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Some Remarks on the Boundary Value Problem in General Relativity

by H. Leutwyler¥*) and J. R. Klauder
Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey

(15. XII. 64)

Abstract: A qualitative discussion of one- and two-surface initial value problems, in the pres-
ence or absence of external sources, is given for general relativity, and compared with correspond-
ing initial value problems in electromagnetism. In the one-surface form, the initial, freely speci-
fiable functions are 12 in number, e.g., the six space-like components of the metric and their time
derivatives. In the two-surface form, the presence of four time-dependent gauge functions allows
for 20 initial, freely specifiable functions, the ten components of the metric on each surface, in the
absence of external sources. Only under restrictive regularity conditions—which reduce the 20
functions to 12— does the two-surface form possess an acceptable one-surface limit. In the presence
of prescribed external sources, the gauge group is destroyed and the two-surface formulation has
only 12 freely specifiable functions. This modification is in marked contrast to the electromagnetic
case where a corresponding reduction of freely specifiable initial data does not take place in the
presence of sources.

I. Introduction

The purpose of this note is to show that the boundary value problems associated
with EINSTEIN’s equations fall into four completely different classes. We shall not
try to make our conclusions mathematically rigorous but intend rather to present
a simple, intuitive picture.

EINSTEIN’s equations in the presence of sources 7# read?)

s —ze s =g (R“” — e R) . (1)

These hyperbolic differential equations for the ten components of the metric tensor
g.,(%x) lead to two natural boundary value problems, which are of physical interest in
particular for the quantum theory of gravity.

Case 1. One surface boundary values?)

Given an everywhere space-like surface ¢’ (which we shall for simplicity assume
to be characterized by 0 = ¢’ = const.), specify a set of initial values

Euw = Eu(%, 0')

*) Permanent Adress: Institut fiir theoretische Physik, Universitit Bern, Bern, Switzerland.
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and
00 8, = 00 g,(#. 07)

such that Equation (1) admits a solution for 20 > ¢'.

Case 2. Two surface boundary values

Given two surfaces ¢” > ¢, specify a set of boundary values g,, = g,,(%, ¢/) and
g = (%, 0”) such that EINSTEIN’s equations admit a solution between ¢’ and ¢”.

We want to show that these two boundary value problems are essentially differ-
ent. A different number of independent data may be specified for cases 1 and 2.
Furthermore the situation is completely different in the absence and presence of
sources, no matter how weak the sources are.

To understand why the two-surface formulation is not equivalent to the one-surface
formulation in the limit ¢ — ¢’ we consider first the analogous situation in electro-
dynamics, which is very similar. Then we investigate a three-dimensional Riemannian
space, where we can understand the difference easily.

On the other hand, the inequivalence of the boundary problems in the absence or
presence of sources is due to the fact, that, in general, a nonvanishing source 7#”
destroys the gauge group associated with EINSTEIN’s equations, because the source,
which is a given function of x (and possibly g,,), is generally not a gauge invariant
quantity, but must be changed if the same physical situation is described in a differ-
ent coordinate system. This distinguishes gravity from electromagnetism, where the
source, 1.e., the current, is a gauge invariant quantity, and therefore the gauge group
remains even in the presence of sources.

Our principal results are summarized in Table 1. These results have been used in
the Feynman quantization of gravity as developed by one of the authors3). In this
formalism, the basic definition of the transition amplitude involves a ‘thin’ two-
surface boundary problem, in which the fact that all boundary values g,,, and g, may
be specified independently is of fundamental importance. Note that due to gauge
invariance the thickness of the slice in coordinate space is irrelevant as long as it is
finite. The limit as the thickness tends to zero leads to the class of boundary data
considered by R.F. BaierreIN, D. H. SHARP and J. A. WHEELER?). Only in this
limit are the regularity conditions formulated by these authors compatible with gauge
invariance. In the treatment of Feynman quantization mentioned above, the bound-
ary value problem for surfaces with finite separation is involved, and the application
of the analysis given by BAIERLEIN, SHARP and WHEELER to this case would violate
gauge invariance.

II. One-surface Formulation in the Absence of Sources. Summary of
Previous Results. Analogy with Electromagnetism

The one-surface boundary problem or initial value problem has been analyzed by
various authors4), and we recall briefly their main results.

It has been shown that, as in the case of electrodynamics, one is not allowed to
specify the 20 quantities g,, and dog,, independently. The equations

SH =0 2)
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have the character of subsidiary conditions, corresponding to
000; At — 0; 01 Ag = 0. (3)

In fact (2) involves only g,, and dogix, in the same way as (3) involves only 4, and
0odi. A natural way to find consistent initial values in electrodynamics is to look
upon (3) as determining Ao, given doA4; and appropriate boundary conditions as
| # | — co. Thus it is sufficient to specify 4] {i.e., 44(#, ¢')] and dod/; A} can then
be determined by means of (3) while 0,4 is left undetermined. Since MAXWELL’s
equations are gauge invariant, the specification of a consistent set of initial values is
not sufficient to determine the history A4 ,(x) for x® > ¢’; there are a whole family of
solutions generated by

A,=A,+9,4, (4)

that satisfy MAXWELL’s equations as well as the boundary values A, and ded;, prov-
ided A" = doA’ = 0. This degeneracy is the origin of the fact that the subsidiary
condition (8) is compatible with any value of doA4(, simply because these gauge trans-
formations change 9¢4.

In complete analogy to this situation A. PERES and N. Rosen4) as well as BAIER-
LEIN, SHARP and WHEELER?) interpret the initial value problem for general relativity
in the following way: Specify the quantities g/, and dog/; independently, and deter-
mine g,, from the subsidiary conditions (2) as in electrodynamics. It turns out that
gbo 1s involved in a purely algebraic fashion, while one has to solve three second-order
differential equations inside the surface ¢’ [analogous to (8)] in order to find gj.
Thus one is still free to specify boundary values for these differential equations.

The approach by A. LicHNEROWICZ4) and Y. FOURES-BRUHAT4) is based on a
different interpretation of the initial value problem. These authors specify all ten g,
as well as two of the six dog},. The remaining four terms are obtained by means of the
subsidiary conditions (2). '

I1II. One Surface Formulation with Sources

Subsidiary conditions still occur in EINSTEIN’s and MAXWELL’s equations even
in the presence of external sources. The problem of finding consistent initial value
data remains roughly the same as that in the absence of sources, although the precise
character of the differential equations from which either A or g, are determined
are of course changed. More significant is the effect of the integrability conditions
that the external sources must fulfill in order for any solution to exist. It is in this
aspect that MAXWELL’s and EINSTEIN’s equations are profoundly different.

The integrability conditions for these two cases are

d,7*=0, ()
V,o¥ =0,7" + I+ =0. (6)

Equation (5) involves only the external current and is independent of 4,. On the
other hand, the appearance in (6) of the metric and its derivatives is a reflection of
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the loss of gauge invariance that occurs in (1), as already remarked in Section 1. With
gauge invariance destroyed, Equation (6) might best be viewed as coordinate condi-
tions, i.e., conditions on the metric, rather than on the source. Support for this view
is found in the following example.
Suppose the source describes a fluid at rest without pressure. This situation is
characterized by
0; pory #0
™= (7)
o(#); p=v=0,

where we have chosen a time scale such that g is independent of x0. If p(¥) # O then
the conservation law (6) implies /% = 0, i.e.,

0o goo = 0,

1 (8)
do gio = o Oi goo .

Equations (8) show that the integrability conditions are not conditions on the source,
but conditions on the geometry g,,(«) in contradistinction to Equation (5), which is
a restriction on the current. In other words we may specify the motion of the fluid as
we like; the geometry resulting from EINSTEIN’s equations will adjust itself in such a
way that the elements of the fluid travel on geodesics.

The conditions (8) have the character of coordinate conditions. We recall that in
the absence of sources, the quantities g, are not determined by EINSTEIN’s equations;
the g, only serve to tell us what coordinate system we have chosen. We now see that
when matter is present, the integrability conditions (6) provide equations for dog,o
by which g, is determined. This is as it should be, since there is no longer any gauge
group wherever the fluid is present. Indeed, the solution of EINSTEIN’s equation is
uniquely determined, once we are given a consistent set of boundary values g, dogjs.

Not every source is as simple to analyze as a pressureless fluid, however, and some-
times the gauge group is not completely destroyed by the existence of the source. For
example, consider a scalar field interacting with gravity, where in appropriate units
we have

——l/lgl{ 0% @ 0y @ — m? g2) — O p O } 9

VIt follows that
V1" =—|le| g0+ mg). (10)

Thus, the integrability conditions require

O +m2e=20, (11)

which is only one condition on the derivatives of the metric. Therefore, we must have
a degeneracy left. The degeneracy in this case may be clearly seen if we introduce
coordinates such that the surfaces ¢ = const. coincide with a coordinate hypersurface.
Without loss of generality assume for simplicity that these are given by x° = const.,
from which d:p = 0 follows. Moreover let us choose the x%-scale such that dogp = const.,
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independent of x. This source indeed possesses an invariance group since the field
distribution remains the same under the transformations

20 = x0, xi = fi(xk, x9) . (12)

We shall not try to give a general treatment of the source problem, but instead
consider one special class. If 7#” involves only the metric, but not its derivatives, then

det g;_; 4 % g 79| £ 0 (13)
1s a sufficient condition to guarantee that dog,, can be determined from the conser-
vation law and hence that no gauge invariance remains9).

Summarizing we note that one may specify g;, and dog/; independently, and these
determine the complete history g, (x) provided the source is nondegenerate in the
sense of (13).

IV. Two-surface Boundary Problem in the Absence of Sources

a. Electromagnetism

First consider again the boundary problem in electrodynamics, i.e., suppose we
are given initial and final values 4, and A),: Does there exist a solution of MAXWELL's
equations that connects these boundary values? From the analysis of the initial
value problem one might expect that he is not free to specify 4} and A independently.
It is very easy to see, however, that this conjecture cannot be correct. Clearly 4j and

o are independent of the other potentials, since they are affected by the slopes of the
gauge transformation dpA’ and doA”, which are clearly independent of 9;/4" and 9;4".
We want to show that we are in fact allowed to specify all eight boundary data 4,
and Ay,

In order to show this let us first construct a particular solution of MAXWELL’s
equations a,(x) that satisfies ao(x) = 0 everywhere. In this case the equations of
motion read

Oai—0:i0¥ar =0, doFar=20. (14)

Furthermore, let us assume d*a; = 0%aj, = 0. Then these equations imply
Oai==0. (15)

Equation (15) may be solved for arbitrary boundary values, and leads to d*ax =
because 0*aj = 0*aj = 0. Thus we find the result that apart from a vanishing diver-
gence, a; and ay; may be specified arbitrarily.

We define the sought-for general solution A, with the help of our auxiliary
solution:

A,=a,+0,41. (16)

The potential 4, already satisfies MAXWELL's equations of motion, and all that re-
mains to be shown is that /1 and the boundary values a; and a; can be chosen such
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that 4, assumes its prescribed boundary values. To achieve this result we put

do A = Ay, 004" = Ay, (17)

0k 0r A =0k A, 0kdr A" =0F A} (18)

These choices are compatible since the four functions A’, A", doA’ and deA” are in-
dependent. Furthermore (18) insures that af and a; have vanishing divergence.
Consequently, we have shown that 4/ and 4, can indeed be freely specified.

To understand what happens in the limit ¢” — ¢/, let us compare doA/ with its
average value in the slice, which is defined by

@0 AdJas = + f 0o i = - (4] —A); e=0" —0d . (19)

On the other hand,
ao A: = ao d; —f- aa‘ ao AI . (20)

If one solves O a@; = 0 and expresses 0o ¢/ in terms of a/ and 4], he obtains in the
limit ¢ — 0

doaf = (al —af) =~ {A;'— Al — 6ifG(x _ x) (O A7 — ok A)) dx}

(21)
0% dx G(x) = 0B)(x) .
Therefore, if we define a; by
o = 0o A] — (00 Ad)av , (22)
then (20) and (21) lead to the expression
Aos = ¥ {AA;, — Lowag A,;)} . (23)

This shows that only if the boundary values A/ and Aj, are chosen such that the
expression in the bracket vanishes—which is of the form of the subsidiary condition
(3) —will the solpe at ¢’ tend to the average of the slope in between ¢’ and ¢”. If the
boundary values do not satisfy this criterion, doA4: will vary rapidly within the slice
and will not converge to a well-defined limit when ¢ — 0. To secure a proper one-
surface limit requires both

ao A: = (ao Ai)av + 0(8) » ()0 Ag == (ao Ai)rw —+ 0(8) . (24)
These conditions for regularity imply
Ab= Ay +0(e), 445 — — oM} — A)) = 0fe) . (25)

Only if these conditions are met does the two-surface boundary problem have a one-
surface limit. In the limit ¢ — 0, the two. conditions (25) reduce the number of in-
dependently specifiable data from 8 to 6.
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b. Three-dimensional Riemannian space

EINSTEIN’s equations in three dimensions are particularly simple to solve. S#* = 0
implies algebraically that all components of the curvature tensor vanish, which means
that the space is flat. (In this subsection, u, » = 0, 1, 2; while 7, 2, = 1, 2.) Therefore
g,»(x) may be written as

g,uu(x) = a,u ‘/1(1(96) av A‘B(x) 770:,3 ’ (26)

where 7,5 is the constant metric which characterizes the flat space in Cartesian co-
ordinates. To establish the connection to the well-known theory of two-surfaces in
Euclidean threespace, we choose the signature to be (+-+-+). The two-surface
boundary value problem may now be viewed as follows: We give g,(#, ¢') and
g.(%, 0"), and determine A%(x) such that g,,(x) takes on these boundary values at ¢
and at ¢”.

The quantities g,, and gy, are easily adjusted by choosing an appropriate slope
00A% and deA*".

The remaining equations

gin=0i A 05 A 5, giy = 00 A 0 A7 77, (27)

are the well-known relations between the metric of a two-surface and the functions
A% (x), A*"(x) which determine the shape of this two-surface in the embedding space.
The problem is to find the shape of the surface for a given metric. As is well known,
this problem has always local solutions; any given two-geometry may be represented
locally by a surface in Euclidean three space. The surface is unique if we specify
appropriate boundary conditions to the differential Equations (27). Thus we conclude
that we may indeed specify g;, and g}, independently.

This conclusion holds true no matter how small the time separation between the
surfaces is. But what happens in the /imif that the two-surfaces coincide ?

Suppose g,,, and g,, differ by order ¢ and furthermore that the boundary data for
the differential Equations (27) are such that the surfaces ¢’and ¢” are very close to
each other. As we go to the limit ¢ — 0, we recognize that the coordinate system x
becomes singular wnless the following condition, which is easily established from
Figure 1, is satisfied: The directions of the curves x* = const. at both ¢’ and at ¢’

a (b)
/\0 ( ) AO
A 1\
X=g" x°=g"
=0 x°=c’

LA

N
N

v . AT .
LINES X"“= CONST. N LiINes xt= consT.

A A

Fig. 1
Regular and singular one-surface limit of the two-surface boundary problems in a three-dimensional
Riemannian space. @ Two-surface boundary values that do not admit a regular one-surface limit.
All 12 data independently specified. b Two-surface boundary values that admit a regular one-
surface limit. Only the six data gj; and g}, independently specified: g, and gj, determined by
requirements of regularity.
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must coincide with the geodesic connecting the two points (x%, ¢') and (x%, ¢”). Since
the directions of the lines 2’ = const. are determined by g/, and g}y, while the geo-
desic, which is a straight line in A-space, is determined by the shape of the surfaces,
and therefore by g;; and g, this places a restriction on the boundary data which
guarantees that the two-surface boundary values admit a regular one-surface limit.
In the limit as ¢ — 0 this amounts to drawing the lines x* = const. as straight lines
in A-space. It is then clear that the shape of the surfaces ¢’ and ¢” determine the
lengths of these straight lines as well as their angles with ¢’ and ¢”, i.e., gz and g,
determine g, and g,,. This is precisely what we did in the one-surface formulation:
determine g, from g;, and dog/s.
Formally the above conditions read

do A =L (A — Ay 10 (e,
) (29
do A" = = (A — A¥) +-0(e)
which are the analogues of (24), and in the limit become six restrictions on the 12
boundary values g, and g, of the two-surface formulation. This leaves six independ-
ent quantities as in the one-surface formulation.

¢. Two-surface formulation for gravity in the absence of sources

Our analogies with electromagnetism and three-dimensional Riemannian space
imply that one should be able to specify g;, and g,, independently in the two-surface
boundary value problem for gravity. A proof of this statement goes far beyond the
scope of this note and must be expected to be considerably more difficult than the
proof of the existence of solutions of the initial value problem.

In the case of the three-dimensional Riemannian space the two-surface problem
was reduced to solutions of differential equations because we knew the explicit solu-
tion of the equations of motion. However, lacking an explicit solution of the equation
S% = 0 in four dimensions, the problem cannot be reduced to a system of differen-
tial equations for g}, and g/, . Therefore the two-surface boundary problem for gravity
is essentially nondifferential in nature.

In order that our conclusion be not based entirely on analogies, we shall give three
additional simple arguments to show that this conclusion is reasonable.

First let us count the number of independent degrees of freedom. Let us construct
an implicit solution by the following procedure. As in the electromagnetic case, we
begin with the construction of an auxiliary solution a,,(x), defined by

Ay = 8it » (29)

a'uo = 6#0 . (30)

The four subsidiary conditions S#° = 0 restrict the six initial values of doa:x such that
only two of them may be specified freelys).

When we start with a compatible set of initial values, the solution a,,(x) is then

unique by virtue of the coordinate conditions (30), and exists for a finite distance into
the future. Given this auxiliary solution we obtain the general solution from

gul%) = 0, A%(x) 0, A°(x) a,p5(A(x)) . (31)
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If we choose
Ai(x, ¢') = xi, AYx,0") =d", (32)

and furthermore determine do A%(#, ¢') in such a way that g,q(#, ¢’) coincide with the
prescribed boundary values g;o(#), then the boundary conditions at ¢’ are satisfied.
On the other hand, we may adjust the eight quantities A%, ¢”) and 0o A%*(x, ¢”),
together with the two degrees of freedom in the initial values for do a/;, in order to
satisfy the ten final boundary conditions

gpw(x: 0'”) = g,:iv(x) .

The unsatisfactory feature of this construction is of course the implicit appearance
of the two degrees of freedom in the initial values, which are used to adjust the final
boundary values.

The second argument is the trivial remark that if we only are allowed to specify
g} and gl —the intrinsic geometries of the initial and final surfaces—then we are
certainly allowed to specify g,, and gy, in addition, since these values may always be
adjusted by a simple coordinate transformation which affects the angles between the
lines #* = const. and the initial and final surfaces.

The third argument in favor of the claim that g;, and g, may be specified in-
dependently is based on the investigation of the neighborhood of a given solution.
We would like to show that for given initial values g, we have a ten-parameter family
of solutions per point on the surface ¢”. To show this we may construct neighboring
solutions by successive approximations of flat space, g/, = gu» = 7. The linear
approximation to EINSTEIN’s equations is

oA +9,Me—0,,Ma—0,rao=0, (33)
where g, = 1, + Ahl) + 2242 4 ... . Since we hold g, = 7,, fixed, we have

k)" = 0.1t may be easily seen that in the approximation (33) the situation is exactly
the same as for electromagnetism. The final values of A{}) may indeed be prescribed
arbitrarily. To complete the proof that we have indeed a ten-parameter family of
solutions per point of the final surface, we would have to investigate the convergence
of the approximation scheme, i.e., we would have to show that the expansion in 4 is
analytic in a finite domain of convergence. This goes again beyond the scope of this
note.

V. Two-surface Formulation with Sources

We have already pointed out that the presence of sources destroys the invariance
group. Consequently, for given, compatible initial values, the solution of the equations
of motion is now, in general, unique. We cannot expect to be able to specify the same
number of final boundary data as without a source, because the freedom of gauge
transformations was essential in the source-free case.

A natural way to construct a solution is to start with some initial values g; and
0o g} The subsidiary conditions S*° = 7#° may again be solved for the initial values
guo- In addition, we may determine 9o g, from the conservation law V,7#* = 0, if
we assume the source to be nondegenerate in the sense (13). This automatically
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provides a consistent set of initial values, which uniquely determines a solution of
EINSTEIN’s equations. In particular, gj, and g, are determined. Finally we may
adjust the initial values do g in such a way that gj, assumes prescribed values.

In the presence of sources, the transition to the one-surface formulation presents
no difficulties.

Table 1

Comparison of required boundary data for MaxwELL’s and EINSTEIN’s equations, with or without
sources for one- and two-surface formulations

MaxwEgLL's Equations EinsTEIN’s Equations

without source with source without source with source
Equations of Ou FH = Oy F# = j» SH? = Sur = gy
motion Oy Fv* =0 Oy Fiv* =0
Gauge group Ap=Au+3ud Ap= Ay + dpA Zun(#) no gauge group

=0, A%0,APgups[A(x)] in generalt)

One-surface problem
Freely specifiable

boundary values and A]; 0o 4] Aj;00A; gir: 00 &ih &ir: 00 &ip
number of data (per

point of the surface) 6 6 12 12
Number of data affect-

ed gauge group 2 2 8 —
Number of essential

data 4 4 4 12
Two-surface formulation

IFreely specifiable Al AT A Ay Euvi Euv &ins Ein
boundary values 8 8 20 12

Number of data affect-
ed gauge group 4 4 16 —

Number of essential
data 4 4 4 12

1) For degenerate sources, e.g., a scalar field, part of the gauge group may remain. See the
discussion in Section 3.
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