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Intrinsic Superselection Rules of Algebraic Hilbert Space

by L. P. Horwitz*)

University of Geneva

and L. C. Biedenharn**)
CERN-Geneva

(4. III. 65)

Abstract. The structure of a quantum theory described by a Hilbert space over an arbitrary
finite algebra with unity quantity is studied. It is found that such a quantum theory, in which the
observables are linear with respect to the quantities of the algebra, is isomorphic to a quantum
theory described by a Hilbert space over a field in which there are superselection rules. GLEASON’s
theorem is shown to be applicable; the linear manifolds generated by the minimal ideals of the
algebra give rise to the pure states. The minimal ideals therefore play a role analogous to the
phases in a complex Hilbert space. Illustrations are given for the complex, quaternion and Cayley
algebras.

1. Introduction

Since the work of voN NEUMANN?) in 1932 in establishing a rigorous and clear
mathematical foundation for quantum mechanics, there has been considerable effort
in attempting to find generalizations of the associated algebraic structure. These ef-
forts have followed essentially two main lines of development. The first of these has
consisted in the search for explicit algebraic generalizations of the operator calculus
and the structure of the Hilbert space, while the second has concentrated on the
characterization of quantum mechanics through the construction of an underlying
lattice of propositions.

In this paper we show that an algebraic Hilbert space, i.e., a Hilbert space over
a finite algebra with unity quantity (this includes all of the algebraic generalizations
so far proposed?)) satisfies the postulates of the propositional calculus of quantum
mechanics. We furthermore show that a quantum theory described by such a Hilbert space,
1m which the observables are linear with respect to the quantities of the algebra, vs isomorphic
to a quantum theory described by a Hilbert space over a field in which there are super-
selection rules. This latter result indicates that algebraic Hilbert space provides a
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Geneva, 1964-1965.
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complete, mathematically consistent analytic model for a quantum theory with super-
selection rules, and thus the two main lines of development are shown to be related.

In the following paragraphs we review briefly the developments along the two
main lines referred to above.

With the idea that only commutative multiplication can have direct physical inter-
pretation, JorDANS®) introduced the commutative algebras characterized by quasi-
multiplication, i.e., in which 4 - B =1/, (AB + BA). JorRDAN, VON NEUMANN and
WIGNER?) studied the so-called » number algebras satisfying the basic combinational
rules of this characterization. They found, with the help of a theorem ot ALBERT?),
that essentially new results could be obtained only for the algebra of all three-rowed
Hermitian matrices with elements in the real non-associative algebra of Cayley
numbers.

More recently, JaucH and collaborators®) have explored the structure of a quater-
nion quantum mechanics, i.e., a quantum mechanics described by a Hilbert space in
which the quaternions play the role of scalar multipliers. In a subsequent work,
EMmcH7) studied the unitary group representations in quaternionic Hilbert spaces (the
mathematical properties of such Hilbert spaces were first studied by SToNE®) and
TeEICHMULLER?)) and carried out a classification of elementary systems in this theory
for the Poincaré group!?).

ALBERT!)!2) has shown that the real tield, the field of all complex numbers, the
algebra of real quaternions, and the eight dimensional algebra of all real Cayley num-
bers 13)14)15) are the only absolute-valued real algebras with unity quantity. To com-
plete the exploration of Hilbert spaces over division algebras, GOLDSTINE and HOR-
wiTz16) carried out an investigation of a Hilbert space theoryin which the non-asso-
ciative algebra of Cayley numbers was admitted as the algebra of scalars. They found
that such a theory could be consistently worked out within the context of the non-
associative algebra if sufficient care were taken in the construction of linear manifolds.
In order to obtain Fourier series representations, however, they found that it was
necessary to obtain the associative closure of the algebra, and were led in this way
to consider Hilbert spaces over general (finite) associative algebras?).

We shall review the results of the latter in some detail in the next Section, since
1t forms part of the mathematical basis for our work.

Let us now turn to the second main line of development, that is, the attempts to
find a complete, inclusive categorization of quantum mechanics — the propositional
calculus. In 1936, BIRKHOFF and voN NEUMANN?) formulated the «logic of quantum
mechanics» in terms of the propositional calculus, and compared it to the logic of
classical mechanics. In this formulation, it is postulated that the measurement of any
physical quantity can be reduced to a series of experiments in which only the truth
or falsehood of quantitative statements, or propositions, is relevant. In ordinary
quantum mechanics, these propositions are represented by projection operators on
the linear manifolds of a complex Hilbert space; these operators have eigenvalues 1
or 0 corresponding to the truth or falsehood of the associated propositions. The strue-
ture of the calculus of propositions is, however, independent of its particular represen-
tation in the complex Hilbert space.

BIRKHOFF and voN NEUMANN found that classical and quantum mechanics were
both associated with an orthocomplemented lattice, but that classical systems satisfy
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the distributive law a D (byc) = (@ N b) y (a N ¢) whereas quantum systems do not.
Piron18) has given an axiom for quantum systems which replaces the distributive law
of classical systems. Having obtained such a formulation, the question of deciding
upon the possible analytical structures in which to embed the propositional calculus
becomes mathematically well-posed. Conversely, if we accept the propositional formu-
lation as a direct reflection of the basic empirical relationships of quantum mechanics,
then any generalization of the algebraic and analytic structure must contain an
underlying propositional calculus which is in agreement with this formulation.

The propositions of ordinary quantum mechanics, of course, satisfy these require-
ments, but the axioms admit systems of greater generality. It is pointed out by
JaucH and PiroN??) that such a proposition system may, for example, admit super-
selection rules.

Wick, WIGHTMAN and WIGNER?2?) showed in 1954 that there exist superselection
rules in nature, i.e., that there are subspaces of the Hilbert space of quantum mechan-
ical state vectors which cannot be connected to each other by any observable, and
that a selection rule operates between these states. In the presence of superselection
rules, the relative phase of components of the state vector belonging to different sub-
spaces cannot in principle be determined. Hence it is impossible to prepare a pure
state by a non-trivial linear superposition of states lying in distinct superselection
subspaces. They treated, for example, the superselection rule which exists between
subspaces corresponding to integer and half-integer angular momenta, and showed
thereby that the Hermitian spinor fields v + y* and i(y — y*) are not measurable.

JaucH and PiroN?%) showed how such phenomena can be realized in the structure
of the lattice of propositions (in terms of its reducibility), a possibility which was not
explicitly foreseen in the work of BIRKHOFF and vON NEUMANN.

In the next Section we show that the lattice of linear manifolds of algebraic
Hilbert space — 1I2) — is consistent with the calculus of propositions postulated as
characterizing quantum mechanics?)1¥). In the Section following, we introduce the
concept of a state as a (generalized) probability function on the lattice of propositions
in the usual way. Following the application of GLEASON’s theorem?2!) to our Hilbert
space [this step provides the form of the most general state as a functional over the
projection operators on the linear manifolds of the space], we discuss the properties
of the pure states of a physical system. We find, in fact, that it is not the complete
algebra over which the space is defined that plays a role analogous to the complex
phase, but rather the minimal ideals of the algebra. The group of symmetry transfor-
mations analogous to the phase transformations of the complex Hilbert space is
therefore much larger than that of the complex phase group.

In the succeeding Sections we discuss two types of orthonormal expansions for
vectors in algebraic Hilbert space. One of these is made up of minimal linear manifolds
which are algebraically closed (closed under operations of the algebra).

The other type of orthonormal set which we shall discuss provides a representa-
tion for the operators which is strictly isomorphic to that of a quantum theory with
superselection rules described by a Hilbert space over a field*). It is made up of linear

*) A demonstration of the superselection rules will be given in terms of the spectral decomposi-
tions of bounded Hermitian operators, without use of orthonormal sets, in an Appendix.
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manifolds closed only with respect to the field over which the algebra is defined, and
the lattice of propositions corresponding to manifolds of this type is not the same as
the lattice ot propositions corresponding to manifolds which are algebraically closed.
The former lattice is in fact reducible when the latter is not (provided that the irre-
ducible representations of the algebra are of dimension greater than one).

2. Algebraic Hilbert Space and the Lattice of Propositions
of Quantum Mechanics

In this Section we define and describe the structure of a Hilbert space over a finite
algebra with unity quantity*) (cf. II) and show that the linear manifolds form a
lattice that is consistent with the propositional calculus postulated to be valid for the
description of any quantum mechanical system.

The work of II dealt explicitly with algebras defined over the real field, but the
extension of the results to the complex field is straightforward. We will not specify in
our general development whether our ground field @ is real or complex, but the in-
volution

(a¥)* = a, (ab)* =0b*a*; a,b e

of our algebra A over @ will be assumed effective on @ as the complex conjugate if
@ is complex.

Our Hilbert space # is closed under the usual distributive and associative opera-
tions of addition and multiplication by scalars. However, the quantities a of U will
play the role of «scalars», and since these quantities are not commutative, we must
choose between the alternatives of lett and right-handed multiplication onto the ele-
ments (vectors) fin #. All of the theorems which we shall obtain can be proved with
equal facility with either convention, and therefore our general theoretical framework
is the same with either choice. However, the detailed algebraic structure of the results
is very much dependent upon the choice of convention. For left multiplication of
scalars, for example, an operator**) which is linear with respect to all of the quantities
of the algebra A must commute with the algebra. In a finite dimensional model for
the vector space this implies that the matrix operators that are, as we shall term this
property, totally linear, are constructed entirely of numbers in the field @. For right
multiplication of scalars by contrast, the totally linear operators are a// matrices
with elements in 9.

Operators which are linear over @ we shall simply call linear (totally linear opera-
tors, are, of course, linear). In the case of left multiplication of scalars, linear matrix
operators may not commute with the elements of 9, but for right multiplication of
scalars there will generally be no matrix representation because the requirement that
the operator be not totally linear is equivalent to the imposition of non-associativity.

It is the totally linear operators which will be of primary interest to us, since the
operators representing physical observables will be postulated to be in this class. We

*) Such algebras may be represented as matrix algebras [c¢f. (2.12)].

**)Operators will always act from the left on vectors as is cenwventional in Hilbert spaces.
An operator is said to be linear with respect to a set of quantities if the order of application of the
operator and any of these quantities to a vector is immaterial.
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therefore choose to follow II in adopting right multiplication of scalars for our main
text. For the sake of completeness, however, and to illustrate the differences in alge-
braic structure between these alternative conventions, we reconstruct all of our results
using left multiplication of scalars in an Appendix.

To complete the description of our Hilbert space we define a scalar product

(S e =6N* | (2.1)
with values in A. It has the properties
(f+eh)=(n+(h (2.2)
and
(frga)=(fga. (2.3)

The quantity (f, f) is symmetric [(f, f) =(f, f)*] and positive definite in any repre-
sentation of . It vanishes if and only if f = 0.

It is still necessary for us to define a real-valued norm. To do this we define a
mapping tr a of every element a of U onto the ground field @ which we call the trace.
Our results are dependent only upon the properties ot the trace which may be derived
from its definition as a diagonal sum in a representation of 2, and we shall not there-
fore specify whether it is to be taken over the regular representation of U or over one
or more irreducible representations. With the help of this mapping, we define the
norm | f| of a vector f by

fP=tr (£ f) | (2.4)

Since (f, f) is positive definite, | f| is zero if and only if fis null. It is also convenient
to define a norm on our algebra 9, i.e.,

| @ | = tr(a a*)2® = tr (a* a)¥? (2.5)

in which the positive square root is used. It then follows?) that the Schwarz inequality
1s valid in the form '

[te(fe | =171 el (2.6)

or equivalently
(Al =I11f1-1le

where the vertical bars are taken to indicate the usual complex modulus in case they
are used on quantities of @.

We finally postulate that our space is complete, i.e., every Cauchy sequence in 3}
converges to a limit in }, and we shall assume for the sake of convenience that ¥ is
separable. _

In order to discuss the lattice of algebraically closed*) linear manifolds of ¥, it
will be necessary for us to discuss projections into these manifolds. However, for our
later work we will need projections into linear manifolds which are not algebraically

|, (2.7)

*) An algebraically closed linear manifold M contains, along with f and g, fa+ gb and is closed
(every Cauchy sequence in M converges to a limit in M).
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closed, and we therefore demonstrate in the following a result which is general enough
to serve our later needs as well.

Let M be a closed linear manifold, i.e., if f and g belong to M, then f« + g f are
also in M for any «, f € @. For any fin H, there is then a unique decomposition

f=8+ho (2.8)

such that g, is in M and tr (4, g) = 0 for all g in M.

To see that this is true*), we follow a procedure due to MURRAY (cf. IT). Suppose
that f does not lie in the manifold M. Then | f — g | has a greatest lower bound 7,
over g in M which is not zero, because if 7, were zero there would be a sequence of
g’s over which | f— g | goes to zero. Since M is closed, this would imply that f is
in M. There is, however, a sequence g, of g’s for which the norm of 4, = f — g, ap-
proaches 7, Furthermore | 4, + 4, | =2 f— (g, + g.)/s || = 27, and therefore
| B — B 2= 20 By 124 [ e |13 = [+ By | 2 << 200 Fo |24 [ B [2) — 472 >0 ice,
the %, form a Cauchy sequence and have a limit 4, in J. It then follows that g, has
a limit g, = f — %, To show that tr(%,, g) = O for all g in M, we first note that for
real Aand any gin M, |hgy—g A =|f—g — g A =7,=| 5 |; hence (we take
into account the possibility of complex @)

|| 2o |12+ 22 [| g ||2— 24 Re tr (hy, g) = || By |2,

ie., Re tr(4,, g) = 0. Since g and gi belong to M if @ is the complex field, it follows
that tr(hy, g) = 0. Finally, our construction is unique because f = g, + &y = g, + %,
implies that g, — g, = %, — %, is of norm zero. m

We define the g, of (2.8) as the projection of fon M, i.e.,

go=Puf. (2.9)

In case the closed linear manifold is not algebraically closed the decomposition
fa = gy a + hya is not necessarily that of (2.8),1i.e., g, 4 may not be in M. Hence, in
general, Py(fa) = (Pyf)a. Such projections into non-algebraically closed manifolds
are therefore not totally linear operators and satisfy only tr(f, Pyg) = tr (Pyf, g). If,
on the other hand, M is algebraically closed, then along with tr (4, g) = 0, tr[(ky,g)a]
= 0 and hence (%, g) = 0. Furthermore, g, a isin M and therefore Py (fa) = (Pyf)a,
for all fin H and a in A. Such Py, are therefore totally linear, and satisfy (f, Pyg) =
(Buf. ).

In IT it is shown that a bounded Hermitian operator A, i.e., a linear operator
satistying

(f,dg =(4df¢g (2.10)
and defined everywhere, has a spectral resolution of the form
A= [2dPQ), (2.11)

where the P(4) are totally linear projections. It is easy to see, in fact, that linear oper-
ators satisfying (2.10) for all f, g in Y are totally linear.

*) We use the symbol W at the end of a paragraph to indicate the conclusion of a formal proof.
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To prove this assertion, it is convenient to introduce the basis??)?) g , for our
algebra A, where¥*)

Q,uv Caup = 61!05 Qﬂﬁ

0uu = €, (primitive idempotent) (212)
s.,uv QV[;L .
In terms of this basis, any
E@,wtr le,u(f: )] Zew (feun &) (2.13)

and hence

(fdeg =20, tr((fe,) 4g) Z@,wtr (feu) g) =

(Af!g) :Zg,uvtr Af Q,uw g) .

The expansions over g, must be equal term by term, and therefore tr(4(fg,,), g =
tr((4f) @ 4 &)- Since this equality is valid for all g, it follows that 4(fg,,) = (4f)e
for all of the g ,,, i.e., 4 is totally linear. ®

It is, of course, also possible to consider a theory in which the Hermitian operators
satisfy the weaker condition

tr(Af,g)=tr(f, 49 . (2.14)

A «weakly Hermitian» operator satisfying (2.14) is also Hermitian, i.e., satisfies
(2.10), if and only if it is totally linear. It was shown in II that a Hilbert space #, in
which the scalar product is taken to be tr(f, g), and for which therefore the Hermitian
operators satisfy (2.14), is isomorphic to the usual Hilbert space over @. The linear
manifolds relevant to a quantum theory in which the weakly Hermitian operators
are admitted as observables are therefore closed over @. The properties of such linear
manifolds are well-known.

In what follows, we assume the validity of the postulate

Q. The operators which represent physical observables are contained in the class
of totally linear operators on Y.

Hence, not all of the Hermitian operators on the coherent Hilbert space over @
are admitted as observables.

We are now in a position to discuss the propositional calculus associated with the
algebraically closed (physically meaningful according to postulate Q) linear manifolds
of our Hilbert space. These linear manifolds in fact constitute a complete, weakly
modular, orthocomplemented laffice with properties consistent with the calculus of
propositions postulated!?)®) as characterizing quantum mechanics. The lattice is
furthermore afomic, i.e., there exists a minimal non-null algebraically closed linear
manifold within every algebraically closed linear manifold. Therefore, according to
Piron18), the system of propositions can be embedded in a Hilbert space over a field.
We shall explicitly construct the isomorphism between the present Hilbert space and
a Hilbert space over @ in a later Section. For the proof of the other assertions, we
follow essentially the demonstration given by PETIT?3).

*) In terms of a matrix representation, the g, , may be taken to be 1 in the uth row, v** column,
and zero elsewhere,
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To say that the algebraically closed linear manifolds of # form a lattice means
that there must be a partial ordering, a greatest lower bound (intersection) and a
least upper bound (union). These properties follow directly from the properties of the
projections uniquely associated with the algebraically closed linear manifolds; these
latter properties are, as shown in II, the usual ones. These projections do not gener-
ally commute (i. e., they correspond to incompatible propositions), and the projection
for the intersection of two manifolds M, N must therefore be calculated according to*)

Py py = lim (B, By)" . (2.15)

It is clear that the null manifold and the entire space correspond to the absurd (0)

and trivial (/) propositions and furthermore that the lattice is orthocomplemented,
Le.,

(M) =M,
MyHM-—M=H,

MoH-M) =0,
and
(MyUN)Y=M ON'". (2.16)

The complement M’ of a linear manifold M is the usual orthogonal complement M’ =
H — M. The union of two linear manifolds is the closed linear manifold spanned
(over A) by the totality of elements of both, and the intersection is composed of the
closed linear manifold of all elements common to both.

Our lattice is furthermore weakly modular, i.e.,

M C N implies ( MyN)ON =M, (2.17)

since N’ is in the orthogonal complement of M, and among the elements of the union
of M and N’ those in common with N are in M.

Two propositions M and N are said to be compatible if they satisfy the symmetrical
relation

(MON)UN=NOM)uM.

The axiom of P1roN18) which replaces the distributive law of the lattice of propo-
sitions of classical mechanics can be stated as follows:

P.IfM C N, then M and N are compatible.

Since M and N are algebraically closed linear manifolds, they are uniquely
described by the properties of their totally linear projections. If M C N, then the
projections commute and the compatibility relation follows directly.

Finally, to discuss the atomic property of our lattice, we will need some results
from the theory of rings?!), i.e., those which deal with ideals. A set & of elements of
A 1s called a right ideal if it is not identical to A and x €&, a € A implies that xa €&,
i.e., & is closed under multiplication on the right by any of the elements of 2. A right

*) We use the same symbols in the following for the linear manifolds and the propositions to
which they correspend.
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ideal of A is said to be maximal if it is not contained in any other right ideal of 2.
It is true *4) for the algebras U with unity quantity that every right ideal can be
extended to a maximal right ideal. Left ideals can of course be analogously defined.

A right ideal & generates on an element f of 3 a manifold which we shall call an
ideal linear manifold f &; clearly an ideal linear manifold is algebraically closed. In the
following, we show that the existence of a maximal ideal in 9 implies the existence
of a (non-null) minimal algebraically closed linear manifold in the algebraically closed
linear extension f A of every element f of H, i.e., the corresponding lattice of proposi-
tions is atomic.

The structure of the usual complex Hilbert space of quantum mechanics is much
simpler in this respect, but not by any means trivial. The algebraically closed linear
extension of a (normalized) vector y of the complex Hilbert space is {¢'% y} for all
real . These «rays» are the minimal algebraically closed linear manifolds which gener-
ate the pure states in a phase-independent way (we shall discuss this point further
in the next Section). It is just this freedom of phase which permits, for example, the
introduction of electromagnetic interactions in a gauge invariant way.

To prove the assertion that our lattice is atomic, we note that the relation
& D fn, for & n two ideals, implies that for everyy e n there exists an x € £ such that
fx=fy, ie., flx —y) = 0. Hence x — y belongs to the annihilator ideal {, of f ({;,
contains all 2 € N such that fa = 0), and therefore*)

fn CfE& implies n C (60U ) - (2.18)
There exists, however, a maximal ideal§,,, in %, and therefore a manifold M, =
S in fAIEE, differs from A by ., then f§,,, = fUA We show below (at the
conclusion of this Section) that for every f a &,,, exists for which the last equality
does not hold, and we assume in what follows that £,,,, is chosen in this way. It is
easy to show that /U is closed (Cauchy sequences have limits in /) and therefore
that M,,,, has an orthogonal complement M,,.. + 0 in fU, ie, M, .0 M,..=fU.
~ Suppose that there exists an M C M, which is neither M, nor null. Then My M,,,,
is neither f A nor M,,,,; to this manifold corresponds an ideal & such that M y M,,,, =
/&, and according to (2.18), £ &, D&, HEUE, =& then MM, 15 &,
contrary to hypothesis. But then we have found an ideal larger than &,,,, which is
not all of A (it §y {,= U, then f& = f(§y {;) = fA), and have therefore arrived at a
contradiction. The manifold M,,,, is therefore a minimal algebraically closed linear
manifold. m
It is clear from the above that our lattice satisfies the covering law 18) for the
minimal manifolds M,,, =M, ie, NCM CNyM,,;, implies that M = N or
M = N x) M s
Let us state explicitly what these minimal manifolds are in terms of the minimal
ideals of our algebra U in a form that will be useful for our later work. Every ideal
1s generated ?%) by an idempotent of the algebra 9, and, in particular, these minimal
ideals are generated by the primitive idempotents defined in (2.12). Hence every M,

1s of the form
Mmin = {fg,u a’}

for f and u fixed and a ranging over .

n

*) We freely use U and N among the subsets of U as well as the manifolds of J{.
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To complete the discussion of this Section, let us prove the assertion: there always
exists an M, which is not f U. There is a minimal right ideal ¢, U for which M,,;, + 0;
if M, = 0 for every choice of u, then fe , = 0 for every u. Smce Z‘e is the unity quan-

min

tity of U, this implies that f=0. =

3. States and the Minimal Ideals

In the preceding Section, we showed that the lattice of propositions (algebraically
closed linear manifolds) associated with our algebraic Hilbert space is consistent with
the conditions imposed upon a lattice which is capable of the description of a quantum
mechanical system. To understand the role played by the algebra 9 in the description
of such a physical system, it will be necessary for us to introduce the notion of a
state, and to find an explicit expression for it in terms of the quantities of the Hilbert
space. A constructive procedure of this type has been carried out for the usual complex
Hilbert space (for example, Ref.28)), and we review this case first.

A state is defined as a function w(M) on the set of all propositions of the lattice,
with the properties??)

0 <w(M)<1;

w(d) =0, w(l)=1;

if M is compatible with N, w(M) + w(N) = w(M O N) 4+ w(M y N);
if w(M) = w(N) = 1 then w(M N N) =1; (3.1)
it M =+ 0, there exists a state w such that w(M) + 0.

Two states are different if there exists a proposition M such that w,(M) + w,(M).
If w, and w, are two different states then w(M) = 4, w,(M) + A, wy(M), with 4, > 0,
Ay > 0 and 4; + A, = 1, defines a new state. A state which can be represented in this
way with two different states is called a mixture; a state which is not a mixture is
called pure.

GLEASON?!) has shown that for an irreducible system of propositions (a lattice
with no element but ¢ and I compatible with all elements; called cokerent by JAucH
and Piron1%)) realized by the projections P,; of a separable Hilbert space, real or
complex but of dimension >> 3, there exists a density matrix g for every continuous*)
state such that

w(M) =Tr (o Py) , (3.2)

where we use «T7» to distinguish the trace over the entire Hilbert space from our
algebraic trace «¢r». For a Hilbert space over a field, it is easy to show that there
exists one and only one state w(M) such that w(M) = 1 for a given M which is a
minimal closed linear manifold.

We have already stated in Section 2 that our algebraic Hilbert space is isomorphic
to the usual Hilbert space over a field @ with respect to the scalar product tr(f, g).
It is this description which is appropriate when all of the weakly Hermitian operators
are admitted as potentially observable. We use it in the following to prove the asser-
tion made above.

*) Cf. Ref. 21). It has been pointed out to us that this condition can be weakened to the follow-
ing: let Py, be the limit of the ordered sequence Py, < Py, < ... Then w(M;) > w(M,).
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For e, (3.2) can be written26)
w(M)=ZVitr(fi:PMfi)s (3.3)
1

where p;, > 0 and 3’ y; = 1. We wish to emphasize that the linear manifolds we

consider here are closed only over @, and the corresponding projections are not
totally linear operators. Hence our postulate Q is not satisfied for these projections.
What we are therefore dealing with is precisely the coherent lattice corresponding to
the general complex (or real) Hilbert space.

Let P be the projection [in the sense of (2.8) and (2.9)] on the minimal manifold
M = { f, 2} over A € ®. For the state w(M) for which w(il) = 1,

0=Yyitr(f, U~ P)f). (3.4)

The projection P has the weak Hermitian property (2.14) and is idempotent, hence
each term of (3.4) is non-negative, i.e.,

tr(({—= P f, U =P f)=]|I-P)fi|2=0. (3.5)
It therefore follows that

fi=Pfi=/d;. (3.6)
If | foll2=1/f:]? =1, it follows that | 4, |2 = 1. Hence (3.3) takes the following form
w(M) =D y; | 4 12tr (fo, P fo) = tr (fo, P fo) - m (3.7)

Each of the elements f; of W therefore defines a pure state through its closed linear
extension over the field @, and the applicability of the word «state» to the vectors
of H is in this sense justified.

The states (3.7) defined over the non-totally linear P, are not, in general, physical
states in view of our postulate ). However, we assume that the requirements (3.1)
for a state function w(M) over the algebraically closed linear manifolds M are valid,
since these refer to the lattice of propositions and not to the particular analytical
framework 1n which it is embedded.

In the next Section we show that, with respect to the totally linear operators,
our Hilbert space # and its transformations are isomorphic to the direct sum of a
finite sequence of Hilbert spaces over @. The isomorphism is constructed as follows.
Under the totally linear operators on W, the subspaces ¥ = He » Wheree, is a prim-
itive idempotent, are invariant. These subspaces are not algebraically closed, but each
is isomorphic to a Hilbert space over @ which is invariant under the totally linear
operators. The totally linear operators are represented completely by the set of all
scalar products of the kind tr(f, g), between elements of the same subspace, from all
of these subspaces.

- In each of these subspaces we may write the most general function of the mani-
folds in #, (closed over @) satisfying (3.1), as

w, (Mg) = Xy:tr (ff, Py f1) (3.8)
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where the f' = f; e, belong to | ,and the M, are linear manifolds, closed over @, in
#H,. For each My, however, there exists an algebraically closed linear manifold M in
‘H such that

Py fit = Py, fI' - (3.9)

Suppose that Mg, is spanned by g, ¢, gs €, . . . over @. Let M be the algebraically
closed linear extension of M4, i.e., M is spanned over 2 by the same elements. Hence,
according to (2.8),

fi=gie, a1+ g, a0+ ...+ 1, (3.10)
where
(h,gre,) = (h,gae,) =...=0. (3.11)
Furthermore,
fi eﬂ :sz = &1 e,u, (al)ﬂ,u, £ 82 e,u, (“2)W Tt h eﬂ ’ (312)
where (a) ,,, (@2) 4, --- are in @, and with the help of (3.11) we obtain
tr(he, gre,)=tr(he, gse,)=...=0.

Since (3.10) and (3.12) are unique decompositions of the form (2.8), it follows that
(3.9) is valid. m

The result (3.9) enables us to replace M, by M in the expression (3.8), i.e., we
have that

w, (M) =]y tr (f', Py fY) (3.13)

for the manifolds M which correspond to the algebraically closed linear extensions
of the My in H#,. However, every M is the algebraically closed linear extension of an
Mg in H . It suffices to verify this for an M generated by a single element f of H.
Let M ={fa}overaeW. Then{fa}e,={3 fo,,0,,} with a,, ¢®, is a linear

manifold closed over @ in ¥ . Its algebraically closed linear extension is { ¥ f«, , 0, ,-0}
over b e U, ie, { 3 fa,, B0} Witha, , B,, e®D. Since «,, f,, is arbitrary in @,
v

this last is identical with { fa }. Hence w (M) is defined over all of the algebraically
closed linear manifolds M of # and for these it is the most general function in H “
satisfying (3.1). m

Since the H, are orthogonal in H#, and invariant under the operations of the class
of totally linear operators on ¥, the general state w(M) is (cf., Ref.26), p. 135)

w(M) = 32, w, (M), (314
"
where ¥ 1” =1 Aﬂ > 0. Hence (set lﬂ v =)
w

w(M) = 3Ty tr (f8 Py f1) = SYveYvite (2, P )

since tr(ff’, Pyf;) = 0 for u + ». After normalizing the vectors 3’ ]/ﬁ b we obtain that
n

(3.3) is valid as the most general form for a function satisfying (3.1) and (3.14), and
defined over the algebraically closed linear manifolds of }{. =
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In the remaining paragraphs of this Section we discuss some of the properties of
the states (3.3).

According to our postulate Q, only the totally linear projections are admissible
as physical observables. In order to construct a pure state, we must therefore choose
a minimal algebraically closed linear manifold of ¥, and require that w(M) assume
the value unity when M is that manifold.

To illustrate this construction, let P be the (totally linear) projection on the
minimal algebralcally closed linear manifold M = { foe, a } over a € A. For the state
w(M) for which w(M) = 1,

O:Z?’itr(fi L — p)fz)’
is in (3.4), and therefore
fi=Pfi=foe,a;. (3.15)

The normalization of f; implies that

Hfinztr(fﬂeﬂ a;,foe, )=tr[3ﬂ“z“,3 (fo fo)] =

( a; 1:)/1.‘!4 (f(}’fO)‘ulu: . . (3‘16)
We take (fy, fo) o, = 1; it then follows that
(a; a:)w == 4 , (3.17)

If we now substitute (3.15) into (3.3), we obtain
:@'E'yi tr (foe, a;, Py foe, a)
= 2vitr e, (@ ai) ¢, (fo, Py )]
:;75 tre, (fo, Par fo)

= tre, (fo. Py fo) - (3.18)

The pure states are therefore of the form (3.18), which has an analogy to the form
of a mixed state in which the density matrix has been replaced by a projection (e ).
If we had taken for M the linear extension of f, over the whole algebra U instead of
the ideal e, %, the density matrix of which e, is an extreme form would have occurred
n (3.18). _

To see this, let M = { f, a } over a € A. For the w(M) for which w(M) = 1 we then
obtain, from (3.3),

fi=Pfi=foa;. (3.19)
The normalization of f; implies that
tr (fo a;, foa) = tr [a;a; (fo, f)] =1, (3.20)

and substituting (3.19) into (3.3) we have
=2?’i tr [a; “Z (f()r Py fo)] = tr [oy (fo, Par fo)] (3.21)
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where
O = Zi’i a; a; (3.22)
is analogous to a density matrix in the algebra 9. It satisfies
tr [oy (fo. fo)] =1. m (3.23)

In the case of a quantum mechanics described by a Hilbert space over a field @,
the elements f ¢ #, multiplied by the elements of unit modulus in @ (a ray) generate
the pure states through the procedure typified by (3.4)—(3.7). The apparent analogue
to the ray of a Hilbert space over @, i.e., the algebraically closed linear extension
{ foa} of a vector f,, on the other hand, generates a mixed state of the form (3.21).
The mixture has its source, of course, in the fact that the manifold { f; a } is not
minimal; its presence indicates that our formal structure may be useful in describing
systems with superselection rules (cf., Ret.26), p. 135).

The pure states, as we have seen, are generated through the procedure typified
by (3.4)—(3.7) by the minimal algebraically closed linear extensions of elements of H,
i.e., by the manifolds { fy e, @ } over a € 2. Hence it is the (normalized) elements fy e, a
which arg in fact analogous to the elements f, ¢'¢ of a complex Hilbert space, and
therefore the quantities e , @ of the minimal right ideals ¢, % of A ((aa*) ,, = 1) play
the role of a generalized phase. Since

€,a :2“1' 2 - (3.24)
and the normalization implies that [for (f,, fo) ., = 1]
2l P=1, (3.25)

v

the «phase» freedom of a minimal manifold in the algebraic Hilbert space consists
of the unitary transformations in an # dimensional Euclidean vector space, where #
is the number of primitive idempotents of U.

We note in passing that this vector space (generated by a primitive idempotent)
transforms under the operations of U according to the irreducible representation
associated with the idempotent??). If the connecting element g, is not zero, then
the representations associated with ¢, and ¢, are equivalent; the distinct irreducible
representations are therefore associated with the (two-sided) ideals which are not
connected by such equivalence mappings. This symmetry is reflected in the structure
of the pure states in the following way. Let w(M) be the pure state tr ¢ ,(f, Pyf) and
w'(M) the pure state tr e, (g, Pyg). If f and g are related by ge, = f o, then

w'(M) =tre, (feu, Pufeu) =trle, (f Puf) el =tre, (f, B f)

i.e., w' (M) = w(M); the transition probabilities??) are therefore preserved under this
transformation.

It is clear from what has been discussed so far that we are dealing, in effect, with
two lattices. One of these is the lattice of propositions corresponding to the linear
manifolds closed over @; it is reducible®) with respect to the primitive idempotents
of the algebra 9, and the representations of the totally linear operators on the Hilbert
space H#4 over @ are therefore also reducible. The other lattice of propositions cor-
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responds to the linear manifolds closed over 2, and is reducible only over the idem-
potents of A which generate the two-sided ideals (inequivalent irreducible representa-
tions). For A an algebra with only one irreducible representation, the first kind of
lattice is reducible if the dimension of the representation is greater than 1, while the
second is not. Since the usual representation of quantum mechanics is given by a
Hilbert space Hg, it is the reducibility of the first kind of lattice which corresponds
to superselection rules in this context.

In the next Section we shall construct sets of basis vectors in # which make
explicit the reducibility of the observables in both kinds of lattices.

4. Complete Orthonormal Sets and Representations of the Linear Operators

There are two essentially different ways of constructing an orthonormal set in #,
corresponding to the use of manifolds closed over @ or over . Since, as we have
shown, the pure states are generated by the minimal algebraically closed linear
manifolds { fe, a } over a € U, it is of interest first to construct an orthonormal set
which spans H with coefficients in the minimal ideals of 9. We then consider the
construction of a basis which spans H over @. A strict isomorphism is obtained be-
tween H and its operator calculus and a (reducible) Hilbert space over @.

Suppose that the sequence f, f, . .. is dense in the (separable) Hilbert space, i.e.,
any element g is the limit of a subsequence of this sequence. If f, is not entirely con-
tained in { f, a } over a € U, then there is [according to (2.8)] a unique decomposition

Jo=has+ hy, (4.1)

where (A, f;) = 0 and A, = 0. If f, is contained in { fja }, then we proceed in the se-
quence until a member is found which is not; we then call this element f, and carry
out the procedure described above. In the same way, we find an element f, which is
not contained entirely in the algebraically closed linear manifold spanned by { f;a }
and { hya }. Let f; = ¢, and { ¢a } = M, hy = @, and { pya } = M,. Then

fs=@ras+@pa,+hy, 7 (4.2)

where (3, @) = (h3, @s) = 0 and we set Ay = @,. This process can be continued until
H is completely spanned by the manifolds M,, M,, ...
To show that the set

@1 Por oo (@i, ;) =0 for 2 7 (4.3)

1s complete, we note that at each step of the procedure, all of the sequence f, f,, ...
that has been used in the construction is included in the union of the closed linear
- manifolds so far generated. For example, f; is certainly contained in M,; f,, as can
be seen from its decomposition (4.1), is included in M, y M, (hy = @,); f3, as can be
seen from (4.2) is in M, y M, Mj, etc. Since f, f;, - .. is dense in H, we have there-
fore spanned all of H with the algebraically closed linear extensions of the elements
of the sequence (4.2). m

We now turn to the decomposition of the manifolds M, into orthogonal minimal
algebraically closed linear manifolds. What we will show is that each vector g; of the
set (4.3) can be further decomposed into i, ), ... where the ) are equal in
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number to the primitive idempotents of A (if none of the () vanish accidentally)
and satisfy

(w,u wv ) ‘u 6,&1} 611 (4‘4)

Any vector fin H then has the expansion
f:ZQPS) a/u' (4‘5)

ni

where 1t suffices for @ ,; to be a quantity in the minimal ideal ¢ , . To Construct the
set y!)) associated Wlth @;, let 9l = @ie,, and M, = {ya }. Since plle; = pl¥,
suffices that a range over the minimal ideal e; . We may then decompose g;e, 1nto
a part y\a, in M, and a part A, satisfying (h,, »{")) = 0. Since @,¢, - €, = @;¢, and the
decomposition is unique, it follows that A, e, = h, (and e; a, e, = a,). We therefore
call &y, = 9§, and proceed in this way until all of the idempotents of % have been used.
Clearly the manifolds { ) a } over u and a € A span { g;a }, and are therefore com-
plete in H over 4, u and a4 € A. Since yp) e, = p{, the quantity (%), y1)) is propor-
tional to ¢, with a positive real multiple, and (unless 9!/ is zero) the normalization to
the form (4.4) can easily be carried out. ®

Since every f has the expansion (4.5), the vector 4 ¢} is also of the form (4.5),
ie.,

A "P,(j} B wa,” Apjopi - (4.6)
If we now operate with B, we obtain |
ZB ! Ayjopi) - (4.7)
Since a,; ,; €¢, A, we may write it as
Gyt = 2 Fujui O (4.8)
with ) . in @. If B is linear over @, the factors «'% . can be extracted from the

VJ #i vj, pi
parentheses on the right side of (4.7). However, the relation

“*Zwv ti o (4.9)

does not define B(y{" p,;). Hence it is not possible to obtain a representation of the
(non-totally) linear operators on H if the y{)) are used as a basis.

However, if the operators 4 and B are totally linear, then the a,; ,; occurring
in (4.6) are of the form o 0 ,, wWhere a e @, and, similarly, in (4.9), b

vi, pi vir pi vk, vi T
Bk, » 0, Hence
(#) (%) — (%)
B A4 pr ;w 6v’k,vj Oy y avj,;u' Qv;t - 'ZJ;%’ Qv'pZﬁu’k, vj OCV_f,,ui (410)
v R,vj v »j

and the coefficients a,; ,;, B, i, ,; form a matrix representation of 4 and B over .
Such matrix representations over @ define a Hilbert space over @ in which the oper-
ator calculus of totally linear operators on H{ may be embedded, but this Hilbert
space and its operator calculus is not isomorphic to H and its operator calculus since
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the vectors gu;(j) are not carried into a sum of vectors with coefficients in @, i.e., we
have the additional transformation g, u n

Ay = Zwi“ Oup Lyt - (4.11)
v

We note, however, that «,; ,; = 0if ¢, and ¢, correspond to ¢neguivalent irreducible
representations of 9, and therefore the Hilbert space over @ referred to above (for
totally linear operators) is reducible with respect to the minimal fwo-sided ideals of .
This decomposition corresponds to the reducibility of the lattice of manifolds in which
the centre includes {fe, } over all f ¢ #, where the ¢, are the idempotents (generally
not primitive) which distinguish the inequivalent irreducible representations.

We now turn to the construction of a basis which spans H over @.

Consider again the sequence f;, f, . .. which is dense in . Let M, be the manifold
{2 fre,4,) overally, 1, e ®. Then (if f, is not entirely in M)

M

f2:2f1 euaf) + g
7

where tr[(ky, f;) e,] = O for all of the u. We then call f; = y;, &, = j, and decompose
f3 as follows:

fa :Z}h 3,u;t£,3) +27{2 3#2-;(3) + hy .
14 "
It then follows that &3 = y, satisfies |
tr [(xs, x1) e,] = tr [(xs. %2) e,] =0

for all of the u. If this process is continued until the sequence f;, f, . .. is exhausted,
we obtain a set y,e, of vectors satisfying (after normalization)
tr(xie,. x;6) =9,,90;; (4.12)
where the linear combinations of y; e, over @ span ¥, i.e., any f has the expansion
ut
The coefficients « ,; are easily obtained with the help of (4.12):
ay; = tr (e, f) . (4.14)

The operators 4, B on H which are linear over @ have a consistent representation
in terms of the coefficients in @ induced on this basis. Hence the Hilbert space over @,
which is defined by the representation matrices, supports the (non-observable, non-
totally) linear operators on H as well as the totally linear operators. To see this, we
proceed as in (4.6) and (4.7):

sz ﬂ:ZXjeVan,,ui th ;L:Z%jeuﬂvj,pi’ (415)
»] L&)

where a,; ,; and B,; ,; are in @. If B is linear over @,
B A Xi }I,ZZ(BXJ'BV) O(‘uj,,ui

vj
=Zlk exBak, vi%j, pi- M (4.16)
Ak,vg
Since, according to (4.13)-(4.15),
dl’j, ,lii == tr (xj 61” A 7\11‘ 6#) ’ (4‘.17)

26 H.P.A. 38,4 (1965)
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and A(ye,) + (Ax;)e, in general, there is no restriction on the indices ,; ,; of the
coefficients.
If, however, A is fotally linear, then
% wi =0, 080 =8, tre, (x;, 4 1) - (4.18)

Hence the representations of the totally linear operators in the orthonormal basis
{ x: €, } are reduced to block form with respect to the indices referring to the primi-
tive idempotents of A. For the totally linear operators, the Hilbert space over @
defined by the matrices (4.18) is therefore reducible with respect to the primitive
idempotents of 2. This decomposition corresponds to the reducibility of the lattice
of manifolds in which the centre includes the { fe , } over all f e }#*).

These linear manifolds are not algebraically closed, but they are invariant under
the totally linear operators and are orthogonal in #4 (the Hilbert space with tr(f, g)
for scalar product). Furthermore, the representations (4.17) of the linear operators on
H and the correspondences established by (4.16) imply that the relation between
H and its operator calculus and the Hilbert space over @ and its operator calculus
defined by the representations is that of an isomorphism. m

This completes the proof of our principal result as stated in Section 1. A proof
will also be given in Appendix 1 which does not utilize an orthonormal set. It is
shown there that a spectral resolution can be constructed for a bounded totally linear
operator in each of the subspaces #, = { fe, } over all f ¢ ¥. .

The manifolds { %) @ } are minimal and therefore generate pure states. The 3{
may therefore be interpreted as «state vectors» in the same sense as in the usual
mathematical description of quantum mechanics, i.e., in both cases it is the «rays»
or minimal closed manifolds which are in one-to-one correspondence with the pure
states.

It is also of interest to try to understand the significance of the closed linear
extensions of the elements y, e w since these form an alternative basis for H#. The
{ xi e, } were constructed to be orthogonal in the sense of the trace scalar product,
and the manifolds { y; e, « } over « € @ completely span }. These manifolds generate
those pure states which, according to our postulate Q, are not physical, since the
projection into a manifold closed only over @ is not a totally linear operator. To
generate a physical state, it is necessary to construct manifolds containing y; e, a for
all 2 € A. The presence of ¢, assures that such a manifold is minimal, and by construc-
tion the associated projection is totally linear. Hence the { y; ¢, a } generate pure
states. However, the manifolds { y;e,a } and { y; ¢, a } are not necessarily orthogonal
in the stronger sense.

What we show in the following is that these manifolds generate states depending
on the y, e . alone, and that, when these states are distinct the manifolds do not inter-
sect. The projections associated with these manifolds therefore do not in general com-
mute, i.e., the corresponding propositions are incompatible.

Sincetr(y; e, a, x; e, @) = (aa*) , , (x:, Xx:) ., implies that (aa*) , , =11f (x;, ) 4= 1,
it follows from our previous discussion that the state determined by { y; ¢, a } is

w(M) = tr €u (2i» Par i) - (4.19)

*) The corresponding superselection rules may be said to be infrinsic to the algebraic Hilbert
space since they follow directly from the structure of the algebra.
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Suppose that { y;¢,a } has a non-vanishing projectioninto { y;¢,a }, i.e., for some
a, €,

Xi€u 0= yj€ 0+, (4.20)
where (%, x;e,) = 0. If &y = 0, then the closed linear extensions of y, ¢, and y; ¢, are
identical, and the states (4.19) corresponding to each of these are also the same. Such
symmetry properties of the states were discussed also in the previous Section and
lead to no contradictions. What we are concerned with here is the relation between
these closed linear extensions when the states (4.19) are in fact different. We therefore
assume that 4, + 0. Taking the norm of (4.20), one obtains

((11 a:‘),u,u - (bl b;),uy =} H hl ‘

i.e., in the strict sense of the inequality,
(@1 3), > (b1 B) 0, - (4.21)

2
’

Furthermore,
Xj € b= Xigl;“2+h2:
where (%,, ¥, €,) = 0 and therefore (by our previous argument 4, + 0)

(b1 8) e > (@3 43) - (4.22)
If the cycle (4.21)—(4.22) is repeated indefinitely, it is clear that (a,4}) upand (b,b3) -
- 0. Hence the product of the projections into these two manifolds taken to the »’
power vanishes as # - co. According to (2.15), this implies that the closed linear
extensions of two vectors y; e, and y; e, which generate distinct states have no inter-
section. W '
In the above demonstration no special use was made of the fact that y, ¢,and y; e,
belong to an orthonormal set, and therefore the result holds in general for the mani-
folds { fe,a } and { ge, a } and the states which they determine.

5. Some Illustrations

To 1llustrate the isomorphism between algebraic Hilbert spaces and (reducible)
Hilbert spaces over a field, we discuss the structure of some of the Clifford algebras
(cf., Ref.25), p. 2671f., for example).

Consider, for example, the algebra of quaternions E, I, J, K over the complex
field. For simplicity, we choose to discuss the Clifford algebra # = 2 in which K is
dependent upon I and J as K = I (in the Clifford algebra #» = 3, K 1s independent
and there are additional idempotents).

Since [ =— 1% J=— J*¥ and IJ + JI =0, there are two orthogonal self-
conjugate idempotents:

1 ; 1 ;
e,=5(E—il]), bo=—5(E+11]). (5.1)
Since e, Ie, = ap,,, o complex, we find that
1 : 1 :
Q12=§(I_@]) 921:—’2‘(14“@]) _ (5.2)

and « = 1. The coefficients in the representation
a=2%,,0, | (5.3)

v
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for a (a quaternion) can easily be calculated, with the result that

E=e¢ +e
I =012 —0n
J =1 (012 + 0a1)

(Clearly ¢I, — ¢]J, — ¢K are the usual Pauli spin operators.)
The two minimal ideals are of the form

€1 @ = [y € 1+ fhs 012 (5.5)

€g & = Uy €2 + Uz 021 -
and under right multiplication by I, J and K, the two-dimensional vectors with
components u,, u, transform in the first of (5.5) with, respectively, representations
for I, J, K as given by

0 1 0 ¢ v 0
(<10) (F0) o -%) 5

and in the second

b =1 0 ¢ —1 0
(7o) (Fa) (709 5

The matrices of (5.7) can be obtained from those of (5.6) by an equivalence transfor-
mation with (%).

A quantum mechanics described by a Hilbert space over the quaternion algebra®)
1s therefore isomorphic to a quantum mechanics with a superselection rule described
by a complex Hilbert space in which the subspaces { fe, } and { fe, } of } are invariant
under the action of the totally linear operators*). The pure states are determined
by minimal algebraically closed linear manifolds of the form { fe;a } and { fe,a } for
fixed f and a ranging over the quaternion algebra.

As a second example, we wish to consider the Hilbert space over the complex
numbers as an algebraic Hilbert space; it is isomorphic in the same sense as described
above to a reducible real Hilbert space?®). The complex algebra is a proper subalgebra
of the quaternions, and consists of E = ¢; + e,, I = p;5 — 04, and all real linear com-
binations. The transformation group on the minimal ideals (5.5) is of course much
smaller, since only the matrix (_};) (in addition to the unit matrix) is available; it
corresponds in fact to the usual complex phase group.

The Dirac algebra, i.e., the algebra corresponding to the » =4 and 5 Clifford
algebras, is a proper subalgebra of what has been called in I the Cayley ring!$), i.e.,
the Clifford algebras for #» = 6, 7. This ring is obtained as the group algebra of the
group of associative operators which is the closure of the non-associative algebra of
the Cayley numbers. We refer to I for a complete discussion of the construction of the
idempotents for the Cayley ring. All of the idempotents can be constructed ot real
linear combinations of the group elements, including the idempotent which splits the
sixteen-dimensional representation of the case » = 7 into two inequivalent irreducible

*) Cf. Ref.7), p. 761 ff., and the discussion of the symplectic representation in Ref. 6) for related
constructions.
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eight-dimensional representations (each appropriate to # = 6); this decomposition
1s analogous to that of the quaternion # = 3 case, for which e, = 1/,(E + I JK) splits
the four-dimensional representation into two two-dimensional representations, each
appropriate to # = 2. In each of the » = 6 subspaces, there are eight submanifolds
of 3 which are invariant under the action of the totally linear operators. It is remark-
able that the idempotents reduce operators of the Cayley ring to elements of the
Cayley algebra. Since the Cayley algebra, as mentioned earlier, has a modulus, ex-
pressions such as ¢, aa*e ,, which occur in the analysis of Fourier expansions and in
the construction of the pure states, are just of the form |a |2 e w Where | a |2 is the
modulus squared. The minimal linear manifolds with elements of the form fe , a are
therefore products of vectors fe , With Cayley numbers a of (when normalized) modulus
unity in the eight-dimensional Cayley algebra.

Acknowledgements

The authors would like to express their appreciation to the members of the Insti-
tute of Theoretical Physics, University of Geneva, for many discussion on the contents
ot this paper. We are particularly indebted to Professor J. M. JaucH and to Drs. B.
Misra, J. L. PETIT and C. P1rON both for their helpful comments and for their critical
reading of the manuscript.

Appendix 1
The Decomposition of H over @

The decomposition of H into subspaces invariant under the action of the totally
linear operators was given above in terms of a discrete orthonormal set appropriate
to the treatment of W as a Hilbert space over @. It is also possible to exhibit this
decomposition in the form of the spectral theorem.

The spectral resolution (2.11) of a bounded Hermitian operator contains projec-
tions on algebraically closed linear manifolds. In the treatment of 3 as a Hilbert
space over @, it is more appropriate to use projections into manifolds closed only
over @.

Let #,={fe,} for f e H and e, a primitive idempotent of UA; then

H= Z?l - (AL1)
If M, is a linear manifold (closed over @) in H ,, and M, another in H, (v + ) then

To see that this is true, we note that since these are projections onto linear manifolds
closed over @, they are (weakly) Hermitian in the trace scalar product, i.e.,

tr (Py, f, Py, g) = tr (f, Py, Par, 8) - (A1.3)
However, Py, f=he, e #,and Py, g = h'e, e #, and therefore

tr (Py, /. Py, 8) =trle, (h, 1) e]=0 (u=*v).
Hence, in (A 1.3) tr(f, Py, Py, g) = Oforallf, g € #, and therefore (A 1.2) is proved. m
According to II, the function f,(4) of a bounded Hermitian operator 4 may be
defined, where

falx) = max (x — 4, 0)
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for x, A real. We then define the linear manifold

M@ (A, 2) = {f|fA(A) f=0, feH,}. (A14)

By the same procedure used in IT it can easily be shown that
H, i>C
) = # Al.5
M= T (A1.5)

where C is the bound of 4.
According to (A 1.1), the unity operator is then given by

2 Py 4, 2)
for A > C, and again following the procedure outlined in II we find that
tr (f, Af) =2 [Adtr (f, Py, f) - (A1.6)
"

Replacing f by f 4 g and using the weak Hermitian property of the Py 4 ;, one
obtains

r(f, 4 g ZfzdtrfPMwMg). (A1.7)

Since (4 1.7) is valid for all f, g, we conclude that an alternative spectral form for
4 is :
A=]"[Ad Py, . (A1.8)
u

The sum 37 Py (4 , is a projection since each term is a projection and (A 1.2) is

"

valid. The sum is furthermore totally linear, since it corresponds to the projection
into a manifold { f } satisfying f, (4)f = 0, where fis otherwise unrestricted in # (and
A is totally linear). Since the resolution (2.11) is unique, it then follows that

ZP (4,2 -

The form (A 1.8), however, explicitly exhlblts the reduction of the totally linear
Hermitian operators in # over @.

Appendix 2
Left Multiplication

In the preceding, we have taken as a convention the right multiplication of
«scalars» on vectors f. We show in what follows that a convention of left multiplica-
tion of scalars (but left multiplication of operators as usual) results in a theory of
1dentical content, as far as the principal theorems are concerned, but that the detailed
algebraic structure has a very different form.

For the convention of left multiplication, we say that if f, g € # then af + bg € N,
a, b € A. The scalar product (f, g) has all of the properties given in Section 2, but (2.3)
1s replaced by

(@f.g)=al(fg). (A2.1)
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Every fin J has a unique decomposition into a part in a manifold M and a part
orthogonal in the following sense:

F=28+ho (A2.2)

where g, e M and tr(k,, g) = 0 for all g e M. If M is algebraically closed, ag is in M
along with g, hence tr(h,, ag) = tr[(k,, g)a*] = 0, i.e., (hy, g) = 0. If M is closed only
over @, orthogonality in the trace scalar product is all that is available. Projections
can be defined in the same way as in (2.9). If the manifold M is algebraically closed,
then af = ag, + ah, is the unique decomposition (A 2.2) for af.

It therefore follows that

Pod=4F, (A2.3)
when M is algebraically closed. We define an operator with the property
Aaf) = a(Af) (A2.4)

for all f e # and a in A as totally linear. (It is clear that commutativity has replaced
associativity in changing the convention on scalar multiplication.)
If the Hilbert space is realized with a collection of sequence vectors, the operators
A are matrices. Then (A 2.4) implies that the elements of 4 are in the centre of 2.
This requirement is not imposed in case the convention of right multiplication is used.
A Hermitian operator satisfying (Af, g) = (f, 4g) is necessarily, asin the discussion
following (2.10), totally linear. To see this, we use again the basis (2.12) and note that

g) =Z 04 tr0,, (£, 8)
Zu,uv f Q,uv g) (A25)

The Hermitian property then implies that tr(Af, ¢, g) = tr(f, 0, 4g), ie., Ao, =

w4, and hence A commutes with a € U.

The lattice of propositions corresponding to the left algebraically closed linear
manifolds is identical to that of the right algebraically closed linear manifolds; the
minimal manifolds are, however, of the form {ae al } over a € 2. These latter generate
the pure states w(M) = tre, (f, Pyf) in precisely the same way as given in (3.15)-
(3.18), and the (non-minimal) manifolds { af } over a € 2 generate mixed states as
n (3.23).

Proceeding with the construction of orthonormal sets, the vectors analogous to
the y}) satisfy (4.4) with ¢,y = 9. From the form of the expansion Ay =
2 Ay, i w¥, it is clear that operators which are not totally linear do not have a

consistent representation among the a
2 d';u'. vi Qﬂva) for am, vi € D.
v

An orthonormal set { e, y; } can be constructed as for (4.12), (4.13), satisfying

tr (B, 4 8 1) = 8,585 ' (A2.6)

ui, vj» and that when 4 is totally linear, Ayl =

and for any f € N,
f:Z%i%xw (A27)
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with o

i € D. It follows from (A 2.7) that all linear operators (sufficiently well behaved

for discrete representation) are represented by matrices of the form (in @)

Hence, if 4 i1s totally linear o«

o('Jui,uj = &F (A 6/1 Xir €y x_;) '

i, vy = 0 for p =+ 7.
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