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On the Point Dipole Representation of a Uniformly Magnetised Cylinder

by P. Vallabh
Institut fiir Geophysik, Swiss Federal Institute of Technology, Zurich

11. XII. 64

Abstract. The validity of assumption of a dipole field, for that produced by a homogeneous
circular cylinder is examined in terms of exact calculations of axial and radial fields at distances
comparable to the dimensions of the cylinder. It is shown that for an optimum value of the ratio
of length to diameter, a cylindrical specimen would behave almost as a small dipole in so far as the
fields in axial and radial directions are concerned.

1. Introduction

A rock sample could be represented by a single dipole atits centre, provided the
magnetisation is uniform and the shape almost spherical. However, for practical
convenience, rocks are often cut in cylindrical form for investigation of their remanent
magnetisation. Even though assuming a uniform magnetisation, a cylindrical sample,
owing to its finite size and shape, can not be considered to act as a dipole except at
large distances compared to its size. In practice, however, measurements of weak
magnetisations often necessitate large specimens of dimensions comparable with the
measurement distance and in such cases the validity of dipole assumption is quite
questionable.

The magnetisation vector in a cylindrical specimen could be measured in terms of
axial and radial tields produced in the two directions by the respective magnetisation
components. However, the relative magnitude of the axial and radial fields would
also depend on the relative geometry of the cylindrical specimen, i.e. on the ratio of
length to its diameter. Thus by varying the relative geometry of the cylinder, it could
be possible to make the two fields at outside points in axial and radial directions agree
very closely with the corresponding fields produced by a dipole of equivalent moment,
if placed at the centre of the cylinder. So, for practical purposes, at this optimum
value of the ratio of length to diameter, a cylinder could be considered to act as a
small dipole so far as the fields in axial and radial directions are concerned.

In the present investigation, exact calculations of the magnetic field of a uniform
circular cylinder at points in axial and radial direction have been made for different
values of the ratio of the length to diameter and the results compared graphically
with those obtained on the single dipole assumption for the cylinder. In each case the
appropriate distance range, within which the dipole assumption is fairly valid, is
defined. It is shown that for a close approximation to a small dipole, the length of the
cylinder should be a little smaller than its diameter.
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2. Methods for Exact Field Calculation

In geophysics literature one finds frequent use of the Poisson’s relation?!) for
calculating the magnetic fields of homogeneous bodies, if their gravity effects are
known. According to thisrelation, the magnetic potential is proportional to the gravity
component in the direction of magnetisation, i.e.

' I, oU
Go Ok’
where W is the magnetic potential, I, the intensity of magnetisation in a direction &,
G the constant of gravitation, g the density of the body and U the gravitational
potential.

The magnetic field of the body in any direction ¢ is, therefore, given by

I 0 ou
Hi=c5 5 (5%) (2:2)

An alternative approach sometimes found more convenient, for calculating
magnetic effects at points outside a uniformly magnetised body, is to replace the
volume magnetisation by a surface distribution of magnetisation by application of the
well known Gauss theorem. This method enables the conversion of a triple volume
integral into a set of surface integrals which are comparatively easier to evaluate.

An appropriate use of both methods is illustrated in the present case of a uniform
cylinder for which the calculation of axial field is relatively easier by the first method
and that of radial field by the second method.

W= — (2.1)

3. Axial Field of the Cylinder

It is assumed that a vertical cylinder of length 2/ and diameter 2 7 is uniformly
magnetised parallel to its axis and the vertical field is to be calculated at an axial point
say P outside the cylinder. The right handed system of coordinates (x,, x,, %3) could
be so chosen that the origin coincides with the point P and the axis x4 is coincident
with the vertical axis of the cylinder. The axial component of the magnetic field at
point P, according to equation (2.2) is given by

I 0 ouU
H=gt 5 (5 (3.1)
where s is the vertical distance (along x, axis) of the point P from the upper face of
the cylinder.

The gravitational attraction — 0U/0s of a uniform cylinder of length 2/ and

radius 7 at an axial point is shown by RAMSEY2) to be
ouU

—W=27EGQ[2[—V(s+2l)2+72—{—l/82—|—72]- (3.2)
Thus
0rU s+21 s j
PR} 2 G A e S i . 3-3
0s2 7 Q |:V72+ (S+2 1)2 V7,2+ s2 | ( )

Finally, substituting equation (3.3) in (3.1), the axial field Hj is given by
(d+1) d—10

Hy=2nl | ——-ov—— ———|, 3.4

TS [ N 4

where d = (s + /) is the distance of point P from the centre of the cylinde.r.
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Compared to this lengthy expression for H,, the corresponding dipole field Hpg
obtained on the representation of the magnetisation of the cylinder by a single dipole,
would be, simply
2M  21,mvR21

HD, = d3 a3 ’ (35>
where M is the equivalent dipole moment for the cylinder of volume 7z 7% 2 /.
Lo
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Figure 1

A closer examination of equation (3.4) would reveal that for a given value of d,
Hg4would be maximum when/ & d and » &~ 0. In other words, at a given distance, the
axial field will be larger for a long cylinder than for a disc of same volume and intensity
of magnetisation. Figure 1 shows a plot of the axial field H, as a function of d/r for
cylinders of different //» ratio though of same volume (= 16 z) and same intensity of
magnetisation 7, (= 1) in C.G.S. units. For comparison sake, the plot of H, is shown
side by side for each case with a dashed curve. It would be seen that a comparatively
closer agreement between H, and H ), is obtained for a cylinder with the //r ratio = 1.
Thus, in this case the assumption of a dipole field for that produced by the cylinder
1s fairly valid even at closer distances say upto d/r = 1.95, where the relative deviation
between Hy and Hj, does not exceed 49%,. Allowing for the same deviation of 49, the
corresponding lower distance limits are considerably larger in other cases as shown by
the square mark on the curves. As expected, at large values of d/r say > 3.5, the
agreement between Hz; and Hp, tends to be fairly close in all the three cases thereby
testifying that the effect of relative dimensions of the specimen is practically insig-
nificant at large distances.
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4. Radial Field of the Cylinder

For calculating the radial field of a cylinder of length 27 and diameter 27 at an
outside point P distant 4 from the centre of the cylinder in a radial direction (see
Figure 2), let us first consider only the lower half cylinder of length / with a uniform
magnetisation in a radial direction parallel to O P. In this case, it is convenient to
choose the right handed system of coordinates so that the origin O coincides with the
centre of the upper face of the lower half cylinder and the axis x, is coincident with
the axis of the cylinder.
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Figure 2

The magnetic field produced at the point P due to a small volume element at
point E (xq, x,, %3) distant ¢ from E, is given by the well known formula

dH — I grad? (%) dxy dxy ds | (4.1)

where I is the intensity of magnetisation.

Assuming a uniform magnetisation of the cylinder in a radial direction x,, the
radial field H, at point P is obtained by integrating (4.1) over the volume of the
cylinder, i.e.

H,— I, /0(371 (d;;‘l)dv. (4.2)
V

By application of the Gauss theorem, the volume integral could be converted into

a surface integral and so (4.2) becomes

Y R -3
S

‘where # is the outer normal and 45 the surface element.
Now for both the upper and lower faces of the cylinder in Figure 2, cos(# x,) = 0
and for the curved surface of the cylinder cos(n x,) = cosf. Further, x; =7 cos 6,

%y =rsin0, dS =rdx;d0 and q = |/ (%, — d)2 + x> + 2.
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On making these substitutions, equation (4.3) becomes

—rcosG) cos @
= I Tff x3+1'2+d2 ?dCOS@)B-—E“ d9 dX3 i (44)

Integrating (4.4) with respect to x; yields

H,=2riliw (4.5)
where
. /' (@d—v cosf) cos O d6 (4.6a)
(#®+d*—2r d cos ) 1/12+72+d2—2 rdcosf

Evaluation of the above integral requires w being put in a more suitable form as
below

fer 4

1 [(72—d2—§—2 v d cos 0) + (d*— 7Y do
¥ (r2+d2—21’d0056)]

— . (4.6b
5 ]/12+1'2+d2~—2 v d cosl ( )

By substituting (& — 2 ¢) for 6 and changing the limits (4.6b) could be put in the
form of elliptic integrals as shown below
1

di— 4
_— 2_ 9 dr—rt
e e [{27 (r + AP} +4rd Byt .FB], (4.60)

where F,, F,, and F,4 are complete elliptic integrals. In terms of parameter %, /2, and
@ they could be written as

7|2
F (k,-’i’-) _ [ . 4.7
N2l Y- asing (#.72)
" st ay
E(rZ) - Saag 4.7b
2(’2) J/1 - k2 sin?¢ ( )
mf2 d¢
E(r ™, :f I S 47
3( 2 'u) J (L-p2sin?g) Y1 —k%sin2¢ .79
where
4vd 41’d
Mz :*( mﬁ and k2 = m})z. (47d)

Thus the problem of calculating H, is reduced to the evaluation of the above
integrals. I'; and F, are easy to evaluate in terms ot complete elliptic integrals of the
first and second kind for which tables exist in standard works on elliptic integrals.
F4, which is an elliptic integral of third kind could be reduced to the following form by
making use of Heuman’s lambda function?3)

B gl il 7 p (L=Ay(B, R)]
B(bgm) =R (ng)+ Ao (48)
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where

L YiE
ﬁ = SIn 17]/*1:;* '

The function A4,(8, £) has been tabulated by HEuMAN?) in terms of parameter
and £ for facilitating numerical calculations of F,.

It is easy to see from Figure 2 that the radial field at point P due to another
cylinder of length / and radius 7 placed in position as shown by dashed lines would be
same as that given by equation (4.5). Thus, the radial field at point P due to the
whole cylinder of length 2 / and radius » would be just double of that calculated for the
half cylinder, i.e.

Hi=4r11,w. (4.9)
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Figure 3

Figure 3 shows a plot of H, as a function of d/r for cylinders of same volume
(= 16 ) and same intensity of magnetisation /, (= 1) in C.G.S. units, but possessing
different //r ratio. Again for comparison sake, a plot of the corresponding dipole field
Hpy (= 2 I, 772 21/d?) assumed for the cylinder is shown side by side in dashed curve.
Contrary to the case of axial field, it would be seen here that the radial field is larger
for a broad cylinder than for a long cylinder. Here again at large values of dfr say
> 3.5, there is a fairly good agreement between H, and Hp, values for all the three
given cases. However, at smaller distances, a comparatively better agreement is
obtained for the cylinder with the //r ratio = 0.8. In this case, therefore, the assump-
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tion of a dipole field for the radial field of the cylinder is fairly valid even at smaller
distances as close as d/r = 1.8, where the deviation of H, from H,, does not exceed
49,. In other cases (//r = 0.6, 1) the corresponding lower limit of distance allowing for
the same deviation of 49, is comparatively much higher as shown by the square mark
on the curves.

5. Discussion and Conclusions

The curves in Figure 1 and Figure 3, although drawn for cylinders of a specified
volume, could be applied to cylinders of other volumes as well. For it is easy to see
that for a specified ratio //7, the field of a cylinder of length 2/ » and diameter 27 n
at a distance # d would be same as that of a cylinder of length 2/ and diameter 2 »
at distance 4. This could be verified by calculations from the equations (3.4), (3.5),
and (4.9). It is, therefore, possible to draw some general conclusions from these curves.
Assuming the axial and radial magnetisations to be of same strength, the axial field
is greater than the radial field for a long cylinder, where as the radial field is greater
than the axial field for a broad cylinder; thus, one increases at the expense of the other
by variation of the ratio //r. Further, so far as the field in axial direction is concerned,
a cylinder with //r ratio & 1 would behave almost as a dipole, where as for the radial
field a cylinder with //r ratio &~ 0.8 would approximate closely to a dipole even at
distances comparable to the dimensions of the cylinder.

Taking both of these factors into consideration, it could be concluded that for a
fair validity of the representation of a uniformly magnetised cylinder by a dipole

(in terms of axial and radial fields), the ratio //» should have an optimum value given
by

08 < ' <1 (5.1)

So, in practice where the cylindrical specimen is measured in the first Gauss
position, in turn for both the axial and radial components of magnetisation, it is
preferable to use a specimen of relative dimensions given by the equation (5.1).
Since, besides producing optimum fields in both directions, it would make the dipole
representation of the specimen also fairly reasonable. It is clear from both the figures
(1 and 3) that the use of long cylinders or of thin discs would lead to a considerable
reduction in the magnitude of one of the field components besides involving larger
deviations from the dipole fields assumed for the cylinder in either case.
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