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Theory of Scattering of Identical Particles

by Franz Rys¥*)

Institute for Theoretical Physics, University of Geneva

(22. IV. 65)

Abstract. The problem of a satisfactory formulation of the rigorous non-relativistic time-
dependent scattering theory for systems with 2 identical particles is solved.

1. Introduction

It 1s well-known that the scattering problem in non-relativistic quantum mechanics
for systems with identical particles needs a special investigation. The state functions
must be (anti-) symmetric with respect to the exchange of each pair of identical partic-
les, if they obey (Fermi-)Bose-statistics.

This problem was already investigated by Mort and MASSEY?) on the basis of
the non-rigorous description of the stationary-state approach of scattering. On the
other hand, the recent rigorous, time-dependent approach to the theory ofscattering?2)3)
does not properly take into account the case of identical particles.

In this paper we give a satisfactory treatment of scattering systems with 2 identical
particles **), using a many-component description, proposed by E. CORINALDESI?) and
reformulating the time-dependent scattering theory developed by J. M. Jaucu?)3)
(2nd sect.). In the 3rd sect. we give two representative examples of scattering sys-
tems and discuss the formulae for the cross-section.

The author thanks Profs. J. M. Jaucu and M. Figrz for their help, the members
of the Institut de Physique, Genéve, for many discussions, and the « Schweizerischer
Nationalfonds» for financial support.

2. Formalism for the Description of Identical Particles

Let the scattering system be described by the unitary group of operators, v,, -
which is given by the Hamilton operator of the total system, #, through

v = i (2.1)

*) Financially supported by the «Schweizerischer Nationalfonds zur Forderung der wissen-
schaftlichen Forschungs.

*#%) The extension to more than 2 identical particles is straightforward.
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and acting in the Hilbert space §) of states, in the representation of the coordinates
¥, &5, ... (or the momenta p,, p,, ... alternatively) of the occurring particles 1, 2, ...

For sake of simplicity, we consider in the following a system with exactly 2 identical
particles (among, possibly others, which are non-identical to each other). We denote
them by the indices 1 and 2, and do not specify the rest.

Thus, the states of our system are described by square-integrable functions ¢ (12).

v, 1s defined on all of §. To give a correct description of our system, however, we
must take only correctly (anti-) symmetrized functions in the arguments 1 and 2 in the
case of 2 (fermions) bosons.

The following method allows a complete reformulation of the time-dependent
scattering theory *).

In the following, we shall always use & for

—1 for fermions
- 22
€ +1 for bosons . 28

Now, consider the direct sum of Hilbert spaces
55(2) - Sj @ ‘Sj ) (2‘3)

$ being given in the realization of functions (12) (see above). (2.3) may be represented
alternatively as a direct product

H =V g §, (2.4)

V@ is the 2-dimensional vector-space. The elements of $® arc of the form

12 .
( ijlzi) (pie$, i=1,2). 2.5)
The operator on $® :
P=(1®E+70 P), (2.6)

where 1 and E are the unity operators in ¥® and § respectively, 7, is

01
Tl:(l(}) (2.7)

(Py) (12) =9(21) yypeH, (2.8)

1s a projection operator because of

and P is defined on § by

2= P =P, (2.9)
which is easy to verify. The adjoint operator is defined in the usual way, based on the

*) We do not formulate the case of parastatistics, although it can be treated with this method,
too.
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definition of the scalar product given below by eq. (2.13). We shall restrict ourselves
to the subspace # of $® given by the projection operator P

D= {¥[¥ =Py ypepH}. (2.10)
From (2.6) and (2.10) it follows that the elements of # are all of the form

(v ¢ 2.11
vz - (VO] wes (2.11)
or, more concisely

/g (owp) e, (2.12)

P 1s given by (2.8).
The scalar product in H is defined by

(P, Q) =@l + (P, Polg =2y, ¢)g (2.13)

forall¥ = (%), @ = (*9),1.e. it isrelated (up to a factor) to the scalar product in §.

It follows that it has all properties of an ordinary scalar product.

The scattering system is now described by elements of the space #; the unitary
group V', describing the time-evolution of the system is simply given by

V=1®v, (2.14)
v, defined in (2.1). Now, because particles 1 and 2 are indistinguishable, it follows that
[P,y)=0 wyt. (2.15)
By (2.14) we have
(B, V=0 yt. (2.16)
The operators 1 x P and 7, x E are identical on the space ¥ since
Puwd
leP) ¥ - ( "),
L
P
e B)Y = ( ’*’)
Y
forall ¥ = ( ¥ ) €$. | (2.17)
Ly

This will be used later.
To define now a scattering system we impose the following conditions:

1. The asymptotic condition
The strong limits

s-im VU @@ — @

ex ?

(2.18)

t—1t
exX
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should exist for some unitary groups U™ (e« =1, 2, ...; — oo = ¢ = oo) of operators
and for some @® ¢ ¥ for both ¢,, = — cc and ¢,, = + oo
The U™ have to fulfil the following requirements:
(2) They are diagonal in the vector space V2.
(B) The infinitesimal generators of the groups U{® all have a purely continuous

spectrum.
() (B, UM =0, (2.19)
[UP, UP] =0, (2.20)
forall ¢, ¢, «, f.
(0) The equation
URdp=UPP,
(2.21)

for all £ and o = 5 implies @ = 0 .

Condition 1 (9) ensures us that the groups U and U? for « + § describe ‘essentially
different’ channels. It implies the orthogonality of channels in the sense of equation
(2.25).
The asymptotic condition (2.18) defines the (linear) wave operators £ :
O P _ ) | (2.22)

ex ex

The 2 are linear partial isometries and can hence be extended to the whole space H.
(The proof isidentical to the proof givenin 2) and 3).) Similarly we define the adjoint
operators 2/ * by

(@, 2 ¥y = (R @, V), yO,¥e$H. (2.23)
From the linear isometry property of the /% it follows that
F =G5 0% (2.24)

are projection operators on the range R/ of 2(%. From condition 1 (9) it follows:
F F6 — 0 (2.25)

ex

for o 4  and both cases of “ex”. For the proof see again?).

2. Completeness relations

The ranges R of O satisfy the relations

(R} ={R9} =N, (2.26)
where
N=7To0g N (2.27)

is the continuum subspace of V,. From (2.25) and (2.26) it follows
Y F® - Y F® — E, (2.28)

where E is the projection operator on N.
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Note: In the case of only one solution U, of (2.18) with R,, = N we call the system
a sumple scattering system; if more solutions are present, it is called a multi-channel
system.

The S-operator is now defined by

S=310 Q0 (2.29)

The sum extends over all distinct channels. In the case of infinitely many channels
the sum converges in the strong topology on all of #. Moreover, it is independent of
the order of summation. Finally, the S-operator is unitary on N

S*S=SS*=E, (2.30)

(ct. %) "

Up to here, we have developed this formalism quite analogous to the ordinary
1-component one, given in %) and 3). To find now a correspondence between both
descriptions, we define the projection operator

7= 21 @E+er,© E]. (2.31)

The relations
e = 0, = 11, , (2.32)

follow immediately (and hence 7, is a projection). The subspace of @, we call

H=1{z®|DcH}. | (2.33)

In the one-component description the states of the physical system are described by
all the elements ¢ € § if the particles 1 and 2 are non-identical, and by all ¢ € §,
where

Pl =g g (2.34)
if the particles 1 and 2 are identical.

Theorvem 1. The relation (2.11)

(D“(quw)’

gives a one-to-one correspondence between the elements of the spaces # and § on the
one hand, and between the elements of the spaces #, and §, on the other hand.
Here, H, is given by (2.33) and $, by

D= {9 | Pg — e g € H}. (2.35)

Proof. By (2.11), to every ¢ € § there corresponds one element @ e #. From

@ + @' it follows
e\ [ \_[ ¢o—¢ ¢'0)
Pg Pyl Plo—¢) 0/
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hence to different ¢ correspond different @, and vice-versa. Furthermore, from @ ¢ ¥,
it follows:

B _ 1 {et+ePe\ 1/1 1 /1 (e)
@m@_Z(P(p—I—e(p)%Z_(s ®((}9+8P(p)g2 . ® ¢ . (2.36)

Hence every element in H, is of the form (2.36), where ¢ ¢ §,, and to two different
¢\ += ¢ in §, correspond two different @ € H,:

1 /1
D, = ) (8 ) ® @ . (2.37)
) G,
We now examine the asymptotic condition (2.18). Because of (2.13):

N2 Iy =llells+ 1 Pells=21¢l3
we obtain:

| VP UR D — @ |5, = || o} u ¢ — @l |5 + || o7 ) P o™ — Pl |[5.(2.38)

2t
Because of (2.15) and condition 1 («) we find:
() "
U = (Zlfu(g ) u® = Pu® P (2.39)
21

Hence both summands on the r.h.s. of Equation (2.38) are equal. It follows that the
asymptotic condition (2.18) implies and is implied by the ordinary asymptotic
condition in the 1-component space $.

Furthermore, from

IRAIETREA ATTER I S ALY TP (2.40)
which is true for any ¥, € H, especially for
¥, = VI UP 0 0l

it follows that the asymptotic condition (2.18) (and hence the 1-component one, too)
imply together with (2.40):

lim ||@, (V; UP @™ —@% || =0, (2.41)

t—rtgx
which can be written in one component as

s-him of (1 + & P) (ul® ¢/®) = /@ @ | (2.42)

t_”‘ex

Condition (2.42) was already proposed by BreNiG and R. HaaG#?) as a modified
condition in the case of identical particles. This proves our second theorem :

Theorem 2. The asymptotic condition (2.18) in the space H is equivalent to the
one-component one in the space §. Restricted on the subspace H,, condition (2.18)
is equivalent to condition (2.42).
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The S-operator is defined by (2.29) on the whole space #. But in the case of
identical particles, only the subspace H, is related to the physical system. Hence we
must take the restriction S© of S on H,, v.i.z.

SO =n Sax, . (2.43)

The following theorem justifies now our method. .
(Main)-Theorem 3. The S-operator defined by (2.29) commutes with 7,
[S,=]=0. (2.44)

The restriction S® of S on H, is unitary in the continuum space to the Hamiltonian H,
restricted to H,.

Proof. To any unitary group U/® satisfying the asymptotic condition (2.18) there
correspond by (2.16) and (2.17) another one, U given by

UP = (m® E) U m® E), (2.45)

satisfying condition (2.18) too.
Hence the corresponding wave operators are related by

R =@ Ey 07 5, @ E). (2.46)
Of course
® E)y1=7,Q E.
Now, we distinguish 2 cases:
(a) The channels « and g are essentially different by condition (1 d). Then, in the
sum of the S-operator both summands occur:

QW QW 4 OB QB x — QR Qx4 (7, @ E) QW QW* (7, @ E)  (2.47)

by Equation (2.46).
(b) o and  are not essentially ditferent; but then, U{* (and of course U{?) must
commute with 7, ® E (because it commutes with (1 & P); cf. (2.17) and (2.19))
It follows:
U =0 yi

E

£

and hence
[, 2] = 0. (2.48)

Now, we write the S-operator (because of the independence of the sum with respect to
the order of summation):

Sw= 2, [QPQ9*+ (0 E) QP09 e E)],

o of case (a)

8= N QP9 (2.49)

B of case ()

Every term in S, as well as in S, commutes with 7., hence we have proved:

[7, S]=0. (2.50)
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From the unitarity of S (2.30) on N and (2.50) it follows:

Sl S e B Sy, =1, (2.51)
and

SO SE* —x S S*¥m =7, , ' (2.51)

hence S©® in unitary on N N H, -

We must finally check that the numerical factors in the expression of the transition
matrix elements are correct. This we show by considering 2 examples of potential
scattering systems in the following section.

3. 2 Illustrative Examples
(a) First we consider a single channel scattering system of 2 identical particles,

described by the self-adjoint (Hamilton-) operator

2
e VR & I NS (3.1)

2m 2m

The operator V is defined in the ¥-representation by

(V@) (% &) =V (%, — %) @ (%, %) , (3.2)
where V() is square integrable: (§ = x, — %)
f | V(§) |2d3E < co. (3.3)

Henceforth, we treat the problem in its centre-of-mass-system. Because of the identity
of particles 1 and 2 we have:

V(=§=V(- (3.4)

Then, by a theorem by J. M. Cook?®) (see, also J. M. JaucH and I. I. ZINNES®)) the
one-component asymptotic condition is satisfied, and, by Theorem 2 the many
component one, (2.18) too. Furthermore, for a sufficiently well-behaved function
V(§) condition 2 (2.26) is satisfied too, for the (elastic) channel given by

Hy=10¥,, H- 2 4+ 7 69

The S-operator is defined by
S=0 0 (3.6)

which, when restricted to the subspace H, gives the correct physical information.

I, e.g. we are asking for the scattering cross-section for the elastic scattering ot a
particle from the direction (6; ¢,) into the direction (6,¢,) (withrespect to a fixed frame
of reference) 0, ¢ are the polar angles of the particle momentum), then the answer is
given by the formula:

Oist = (%)21 (0,4 | S© 1 6, ¢:)

where the state vectors (0; ¢;) e #, and (0,¢,) e ¥, are both normalized to unity
(cf. (2.13)).

2 (3.7)
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From (0¢) =% € H, it follows:
.1 (1
— S (e)
V=m,¥= (8>®1/)

with
N9 15=V2 || ¥]ly =
Hence
_ (2= Of__ﬁEL s (0; 996 |2
“"*f"( R ) 67 4@ 1511 (6, e uz (38)

with (0, ¢)© = P,
s is the diagonal element of S® and correspond to the s-operator in the one-
component formalism. An explicit calculation of (3.8) yields:

2 6 (0; 0 (0;
o, = (_"kn") | ((67 6)) s (0; B,)+& (= 07, y+7) s (0; 4y) (3.9)

= (0,¢) are denoting here one-component non-symmetrized state functions
describing a particle with momentum in the direction given by the polar angles 6
and ¢. Representing a state with a sharply peaked momentum around k = k, =
(%, 0, ¢) by using the dense set of functions

(0, §) = N(B) e &= ko l
where N(f) is defined by

Tl (0; )+ ¢ (m— 6;, ng;—Hz ) 112 11 (0, ;) +¢ (n— 9 <;b+7z |z

(3.10)
J104) P k=1 ]
and great (but finite) 5, we get:

e E=1 0. +e@—0,¢+m) |[2=2[ (6, [F+0o@**. (G.11)
The correction term O (¢=2f%) is for great f§ as small as desired. Finally we get:

et = () A 0,90 + ey b= 0,4 ) [ 0 (705

o

with the scattering amplitudes defined by:

o (8 ¢y) s (0; b))
A N ¥ SR R SRT (312

f and ¢ being the difference angles between (6;¢,) and (6,¢,). Equation (3.12)
corresponds (for f - oo) to the prescription given by MoTT and MASSEY?).

(b) Another example, showing a multi-channel scattering system, is given by 3
interacting particles 1, 2, 3; let particles 1 and 2 be identical. We take a Hamilton-
operator of the form

H=-"1 m T Pr_ + —P — + Vie + Vig + Vg, (3.13)

2 m

with a purely continuous spectrum. In the s-representation, the operators V,, are
defined by:
(Vik @) (% %y %5) = Vi (%, — %) @ (% % %) (3.14)

30 H.P.A. 38, 4 (1965)
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(for « < k=1, 2, 3). Because of the identity of particles 1 and 2 we have

V13(§) - V23(§) V12(§) - V21(§) ’ (3-15)

where § denotes the difference of the corresponding coordinates. Moreover, let the
condition

[ Vi) PdE<1 yi, k=1,23, (3.16)

be satisfied. We assume V4 (and by 3.15) V5, too) to allow bound states, 1.e. the
operator
1 d?

ME) = — 57 sar
has, besides the continuum, negative discrete eigenvalues. V7, allows no bound states.
The last condition can be easily dropped out ; we take it for sake of simplicity. For the
moment we assume that particles 1 and 2 are ‘similar’ but not identical. By this we
mean that the masses are equal:

+ Vis(§)  (u = m + my) (3.17)

Wy = Wy see (3.13)
and that (3.15) holds. Then M. N. Hack®) has shown that the following channel

Hamiltonians (resp. the associated unitary groups #/* = ¢~ wa‘) satisfy the asymptotic
condition

_ pi D3 ok
Y=t 2m T m
(Dt Dy)? D3
Moo= Gomimg T am | Ea]
_ Pt | (DD

g, are the (negative) discrete eigenvalues of the operator (3.17). Now we prove the

Theorem 4. The unitary groups

ulf) — =i M

with H; of the form (3.18) which satisfy the asymptotic condition, satisfy also the 3
requirements: 1.(f8), 1.(y), Equation (2.20) and 1.(d), (which are the usual requirements
in the one-component scattering formalism (cf. J. M. JAucH3?))).

Proof. Condition 1. (y), Equation (2.20), follows directly from the commutation
rules;

(bin i) =0 4,0 wv=1,23 (3.19)
(3.19) imply [H, H;] = 0 and hence
W) =0 g p

Condition 1. () follows now from (3.19) and the fact that p and hence p? have a purely
continuous spectrum, and so have (p, + $,)? and the sum of the 4 $?%; this implies that
the H, have a continuous spectrum and hence #/*. The third condition follows from
the equations (in the momentum representation):

(6_”(ya"#6) (P) (ky, ko, k3) = (6—”(:”“ &) = yﬁ (k)) ¢ (ko ky kg) ,
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where #,_ (k) and :Hﬂ(k) are the Hamilton-functions of k,, ks, k4 corresponding to
(3.18). Now: ‘

™ g = uP ¢ for all ¢,
implies:
e=il[H, )Wy 0] g (ky by ky) — @ (ky Ry ;) for all £, By, kg, By
and hence H,(k) = Hy(k) as a function of k,, k,, ky, i.e. o = or
p=0 q.e.d.

Now again, as in example (a) we assume that the V,, are regular enough such that
the completeness relations (2.26) (in the one-component formalism) are satisfied.

To take correctly into account the identity of the particles 1 and 2, we apply our ...

2-component formalism. By theorem 2, it follows that the channels

U, 0 ET (U0
Hl :<Oly1) Hza:(oguga) H3a+k(03y2m)’ (320)

satisfy the asymptotic condition (2.18). The index « distinguishes the different channel
energies g, of which each one gives rise to a distinct channel. By theorem 4 and their
diagonality in V"® the requirements 1 (&), (8), () and (8) are satisfied for the operators
(3.20). Again assuming well-behaved potentials V;, the completeness relations (2.26)
are satisfied.

To describe the time-evolution of an asymptotic state, in which one of the two
identical particles is bound to the particle 3, and the other is far away from them, we
have to take the projection of -

@, (13;2) = U= P (13;2) (3.21)
on the subspace H,:
Of (p 3, p) == D, (13;2), (3.22)

where p denotes either particle 1 or particle 2. (A more concrete example consists of
taking a system of 2 protons and one neutron. The above-described state then cor-
responds to a free deuteron plus a free proton.)

Let us study now the transition matrix element of the reaction

#3,0) > (3. 8)

We denote the corresponding scattering states by @; and @, respectively. With:

D, D eN,,
then the matrix element M, is given by:
. (@ SE D) 3.23
M, He 12,0 (3.23)



468 Franz Rys H. P. A.

which can be written as:

1 /1 ' 1 /1 y
o lzl)edhsaz(Jed) )
COEmAL AT T
= [(‘P,‘“Pi) +e(Po;se) +e(ps Po;)+ (P%SP%)] _“Q‘LT ’
[ ] | ¢
or:
M. — (prs@;)+e (P ojsey ' (3.24)

it oIl el

The last Equation (3.24) holds for the case where the free particle p and the bound
state p 3 are infinitely far away from each other such that

((pr(p},) =1 .

P is, as usual, the permutation operator of particles 1 and 2, and the diagonal element
of the operator S in V(2. (3.24) shows that the transition matrix element is a sum of a
‘direct’ term (1st summand) and an ‘exchange’ term (2nd summand) in full agreement
with the prescription by MoTT and Massey?). The cross-section is again proportional to

Gif"“mliflz-
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