + faip\a]rl«ß

+ 2C3[2r"JA/ZrJ'r,rt]
+ 2Ci[2K<PrliW\ + <f>u<P,W\Jv*ß

+ C,rfß[2faaip^fa + faipßvafa]

+ C6 [ifvx fa fa" + ip\ fa, fa" + f\ fa fj
+ c6 [faa /- fa + fa fa /; + fa /" faf]

+ c, [fcw + ^Va«fv + ^Va<ZJ • (4-7)

Dies soll nun gleichgesetzt werden mit

-f Kfip, fa - 4P [Z ¥v {faß + m2fa_ da {yr? fa} + Z yfaa fa]. (4.8)

Man überzeugt sich aber leicht, dass die Koeffizienten nicht so eingerichtet werden
können, dass (4.5) gilt.
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Es gibt nun einen andern Weg, die Gleichungen (4.2) (4.3) konsistent zu machen.
Dazu muss man in der Lagrangefunktion (4.1) Terme dritter Ordnung in ip allein
einführen.

Lfip, fa Lfip, fa + Lfip) (4.9)

Damit folgen die Eulerschen Gleichungen zu

efVaß) Lfip, fa - G«ß -Gaß-~ T*ß + sfipaß) W 0, (4.10)

effa Lff, fa - 2 Kffa - 2 Kfip, fa + effa W 0. (4.11)

Dabei ist definitionsgemäss

AWaß) Lfip)^-Gaß. (4.12)

W ist jetzt so einzurichten, dass eine Erweiterung der Bedingung (4.5), nämlich

Uae(ipxß)W=-K(ip,fa<pß + \ Aß^fip) T«»ffa +|ß» TßA<l>) (4.13)

erfüllt ist. AßaAw) und B (ip) wirken dabei auf den Energie-Impuls-Tensor als

Operatoren.
Aus (4.10) folgt

- Gaß* - Gaßa - \ r«"a + z Awaß) w o.

Mit (2.13) (3.6) und (4.13) wird daraus

- <H - Kffa f - Kfip, fa f + Z Aßaßfip) T^ + \ Bijp) Tß"(fa 0. (4.14)

(4.11) liefert in zweiter Ordnung

Kffa f + Kfip, faf=0
und (4.10)

- Lfip) G«ß-\-lfip) T«ß(fa 0.

F(ip) ist dabei irgend ein in ip linearer Operator. Somit folgt aus (4.14) die Konsistenzbedingung

G'"a+ KM G^ + B/ip) Gß" 0. (4.15)

Wir verlangen nun, dass diese Konsistenzforderung, die ja nicht von cf> abhängt, eine
Identität sei. Damit erweitern wir nach dem Noether-Hilbertschen Theorem unsere
ursprüngliche Eichgruppe £(£) zu einer Eichgruppe E(£). Über die Existenz eines

Gaß, das (4.15) zur Identität macht, wird vorläufig nichts ausgesagt. Vielmehr
müssen wir zuerst die Operatoren Aßaß und B bestimmen. Da unsere Feldgleichungen
stets Differentialgleichungen zweiter Ordnung sein sollen, darf Aßaifip) bzw. B^fip)
gemäss (4.15) höchstens erste Ableitungen von ip enthalten. Deshalb ist das neue W
ani Grund von (4.13) wieder von der Gestalt (4.6). Beachtet man, dass, symbolisch
geschrieben, ein Term der Form Kffa cp ip nach (4.11) in zweiter Ordnung verschwindet,

so lautet die Bedingung (4.13) :
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2 Cx [2 4 fa ip«ß + fa ip*ßf + 2C2[2cf>fa" ip\ + fa iff]
+ 2C3[2faJliip*ß + facf>liip«ßJ

+ 2Ci[2faßcf>ßip\ + fafaip'vß]

+ C5[2faßip/lvfa + faip/lffa]

+ c6 [fva fa fa" + ip\ faa fa" + ip\ fa 4ßf\

+ c6 [fax /> fa + fa /; fa + fa if* faf
+ CB [fa"afa f"« + fa" ip"\ ^ + fa" if« faa]

-<f>ß [~WaA rV ~ W"" 4,. + Y W*!,« </>"]

+ a Km [2 r r -1" r </>« + <v ^w2

+ y B^fip) [2 fa fa"-ri"ß fa fa + if m2 fa]. (4.16)

Der Operator B^fip) darf kein Differentialoperator sein, denn er ist nach Voraussetzung

linear in ip. Also wirkt B (ip) multiplikativ.
Wenn nun Aß%fip) bezüglich a oder^a ein Differentialoperator wäre, so würde seine

Wirkung auf T«" einen Term der Form Kffa cj>ip liefern; dieser verschwindet aber
in unserer Näherung. Für die Bedingung (4.16) ist dieser Sachverhalt gleichbedeutend
wie^4aa/1 0. Damit liefert in (4.16) ein Vergleich der Terme proportional zu ifa p fa fa
und zu ip*1* fa" tf>a/l einen Widerspruch.

Setzt man B (ip) 0 und AßaAw) ^s Differentialoperator in a bzw. pt an, so

hätten wir wieder die frühere Situation, ausgedrückt durch die Forderung (4.5). Die
Terme, die proportional fa fa sind, zeigen schliesslich, dass auch Aßa nur multiplikativ
wirken darf.

Durch Koeffizientenvergleich und die Tatsache, dass Kffa tj> ip verschwindet,
erhält man

*» 0 O) K « - |Wj (4-17)

und

z 4
m2

c. - 1

8 W

c3 - 1

A

c --°4~ 8

z

C.-l. (4.18)

Zur Konsistenzbedingung (4.15) trägt, der Symmetrie von G wegen, nur

SymmO) r rßa/lfip) \ [ipßafl + ipß)ia - ipj] (4.19)

bei; also

<H + rßa/tff) G" 0 (4.20)
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Diese Bedingung ist unabhängig vom Materiemodell und soll eine Identität sein. Der
Vollständigkeit halber geben wir noch explizite (4.6) an

wfw- W-<p) rç- ^ W« V"* - -g $2 ifß ifv - — fa cpß ipaQ ifü

+ l V <!>, W\ V>"„ - 2 ^ V*« P + P W» Y"* & ¦

5. Die erweiterte Eichgruppe E(§)

Zur Berechnung der Strukturkonstanten der Eichgruppe £(|), welche zur Identität
(4.19) führt, brauchen wir noch nichts über die Existenz von Lftp) in (4.9) auszusagen.
Fordern wir nämlich, dass die Eichgruppe E(£) die eingeführte Ordnungsdefinition
invariant lässt, so hat f dieselbe Ordnung wie ip. Deshalb besteht die erweiterte
Eichgruppe £(£), nur quadratische Terme berücksichtigend, aus den Transformationen

m W w, + S>v + Z, + Q,Aw- Sì + Bß#, f) (5.1)

und den inversen Transformationen

nz)~l vv» w,v - £„„ - f„ - QtJw- S) + Q,M- f) - b„{1 I). (5.2)

Dabei bedeutet

(#)./» *«, + *>«. (5-3)

<2 und 2? sind noch zu bestimmen.
Anstelle von Ç und B schreiben wir oft kurz Q bzw. B.
Für die Strukturkonstanten S(|, ç>), die mit dem gruppentheoretischen Kommutator
wie folgt zusammenhängen :

r(|) TM Tdf1 Tfcpf1 1 + S(l tp) + 0(3), (5.4)

erhält man aus (5.1) und (5.2)

S(C,<p) -Q(dH,cp) + Q(dcpA); (5.5)

diese sind unabhängig von B. Da der gruppentheoretische Kommutator wieder ein
Gruppenelement ist, so gilt mit (5.4) bis zur zweiten Ordnung

l + S(Ç,cp) T(X(Ç,cp)) (5.6)
oder

S(i,cp) dX(i,cp), (5.7)
Aus (5.5) folgt damit

-Q(ocpA) + Q(dÇ,cp) dX(ï,<p), (5.8)

eine Bedingung an die Q, die wir später ausnützen.
Bekanntlich muss eine Identität der Art (4.20) aus einer infinitesimalen

Transformation (Eichung) folgen. Dabei hat der Begriff «infinitesimal» nichts mit unserer
Ordnungsdefinition zu tun; er bezieht sich vielmehr auf die Parameter der Gruppe.

Mit dem Variationsprinzip

[[G«ß+G«ß]ofaßdx 0 (5.9)
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und

òip=d£+Qff,S) (5.10)

folgt bis auf höhere Ordnung

u

[G"ß+G«ß][2eaß+Qaß]dx

f2dßfG«ßia)dx+f2dßfG«ßSa)dx

-f2cyßßaadx-f2cyßj0idx

+ fG«ßQaßdx,

2[G«ßßiadx + [GaßQaßdx 0.

das heisst

Umgeformt nach (4.20)

[G«ßfQaß + 2r»aße/l)dx 0. (5.11)

Für Q setzen wir nun den allgemeinsten Ausdruck, der (5.11) erfüllen kann, an:

+ D3fßJ\ + DiWß,cc^

+ DtVarßr. (5-12)

(5.11) liefert nun

JG«ß[Dxipap»-D2ip/ß-D3ipfa

+ D, ipfa + D-0 ipf'p + 2 ffxß] £ß dx 0. (5.13)

Durch Koeffizientenvergleich folgt
Dx l

-D2 + D5=-l
-Ds + Di=-1. (5.14)

Eine kleine Rechnung zeigt, dass (5.8) nur gelten kann, wenn

Dx D6 0

Also führte (5.12) zu

Qa fliV, I) V«„ A' + W.ß £*ß + Wßß ÏA (5-15)
und (5.5) wird

i,l cp"SfLcp) - f^ß/1 + ißa/.

- (f., + £„«) cfß - (f,„ + ÏJ <fa

+ f?., + <P,J &i + ffß, + <P,ß) I*« • (5-16)
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Mit (5.7) und (5.16) folgt
S fi, cp) £>[£, cp], (5.17)

wobei

[lcp] xfi,cp)=cp'i-i'cp (5.18)

oder in Komponenten, mit rj hochgezogen,

[Ç,tpy cfve-^v fa. (5.19)

Bis zur zweiten Ordnung gilt also in unserer erweiterten Eichgruppe £(|)

T® Tfcp) T^)-1 ncp)-1 r(tl, cp]) (5.20)

Man sieht, die Strukturkonstanten (5.19) sind nichts anderes als das Lieprodukt in
der Liealgebra der Vektorfelder 3E(Hi) einer differenzierbaren Mannigfaltigkeit
3JlfM). Das bedeutet aber für f Vektorcharakter nicht nur bezüglich der Lorentzgruppe,

sondern bezüglich der Kovarianzpseudogruppe KfM).
Zur Herleitung der Identität (4.20) haben wir von der Eichgruppe nur die Terme

bis zur zweiten Ordnung heranziehen müssen. Für die ganze Eichgruppe sollen jedoch
die Strukturkonstanten unabhängig sein vom Substrat, auf das die Gruppe wirkt;
das heisst die Bedingung (5.20) gilt allgemein. Damit wird E(|) isomorph zu K(M).

6. Das Gravitationsfeld als Metrisches Feld

An dieser Stelle sei bemerkt, dass unsere Rechnungen rein algebraischen Charakter
haben. In diesem Sinne legt uns die Eichgruppe E(Ç) die ganze Theorie fest; sie führt
nämlich eindeutig von einer Ordnung zur nächsthöheren. Dieser Gesichtspunkt wurde
in den Arbeiten 1) und 2) nicht beachtet.

Wir können nun unseren formalen Ausdrücken einen Sinn geben, indem wir die

Eichgruppe E(|) mit der Kovarianzpseudogruppe KfM) identifizieren. ip/iv
transformiert sich aber nach (5.1) nicht wie ein Tensor, vielmehr setzt man irgendeine
Funktion g fßfip) an, die ein Tensor sei. Die einzige Invariante, die man aus den

g bilden kann, so dass deren Variationsprinzip auf Differentialgleichungen zweiter
Ordnung führt, ist nach H. Weyl die skalare Krümmung I Rfg^f. Vergleicht man
diese Lagrangefunktion und das Transformationsverhalten der g mit dem Anfang
der Entwicklung unserer Theorie, so folgt, dass /„„ rj + ipß „ in niedrigster
Ordnung ein Tensor ist. Die Ordnungsdefinition erlaubt aber, allgemein g r)ßl, +
ip als Metrik zu setzen. Somit ist unsere Theorie dieEinsteinscheGravitationstheorie.
Dadurch wird die Existenz der Lagrangefunktion Lfip), die wir immer benützt haben,

gewährleistet. Man kann jedoch auch den allgemeinsten Ansatz für Lfip) hinschreiben
und die Koeffizienten mittels der Identität (4.20) eindeutig bestimmen. Dies beruht

wesentlich auf der Tatsache, dass Gaß eine Variationsableitung ist.
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