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Uber die Selbstenergie einer geladenen Masse

von Willy Scherrer
(Bern)

(26. XI. 64)

Zusammenfassung. Fiir die Selbstenergie einer ungeladenen Masse ergab meine «lineare Feld-
theorie» die Formel

E=8mxla=mc2,

In der vorliegenden Arbeit wird diese Formel auf eine Masse mit der Ladung b wie folgt ausgedehnt:

E=8mx

l/cﬁ + %»w x b?

Dabei ist w eine reelle Einheit, iiber deren Vorzeichen die zur Verfiigung stehenden Primissen
noch keine Entscheidung gestatten.

§ 1. Einleitung

Kiirzlich habe ich im Rahmen meiner «linearen Feldtheorie» folgenden Satz her-
geleitet?):

Die totale Energie des von einer ruhenden Masse m erzeugten Gravitationsfeldes wird
gegeben durch die Einsteinsche Formel

E =me®, (1.1)
Die bei der Herleitung massgebende Wirkungsfunktion ist gegeben durch
W=wx'H, H=-H+H—-2H (1.2)
23 3

mit den absolut invarianten Komponenten
?Ei;é;i‘i"f".’, fzfé;;i’f?‘f’, H=0,7, (1.2a)
” :

wahrend

%= 8aGct (1.2b)

die Einsteinsche Gravitationskonstante bedeutet.
Von dieser Wirkungsfunktion habe ich schon bei fritherer Gelegenheit gezeigt, dass
sie genau die Einsteinschen Vakuumsgleichungen der Gravitation liefert ?).

1) Helv. Phys. Acta. 37, 317328 (1964)
%) Z. Physik 752, 319-321 (1958).
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In der vorliegenden Arbeit wird nun der erwdhnte Satz in folgender Weise auf
geladene Massen ausgedehnt:

Die totale Energie des von einer ruhenden und geladenen Masse erzeugten totalen
Feldes wird gegeben durch die Formel

E:8nx_1Va2+%w%bz . (1.3)

I I

Dabei bedeutet a eine Linge, b die Ladung und w eine reelle Einheit gemdiss
=1, (1.4)

Eine Betrachtung iiber die eventuelle Wahl dieses Vorzeichens findet sich am Schluss
der Arbeit.

Zur Begriindung der Formel (1.3) muss die Wirkungsfunktion (1.2) ersetzt werden
durch

W=x1H+woM, (1.5)
wobel

M = F,, Fe° (1.6)

e a

die klassische Wirkungsfunktion des elektromagnetischen Feldes darstellt.
Im Rahmen der linearen Feldtheorie kann man statt (1.6) auch schreiben

1 o
M 5—4—17;}313 A, (1.7
wo nun F, ; gemiss
Fop=28.,8"F, (1.8)

den zum Koordinatentensor F ,, gehorigen Formentensor darstellt.
Vorgingig der weiteren Entwicklung miissen nun noch einige technische Be-
merkungen eingeschaltet werden.

§ 2. Bemerkungen zur Zeigertechnik

Zuerst eine rein formale Bemerkung. Bis anhin habe ich fiir den die Lorentzmetrik
charakterisierenden konstanten Formentensor die Zeichen

e 0 By B : (2.1)
benutzt. Von jetzt an werde ich statt ihnen die Eisenhardtschen Zeichen
2

8 40,2 (2.2)

verwenden. Die metrischen Tensoren G ;, und G*# ergeben sich daher durch folgende
Formeln aus den Basiselementen g* , und g, *:

GJ»# = ga:/l ga:.u , G = gm:}. ga:‘u : (2.3)

Nun zur Zeigertechnik. Urspriinglich hatte ich die lineare Basis mit || ¢, , || bezeichnet
und spater mit || g, , ||. In der letzten Arbeit3) schliesslich habe ich fiir die Elemente

3) A.a.0.}), siehe §2.
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der primaren Basismatrix das Zeichen g* , gewéhlt. Die Elemente der Transponierten
der Inversen mussten daher mit g;* bezeichnet werden.

Da mir diese Bezeichnung die zweckmaissigste zu sein scheint, empfiehlt es sich,
die in den «Grundlagen» beschriebenen Regeln fiir die Zeigerverschiebungen?) wie
folgt neu zu fassen:

1. Zwei Zeiger sollen nie iibereinander stehen. Ein einzelner Zeiger beansprucht
also immer eine zweistellige Spalte, in der er entweder oben oder unten steht.

Beispiel: die Formeln (1.2a).

2. Horizontale Zeigerverschiebungen:

B =g I I TR

y .

oS T
- gl, T 0.

b B

(2.4a)
Toltamgd Tibs o Togtmighy T2 (2.4b)

In (2.4a) werden Koordinatenzeiger p nach links tiber das Komma verschoben und
damit in Formenzeiger 4 verwandelt. In (2.4b) dagegen werden Formenzeiger ¢ nach
rechts iiber das Komma verschoben und damit in Koordinatenzeiger 4 verwandelt.
Damit bei diesen Prozessen auf der einen Seite des Kommas der erforderliche
Platz und auf der anderen Seite keine Liicke entsteht, miissen offenbar alle Spalten
starr miteinander verbunden die gleiche Verschiebung durchfiihren.
3. Vertikale Verschiebungen von Formenzeigern:

Ty=eTh; Th=gTy. (2.5)

4. Vertikale Verschiebungen von Koordinatenzeigern: Durch Zusammensetzung.
aus 2. und 3. nach den Mustern

Ti=ge g, T (2.6a)

¥ S | P L A
T =gy e gl T, . (2.6b)

Wegen (2.3) sind dieselben gleichwertig mit den Regeln
T;=G,, T°; T'=G* T, (2.7)

der quadratischen Theorie.

§ 3. Allgemeine Feldgleichungen

Zur Illustration des Vorausgehenden sowie fiir weitere Zwecke sollen hier einmal
diejenigen Formeln zusammengestellt werden, welche erforderlich sind, um die zu
einer beliebigen linearen Kombination der Invarianten (1.2a) gehérigen Feldgleichun-
gen anschreiben zu kénnen.

Jede lineare Kombination dieser Invarianten liefert eine Funktion W von der
Struktur

Yt ;glzﬂ) ] (31)

1) Z. Physik 738, 16-21 (1954).
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Bezeichnen wir also wie iiblich die zu W gehérige invariante Dichte mit dem gotischen
Buchstaben

W=Wg, (3.2)
so besitzen die zum Wirkungsprinzip
5 / W dx — 0 (3.3)
B
gehorenden Feldgleichungen die Gestalt
oM
AP A 0
sz. l ( og)l',‘u ) = 7‘?,“ = O ‘ (3.4)
l O\ oxr *
Fithren wir also zur Abkiirzung die Tensordichten
o= OB g OB
i (ﬁi&) 0g”, (3.5)
ox v
ein, so geht (3.4) iber in
ot H”
o — T =0 (3.6)

In allen den Fillen, wo t,# in bezug auf die Zeiger 4 und » antisymmetrisch ist - z. B.
fiir jede der Invarianten (1.2a) —, gilt also der differentielle Erhaltungssatz

03,"

s =0 - (3.7)
Fithren wir also noch die Abkiirzung
0ty
tliﬂ = ey (38)
ein, so haben wir in
%A:M = t&:,u — S:A:u = (3.9)

die knappste Symbolisierung der Feldgleichungen.
Wenn wir schliesslich vermittels Division durch g von den Tensordichten zu den
Tensoren tibergehen, erhalten die Feldgleichungen folgende Gestalt:

Wyt =ttt — T =0. (3.10)

Jetzt empfiehlt es sich, den kontravarianten Koordinatenzeiger p vermittels der
Operation

m.u = e‘u g'u,’e ufl:g (3'11)
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in einen kovarianten Formenzeiger zu verwandeln. Die Gleichung (3.10) wird dadurch
ibergefiihrt in

L

W, =t,—T,,=0. (3.12)

Dieses System bildet fiir uns gleichsam die «Normalform» der Feldgleichungen, von
der aus man je nach Bedarf zu anderen Formen iibergehen kann. Insbesondere eignet
es sich zur Symmetrisierung. Setzt man niamlich

Uy =5 Waa + W) o Viy=g Wy — W, (3.13)

so zerfillt (3.12) in die beiden Systeme
U, =0 7 (3.14a)
Vie=0, (3.14D)

bestehend aus 10 symmetrischen und 6 antisymmetrischen Gleichungen.
Um nun die zu einer beliebigen Kombination

174 EE‘A H (3.15)

=14 1

gehorigen Feldgleichungen anschreiben zu koénnen, geniigt es offenbar, fiir jedes
einzelne W = H die Terme #;,, und T, in

2 7 7 (4

Wiy = ?l,u_ :ri.

T i 7

u

zu ermitteln. Die gesuchten Feldgleichungen sind dann gegeben durch

3
W, EZI'A (fz# — ’l_G.y) =0. (3.16)

1

Auf Grund der anschliessenden Tafel ist man also imstande, die Feldgleichungen fiir
jede Kombination (3.15) anzuschreiben.

b =200+ 21 1375 — 2 i B - (3.17,)
b = Ox+ 21 Y3+ O+ 20a) I35+ 2 Todh fl%. (3.17,)
jz# =, 0, +21) 1" — 0+ 2] 1, — 2. 1.7+ (3.17)
L=~ 4 A . (3.18,)
L=~ 2l o2+ 21510+ e, 2. (3.18,)
31:1,“ =205 2L, e, H (3.18,)

3
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Fiir unsere Aufgabe aktuell ist also die Kombination (1.2), und speziell gestiitzt auf
die Formeln (3.18) erhdlt man die zugehorige Energiedichte des Gravitationsfeldes.
Insbesondere sei daran erinnert, dass die zu dieser Kombination gehérigen Gleichun-
gen (3.14b) sich reduzieren auf die Identitit

Vaig =01, =0, + (0, +21) 1%, =0. (3.19)

u

Schliesslich sei noch vermerkt, dass der Differentiator 0, wie folgt allgemein kovariant
geschrieben werden kann:

0/1 = gl:g 0 (320)

PQ 3

wobei 0, die koordinatenkovariante Ableitung der linearen Feldtheorie bedeutet.

§4. Anwendung

Um die eben entwickelte Symbolik fiir das Wirkungsprinzip (1.5) verwerten zu
kénnen, empfiehlt es sich, zu setzen

W=H; W=M, (4.1)
H M
so dass das Prinzip die Gestalt
W=x'W+oW (4.2)
H M

annimmt. Die aus der Variation der g* , fliessenden Gleichung lauten dann

UV,=»1'0,,+t0l, =0, (4.3a)
H M

Vie=wtV,,+toV,,=0. (4.3b)
H M

Da uns die Terme U, , und V;, von der Bearbeitung des Prinzips (1.2) her schon zur
H H
Verfiigung stehen, reduziert sich unsere Aufgabe auf die Ermittlung der Terme U],
M
und V;,, sowie der aus der Variation der @ , entspringenden Differentialgleichungen.
AM

Wir miissen also zuerst

e (4.4)
) dg Ly M 3
WM
berechnen gestiitzt auf
1 o
93?57443 eﬁP;ﬁFaﬂg (4.5)

unter Beachtung von (1.8) und der Formeln

u Og“:ﬁ B #“
% g, =gl (+.6)
; 08",
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Man findet
oM 1 ;
dgh =k, s &8+ 4 ‘Faﬁ e geg, (4.7)
W
und durch Symmetrisierung ergibt sich
o 1 o —
U}.,uEe E»af;xoc_feﬂ.yaﬁF -Bz_“ Z;.y (483)
M M
V,u=0. (4.8b)

Da nun nach (3.19) auch V; , = 0 gilt, reduziert sich (4.3) auf die Gravitationsgleichungen
H

@#zx4qy+w@#30 , (4.9)
H M

wobei die Terme U, , uns von frither her bekannt und die U,, durch (4.8a) gegeben
sind. & M

Die Berechnung des Effekts der Variation der @ verlduft in enger Analogie zur
quadratischen Feldtheorie und liefert

Mg EAd

_0 - (4.10)

Oxm ’

also das erste Maxwellsche System fiir das Vakuum.
Schliesslich sei noch der Formenenergietensor des Gesamtfeldes notiert, ndmlich

];s,u == ]:hu + le,u (411)
g e
mit
L,=»"1,, T,,=0T,, (4.11a)
g H e M

wobel T, , gemiss (1.2) aus der Tafel (3.18) kombiniert werden muss.
H

§ 5. Statisch kugelsymmetrisches Feld

Wir verwenden genau dieselbe Basis wie im Fall der ungeladenen Masse?), die mit
den raumlichen Polarkoordinaten

=, =90 L= (5.1)
zum Linienelement
ds? = 2|2 dt2 — h? dr? — 72 (d9? + sin?$ dy?) (5.2)
fithrt, wobei gilt
I =) h=nh{). (5.3)

5 A.a. 0.1, siehe §3.
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Eine formale Erleichterung gegeniiber der fritheren Rechnung erzielt man durch
Einfithrung der Logarithmen

e=Lg|]|; n=Lg|hr]|. (5.4)
Mit h=h—1 (5.5)

erhalten wir dann folgende Tafel fiir die nicht verschwindenden und als Formen-
tensoren geschriebenen Gravitationsfeldstdrken:

foro = %‘P' A1 tk,’l s o = - 51? rLht k(8 ttjl — 0y tkll) = ;‘ Rt —27r1k) tﬁl,

(5.6)
wobei der Strich die Ableitung nach 7 bedeutet. Fiir das Vektorpotential machen wir
den statischen Ansatz

bo=¢(");d,=0 (1=1,2,3), (5.7)
und fiir die nicht verschwindenden elektromagnetischen Feldstdrken erhalten wir
Flo=—Fy=¢" Fy=—F;, ="' ¢ tiil z (5.8)

Fiir die elektromagnetische Wirkungsfunktion ergibt sich

1 o7 240
E——é—i_h ', (5.9)

und fiir die nichtverschwindenden Komponenten des zugehérigen Energietensors
erhdlt man
1 1

To=g 0 A2, Ty= 6,02kt -2kt (510

Jetzt sind wir imstande, die Gravitationsgleichungen (4.9) explizite anzugeben. Es
sind deren drei:

w1 B [2r iy 2 (B — )]+ S 0 bR R 2= 0, (5.11))

1
xR e" + @ g+ (@ - )] ek =0, (511
2 h 2"+t —n @ —r () + )+ r2 A — D]+ wh?2j242=0. (511,
Das System (4.10) dagegen reduziert sich auf die einzige Gleichung

(Ftha1r24') =0. (5.12)
Sie liefert das intermedidre Integral
¢ =—0blhr?2, (5.13)

vermittels dessen ¢ aus den Gravitationsgleichungen eliminiert werden kann, so dass
3 Gleichungen zur Bestimmung der 2 Funktionen | () und A(r) vorliegen. Dieselben
erweisen sich als vertrdglich, und die auf die Forderung «Lichtgeschwindigkeit im
Unendlichen = ¢» normierte Losung lautet:

f=(—2art — L wxt?r?", h=|L. (5.14)
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Somit ergibt sich aus (5.13) das Potential

= i,, ) (5.15)

Setzt man jetzt w = — 1, so erhidlt man aus (5.14) die seit bald 50 Jahren bekannte

Losung der quadratischen Feldtheorie. Der wesentliche Zusatz der linearen Feld-

theorie besteht nun darin, dass sie eine absolut invariante Totalenergie liefert.
Durch Berechnung der Kombination

i!
”1:102'2*];)0'!' Tyo — 2 Ty
g 1 2 3
aus der Tafel (3.18) gewinnt man zuerst
Ty — 5l r 2 ht B2, (5.16)
g
hierauf wegen
g=r*Yhsind; g =i
und
Ty’ = Too &, &
g g
die gemischte Komponente
T = 1r2ht (b — 1)2sind (5.17)
g
der Gravitationsenergiedichte.
Entsprechend gilt
Ty = Too &, &>

]
e e

und wegen (5.10) folgt

Ty = w b 2 hsind (5.18)

fiir die elektromagnetische Energiedichte. Fiir die totale Energiedichte kénnen wir
daher schreiben

10:0 =t [;rl f—1)2+ —;-w b2 7—2] sind} . (5.19)

Die Totalenergie des Gesamtfeldes wird daher gegeben durch das Integral

E =joof 6/‘10;" dy 49 dr (5.20)

wobel a; den Gravitationsradius, d.h. die grosste positive Nullstelle von f bedeutet.
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Fiir die zwischen 4, und einem grosseren Radius 7 liegende Energie ergibt die
Berechnung

[ ‘ ’
E;:Sazx"ll:l/gz—ZaQ-;a)be[“QJ (5.21)

| a
mit

o e s | ,
a1=a+l/a2+;w%bz a2=a—“/a2+—;-wxbz (3.22)
! I

Als expliziten Wert erhilt man

. ~ il s . 4L .. 2ar+ (1/2) o » b2
E — 8 1{ 'l/ 2 i b2 R ___T__'.‘;f‘_.:'_.___ﬁ_‘g,‘}-
" T a+. “ +2w% | 1’+|]/72—2a7—(1/2)wxb21 [123)

Der Grenziibergang » - oo liefert daher die behauptete Formel (1.3):

| 1 |
E=8axt |2t jonte . (5.24)
‘ |

Die eventuelle Wahl der reellen Einheit @ nétigt zu einer auch die Grundlagen be-
riihrenden Diskussion, die im nichsten § Platz finden soll.

§ 6. Diskussion

Um die Ubersicht zu erleichtern, nummeriere ich die zu diskutierenden Fragen.

1. Das Prinzip (1.5) ist unvollstindig, weil es zur Bestimmung der 20 Funktionen
g" . ; @ ; nur 14 Gleichungen liefert. Die 6 antisymmetrischen Gleichungen (4.3b) sind
ndmlich, wie wir gesehen haben, ausnahmslos identisch erfiillt. Wenn sich in unserer
konkreten Aufgabe trotzdem eine eindeutig bestimmte Lésung ergab, so ist dies nur
der hohen Symmetrie des statisch kugelsymmetrischen Ansatzes zu verdanken.

Bei allgemeinen Erwidgungen miissen wir uns also immer die Notwendigkeit eines
Ersatzes fiir die 6 Gleichungen (4.3b) vor Augen halten.

2. Unterdriicken wir in (4.3a) den Term U, ,, so erhalten wir in

M

U, =0 (6.1)
die aus dem Prinzip (1.2) fliessenden Feldgleichungen. Dieselben sind, wie schon er-
wihnt, identisch mit den Einsteinschen Vakuumsgleichungen. Unter Benutzung von
Koordinatenzeigern kann diese Identitdt mit Hilfe der in § 3 eingefiihrten Bezeich-
nungen folgendermassen expliziert geschrieben werden:

1

U=ty — Ty, =Ry, =< G, R=10. (6.2)
H H H

S 2 hu

Beim Ubergang zu den entsprechenden phinomenologischen Gleichungen ergibt sich
nun ein Unterschied zwischen der qudratischen und der linearen Feldtheorie. Im
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ersten Falle ergab der approximative Vergleich der Gravitationsgleichungen mit der
Poissonschen Differentialgleichung bekanntlich das System
By

Ry 2 Au

R=—nxpoPu,u,, (6.3)

wobel g die Massendichte und # , die Vierergeschwindigkeit bedeutet.
Im zweiten Falle wird man auf

g, =T

i G = %0 2 Uy, (6.4)
H

H

gefiihrt, weil T o, das Vorzeichen des Gravitationsradius hat. Derselbe muss aber im
H

Vakuumsfalle positiv gewihlt werden, damit die Gravitationsenergie endlich bleibt.

Dass die hiermit festgestellte Differenz der beiden Theorien bei der Erfahrungs-
kontrolle keine Rolle spielt, ersieht man am besten aus folgendem Argument: Die auf
das Verschwinden der Divergenz der linken Seite von (6.3) sich stiitzende Herleitung
der phdnomenologischen Bewegungsgleichungen ist absolut invariant und unabhingig
vom Vorzeichen von x.

3. Es ist jetzt moglich, das Vorzeichen von w zu diskutieren. Da das endgiiltige
Vorzeichen der Energie eine Konventionssache ist, kénnen wir, in Ubereinstimmung
mit (6.4), bei unserem positiven » verbleiben.

Fiir die Diskussion wegleitend muss natiirlich das Prinzip der Aquivalenz von
Masse und Energie sein:

m=Ec*, (6.5)

Wenden wir uns jetzt zu der in Frage stehenden Alternative.
®) w = + 1: Beide Energiearten haben nach (5.19) das gleiche Vorzeichen. Aus
(5.24) und (5.22) folgt '

E=8xn x‘lll/azqtéxlﬂ ) (6.70;)

a1:a+’l/a2+;xb2\ a2=a—il/a2+szzl- (6.70,)
| | |

Dieser Fall entspricht zweifellos der urspriinglichen Intention Einsteins, gehort aber,
wegen des oben beschriebenen Vorzeichenwechsels von #, nicht zur klassischen Lésung.
Er liefert also fiir jedes reelle a und b eine endliche Energie. Berechnet man, wie es bis
anhin nicht anders moglich war, die Energie ohne Beriicksichtigung der Gravitation,
so ergibt sich bekanntlich in keinem Falle ein endlicher Wert.

p) w = — 1: Die beiden Energiearten haben verschiedenes Vorzeichen, und es folgt
E=8x x l/az — b2 (6.78,)

Vae_l,e P
aI:aJr‘ 2t — b2 | dy=a —||/a*— 5 xb (6.78,)

15 H.P.A. 38, 2 (1965)
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Er liefert fiir jedes positive
/Y e

und jedes reelle b eine endliche Energie. Der Fall gehort insofern zur klassischen
Losung, als dieselbe ebenfalls die Gravitationsradien (6.78,) besitzt. In der Formel
(6.7f,) blieb die klassische Losung jedoch auf a = 0 beschriankt, so dass es den An-
schein hatte, auch die allgemeine Relativititstheorie sei nicht imstande, eine endliche
Energie zu liefern.

Wenn man nun in den gewonnenen Formeln versuchsweise die Elementarladung

= ¢ einfiihrt, so erhilt man aus (6.7 «;) fiir 2 = 0 als kleinste Energie

EO = 8 T %ﬁl (lo ) (6.8)

WO

| |
a, = ‘ ]/—;_— %e ~10-%em, (6.9)

den sogenannten Gravitationsradius des Elektrons darstellt, der zu ca. 102 Elektro-
nenmassen dquivalent ist.

Diese Schwierigkeit besteht im Falle §) nicht, denn aus (6.7 ;) erhdlt man fiir
a = a, die kleinste Energie zu

Eq=0. (6.8)
Doch wire es verfriiht, schon jetzt eine Entscheidung zu treffen. Die Wirkungs-

funktion (1.6) der Vakuumselektrodynamik sollte zuerst in der Weise ergdnzt werden,
dass sie einen feldmaéssigen Ersatz fiir den in (4.10) fehlenden Elektronenstrom liefert.
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