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Symmetry breaking solutions of the Thirring Model

by H. Leutwyler
Institut fiir theoretische Physik der Universitit Bern, Schweiz

(25. 1. 65)

Abstract. 1t is shown that the Thirring model admits of symmetry breaking operator solutions
in addition to the normal solution linked with perturbation theory. The normal solution is stable
only if the absolute value of the coupling constant A is smaller than 7. At A = + & two types of
symmetry breaking solutions appear, characterized by a finite vacuum current density while for
| A| > m the ground state is associated with infinite current density. All solutions except the
normal one break the homogeneous Lorentz group and the group of scale transformations, while
the charge group, the Touschek group and the translation group persist as symmetries of the
solutions.

1. Introduction

The success of the idea of an approximate symmetry in elementary particle physics
raises a fundamental question. Why does nature seem to prefer a symmetry group and
nevertheless break it ? One of the most fascinating attempts to answer this question
is often referred to as spontaneous breakdown of symmetry. The idea is the following:
Suppose a system is characterized by a set of field equations and commutation rules
which are invariant under a given symmetry group. It is well known that the pertur-
bation theory solution of these equations displays the same symmetry. However, it
may happen that this solution is dynamically unstable; a small external perturbation
may suffice to change the structure of the ground state completely. The most familiar
example of such a system is the ferromagnet which breaks the rotation group. A simi-
lar situation arises in the theory of superconductivity. Y. NAMBU and G. Jona-
LasiNio?) were able to transcribe the methods used in superconductivity to field
theory and recently I. BIALYNICKI-BIRULA?) suggested the existence of symmetry
breaking solutions of the Thirring model.

The purpose of the present paper is to show that the Thirring model does indeed
admit symmetry breaking solutions. The symmetry groups that are broken by these
solutions are the two-dimensional Lorentz group and the group of scale transformations
characteristic of a system which does not contain a length.

The existence of symmetry breaking solutions is closely related to the occurrence
of zero-mass Boson excitations of the system which in this theory are described by the
current operator j, (x). In particular the infrared part of this current plays an impor-
tant role in the symmetry breakdown.
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Finally let us make some technical remarks concerning the use of cut-offs in our
formulation of the model. We shall introduce both an ultraviolet and an infrared cut-
-off in order to be able to treat singular expressions like y(x) y , 9(¥) occurring in the
model. We would like to emphasize that the only purpose of the cut-offs is to lead
us in a simple, well-defined way to the algebra of field operators. Once this algebra
is established, the cut-offs may be dropped and it will be seen that the limiting algebra
of field operator distributions is in fact independent of the particular choice of cut-
offs. No cut-off function occurs in the consistency requirements for symmetry break-
down.

2. Definition of the Model

The Thirring model3) is based on a two-component spinor field ¢ in one space-
dimension and one time-dimension. This field satisfies the equal time commutation
relations

@), pW) e =05 {p®), 9 (1)} =0 (¥ —¥) (2.1)

and the field equations?)

-—Mﬂ%ww)=%w”HWWwWH- (2.2)

We assume that the field operators g(x) furnish an irreducible representation of the
commutation relations (2.1) on each surface x° = const. The current j ,(x) 1s formally
defined by ‘

7u(%) = p(x) v, p(x) . (2.3)
As is well known this product of two operator-valued distributions at the same point
is not well defined. The problem of how to give a meaning to an expression like (2.3)
has been studied by K. Jounson?®) and by F. L. Scarr and J. WEss®) in the frame-
work of the Thirring model. These authors proposed to define 7 (x) by means of an
averaging procedure over a small region of space-time. Instead of an explicit definition
of 7, by means of a nonlocal form of (2.3) we shall make use of an implicit definition
of the current. We require the current to be local and conserved?). The local nature
of the current is expressed through equal-time commutation rules of the form?)

(*° = »?)
[olx), w(¥)] = — a d (x — y) p(y)

[1(%), (V)] = —ad (x —y) y p(y) (2:4)

Conservation of the current and conservation of the pseudocurrent are expressed
through?)

0“7,=0 e’ 0,7,=0 (2.5)

The commutation rules (2.4) determine the operator j, up to an additive ¢-number
provided the parameters a and a are known and the representation of the operator y
is irreducible. The additive c-number will be determined in section 9.
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As an immediate consequence of (2.4) we note that the equal-time commutation
rules of the current with itself are of the form
[:"-p(x)’ ?.v(y)]x":g" = va(x: ¥) (26)

where ¢, (¥, y) is a c-number distribution. To obtain the result (2.6) consider the
quantity (20 = y° = 29)

[[74®), 1,001, 9(2)] = [7,(%), [,0), w@)]] = [7,0), [1,.%), w()]] -
Making use of (2.4) we obtain
[7.(), [1,), w@)]1] = [1,0), [1u(%), 9(2)]] -

Therefore the commutator [j, (x), j, ()] commutes with p. If the representation of
the operator  is irreducible this quantity must be a c-number.

More information about ¢ ,, (x, y) can be obtained in the following fashion. The
temporal development of v (x) is governed by the field equation (2.2) while the tem-
poral development of the current is given by the conservation laws of charge and
pseudocharge, eq. (2.5). These equations of motion conserve the commutators (2.4)
only if

Cool®, ¥) = cna(¥, %) =0,
Crol%, ¥) = con(x,y) =147 (@ — @) 8'(x — ¥) . - (27
This shows that & and & coincide only if ¢ u» = 0. However, J. SCHWINGER) has shown

that a vanishing commutator of the current j; with the charge density j, leads to in-
consistencies. We must therefore expect @ to be different from a.

3. Representation of the Current in Hilbert Space

As an immediate consequence of (2.5) the current satisfies a massless free field
equation

7,=0. (3.1)

We write the Fourier representation of 7, in the form

() :jdx%{e—“”c(x) +ekrct()}) s k= (%], %). (3.2)

To find the representation of the operators ¢ (x) in Hilbert space we make use of
the fact that translation invariance is not broken by the solutions to be constructed.
This implies that a family of unitary operators U(a) exists with the property

Ula) p(x) Ut(a) = p(x + a); U(a) 7, (x) U*(a) = 7,(x + a) .
Denoting by P, the generators of U(a) we obtain
[P, c(3)] = — k,cls) . (3.3)
The ground state is defined as lowest eigenstate of the Hamiltonian

H::.Po

28 H.P.A. 38, 4 (1965)
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This state is characterized by
c(x)|0>=0 (x=*0). (3.5)

Therefore the representation of the operators ¢(x) coincides with the ordinary Fock
representation.

The conclusion (3.5) does not apply to the infrared part of the spectrum, » = 0.
Consider e.g. the vacuum expectation value of the current. Translation invariance
asserts only that <0| j (x) [ 0 > is independent of x. A constant, nonvanishing va-
cuum expectation value is perfectly compatible with translation invariance and such
a constant contribution arises precisely from x» = 0.

4. Infrared Part of the Current

Let us define the infrared part of the current by
+&

q, = lim - k‘u {c(2) + ct(3)} . (4.1)

e—0
~g

Furthermore we introduce the potentials j(x) and }(x) by
fla) = in A fc(a) e 5% — pt(x) of ¥5}]
——’LPf—--—-—{ ) emikx — c+(x) eikx}
c(x) = e(x) c(x); e(x) = ‘ (4.2)

This leads to the decompositions

7u%) = 0,1(x) + ¢, 1u(%) = €, 0" 1 (%) + g, - (4.3)
By virtue of the equal time commutation rules (2.4) the operators 7(x) and f (x) satisfy
the following commutation rules for arbitrary times x° and y°

(%), 9] = — {@a D(x —y) + ay D(x — y)} p(y)
[7(#), 9] =—{aDlx —y) +ay D (x — y)}p0), (4.4)
where the functions D and D are defined by
D) = {e(+4Y) —e (2 — 20} D) = fe (4 + ) — e (P — 29} . (45)
Furthermore (2.6) and (2.7) imply
[7(x), 1 ( N=07(x), 7] =—iA1(@—a)D(x—y)
[7(x), i) =—iA"(@—a)D(x—y). (4.6)

Finally we note that ¢, behaves like a c-number.

[, w(®)] = [¢,, 1(®)] = [, 1(®)] = [¢,, 8] = 0. (4.7)
The representation of the potentials is characterized by

J9x) |05 = 79(x) [0>=0. (+.8)
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5. Free Field

The solutions of the model will be constructed in three steps. We tirst show that
a field ¢(x) can be constructed out of the interacting field (x) such that ¢(x) satisfies
the field equations and commutation rules of a free field. Then we shall determine
the representation of this free field in Hilbert space and the third step is to find the
representation of the interacting field in Hilbert space, given the representation of
the free field.

To be on safe grounds let us introduce an ultraviolet cut-off g,(x) in the Fourier
representation of the current

k
) = [ du—tg () {e() €755 + c¥(e) €185} (5.1)
We do not regularize the field . If the cut-off function gz(x) is of the form
_ 1 | 2 | < kg

gr(x) = 10 |2|> kg’ (5.2)

the commutation rules (4.4) to (4.6) are valid for the regularized quantities, if the
functions D and D are replaced by Dy and Dy with

k
eqlE) = —%fiinx&%’i . (5.3)
0
Now let us define the tield g(x) by
(%) = exp (— ¢ T(x)) p(x) , (5.4)
T(x) =t {*(x) + tay 75(x) + Q, 5", (5-5)
Qu=1,+1,7. (5-6)

We want to show that the parameters ¢, f,, I, and ], can be chosen in such a way
that @(x) is a free field.

Field Equations

To obtain the equation of motion for ¢(x) we need the derivative of exp(— #7)
which may be evaluated by means of the well-known formula

1
exp Pexp Q =exp (P + Q) exp— [P, Q] (5.7)
valid if [P, ] commutes with P and Q. One finds
A ; : 1
0,exp(—+T)=exp(—iT){-40,T—[0,T,Tl}. (5.8)
From (2.2) we conclude that ¢(x) satisfies a free field equation

—iy"0,9p=0 (5:9)
provided |
| h—ty=2;1,—¢,, 1"=12gq,. (5.10)
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Commutation Rules

Next we verify that the parameters included in the definition of ¢(x) can be chosen
in such a fashion that ¢(x) satisfies the usual canonical commutation rules. Commut-
ing the exponential exp(— ¢T) through y(y) one obtains a phase factor

exp (— i T(x)) p(y) = p(3) exp (— i T(x)) exp (— i 7 (v — %))

Tx—y) =—{thattoay,y)Dg(x—9) + (hay,+tay)Drx -y}, (6.11)
where the indéx «x in y, indicates that the matrix y acts on y(x). Making again use
of (5.7) we find for x% = 4°

p(x) p(y) = —exp C (x — y) p(y) p(x)
Cx—y)=it(ly—2x)—itx—y) —[T(x), TH)]. (5.12)

It x° = 49 the function Dg(x — y) vanishes and we have
Cla—y)=i{lha+taa) +hty(@—a) A% (ro+7) DX (x—y) (513)
and therefore the anticommutator of the field ¢ vanishes provided

Similarly one finds

@(x) @t (y) =0 (¥ —y) —exp {— C (x — y)} () @(x) , (5.15)

where C(x — y) is again given by (5.12). Therefore the condition (5.14) guarantees that
@(x) satisfies the proper commutation rules.

Before we proceed to determine the representation of the field ¢(x) in Hilbert space
we note that the definition of the free field is not unique in the sense that

@ (x) =expi(I'x+ 1" xy) px) (5.16)
1s also a free field provided
1/ —e,  I""=0. (5.17)

o s

Let us get rid of this ambiguity in the definition of ¢(x) by choosing

~

L=1=0. (5.18)

6. Representation of the Free Field

To find the representation of the field ¢(x) in Hilbert space we make again use
of the unitary translation operators introduced in Section 3. As the chosen regulariza-
tion is translation invariant we have

[P, %)) = — 10, 7(x) (6.1)

and similarly for 7 ® (x) and y(x). Therefore

~

[P, ¢@)] = —i0,¢® + (@, + L) o), (6.2)
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the additional term on the right hand side arising from the explicit coordinate depend-
ence introduced in the definition of ¢(x).
Define the two number operators N and N by

[V, p(x)] = — p(x); [N, @(x)] = — y @(*) . (6.3)

By means of these two quantities the operator P,
the generator of translations for the free field ¢(x

can be expressed in terms of P/,

)
— p! T N
P,=P. 1, N-T1N. (6.4)

In terms of the Fourier representation of ¢(x)

p(x) = (2 7)-12 f dx u(x) {a(x) e~1%% + bt(x) e k+} (6.5)

0(x)
Mw=(w;m),

the state of lowest energy H = P, is characterized by
[0>=0 |x|—1Ily— Ie() >0
o) [0>=0 |x[—l—-ls(x)<0
[0>=0 |o|+l+ Ipe(x) >
e(x) <O. (6.6)
If [, or 20 are different from zero the state of lowest energy does not coincide with the
usual vacuum of the free field and we are dealing with a representation of the free

field commutation rules which is not equivalent to the usual Fock space representa-
tion. |

o) |[0>=0 |x|+l+

7. Free Current

To go back from the known representation of ¢ to a representation of y we first
have to express the current j, in terms of ¢. As a preliminary step we introduce the
current associated with the free field. To be on safe grounds we introduce, for the pur-
pose of the definition of the free current only, an ultraviolet cut-off f,(») into the
Fourier representation of the free field

@(%) = 27) 2 [ do f, () () {al) %% 4 bH(od) eiks) (7.1)
The free current is defined by
I = g®y, 0@ (7.2)

where the dots indicate that the product is to be ordered with respect to the anni-
hilation and creation operators 4, b, at, b+. The operator | ZL satisfies

0“J,=0 &0,],=0 (7.3)

by virtue of the field equations for ¢,(x). Furthermore the commutation rules for g,
imply (x° = »7)
[Jo®), )] = — 07,0, (¥ —¥) @ (%) . (7.4)
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A more subtle quantity is the commutator of the current with itself. In a straight-
forward fashion one obtains (x° = y9)

[T05), Ji)] =8, (8 = 3) {0.0) 7,707, %) — 0,0) v ve v, 0(®)} . (7.5)

If no regularization had been introduced we would conclude that the §-function in-
structs us to put # = y in the curly bracket and that therefore the above commutator
vanishes. To see that this argument is not correct let us examine the right hand side
of (7.5) carefully. Consider a representation of the field ¢(x) of the type (6.6). Denote
the space of state vectors which contain only momenta small compared to the ultra-
violet cut-off by H, and consider the quantity (x° = y9) '

@) 7, Y0 Ve &Y = 1 @ X) v, 10, &)t + V), vve v, @)} (7.6)

If the states |y, > and |y, > belong to H, and if the numbers /, and ], are small
compared to the ultraviolet cut-off %, the matrix element

Mﬂv(x! y) = < %1 | . ()_9,,(%) }}/L YoVu (pr(y) : I Ye > (77)
is practically constant if x varies over a range of the order of £ '. Therefore

0, (x —y) M, (x,9) =90, (» —y) M,,(v,y) (7.8)
and

<y | @), 0] [ > =0. (7.9)

If we restrict our attention to state vectors in H, we may write (x“ w0l

), Il =tr (uy,ver) 6. (s —3) {6, (w—3) =9, (y—%)}, (7.10)
where d, (2) is defined by

- (2) = ?lgfdx | () |2 eix= . | (7.11)

In the limit as the ultra-violet cut-otf tends to infinity the curly bracket is singular
and therefore the reasoning which was used to infer that the commutator vanishes
is clearly incorrect.

In order to study the rlght hand side of (7.10) we consider an integral of the type

I- f d28,(2) {0; () — &7 (— 2)} F(2) , (7.12)

where F(z) is a test funtion which contains only Fourier components small compared
to k.. This implies that F(z) does not oscillate rapidly over the region where §,(z) does
not vanish. Therefore

I— f dz8,(z) (67 (2) — 6; (— 2)) {F(0) + z F'(0) + ... } . (7.13)
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As the first term in the curly bracket gives no contribution by virtue of the antisym-
metry of the integrand we have

I=1,F(0) + Ok

400
I, = f dz 26,(2) (6, (2) — 0, (— 7)) . (7.14)
The remaining integral has the value
I=5— (7.15)

independent of the choice of the cut-off function f,(x). If we now go to the limit £,—>oc0
we have (20 = 49)

[Ju®), 1) = tr 1y, v0y,) Qi) 0'(% — ). (7.16)

This bracket relation completes the algebra of the operators ¢(x) and J ,(x). The
purpose of the ultra-violet cut-off was to obtain this commutation relation in an un-
ambiguous fashion. Once the algebra is complete we may remove the cut-off. In the
limit 2, - co both the restrictions on the state vectors and on the test functions are
empty. Making use of the equations of motion for the field J ,(¥) we find

[T ), J,0)] = =0, D (x — )

%), @)1 = — {84y + €4, 7} 0" D (x — y) @(y) - (7.17)

The important conclusion we draw from our derivation of (7.17) is that these com-
mutation rules depend on the representation of the tield ¢(x). If e.g. we start with the
Fock space representation with interchanged roles of creation and destruction opera-
tors, 1.e. a representation of the type

at(x) |0>=0; b(%) |0>=0, (7.18)

we end up with commutation rules of the form

instead of (7.17). Commutation rules of this type were obtairied by ScArr and WESs®)
by means of an averaging procedure in space and time.

8. Relation Between Interacting and Free Currents

In order to express j, in terms of quantities derived from ¢ we compute the com-
mutator [, ¢]. This quantity may be obtained from the definition of ¢, eq. (5.4) and
the commutation rules (4.4) and (4.6).

7,0, )] = —[{a + 21ty (a — a)} g, +
+{a+itl@a—a)}te,,y]0"D (x—y) o). (8.1)
Due to (5.10) the curly brackets on the right hand side coincide. The normalisation
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of the current was left open up to now. A change in this normalisation amounts
simply to a redefinition of the coupling constant. It is convenient to fix the norm of

Ju by
a+iltia—a)=a+Ailf@a—a) =1, (8.2)
[7.(2), )] = — {8, + €47} 0" D (x — ) @(¥) .

Comparison with (7.17) shows that j (x) — J ,(¥) commutes with g(y). If the repre-
sentation of ¢ is irreducible we conclude that

ju=JutcCu, (8.4)
where ¢ (%) is a real c-number function. Actually ¢, must be independent of x by virtue
of (4.8).

Finally, comparison of the commutation rules (4.6 and (7.17) leads to

f(a—a)=A. | (8.5)

The relations (5.10), (5.14), (8.2) and (8.5) are equivalent to

a—1—"1. _d:l~i, , (8.6)
T T
h—ti=A; h+f—r=0. (8.7)
If we introduce instead of 4 the parameter A by

A= 2msinh4, (8.8)

we find the following expressions for a, a, ¢, and ¢,

a=e¢; a=et

b=m(l—e); t=m(l—¢). (8.9)

9. Vacuum Expectation Value of the Current

What remains to be done js to determine the parameters /,, , 7, and ¢, related to
the vacuum expectation valué of the current. In Section 2 we defmed the current 7,
through the commutation rules between j, and y. This definition is incomplete, as
an arbitrary c-number can be added to the current without changing the commutation
rules. We now supplement this definition by relating the vacuum expectation value
of 7 ,(x) to the two-point-function of the interacting field. Let us introduce the Fourier
components of the interacting field by

p(x) = (27)-12 f doc w() {A (%, %) =5 4 B+ (3, 29) ¥} | (9.1)
In analogy with (7.2) we define
<07, 0>=<0]; @)y, vpE; [0>, (9.2)
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where the semicolon indicates ordering with respect to the annihilation and creation
operators 4, B, A+, B+. Equivalenty

<O, [0 =<0 |9y, pulx) + p_(#) 7, Y-(x) — try, v_(%) p.(x) | 0>
= [ {Pobu s —3) + o (5 -3} w0) dy

Po= > (1£9), (9.3)

or finally
O] 72 10> = [ tr [y, (P, 8_(=) + P_0.(x)) H(z)] d=

H g(x— ) = <0 [ p(y) w,(x) — () ws(%) | 0>, (9.4)

The results obtained so far may be summarized in the following way. Given the
coupling constant 4, the parameters ¢, and £, are determined by (8.9). If we in addition
suppose /, and 1, to be known, the definition of the free field (5.4) can be inverted and
the 1nteract1ng field expressed in terms of the free field and its current potentials.
(Note that by virtue of (8.4) the free and interacting current potentials coincide.)
On the other hand the representation of the free field in Hilbert space was determined
in Section 6. Therefore the representation of the interacting field is known, provided
!, and ], are given. This allows us to compute the function H(x¥ — y) and to determine
<0]7,[0> through (9.4). The calculation is sketched in the Appendix and leads to
the result

. , Iy
<0 | fo(x) |0>—_— <O Jolx) |0 O] y(®) |05 =="=<0]| Jy(x)|0>.
(9.5)

We conclude that ¢, vanishes, i.e. free and interacting currents coincide.

7,0%) = J ,(x) . (9.6)

Comparing (9.5) with (5.10) we get the selfconsistency conditions

A A\~

(1__&_)10=o; (1+?)zﬂ=o. (9.7)

If | A] + @ we have ;lg, = ], = 0 characteristic of the normal solution. A breakdown
of symmetry can occur only if A = + =«

A=m; <O0]fp|0>+0; <0|7;]0>=0
=—m; <0|7[0>=0; <O0|j|0>=*0. (9.8)
The value 4 = + & admits of symmetry breaking solutions with nonvanishing charge

density of the vacuum, while the symmetry breaking solutions for A = — m are char-
acterized by a nonvanishing current density.

10. Spontaneous Breakdown of Symmetry

The symmetry breaking solutions, characterized by a nonvanishing vacuum ex-
pectation value of j#, lead to inequivalent representations of the free field, defined
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in (6.6). In other words the symmetry breaking solutions and the normal solution are
defined on different Hilbert spaces. This makes it difficult to see how the symmetry
breakdown arises. To understand why symmetry can be broken we introduce a com-
parison system which is enclosed in a box. In this comparison system the normal and
the symmetry breaking solutions will be represented by equivalent representations,
defined on the same Hilbert space. We put

g (n+1/5) e (n+11,)
2n L L
Ho= "1, b, == Vﬂ f de a(x);, b,= I/T ~ / dx b(x)
xy (1 —11,) ny (m—11y)
P — L2 Fu, {a, erhns + bF etbns} (10,1
"

where L is the length of the Box. If the free current is defined in terms of the free
field @, (x) in the same way as in Section 7 we arrive at the same commutation rules
(7.17) with D replaced by D,

Dy(n) = 4 {ep (9 +20) — e, (=29} 5 g,(0) = 3 0% L 22 (102

n=1 tog
By construction JL is of the form
k”
JEw) = X B (C, eitnx oy Cl ettt} 4 K, (10.3)

o Ham

a’, b*. The infrared part

m? m’ m*

where the operators C, are bilinear expressions in a,,, b
K , reads explicitly

K,= Lt 3w, Vol (@) @, — b7 b,) . (10.4)

Note that in the comparison system the infrared part ot the current does not commute
with ¢,

[Kw pL(x)] = — L1y, Yu @r(%) - (10.5)
The potential J*(x) is defined as
L — 4 1 —i kﬂx_ + i X ;
TE) = zn%: ——{Cye CF oibns) (10.6)

and similarly for [, (x).
We now introduce v, and j}; by

wr(x) = exp (i Tp(x) g.(x) (10.7)
To(x) =t J50) + 6, JH(0) y + 2 (Ko — y Ky) 20, (10.8)
ful®) = Ju(x), (10.9)

where ¢, and £, are given by (8.9). The fields y; and ji. satisfy the required commuta-
tion rules and field equations.
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To establish the correspondence between the comparison system and the actual
system we consider the normal solution first. Denote by | 0) the vacuum of ¢,. By
the definition of K x We have

(0| K,10)=0. (10.10)

If we compute with this state vacuum expectation values of ptoducts of y,, y, and
7% and then go to the limit L - co the results are the same as those obtained from the
normal solution of the actual system.

We are now in a position to analyze the question: is the normal solution stable ?
This problem concerns the spectrum of the Hamiltonian

H =H,— ;ALK K}, (10.11)

where H/, denotes the Hamiltonian of the field ¢,. In order for a solution to be stable
the spectrum of H; must be bounded below. We now show that this is the case only
if |1 <=

For this purpose consider a special state of the form

|1, 75, By, 1) = ﬁa: ﬁa Hb+ Hb+ [0) . (10.12)
1 1

The eigenvalue of H; in this state is given by
4 .
E (ny, ny, ng, ny) = L1 {nZni (n; + 1) — 22 (n, — ng) (ng — ny)} . (10.13)
i-1

Suppose 4 > 0 and write

E (ny, ny, ng, my) = L Zn +3r2n + A (1, — ny)? +
+ 2 (3 — ”4)2 + 24 (ny ny + ngmg)} (10.14)
If # > A > 0 all terms on the right hand side are positive. However, if A > 7 we
have e.g.
Enmno0=2LYn{x—2An+nx}, (10.15)
which is arbitrarily large and negative for large . Similarly for 2 < 0. We conclude

that the normal solution is stable only if | A | < 7. If | 4| > 7 four ground states out-
side the Hilbert space under consideration here are possible

ﬁﬂiiO); ﬁbﬂ()) A>n),

]la;j b+, | 0); ]latn 6710 A< —m). (10.16)

These states define representations of the field operators which are not equivalent to
those considered, not even in a box of finite length. It must be expected that these
representations lead to different current-current commutation rules as explained in
Section 7. We shall not investigate this problem here. The above states correspond
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to infinite charge or current densities. As | 4 | passes through z the vacuum flips from
a state of zero charge and current density to a state of infinite charge or current
density.

What is the situation for A = 4 n? Suppose e.g. 4 =z and consider the state
| n, n, 0, 0). If in the limit L - co we simultaneously increase # in such a way that

2l in=a, (10.17)

we obtain precisely the representation (6.6) of the operators a, a*, b, b+ with the values
Iy =m; Z;} = 0. Negative values of /; are obtained from | 0, 0, #, #n) and the representa-
tions J, = 0, J, + 0 arise from | n, 0, 0, n) and | 0, #, #, 0).

The energy required to add two additional particles of momenta 4+ 27 L= (n+1)
is 2x L. This energy vanishes in the limit L - co. In other words the ground state
is not stable against excitation of particle pairs with opposite momenta. Finally we
note that the total charge in the state | #, #, 0, 0) is given by 2# while the total cur-
rent vanishes. In the limit L - oo this gives rise to a finite charge density L1 2»n =
lo/7e. This is precisely the relation (9.5). Similarly for the other types of inequivalent
representations.

In summary we have the following result. The normal solution is stable for
| 4| < 7. As Areaches + s the vacuum becomes unstable against excitation of particle
pairs or antiparticle pairs. A Fermi sea of particles or antiparticles can arise with
vanishing total momentum and the finite total energy 27 L-1 n = | [, |. The charge
density of this sea is given by /,/n, the current density vanishes. Similarly, ford = — =
a Fermi sea of particle-antiparticle pairs with opposite momenta can arise, character-
ized by vanishing total momentum, total energy | 7, |, vanishing charge density and
current density Jo/m. As A > 7 either all particle states or all antiparticle states are
occupied and we get out of the Hilbert space. Likewise for 1 < — .

11. Symmetry Groups and Inequivalent Representations

The Thirring model admits of five basic symmetry groups:
1. The gauge group associated with charge conservation

¥ (%) = e p(x) . (11.1)

2. The group of TouscHEKS) transformations characteristic of zero mass spinor
fields is

Y'(x) = "7 p(x) . (11.2)
3. The translation group

Y =y (x+a). (11.3)
4. The homogeneous Lorentz group

p'(x) = S.p(L#) . (11.4)

5. The group of scale transformations characteristic of field equations which do
not contain constants of the dimension of a length

Y(x) = 0"y %) . (11.5)
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The problem of whether or not these symmetry groups are broken is equivalent to the
question: are there unitary operators U
¥ () = Up(x) U* (11.6)

leaving the vacuum invariant ? It is easy to see that all our solutions do admit of
such operators for the first three groups in the above list, the generators being given
by N, N and P 4 Tespectively. On the other hand the group of homogeneous Lorentz
transformations and the group of scale transformations are broken.

Group of scale transformations

Let us first consider the group of scale transformations. For the annihilation and
creation operators of the free field ¢(x) this group induces the transformation

@ (%) = g afg™ %) (11.7)

and similarly for b(x%) and ¢(»). This transformation leaves the commutation rules for
the operators 2 and b in fact invariant. However, if a(») belongs to the representation
characterized by /,, 7, defined in (6.6) the operator a’(x) belongs to the representation
characterized by ’

L=uali Is=uks (11.8)

In other words, the transformed solution is defined on an inequivalent representation
of the free field commutation rules and no unitary operator connecting the two solu-
tions can possibly exist. \

An exception occurs only for the normal solution characterized by [, = J = 0. In
this case a family of unitary operators generating scale transformations does indeed
exist. The operators U coincide with the unitary representation of the scale group
associated with the free field.

Homogeneous Lorentz group

In the present treatment of the symmetry breaking solutions of the Thirring
model we have adapted the coordinate system in such a way that the total momentum
of the Fermi sea representing the ground state vanishes. In this preferred system of
coordinates the vacuum expectation value of j , points along the time-axis for A =
and along the space-axis for A = — . We did not consider other coordinate frames
up to now. It is easy to see what happens if one looks at the system from a frame
moving with respect to the Fermi sea. Under Lorentz transformations

¢'(x) = S, (L x) (11.9)
with
coshy sinhy x _
e : o . 11.10
L (Sinh X coshx) > Sp=expgy ( )

the Fourier components of ¢(x) transform as
a'(x) =ePale™x) >0 (11.11)

a'(x)=eRalx) »<0
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and likewise for b(x). If e.g. A =m, ], = 0, [, > 0 this transformation bringsusto a
representation of the free field commutation rules of the type

ax) |0>=0 x>l u<<—e"l
a't(x) |0>=0 —eFlhi<x<l
B |05=0 allx. (11.12)

However, the state | 0 > is not a state of lowest energy with respect to the Hamiltonian
associated with the new coordinate system. This is intuitively clear as the kinetic
energy of the Fermi sea can be made free by rearranging the particles in such a way
that their momenta cancel pairwise. Formally

[H', a'(x)] = — (| 2 | — Iy coshy) a’(x) . (11.13)
and therefore if e.g. ¥ > 0 the state
a (& ly—¢) |0> (11.14)

belongs to a smaller energy eigenvalue than the state | 0 >. The requirement that
there exists a state of lowest energy singles out the particular Lorentz frame wherein
the Fermi sea is at rest.

12. Conclusion

Our results may be summarized in the following way. The Thirring model admits
of three essentially different solutions:

1. The normal solution which coincides with the perturbation theory result. The
vacuum expectation value of the current vanishes. This solution displays the full
symmetry of the model and is stable for | 4 | < a.

2. A symmetry breaking solution, characterized by a nonvanishing timelike vacu-
um expectation value of the current occours if 2 = z. Both the group of scale transfor-
mations and the homogeneous Lorentz group are broken. The structure of this solu-
tion depends on the scale chosen to describe the system; different scales lead to in-
equivalent representations of the field operators. The requirement that there exists
a state of lowest energy singles out a particular Lorentz frame wherein the vacuum
expectation value of the current points along the time-axis.

3. A symmetry breaking solution characterized by a spacelike vacuum expectation
value of the current occurs if A = — 7. In this case the vacuum singles out a Lorentz
frame in such a way that the vacuum expectation value of the current points along
the space-axis.

If | A| > m the vacuum expectation value of the current becomes infinite. This
case 1s not treated in the present paper.
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Appendix
To compute the two-point-function we invert the definition of ¢(x)
<O p(x) ply) | 05> =<0 [T plx) gH(y) e ¥ 90 [ 0.

We decompose the current potentials contained in T'(x) in positive and negative fre-
quency parts. Making repeated use of (5.7) one finds

<Oy p®) |0>=expi{F (x—y) + Q (x— )} <0 | ) ¢ |0>
F(x—9) = — 2 {Df (x— ) — DF(0)}

and similarly

<O |p(x) py) [0>=expi{F (x—y) — Q (x— )} <0 o) ey [0>.
For equal times the function H(x — v) defined in (9.4) becomes

H(x—y)=expi F(y —2) <O | g(y) p(x) — g(y) @(x) | 0>
Making use of (6.6) one finds (x° = 39)
<O [ gy) @x) — ) @(x) | 0> =

AT by

%{P+f dxcosx(x—y)+P_f dxcosx (¥ —y)}.
0 (1]

As this is a well-behaved function, the expression (9.4) for the vacuum expectation
value of the current is well-defined. Because H(z) is even, only the even parts of
0, (z) contribute

0s(2) = 5 0() £ Rmi) P

Therefore we have

" 1
<O |7,x)|0> =it {r.HO)} ,
explicitly

; I ' ;
CO|gpl®) |0>=—2 <O[fi(x) |0>=—2.

Footnotes

1) Y. NamBU and G. Jona-Lasinio, Phys. Rev. 722, 345 (1961); 724, 246 (1961). TH. A. J. MARIs,
Nuovo Cim. 30, 378 (1963).
) 1. B1aLYNICKI-BIRULA, Proceedings of Seminar on Unified Theories of Elementary Particles,
University of Rochester URPA-11 (1963). J. D. BjorkEN, Ann. Phys. 24, 174 (1963) (Symmetry
breaking solutions of a four-fermion theovy in four dimensions).
3) W. E. THIRRING, Ann. Phys. 3, 91 (1958); Nuovo Cim. 9, 1007 (1958). V. GLASER, Nuovo Cim.
9, 990 (1958).
4) Notation: Metric g,,:gp = — &1 = 1.
Antisymmetric tensor et?: 0 = — 10 = g, = —gp = 1.
y-matrices: Yo = 0%, y, = ial, ¥ = Yoy, = 05
The component x! of the vector ## is denoted by ».

. Jounson, Nuovo Cim. 20, 773 (1961).

5 K
F. L. Scarr and J. WEss, Nuovo Cim. 26, 150 (1962).
J
B

)
%)
?)

)

8

. SCHWINGER, Phys. Rev. Letters 3, 296 (1959).
. F. TouscHEK, Nuovo Cim. 5, 1281 (1957).



	Symmetry breaking solutions of the Thirring model

