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Intrinsic Superselection Rules of Algebraic Hilbert Space

by L. P. Horwitz*)
University of Geneva

and L. C. Biedenharn**)
CERN-Geneva

(4. III. 65)

Abstract. The structure of a quantum theory described by a Hilbert space over an arbitrary
finite algebra with unity quantity is studied. It is found that such a quantum theory, in which the
observables are linear with respect to the quantities of the algebra, is isomorphic to a quantum
theory described by a Hilbert space over a field in which there are superselection rules. Gleason's
theorem is shown to be applicable; the linear manifolds generated by the minimal ideals of the
algebra give rise to the pure states. The minimal ideals therefore play a role analogous to the
phases in a complex Hilbert space. Illustrations are given for the complex, quaternion and Cayley
algebras.

1. Introduction
Since the work of von Neumann1) in 1932 in establishing a rigorous and clear

mathematical foundation for quantum mechanics, there has been considerable effort
in attempting to find generalizations of the associated algebraic structure. These
efforts have followed essentially two main lines of development. The first of these has
consisted in the search for explicit algebraic generalizations of the operator calculus
and the structure of the Hilbert space, while the second has concentrated on the
characterization of quantum mechanics through the construction of an underlying
lattice of propositions.

In this paper we show that an algebraic Hilbert space, i.e., a Hilbert space over
a finite algebra with unity quantity (this includes all of the algebraic generalizations
so far proposed2)) satisfies the postulates of the propositional calculus of quantum
mechanics. We furthermore show that a quantum theory described by such a Hilbert space,
in which the observables are linear with respect to the quantities of the algebra, is isomorphic
to a quantum theory described by a Hilbert space over a field in which there are super-
selection rules. This latter result indicates that algebraic Hilbert space provides a

*) T. J. Watson Research Center (IBM), New York, on sabbatical leave at the University of
Geneva, 1964-1965.

**) N. S.F. Senior Postdoctoral Fellow on leave from Duke University, Durham, N.C.,
1964-1965.
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complete, mathematically consistent analytic model for a quantum theory with super-
selection rules, and thus the two main lines of development are shown to be related.

In the following paragraphs we review briefly the developments along the two
main lines referred to above.

With the idea that only commutative multiplication can have direct physical
interpretation, Jordan3) introduced the commutative algebras characterized by quasi-
multiplication, i.e., in which A ¦ B 1\2 fAB + BA). Jordan, von Neumann and

Wigner4) studied the so-called r number algebras satisfying the basic combinational
rules of this characterization. They found, with the help of a theorem of Albert6),
that essentially new results could be obtained only for the algebra of all three-rowed
Hermitian matrices with elements in the real non-associative algebra of Cayley
numbers.

More recently, Jauch and collaborators6) have explored the structure of a quaternion

quantum mechanics, i.e., a quantum mechanics described by a Hilbert space in
which the quaternions play the role of scalar multipliers. In a subsequent work,
Emch 7) studied the unitary group representations in quaternionic Hilbert spaces (the
mathematical properties of such Hilbert spaces were first studied by Stone8) and

Teichmüller0)) and carried out a classification of elementary systems in this theory
for the Poincaré group10).

Albert11)12) has shown that the real field, the field of all complex numbers, the
algebra of real quaternions, and the eight dimensional algebra of all real Cayley numbers

13)14)15) are the only absolute-valued real algebras with unity quantity. To complete

the exploration of Hilbert spaces over division algebras, Goldstine and
Horwitz16) carried out an investigation of a Hilbert space theory in which the non-associative

algebra of Cayley numbers was admitted as the algebra of scalars. They found
that such a theory could be consistently worked out within the context of the non-
associative algebra if sufficient care were taken in the construction of linear manifolds.
In order to obtain Fourier series representations, however, they found that it was

necessary to obtain the associative closure of the algebra, and were led in this way
to consider Hilbert spaces over general (finite) associative algebras2).

We shall review the results of the latter in some detail in the next Section, since

it forms part of the mathematical basis for our work.
Let us now turn to the second main line of development, that is, the attempts to

find a complete, inclusive categorization of quantum mechanics - the propositional
calculus. In 1936, Birkhoff and von Neumann17) formulated the «logic of quantum
mechanics» in terms of the propositional calculus, and compared it to the logic of
classical mechanics. In this formulation, it is postulated that the measurement of any
physical quantity can be reduced to a series of experiments in which only the truth
or falsehood of quantitative statements, or propositions, is relevant. In ordinary
quantum mechanics, these propositions are represented by projection operators on
the linear manifolds of a complex Hilbert space; these operators have eigenvalues 1

or 0 corresponding to the truth or falsehood of the associated propositions. The structure

of the calculus of propositions is, however, independent of its particular representation

in the complex Hilbert space.
Birkhoff and von Neumann found that classical and quantum mechanics were

both associated with an orthocomplemented lattice, but that classical systems satisfy
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the distributive law a 0 fb u c) fa n b) u («He) whereas quantum systems do not.
Piron 1s) has given an axiom for quantum systems which replaces the distributive law
of classical systems. Having obtained such a formulation, the question of deciding
upon the possible analytical structures in which to embed the propositional calculus
becomes mathematically well-posed. Conversely, if we accept the propositional formulation

as a direct reflection of the basic empirical relationships of quantum mechanics,
then any generalization of the algebraic and analytic structure must contain an
underlying propositional calculus which is in agreement with this formulation.

The propositions of ordinary quantum mechanics, of course, satisfy these requirements,

but the axioms admit systems of greater generality. It is pointed out by
Jauch and Piron 10) that such a proposition system may, for example, admit super-
selection rules.

Wick, Wightman and Wigner20) showed in 1954 that there exist superselection
rules in nature, i.e., that there are subspaces of the Hilbert space of quantum mechanical

state vectors which cannot be connected to each other by any observable, and
that a selection rule operates between these states. In the presence of superselection
rules, the relative phase of components of the state vector belonging to different sub-

spaces cannot in principle be determined. Hence it is impossible to prepare a pure
state by a non-trivial linear superposition of states lying in distinct superselection
subspaces. They treated, for example, the superselection rule which exists between
subspaces corresponding to integer and half-integer angular momenta, and showed

thereby that the Hermitian spinor fields y> + tp* and ifxp — tp*) are not measurable.

Jauch and Piron 10) showed how such phenomena can be realized in the structure
of the lattice of propositions (in terms of its reducibility), a possibility which was not
explicitly foreseen in the work of Birkhoff and von Neumann.

In the next Section we show that the lattice of linear manifolds of algebraic
Hilbert space - II2) - is consistent with the calculus of propositions postulated as

characterizing quantum mechanics17)18). In the Section following, we introduce the
concept of a state as a (generalized) probability function on the lattice of propositions
in the usual way. Following the application of Gleason's theorem21) to our Hilbert
space [this step provides the form of the most general state as a functional over the
projection operators on the linear manifolds of the space], we discuss the properties
of the pure states of a physical system. We find, in fact, that it is not the complete
algebra over which the space is defined that plays a role analogous to the complex
phase, but rather the minimal ideals of the algebra. The group of symmetry transformations

analogous to the phase transformations of the complex Hilbert space is
therefore much larger than that of the complex phase group.

In the succeeding Sections we discuss two types of orthonormal expansions for
vectors in algebraic Hilbert space. One of these is made up of minimal linear manifolds
which are algebraically closed (closed under operations of the algebra).

The other type of orthonormal set which we shall discuss provides a representation

for the operators which is strictly isomorphic to that of a quantum theory with
superselection rules described by a Hilbert space over a field*). It is made up of linear

*) A demonstration of the superselection rules will be given in terms of the spectral decompositions

of bounded Hermitian operators, without use of orthonormal sets, in an Appendix.
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manifolds closed only with respect to the field over which the algebra is defined, and
the lattice of propositions corresponding to manifolds of this type is not the same as

the lattice of propositions corresponding to manifolds which are algebraically closed.
The former lattice is in fact reducible when the latter is not (provided that the
irreducible representations of the algebra are of dimension greater than one).

2. Algebraic Hilbert Space and the Lattice of Propositions
of Quantum Mechanics

In this Section we define and describe the structure of a Hilbert space over a finite
algebra with unity quantity*) (cf. II) and show that the linear manifolds form a

lattice that is consistent with the propositional calculus postulated to be valid for the
description of any quantum mechanical system.

The work of II dealt explicitly with algebras defined over the real field, but the
extension of the results to the complex field is straightforward. We will not specify in
our general development whether our ground field 0 is real or complex, but the
involution

fa*)* a, (a b)* b* a* ; a, b e 31

of our algebra 51 over 0 will be assumed effective on 0 as the complex conjugate if
0 is complex.

Our Hilbert space "U is closed under the usual distributive and associative operations

of addition and multiplication by scalars. However, the quantities a of 91 will
play the role of «scalars», and since these quantities are not commutative, we must
choose between the alternatives of left and right-handed multiplication onto the
elements (vectors) / in ?/. All of the theorems which we shall obtain can be proved with
equal facility with either convention, and therefore our general theoretical framework
is the same with either choice. However, the detailed algebraic structure of the results
is very much dependent upon the choice of convention. For left multiplication of
scalars, for example, an operator**) which is linear with respect to all of the quantities
of the algebra '31 must commute with the algebra. In a finite dimensional model for
the vector space this implies that the matrix operators that are, as we shall term this
property, totally linear, are constructed entirely of numbers in the field 0. For right
multiplication of scalars by contrast, the totally linear operators are all matrices
with elements in 21.

Operators which are linear over 0 we shall simply call linear (totally linear operators,

are, of course, linear). In the case of left multiplication of scalars, linear matrix
operators may not commute with the elements of 31, but for right multiplication of
scalars there will generally be no matrix representation because the requirement that
the operator be not totally linear is equivalent to the imposition of non-associativity.

It is the totally linear operators which will be of primary interest to us, since the

operators representing physical observables will be postulated to be in this class. We

*) Such algebras may be represented as matrix algebras [cf. (2.12)].
**)Operators will always act from the left on vectors as is conventional in Hilbert spaces.

An operator is said to be linear with respect to a set of quantities if the order of application of the
operator and any of these quantities to a vector is immaterial.
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therefore choose to follow II in adopting right multiplication of scalars for our main
text. For the sake of completeness, however, and to illustrate the differences in
algebraic structure between these alternative conventions, we reconstruct all of our results
using left multiplication of scalars in an Appendix.

To complete the description of our Hilbert space we define a scalar product

(/,g) (g,/)* (2.1)

with values in 31. It has the properties

ff + g, h) ff, h) + fg, h) (2.2)

and

(/, g «) ff, g) « • (2-3)

The quantity (/, /) is symmetric [(/, /) (/, /) *] and positive definite in any
representation of 31. It vanishes if and only if / 0.

It is still necessary for us to define a real-valued norm. To do this we define a

mapping tr a of every element a of 31 onto the ground field 0 which we call the trace.
Our results are dependent only upon the properties of the trace which may be derived
from its definition as a diagonal sum in a representation of 31, and we shall not therefore

specify whether it is to be taken over the regular representation of 31 or over one
or more irreducible representations. With the help of this mapping, we define the
norm || / j| of a vector / by

ll/||2 tr (/,/). (2.4)

Since (/,/) is positive definite, | /1 is zero if and only if/is null. It is also convenient
to define a norm on our algebra 31, i.e.,

] a | tr fa a*)1'2 tr fa* a)1'2 (2.5)

in which the positive square root is used. It then follows2) that the Schwarz inequality
is valid in the form

|tr(/,g)|^J|/||.||g|| (2.6)

or equivalently

\ff,g)\^\\f\\-\\g\\, (2-7)

where the vertical bars are taken to indicate the usual complex modulus in case they
are used on quantities of 0.

We finally postulate that our space is complete, i.e., every Cauchy sequence in "U

converges to a limit in ?/, and we shall assume for the sake of convenience that ?/ is

separable.
In order to discuss the lattice of algebraically closed*) linear manifolds of î/, it

will be necessary for us to discuss projections into these manifolds. However, for our
later work we will need projections into linear manifolds which are not algebraically

*) An algebraically closed linear manifold M contains, along with / and g, fa A- gb and is closed
(every Cauchy sequence in M converges to a limit in M).
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closed, and we therefore demonstrate in the following a result which is general enough
to serve our later needs as well.

Let M be a closed linear manifold, i.e., if/ and g belong to M, then /oc + g ß are
also in M for any a, ß e 0. For any / in *U, there is then a unique decomposition

f=go + K (2.8)

such that g0 is in M and tr (A0, g) 0 for all g in M.
To see that this is true*), we follow a procedure due to Murray (cf. II). Suppose

that / does not lie in the manifold M. Then | / — g fl has a greatest lower bound r0

over g in Af which is not zero, because if r0 were zero there would be a sequence of

g's over which || /— g fl goes to zero. Since M is closed, this would imply that / is
in M. There is, however, a sequence gn of g's for which the norm of hn= f — g„
approaches r0. Furthermore || h„ + hm fl 2 \\f— fgn + gmYI2 || > 2 r0, and therefore
|] K - hm ||2 2(H h„ fl2 + || hm ||2) - || K + hm\\ 2 < 2(|[ K ||2 + || hm |!2) - 4rl ->0,i.e.,
the hn form a Cauchy sequence and have a limit h0 in ?/. It then follows that gn ha ;

a limit go= f — h0. To show that trfhü, g) 0 for all g in M, we first note that for
real X and any g in M, || h0 — g X || || / — g0 — g X fl > r0 fl h0 \\ ; hence (we take
into account the possibility of complex 0)

Poll2 + A2l|g||2-22Retr(Â0,g) A\\K\\2,
i.e., Re tr(A0, g) 0. Since g and gi belong to M if 0 is the complex field, it follows
that tr(Â0, g) 0. Finally, our construction is unique because /= g0 + h0 g^ + h'0

implies that g0 — g'0 h'0 — h0 is of norm zero. ¦
We define the g0 of (2.8) as the projection of / on M, i.e.,

go=PMf- (2-9)

In case the closed linear manifold is not algebraically closed the decomposition
fa g0 a + h0a is not necessarily that of (2.8), i.e., g0 a may not be in M. Hence, in
general, PMffa) + (-FW/)«. Such projections into non-algebraically closed manifolds
are therefore not totally linear operators and satisfy only tr(/, PMg) trfPMf, g). If,
on the other hand, M is algebraically closed, then along with tr(A0, g) 0, tr[(Ä0,g)a]

0 and hence fh0, g) 0. Furthermore, g0 a is in M and therefore PMffa) fPMf)a,
for all/in "U and a in 31. Such PM are therefore totally linear, and satisfy (/, PMg)

(Puf.g)-
In II it is shown that a bounded Hermitian operator A, i.e., a linear operator

satisfying

ff,Ag) fAf,g) (2.10)

and defined everywhere, has a spectral resolution of the form

A fXdPfX), (2.11)

where the PfX) are totally linear projections. It is easy to see, in fact, that linear operators

satisfying (2.10) for all/, g in "U are totally linear.

*) We use the symbol ¦ at the end of a paragraph to indicate the conclusion of a formal proof.
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To prove this assertion, it is convenient to introduce the basis22)25) q^ for our
algebra 31, where*)

Q/ivßaß "faQ/lß

Quu en (primitive idempotent) (2.12)

*

In terms of this basis, any

(/. g) -Zq>, tr M/. g)i XV tr (/«?„„. g) (2-13)
fiV (IV

and hence

(/. A g) =£»,* tr ((/^,), A g) =Zq^v tr fAffQllv), g)

(^/.g)=2'^tr(^/)^,.g)-
[IV

The expansions over g must be equal term by term, and therefore tvfAffg), g)

tiffAf) q g). Since this equality is valid for all g, it follows that A (/g„„) fAf)Qßv
for all of the q i.e., A is totally linear. ¦

It is, of course, also possible to consider a theory in which the Hermitian operators
satisfy the weaker condition

trfAf,g)=trff,Ag). (2.14)

A «weakly Hermitian» operator satisfying (2.14) is also Hermitian, i.e., satisfies
(2.10), if and only if it is totally linear. It was shown in II that a Hilbert space "U0 in
which the scalar product is taken to be tr(/, g), and for which therefore the Hermitian
operators satisfy (2.14), is isomorphic to the usual Hilbert space over 0. The linear
manifolds relevant to a quantum theory in which the weakly Hermitian operators
are admitted as observables are therefore closed over 0. The properties of such linear
manifolds are well-known.

In what follows, we assume the validity of the postulate

Q. The operators which represent physical observables are contained in the class

of totally linear operators on 11.

Hence, not all of the Hermitian operators on the coherent Hilbert space over 0
are admitted as observables.

We are now in a position to discuss the propositional calculus associated with the
algebraically closed (physically meaningful according to postulate Q) linear manifolds
of our Hilbert space. These linear manifolds in fact constitute a complete, weakly
modular, orthocomplemented lattice with properties consistent with the calculus of

propositions postulated17)18) as characterizing quantum mechanics. The lattice is

furthermore atomic, i.e., there exists a minimal non-null algebraically closed linear
manifold within every algebraically closed linear manifold. Therefore, according to
Piron 18), the system of propositions can be embedded in a Hilbert space over a field.
We shall explicitly construct the isomorphism between the present Hilbert space and
a Hilbert space over 0 in a later Section. For the proof of the other assertions, we
follow essentially the demonstration given by Petit23).

*) In terms of a matrix representation, the q^? may be taken to be 1 in the/^"" row, vth column,
and zero elsewhere.
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To say that the algebraically closed linear manifolds of "U form a lattice means
that there must be a partial ordering, a greatest lower bound (intersection) and a

least upper bound (union). These properties follow directly from the properties of the
projections uniquely associated with the algebraically closed linear manifolds; these
latter properties are, as shown in II, the usual ones. These projections do not generally

commute (i. e., they correspond to incompatible propositions), and the projection
for the intersection of two manifolds M, N must therefore be calculated according to*)

PMrsN hm fPM PN)" (2.15)

It is clear that the null manifold and the entire space correspond to the absurd (0)

and trivial (/) propositions and furthermore that the lattice is orthocomplemented,
i.e.,

(M')' M
M u fìl - M) U

M n (U - M) 0

and

(MuN)' M'nN' (2.16)

The complement M' of a linear manifold M is the usual orthogonal complement M'
11 — M. The union of two linear manifolds is the closed linear manifold spanned
(over 31) by the totality of elements of both, and the intersection is composed of the
closed linear manifold of all elements common to both.

Our lattice is furthermore weakly modular, i.e.,

IÇJV implies (M u N') n N M (2.17)

since N' is in the orthogonal complement of M, and among the elements of the union
of M and N' those in common with Af are in M.

Two propositions M and N are said to be compatible if they satisfy the symmetrical
relation

(M n N') uN (N n AT) u M

The axiom of Piron 18) which replaces the distributive law of the lattice of propositions

of classical mechanics can be stated as follows :

P. If M Ç N, then M and N are compatible.

Since Af and N are algebraically closed linear manifolds, they are uniquely
described by the properties of their totally linear projections. If Af C N, then the
projections commute and the compatibility relation follows directly.

Finally, to discuss the atomic property of our lattice, we will need some results
from the theory of rings24), i.e., those which deal with ideals. A set f of elements of
31 is called a right ideal if it is not identical to 31 and x ei, a e 31 implies that xa e f,
i.e., £ is closed under multiplication on the right by any of the elements of 3t. A right

*) We use the same symbols in the following for the linear manifolds and the propositions to
which they correspond.



Vol. 38, 1965 Intrinsic Superselection Rules of Algebraic Hilbert Space 393

ideal of 31 is said to be maximal if it is not contained in any other right ideal of 31.

It is true 24) for the algebras 31 with unity quantity that every right ideal can be
extended to a maximal right ideal. Left ideals can of course be analogously defined.

A right ideal | generates on an element / of "U a manifold which we shall call an
ideal linear manifold/f; clearly an ideal linear manifold is algebraically closed. In the
following, we show that the existence of a maximal ideal in 3f implies the existence
of a (non-null) minimal algebraically closed linear manifold in the algebraically closed
linear extension/31 of every element/of "U, i.e., the corresponding lattice of propositions

is atomic.
The structure of the usual complex Hilbert space of quantum mechanics is much

simpler in this respect, but not by any means trivial. The algebraically closed linear
extension of a (normalized) vector rp of the complex Hilbert space is {e"p y>} for all
real cp. These «rays» are the minimal algebraically closed linear manifolds which generate

the pure states in a phase-independent way (we shall discuss this point further
in the next Section). It is just this freedom of phase which permits, for example, the
introduction of electromagnetic interactions in a gauge invariant way.

To prove the assertion that our lattice is atomic, we note that the relation

/I D fr], for £, r\ two ideals, implies that for everyy e rj there exists an x e f such that
fx =fy, i.e., ffx—y) 0. Hence x — y belongs to the annihilator ideal £/ of/ (Cf
contains all a e 31 such that fa 0), and therefore*)

fn C/l implies r,Q (lu Q. (2.18)

There exists, however, a maximal ideal £max in 31, and therefore a manifold Mmax=
fÇmax in/31. If Çmax differs from 31 by £,, then/£„,„, /31. We show below (at the
conclusion of this Section) that for every / a £max exists for which the last equality
does not hold, and we assume in what follows that £max is chosen in this way. It is

easy to show that / 31 is closed (Cauchy sequences have limits in / 31) and therefore
that Mmax has an orthogonal complement M'max 4= 0 in /31, i.e., M'max\j Mmax =/3t
Suppose that there exists an Af C M'max which is neither Af^. nor null. Then M\jMmax
is neither/31 nor Mmax; to this manifold corresponds an ideal £ such that Af ij Mmax

/£, and according to (2.18), £ u C/ D £max- H IU C/ imax> then Af u Mmax is / Çmax,

contrary to hypothesis. But then we have found an ideal larger than £max which is
not all of 31 (if £ u C/ 31, then /£ /(£ y Çf) f 31), and have therefore arrived at a

contradiction. The manifold Af^. is therefore a minimal algebraically closed linear
manifold. ¦

It is clear from the above that our lattice satisfies the covering law 18) for the
minimal manifolds Af^„ Mmin, i.e., N CM CNu Mmin implies that Af N or
M NuMmin.

Let us state explicitly what these minimal manifolds are in terms of the minimal
ideals of our algebra 31 in a form that will be useful for our later work. Every ideal
is generated25) by an idempotent of the algebra 31, and, in particular, these minimal
ideals are generated by the primitive idempotents defined in (2.12). Hence every Afmi„
is of the form

Mmin={feßa}
for / and pt fixed and a ranging over 31.

We freely use u and n among the subsets of 31 as well as the manifolds of H-



394 L. P. Horwitz and L. C. Biedenharn H.P.A.

To complete the discussion of this Section, let us prove the assertion : there always
exists an Mmax which is not/ 31. There is a minimal right ideal e 31 for which Mmin 4= 0 ;

if Mmin 0 for every choice of pi, then fe 0 for everypi. Since Jfe is the unity quantity

of 31, this implies that / 0. ¦ "

3. States and the Minimal Ideals

In the preceding Section, we showed that the lattice of propositions (algebraically
closed linear manifolds) associated with our algebraic Hilbert space is consistent with
the conditions imposed upon a lattice which is capable of the description of a quantum
mechanical system. To understand the role played by the algebra 31 in the description
of such a physical system, it will be necessary for us to introduce the notion of a

state, and to find an explicit expression for it in terms of the quantities of the Hilbert
space. A constructive procedure of this type has been carried out for the usual complex
Hilbert space (for example, Ref.26)), and we review this case first.

A state is defined as a function w(M) on the set of all propositions of the lattice,
with the properties19)

0 ^ w(M) < 1 ;

w(<f>) 0, wfl) 1 ;

if Af is compatible with N, w(M) + w(N) w(M n N) + w(M <j N);
if wfM) w(N) 1 then wfM ON) 1; (3.1)
if Af =t= 0, there exists a state w such that w(M) + 0.

Two states are different if there exists a proposition Af such that wfM) + w2fM).
If wx and w2 are two different states then wfM) Xx wfM) + X2 wfM), with Xx > 0,
X2 > 0 and Xx + X2 1, defines a new state. A state which can be represented in this
way with two different states is called a mixture ; a state which is not a mixture is
called pure.

Gleason21) has shown that for an irreducible system of propositions (a lattice
with no element but <f> and I compatible with all elements ; called coherent by Jauch
and Piron19)) realized by the projections PM of a separable Hilbert space, real or
complex but of dimension > 3, there exists a density matrix q for every continuous*)
state such that

wfM) Tr fe PM) (3.2)

where we use «Tr» to distinguish the trace over the entire Hilbert space from our
algebraic trace «tr». For a Hilbert space over a field, it is easy to show that there
exists one and only one state wfM) such that w(M) 1 for a given Af which is a

minimal closed linear manifold.
We have already stated in Section 2 that our algebraic Hilbert space is isomorphic

to the usual Hilbert space over a field 0 with respect to the scalar product tr(/, g).
It is this description which is appropriate when all of the weakly Hermitian operators
are admitted as potentially observable. We use it in the following to prove the assertion

made above.

*) Cf. Ref. 21). It has been pointed out to us that this condition can be weakened to the following
: let PMo be the limit of the ordered sequence Pu, ^ Pm, S Then a>(M{) -> a>(M0).
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For ?/0, (3.2) can be written26)

Ztf)=2>,-trCZiWZ (3-3)w[

where y{ > 0 and ffjff y{ — 1. We wish to emphasize that the linear manifolds we
i

consider here are closed only over 0, and the corresponding projections are not
totally linear operators. Hence our postulate Q is not satisfied for these projections.
What we are therefore dealing with is precisely the coherent lattice corresponding to
the general complex (or real) Hilbert space.

Let P be the projection [in the sense of (2.8) and (2.9)] on the minimal manifold
M {/o X } over X e 0. For the state wfM) for which wfM) 1,

0=ZyArffiAI-P)fi)- (3-4)
*

The projection P has the weak Hermitian property (2.14) and is idempotent, hence
each term of (3.4) is non-negative, i.e.,

tr ((/ - P)ft, fI-P)fi)=\\fI-P)fi\\2 0. (3.5)

It therefore follows that

ft Pfi=foh- (3-6)

If II /o I!2 II ft V L it follows that | Xt \2 1. Hence (3.3) takes the following form

w(M) £Yi \Xf2tx (f0, Pmf0) tr (f0, Pmf0) m (3.7)
i

Each of the elements /0 of H therefore defines a pure state through its closed linear
extension over the field 0, and the applicability of the word «state» to the vectors
of "U is in this sense justified.

The states (3.7) defined over the non-totally linear PM are not, in general, physical
states in view of our postulate Q. However, we assume that the requirements (3.1)
for a state function wfM) over the algebraically closed linear manifolds Af are vahd,
since these refer to the lattice of propositions and not to the particular analytical
framework in which it is embedded.

In the next Section we show that, with respect to the totally linear operators,
our Hilbert space li and its transformations are isomorphic to the direct sum of a
finite sequence of Hilbert spaces over 0. The isomorphism is constructed as follows.
Under the totally linear operators on 11, the subspaces H 11 e where eß is a primitive

idempotent, are invariant. These subspaces are not algebraically closed, but each
is isomorphic to a Hilbert space over 0 which is invariant under the totally linear
operators. The totally linear operators are represented completely by the set of all
scalar products of the kind tr(/, g), between elements of the same subspace, from all
of these subspaces.

In each of these subspaces we may write the most general function of the manifolds

in lip (closed over 0) satisfying (3.1), as

*%(M*)=2>Zr(/?,-fW?Z (3-8)
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where the /f /,- e belong toll and the M0 are linear manifolds, closed over 0, in
1tß. For each Af0, however, there exists an algebraically closed linear manifold Af in
11 such that

PmSÏ-PmJÏ- (3-9)

Suppose that M0 is spanned by gxe g2e over 0. Let Af be the algebraically
closed linear extension of Af0, i.e., M is spanned over 31 by the same elements. Hence,
according to (2.8),

fi gì e
fi «i + ga «/» «2 + • • • + h (3.10)

where

fh,gie/) fh,g2e/l) 0. (3.11)

Furthermore,

fi en=fi= gì en («i)w + g2 «ß M„ +... + *«,, (3.12)

where fax) fa2) are in 0, and with the help of (3.11) we obtain

tr (h eß, gx ef) tx fh e^, g2ef) 0

Since (3.10) and (3.12) are unique decompositions of the form (2.8), it follows that
(3.9) is valid. ¦

The result (3.9) enables us to replace M0 by M in the expression (3.8), i.e., we
have that

i
for the manifolds Af which correspond to the algebraically closed linear extensions
of the Af0 in 11 However, every M is the algebraically closed linear extension of an
M0 in 11 It suffices to verify this for an Af generated by a single element / of 11.

Let Af {fa } over a e 31. Then {fa } e/t={ £fa.v/1 qv/1 }, with a.v/t e 0, is a linear
V

manifold closed over 0 in *U Its algebraically closed linear extension is {£/&„„ Qv/i'^}
V

over b e % i.e., {Jffa.Vß ß^ ß„A } with oc^, ßM e 0. Since xv/l ß^ is arbitrary in 0,
vi

this last is identical with {fa }. Hence w AM) is defined over all of the algebraically
closed linear manifolds Af of 11 and for these it is the most general function in 11

satisfying (3.1). ¦
Since the H axe orthogonal in H0 and invariant under the operations of the class

of totally linear operators on 11, the general state w(M) is (cf., Ref.26), p. 135)

w(M)=2JX/iwß(M), (3.14)

where £ Xß 1, A, > 0. Hence (set Xß y, yt)

w(M) =2V? tr (ff, PMft) -girtfÄ* (ft, PMfl)
ifA ifiv

since tr(/f, PMff) 0 iox pi + v. After normalizing the vectors Jf i/yf/f we obtain that
f

(3.3) is valid as the most general form for a function satisfying (3.1) and (3.14), and
defined over the algebraically closed linear manifolds of 11. ¦
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In the remaining paragraphs of this Section we discuss some of the properties of
the states (3.3).

According to our postulate Q, only the totally linear projections are admissible
as physical observables. In order to construct a pure state, we must therefore choose

a minimal algebraically closed linear manifold of 11, and require that w(M) assume
the value unity when Af is that manifold.

To illustrate this construction, let P be the (totally linear) projection on the
minimal algebraically closed linear manifold Af {foen a } over « e 31. For the state
wfM) for which wfM) 1,

0=ZyAxffAI-P)fi),
i

is in (3.4), and therefore

fi=Pfi=f0e/lai. (3.15)

The normalization of /,- implies that

11A 112 tr (/„ eß at, f0 ^ at) tr [eß a{ a* eß (/„, /„)]

K«f)w(/o./o)„=l- • (3.16)

We take (/o./o)/*/* 1; it then follows that

(«iO„=l. (3-17)

If we now substitute (3.15) into (3.3), we obtain

MM) =27r,- tr (/„ eM «,., PMf0 eM a,)
i

Eyì tr Z, K a*) eß ff0, PMf0)}
i

2>Zr <>(/<»-Pm/o)
i

tre/lff0,PMf0). (3.18)

The pure states are therefore of the form (3.18), which has an analogy to the form
of a mixed state in which the density matrix has been replaced by a projection (eA.
If we had taken for M the linear extension of /0 over the whole algebra 31 instead of
the ideal e

^
31, the density matrix of which e is an extreme form would have occurred

in (3.18).
To see this, let Af {/0 a } over a e 31. For the w(M) for which w(M) 1 we then

obtain, from (3.3),

fi=Pfi=fo<*i- (3.19)

The normalization of/,- implies that

tr (/o a,, /0 at) tx [at a* (/„, /„)] 1, (3.20)

and substituting (3.19) into (3.3) we have

w(M) XYì tr [*, A (/o. PMfo)i tr fe« (/0, PMfo)i (3-21)
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where

9m £yì ai a* (3-22)
i

is analogous to a density matrix in the algebra 31. It satisfies

trfe9t(/o,/o)] l. ¦ (3-23)

In the case of a quantum mechanics described by a Hilbert space over a field 0,
the elements / e H, multiplied by the elements of unit modulus in 0 (a ray) generate
the pure states through the procedure typified by (3.4)-(3.7). The apparent analogue
to the ray of a Hilbert space over 0, i.e., the algebraically closed linear extension

{/„ a } of a vector/0, on the other hand, generates a mixed state of the form (3.21).
The mixture has its source, of course, in the fact that the manifold {/0 a } is not
minimal ; its presence indicates that our formal structure may be useful in describing
systems with superselection rules (cf., Ref.26), p. 135).

The pure states, as we have seen, are generated through the procedure typified
by (3.4)-(3.7) by the minimal algebraically closed linear extensions of elements of 11,

i.e., by the manifolds {/„ e a } over a e 31. Hence it is the (normalized) elements/0 eß a
which are, in fact analogous to the elements /0 etv oi a complex Hilbert space, and
therefore the quantities e a of the minimal right ideals e 31 of 31 ffaa*) 1) play
the role of a generalized phase. Since

<7«=2>,^ (3-24)

and the normalization implies that [for (/0Zo)»« 1]

i7K|2 l. (3.25)

the «phase» freedom of a minimal manifold in the algebraic Hilbert space consists
of the unitary transformations in an n dimensional Euclidean vector space, where n
is the number of primitive idempotents of 31.

We note in passing that this vector space (generated by a primitive idempotent)
transforms under the operations of 31 according to the irreducible representation
associated with the idempotent25). If the connecting element q is not zero, then
the representations associated with e and ev are equivalent ; the distinct irreducible
representations are therefore associated with the (two-sided) ideals which are not
connected by such equivalence mappings. This symmetry is reflected in the structure
of the pure states in the following way. Let wfM be the pure state tr e ff, PMf) and

wfM) the pure state tr ev fg, PMg). If / and g are related by gev /g „„, then

wfM) tr [e„ (fQßy, PMfeßv)1 tr [#„„ (/, PMf) Qßri tr <y (/. pMf) •

i.e., w'fM) w(M) ; the transition probabilities27) are therefore preserved under this
transformation.

It is clear from what has been discussed so far that we are dealing, in effect, with
two lattices. One of these is the lattice of propositions corresponding to the linear
manifolds closed over 0; it is reducible19) with respect to the primitive idempotents
of the algebra 31, and the representations of the totally linear operators on the Hilbert
space 11$ over 0 are therefore also reducible. The other lattice of propositions cor-
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responds to the linear manifolds closed over 31, and is reducible only over the
idempotents of 31 which generate the two-sided ideals (inequivalent irreducible representations).

For 31 an algebra with only one irreducible representation, the first kind of
lattice is reducible if the dimension of the representation is greater than 1, while the
second is not. Since the usual representation of quantum mechanics is given by a
Hilbert space 11$, it is the reducibility of the first kind of lattice which corresponds
to superselection rules in this context.

In the next Section we shall construct sets of basis vectors in H which make
explicit the reducibility of the observables in both kinds of lattices.

4. Complete Orthonormal Sets and Representations of the Linear Operators

There are two essentially different ways of constructing an orthonormal set in H,
corresponding to the use of manifolds closed over 0 or over 31. Since, as we have
shown, the pure states are generated by the minimal algebraically closed linear
manifolds {fe a } over a e 31, it is of interest first to construct an orthonormal set
which spans 11 with coefficients in the minimal ideals of 31. We then consider the
construction of a basis which spans H over 0. A strict isomorphism is obtained
between H and its operator calculus and a (reducible) Hilbert space over 0.

Suppose that the sequence fx,/2 is dense in the (separable) Hilbert space, i.e.,
any element g is the limit of a subsequence of this sequence. If/2 is not entirely
contained in {fx a } over a e 31, then there is [according to (2.8)] a unique decomposition

f2=fxa2 + h2, (4.1)

where (h2,fx) 0 and A2 + 0. If/2 is contained in {fxa }, then we proceed in the
sequence until a member is found which is not ; we then call this element f2 and carry
out the procedure described above. In the same way, we find an element /3 which is
not contained entirely in the algebraically closed linear manifold spanned by {fxa }
and { h2a }. Let fx cpx and { <pxa } Mx, h2 cp2 and { cp2a } M2. Then

/s <Px a3 + <Pz K + h3 > (4-2)

where fh3, cpx) fh3, cp2) 0 and we set h3 cp3. This process can be continued until
H is completely spanned by the manifolds Af,, Af2,

To show that the set

<Pi. <f2,---\ f<Pi. <Pj) ° for * * 1 (4-3)

is complete, we note that at each step of the procedure, all of the sequence /,, /2,
that has been used in the construction is included in the union of the closed linear
manifolds so far generated. For example, /, is certainly contained in Af, ; /2, as can
be seen from its decomposition (4.1), is included in Mx y Af2 fh2 cp2) ; /3, as can be

seen from (4.2) is in Mx \j M2 \j Af3, etc. Since fx,f2, is dense in H, we have therefore

spanned all of H with the algebraically closed linear extensions of the elements
of the sequence (4.2). ¦

We now turn to the decomposition of the manifolds Af; into orthogonal minimal
algebraically closed linear manifolds. What we will show is that each vector cpi of the
set (4.3) can be further decomposed into ipxx\ y>$, where the ipfi are equal in
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number to the primitive idempotents of 31 (if none of the xp^ vanish accidentally)
and satisfy

(VM">)=<><VV (4-4)

Any vector fin H then has the expansion

/=r^z.- (4-5)
/a

where it suffices for a • to be a quantity in the minimal ideal e 31. To construct the
set f{f associated with cpit let xpf1 <pfi\, and Mx {\f-fa }. Since y>xl)ex y>x*\ it
suffices that a range over the minimal ideal ex 31. We may then decompose cpte2 into
a part rp['^a2 in Af, and a part h2 satisfying fh2, rpf1) 0. Since cpte2 ¦ e2 cp{e2 and the
decomposition is unique, it follows that h2 e2 h2 (and ex a2 e2 af). We therefore
call h2 y$, and proceed in this way until all of the idempotents of 31 have been used.

Clearly the manifolds { yft a } over pi and a e 31 span { q>{a }, and are therefore
complete in H over i, pi and a e 31. Since iff1 e %p(f, the quantity ftpf1, rp^f) is proportional

to e with a positive real multiple, and (unless tp1^ is zero) the normalization to
the form (4.4) can easily be carried out. ¦

Since every/has the expansion (4.5), the vector A y>^ is also of the form (4.5),
i.e.,

Ay^=Z^)a^y (4-6)
vj

If we now operate with B, we obtain

BfAW^)=2jBfWv)^j,lj)- (4-7)

Since avJt e ev 31, we may write it as

with aJ ,„¦ in 0. If B is linear over 0, the factors a', ,„¦ can be extracted from the
VJ y ft * ' rj) [tt

parentheses on the right side of (4.7). However, the relation

S^=2>l*>W> (4-9)
v'k

does not define Bftp^f gvf). Hence it is not possible to obtain a representation of the
(non-totally) linear operators on H if the ip'-f axe used as a basis.

However, if the operators A and B are totally linear, then the aVJ-: t occurring
in (4.6) are of the form a.vji ^^q where cnvj, ¦ e0, and, similarly, in (4.9), bv-K yj
ßv'k, vjQv'v Hence

B A V>f SÌ? P'X-oJ ^'v^j.fH Qvp 2>^ Qy-ß£ß*-k,vj °Wi (4-1°)
v'k,vj v'k vj

and the coefficients xyJi „;, pV ti vj form a matrix representation of A and J5 over 0.
Such matrix representations over 0 define a Hilbert space over 0 in which the operator

calculus of totally linear operators on H may be embedded, but this Hilbert
space and its operator calculus is not isomorphic to H and its operator calculus since
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the vectors ipfi1 axe not carried into a sum of vectors with coefficients in 0, i.e., we
have the additional transformation g in

^=£v£) <?,,«,,.,!¦ (4-11)
vj

We note, however, that at,yJt „t 0 if e and ey correspond to inequivalent irreducible
representations of 31, and therefore the Hilbert space over 0 referred to above (for
totally linear operators) is reducible with respect to the minimal two-sided ideals of 31.

This decomposition corresponds to the reducibility of the lattice of manifolds in which
the centre includes {fer} over all f e 11, where the er are the idempotents (generally
not primitive) which distinguish the inequivalent irreducible representations.

We now turn to the construction of a basis which spans H over 0.
Consider again the sequence fx,f2 ¦ which is dense in H. Let M-, be the manifold

{2f A e/i Xp) over all pi, X e0. Then (if /2 is not entirely in Af^

Â=Zfx^^ + K
f

where tx[(h2,fx) e A 0 for all of the pi. We then call/, %x, h2 %2 and decompose
/3 as follows :

h-EXi^f+Ex.e^ + K.
ß ti

It then follows that h3 %3 satisfies

tr [Of,, Xi) e,J tr [Of,, %i) ef\ 0

for all of the pi. If this process is continued until the sequence/,, /2 is exhausted,
we obtain a set £.g of vectors satisfying (after normalization)

tr(z«V*W=V« (4.12)

where the linear combinations of %t e over 0 span H, i.e., any/ has the expansion

/ 27*i«„V (4-13)

fi
The coefficients a • are easily obtained with the help of (4.12):

%i txfXiefl,f). (4.14)

The operators A, B on H which are linear over 0 have a consistent representation
in terms of the coefficients in 0 induced on this basis. Hence the Hilbert space over 0,
which is defined by the representation matrices, supports the (non-observable, non-
totally) linear operators on H as well as the totally linear operators. To see this, we
proceed as in (4.6) and (4.7) :

A Xt «f, =EXj A *v}, fi BXie/t=Zxj A ßvj, fi. (4-15)
vj vj

where a.yJi ^ and ßvji { axe in 0. If B is linear over 0,

BAXief=£(BXjev)<x-v},fi
vj

ZXk^n Zu, vj «-vj, ft- ¦ (4-16)
/ k, V j

Since, according to (4.13)-(4.15),

<*-vj,fi=--trfXjA.AXief) • (4-17)

26 H.P.A. 38,4 (1965)
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and AfifiA =t= fAXi)e in general, there is no restriction on the indices vj> „, of the
coefficients.

If, however, A is totally linear, then

a,,, ßi oßv «# «„ tr e„ Of/. ^ Zi) • (4-18)

Hence the representations of the totally linear operators in the orthonormal basis

{ Xi ef} are reduced to block form with respect to the indices referring to the primitive

idempotents of 31. For the totally linear operators, the Hilbert space over 0
defined by the matrices (4.18) is therefore reducible with respect to the primitive
idempotents of 31. This decomposition corresponds to the reducibility of the lattice
of manifolds in which the centre includes the {fe } over all/ e 11*).

These linear manifolds are not algebraically closed, but they are invariant under
the totally linear operators and are orthogonal in H0 (the Hilbert space with tr(/, g)
for scalar product). Furthermore, the representations (4.17) of the linear operators on
11 and the correspondences established by (4.16) imply that the relation between
H and its operator calculus and the Hilbert space over 0 and its operator calculus
defined by the representations is that of an isomorphism. ¦

This completes the proof of our principal result as stated in Section 1. A proof
will also be given in Appendix 1 which does not utilize an orthonormal set. It is
shown there that a spectral resolution can be constructed for a bounded totally linear
operator in each of the subspaces H {fe } over all/ e 11.

The manifolds {ip^ a } are minimal and therefore generate pure states. The yty
may therefore be interpreted as «state vectors» in the same sense as in the usual
mathematical description of quantum mechanics, i.e., in both cases it is the «rays»
or minimal closed manifolds which are in one-to-one correspondence with the pure
states.

It is also of interest to try to understand the significance of the closed linear
extensions of the elements Xl e since these form an alternative basis for H. The
{ Xi eu} were constructed to be orthogonal in the sense of the trace scalar product,
and the manifolds { Xi e a } over a e 0 completely span H. These manifolds generate
those pure states which, according to our postulate Q, are not physical, since the
projection into a manifold closed only over 0 is not a totally linear operator. To
generate a physical state, it is necessary to construct manifolds containing Xi e aiox
all a e 31. The presence of e assures that such a manifold is minimal, and by construction

the associated projection is totally linear. Hence the { Xi e a} generate pure
states. However, the manifolds { Xie a} and { Xj eva) are not necessarily orthogonal
in the stronger sense.

What we show in the following is that these manifolds generate states depending
on the Xi eß alone, and that, when these states are distinct the manifolds do not intersect.

The projections associated with these manifolds therefore do not in general
commute, i.e., the corresponding propositions are incompatible.

Since tx(Xi eß a, Xi eM a) (aa*)^ (Xi, Xi) ^ implies that (««*)„ 1 if fXi, Xi) ^ 1,

it follows from our previous discussion that the state determined by { Xi eß a } is

MM) tx eß Of,, PM Xi) (4.19)

*) The corresponding superselection rules may be said to be intrinsic to the algebraic Hilbert
space since they follow directly from the structure of the algebra.
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Suppose that { Xi eßa} has a non-vanishing projection into { Xj ev a }, i.e., for some

ax e 31,

Xi ef «i Xj 7 bx + hx, (4.20)

where fhx, Xj ev) 0. If hx 0, then the closed linear extensions of Xi eß and Xj ev are
identical, and the states (4.19) corresponding to each of these are also the same. Such

symmetry properties of the states were discussed also in the previous Section and
lead to no contradictions. What we are concerned with here is the relation between
these closed linear extensions when the states (4.19) are in fact different. We therefore
assume that hx + 0. Taking the norm of (4.20), one obtains

(aia*i)ff= fhK)ff+ ||*i II*.
i.e., in the strict sense of the inequality,

(*i4)ff>lPiK)ff (4.21)

Furthermore,

Xj A K Xi ef a2 + K -

where (A2, Xi ef) 0 and therefore (by our previous argument h2 4= 0)

(Mi)w>K«2*)w. (4-22)

If the cycle (4.21)-(4.22) is repeated indefinitely, it is clear that fana*) ^ and fbj)*)^^
-> 0. Hence the product of the projections into these two manifolds taken to the nth

power vanishes as n ^ oo. According to (2.15), this implies that the closed linear
extensions of two vectors Xi eß and Xj ev which generate distinct states have no
intersection. ¦

In the above demonstration no special use was made of the fact that Xi eß and Xj ev

belong to an orthonormal set, and therefore the result holds in general for the manifolds

{fe a } and {gev a } and the states which they determine.

5. Some Illustrations

To illustrate the isomorphism between algebraic Hilbert spaces and (reducible)
Hilbert spaces over a field, we discuss the structure of some of the Clifford algebras
(cf., Ref.25), p. 267ff., for example).

Consider, for example, the algebra of quaternions E, I, J, K over the complex
field. For simplicity, we choose to discuss the Clifford algebra n 2 in which K is

dependent upon I and / as K — IJ (in the Clifford algebra n 3, K is independent
and there are additional idempotents).

Since I — I*, J — J* and IJ + JI 0, there are two orthogonal self-

conjugate idempotents:

ex Z (E-ilJ) e2=\fE + Hf). (5.1)

Since ex Ie2 ag12, a complex, we find that

6i2 \fl-if) Q2i=-\(I+if) (5-2)

and a 1. The coefficients in the representation

a^E(L^QfV (5-3)
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for a (a quaternion) can easily be calculated, with the result that

E ex + e2

' 612 ~~ 621

/ * (Q12 + Q21)

K i fex - e2) (5.4)

(Clearly il, — ij, — iK axe the usual Pauli spin operators.)
The two minimal ideals are of the form

ex a pix ex + pi2 gX2 (5.5)

e2 a ßx e2 + pi2 q2X

and under right multiplication by I, J and K, the two-dimensional vectors with
components pix, pi2 transform in the first of (5.5) with, respectively, representations
for I, J, K as given by

,.;;). (Z). (;_•)
and in the second

0 - 1 \ / 0 i\ I - i 0
(5.7)

1 OJ- \tOJ- \ 0 ij { '

The matrices of (5.7) can be obtained from those of (5.6) by an equivalence transformation

with (<>g).

A quantum mechanics described by a Hilbert space over the quaternion algebra6)
is therefore isomorphic to a quantum mechanics with a superselection rule described
by a complex Hilbert space in which the subspaces { fex } and { fe2 } of 11 axe invariant
under the action of the totally linear operators*). The pure states are determined
by minimal algebraically closed linear manifolds of the form {fexa } and {/s2a } for
fixed / and a ranging over the quaternion algebra.

As a second example, we wish to consider the Hilbert space over the complex
numbers as an algebraic Hilbert space ; it is isomorphic in the same sense as described
above to a reducible real Hilbert space28). The complex algebra is a proper subalgebra
of the quaternions, and consists of E ex + e2, I qX2 — q2X, and all real linear
combinations. The transformation group on the minimal ideals (5.5) is of course much
smaller, since only the matrix (Af0) (in addition to the unit matrix) is available; it
corresponds in fact to the usual complex phase group.

The Dirac algebra, i.e., the algebra corresponding to the n 4 and 5 Clifford
algebras, is a proper subalgebra of what has been called in I the Cayley ring16), i.e.,
the Clifford algebras for n — 6, 7. This ring is obtained as the group algebra of the

group of associative operators which is the closure of the non-associative algebra of
the Cayley numbers. We refer to I for a complete discussion of the construction of the
idempotents for the Cayley ring. All of the idempotents can be constructed of real
linear combinations of the group elements, including the idempotent which splits the
sixteen-dimensional representation of the case n 7 into two inequivalent irreducible

*) Cf. Ref.7), p. 761 ff., and the discussion of the symplectic representation in Ref. 6) for related
constructions.
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eight-dimensional representations (each appropriate to n 6) ; this decomposition
is analogous to that of the quaternion n 3 case, for which e± 1j2fE + IJK) splits
the four-dimensional representation into two two-dimensional representations, each

appropriate to n 2. In each of the n 6 subspaces, there are eight submanifolds
of 11 which are invariant under the action of the totally linear operators. It is remarkable

that the idempotents reduce operators of the Cayley ring to elements of the
Cayley algebra. Since the Cayley algebra, as mentioned earlier, has a modulus,
expressions such as e^ aa*e/l, which occur in the analysis of Fourier expansions and in
the construction of the pure states, are just of the form | a |2 e where | a \2 is the
modulus squared. The minimal linear manifolds with elements of the ioxxnfe^ a are
therefore products of vectors/? with Cayley numbers a of (when normalized) modulus
unity in the eight-dimensional Cayley algebra.
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Appendix 1

The Decomposition of 11 over 0
The decomposition of 11 into subspaces invariant under the action of the totally

linear operators was given above in terms of a discrete orthonormal set appropriate
to the treatment of 11 as a Hilbert space over 0. It is also possible to exhibit this
decomposition in the form of the spectral theorem.

The spectral resolution (2.11) of a bounded Hermitian operator contains projections

on algebraically closed linear manifolds. In the treatment of 11 as a Hilbert
space over 0, it is more appropriate to use projections into manifolds closed only
over 0.

Let 11^ {feß } for / e 11 and e a primitive idempotent of 31; then

*=27*,. (ali)
If Afp

is a linear manifold (closed over 0) in 11 and Mv another in Hv fv =t= pi) then

Pm„Pm,'0. (A 1.2)

To see that this is true, we note that since these are projections onto linear manifolds
closed over 0, they are (weakly) Hermitian in the trace scalar product, i.e.,

tr fPMJ- PMv g) tr (/, PMf PMv i) • (AI-3)
However, PM/lf= he

^ eUß and PMvg h'e„ e 11, and therefore

tr fPMJ- PMv g) tr [«„ fh, V) ef\ 0 fpt + v)

Hence, in (A 1.3) tr(/, PufPuiv g) ° tor all/, g e 11, and therefore (A 1.2) is proved. ¦
According to II, the function /AfA) of a bounded Hermitian operator A may be

defined, where

ffx) max fx — X, 0)
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for x, X real. We then define the linear manifold

Af<") fA,X) {/ | fM)f =0,feHlf. (A 1.4)

By the same procedure used in II it can easily be shown that

Afw(A, X) =j^* \^C_C (A 1.5)

where C is the bound of A.
According to (A 1.1), the unity operator is then given by

E PM^(A, >¦)

for XA C, and again following the procedure outlined in II we find that

tr ff.Af) =£jXdtx ff, PM(,)(AA)f) (A1.6)
ß

Replacing / by /-J- g and using the weak Hermitian property of the PM(ß) u,x)> one
obtains

tr (/, A g) Ef * d tr (/> Pm^\a, A) g) ¦ (A 1.7)
ß

Since (A 1.7) is valid for all/, g, we conclude that an alternative spectral form for
A is

A=£fXdPM(ß)(AA). (A 1.8)
ß

The sum Jf PmM (a, ;.) ls a projection since each term is a projection and (A 1.2) is
ß

valid. The sum is furthermore totally linear, since it corresponds to the projection
into a manifold {/} satisfying /A fA)f= 0, where/is otherwise unrestricted in 11 (and
A is totally linear). Since the resolution (2.11) is unique, it then follows that

PW=EPM^(Ar}-
ß

The form (A 1.8), however, explicitly exhibits the reduction of the totally linear
Hermitian operators in 11 over 0.

Appendix 2

Left Multiplication
In the preceding, we have taken as a convention the right multiplication of

«scalars» on vectors/. We show in what follows that a convention of left multiplication
of scalars (but left multiplication of operators as usual) results in a theory of

identical content, as far as the principal theorems are concerned, but that the detailed
algebraic structure has a very different form.

For the convention of left multiplication, we say that if/, g e 11 then af + bg e 11,

a, b e 31. The scalar product (/, g) has all of the properties given in Section 2, but (2.3)
is replaced by

(«/. g) « (/. g) ¦ (A2.1)
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Every / in 11 has a unique decomposition into a part in a manifold Af and a part
orthogonal in the following sense :

f=go + h0 (A2.2)

where go e M and tr(A0, g) 0 for all g e M. If Af is algebraically closed, ag is in M
along with g, hence tr(A0, ag) tr[(Â0, g)a*] 0, i.e., fh0, g) 0. If Af is closed only
over 0, orthogonality in the trace scalar product is all that is available. Projections
can be defined in the same way as in (2.9). If the manifold Af is algebraically closed,
then af ag0 + ah0 is the unique decomposition (A 2.2) for af.

It therefore follows that

PMa aPM (A 2.3)

when Af is algebraically closed. We define an operator with the property

Afaf)=afAf) (A2.4)

for all/ e 11 and a in 31 as totally linear. (It is clear that commutativity has replaced
associativity in changing the convention on scalar multiplication.)

If the Hilbert space is realized with a collection of sequence vectors, the operators
A are matrices. Then (A 2.4) implies that the elements of A are in the centre of 31.

This requirement is not imposed in case the convention of right multiplication is used.

A Hermitian operator satisfying (Af, g) ff, Ag) is necessarily, as in the discussion

following (2.10), totally linear. To see this, we use again the basis (2.12) and note that

ff-g) =E6i^irevf{f.g)

EQßAAf-OfVg). (A2.5)
ßV

The Hermitian property then implies that tr(^4/, q vg) tr(/, q Ag), i.e., A q^
Q^A, and hence A commutes with a e 31.

The lattice of propositions corresponding to the left algebraically closed linear
manifolds is identical to that of the right algebraically closed linear manifolds; the
minimal manifolds are, however, of the form {ae /} over a e 31. These latter generate
the pure states wfM) tx e ff, PMf) in precisely the same way as given in (3.15)-
(3.18), and the (non-minimal) manifolds { «/} over a e 31 generate mixed states as

in (3.23).
Proceeding with the construction of orthonormal sets, the vectors analogous to

the yiW satisfy (4.4) with e ipfi ipjjjj. From the form of the expansion Aipfi
27 a/ii, vj V»''» it is clear that operators which are not totally linear do not have a
vj
consistent representation among the a •_ yj, and that when A is totally linear, Aipft

S *¦* vj QftvVV for «„,-, vj € 0.
vj

An orthonormal set {e Xi} can be constructed as for (4.12), (4.13), satisfying

^f%Xi-^vXj)=àlivòij (A2.6)

and for any / ell,

f E^ie,Xi- (A2.7)
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with <x„; e 0. It follows from (A 2.7) that all linear operators (sufficiently well behaved
for discrete representation) are represented by matrices of the form (in 0)

<V,W tr ^ ZZ"7Zj) •

Hence, if A is totally linear a u vj 0 for pt A= v.

References

x) J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Julius Springer, Berlin
1932. English Edition, Princeton 1955).

2) H. H. Goldstine and L. P. Horwitz, to be published. To be referred to as II in the sequel.
3) P. Jordan, Zeits. f. Phys. 80, 285 (1933), Göttinger Nachr. 569 (1932), 209 (1933).
4) P. Jordan, J. von Neumann, and E. Wigner, Ann. Math. 35, 29 (1934). J. von Neumann,

Math. Sborn. 7, 415 (1936). A more recent review of the problem has been given by P. Jordan,
Zeits. f. Phys. 133, 21 (1952).

5) A. A. Albert, Ann. Math. 35, 65 (1934).
6) D. Finkelstein, J. M. Jauch, and D. Speiser, CERN Reports 7, 9, and 17 (1959). D. Finkelstein,

J. M. Jauch, S. Schiminovitch, and D. Speiser, Jour. Math. Phys. 3, 207 (1962).
D. Finkelstein, J. M. Jauch, and D. Speiser, Jour. Math. Phys. 4, 136 (1963). See also
F. J. Dyson, Jour. Math. Phys. 3, 1199 (1962).

') G. Emch, Helv. Phys. Acta 36, 739 (1963).
8) M. H. Stone, Linear Transformations in Hilbert Space and Their Application to Analysis,

American Math. Society Colloquium Publications, Vol. 15 (1932). See also E. H. Moore,
Mem. Am. Phil. Soc. 1, 99, 141 (1935)

9) O. von Teichmüller, Journal f. Mathematik 174, 73-124 (1935).
10) G. Emch, Helv. Phys. Acta 36, 770 (1963).
n) A. A. Albert, Ann. Math. 48, 495 (1947).
12) A. A. Albert, Bull. Amer. Math. Soc. 55, 763 (1949).
13) L. E. Dickson, Ann. Math. 20, 155 (1918).
A) M. Zorn, Hamb. Abh. 8, 123 (1930).
15) W. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Math. Inst, der Rijks-

universiteit te Utrecht, May 18 (1951).
16) H. H. Goldstine and L. P. Horwitz, Proc. Nat. Acad. 48, 1134 (1962). H. H. Goldstine and

L. P. Horwitz, Math. Ann. 154, 1 (1964). To be referred to as I in the sequel.
17) G. Birkhoff and J. von Neumann, Ann. Math. 37, 823 (1936).
18) C. Piron, Thesis, University of Lausanne (1963) and, Helv. Phys. Acta 37, 439 (1964).
19) J. M. Jauch and C. Piron, Helv. Phys. Acta 36, 827 (1963).
20) G. C. Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev. 88, 101 (1952). E. P. Wigner,

Zeits f. Phys. 133, 101 (1952).
21) A. M. Gleason, J. Math, and Mech. 6, 885 (1957).
22) H. Weyl, The Classical Groups, Princeton (1939, 1946), Chapter III and p. 118. See also

H. Weyl, The Theory of Groups and Quantum Mechanics, E. P. Dutton, New York, 1931,

pp. 318-319.
23) J. L. Petit, to be published.
24) M. A. Naimark, Normed Rings, P. Noordhoff, N.V., Groningen, 1964, p. 155 ff.
25) H. Boerner, Representations of Groups, North Holland, Amsterdam, 1963, p. 58 ff.
26) G. W. Mackey, Mathematical Foundations of Quantum Mechanics, W. A. Benjamin, New York,

1963, p. 61 ff.
27) G. Emch and C. Piron, Jour. Math. Phys. 4, 469 (1963).
28j E. C. G. Stueckelberg, Helv. Phys. Acta 33, 727 (1960). E. C. G. Stueckelberg and

M. Guenin, Helv. Phys. Acta 34, 621 (1961). E. C. G. Stueckelberg, M. Guenin, C. Piron,
and H. Ruegg, Helv. Phys. Acta 34, 675 (1961). E. C. G. Stueckelberg and M. Guenin,
Helv. Phys. Acta 35, 673 (1962).


	Intrinsic superselection rules of algebraic Hilbert spaces

