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Über die Selbstenergie einer geladenen Masse

von Willy Scherrer

(Bern)

(26. XI. 64)

Zusammenfassung. Für die Selbstenergie einer ungeladenen Masse ergab meine «lineare
Feldtheorie» die Formel

E 8 n x^1 a m c2

In der vorliegenden Arbeit wird diese Formel auf eine Masse mit der Ladung b wie folgt ausgedehnt :

8 n x~x | |/ a2 + —- co x l'¦*f\a*+A
Dabei ist co eine reelle Einheit, über deren Vorzeichen die zur Verfügung stehenden Prämissen
noch keine Entscheidung gestatten.

§1. Einleitung
Kürzlich habe ich im Rahmen meiner «linearen Feldtheorie» folgenden Satz

hergeleitet1):

Die totale Energie des von einer ruhenden Masse m erzeugten Gravitationsfeldes wird
gegeben durch die Einsteinsche Formel

E mc2. (1.1)

Die bei der Herleitung massgebende Wirkungsfunktion ist gegeben durch

W^x-1H, H =\h+ H-2H (1.2)
1

1 2 3

mit den absolut invarianten Komponenten

ff r;;;r??r. H^rßyyr.*ß., # ,;,?, (i.2a>12 3

während

x 8 n G c-* (1.2b)

die Einsteinsche Gravitationskonstante bedeutet.
Von dieser Wirkungsfunktion habe ich schon bei früherer Gelegenheit gezeigt, dass

sie genau die Einsteinschen Vakuumsgleichungen der Gravitation liefert2).

x) Helv. Phys. Acta. 37, 317-328 (1964)
2) Z. Physik 752, 319-321 (1958).
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In der vorliegenden Arbeit wird nun der erwähnte Satz in folgender Weise auf
geladene Massen ausgedehnt:

Die totale Energie des von einer ruhenden und geladenen Masse erzeugten totalen
Feldes wird gegeben durch die Formel

E 8n x-A i/a2+^coxb2\- (1.3)

Dabei bedeutet a eine Länge, b die Ladung und w eine reelle Einheit gemäss

co2 1 (1.4)

Eine Betrachtung über die eventuelle Wahl dieses Vorzeichens findet sich am Schluss
der Arbeit.

Zur Begründung der Formel (1.3) muss die Wirkungsfunktion (1.2) ersetzt werden
durch

W x-1 H + co M (1.5)
wobei

M~\-FeaF*° (1.6)

die klassische Wirkungsfunktion des elektromagnetischen Feldes darstellt.
Im Rahmen der linearen Feldtheorie kann man statt (1.6) auch schreiben

M^\FaßF*A (1.7)

wo nun Faß gemäss

F.ß=gAee0;"Fea (1-8)

den zum Koordinatentensor Fga gehörigen Formentensor darstellt.
Vorgängig der weiteren Entwicklung müssen nun noch einige technische

Bemerkungen eingeschaltet werden.

§2. Bemerkungen zur Zeigertechnik

Zuerst eine rein formale Bemerkung. Bis anhin habe ich für den die Lorentzmetrik
charakterisierenden konstanten Formentensor die Zeichen

a>.ß, Z" ; a},, af (2.1)

benutzt. Von jetzt an werde ich statt ihnen die Eisenhardtschen Zeichen

(2.2)

verwenden. Die metrischen Tensoren GA/Xund G'lß ergeben sich daher durch folgende
Formeln aus den Basiselementen g*' und gxf :

Nun zur Zeigertechnik. Ursprünglich hatte ich die lineare Basis mit 11 rpXli \ \ bezeichnet
und später mit || gXft ||. In der letzten Arbeit3) schliesslich habe ich für die Elemente

3) A. a. O.1), siehe §2.
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der primären Basismatrix das Zeichen g*, gewählt. Die Elemente der Transponierten
der Inversen mussten daher mit g^ bezeichnet werden.

Da mir diese Bezeichnung die zweckmässigste zu sein scheint, empfiehlt es sich,
die in den «Grundlagen» beschriebenen Regeln für die Zeigerverschiebungen4) wie

folgt neu zu fassen:
1. Zwei Zeiger sollen nie übereinander stehen. Ein einzelner Zeiger beansprucht

also immer eine zweistellige Spalte, in der er entweder oben oder unten steht.
Beispiel: die Formeln (1.2a).
2. Horizontale Zeigerverschiebungen :

r:*::=g\T;;S; ; TyC g,f T-'f (2.4a)

T't ge;A Tff ; T-;X gf:xT-ff (2.4b)

In (2.4a) werden Koordinatenzeiger q nach links über das Komma verschoben und
damit in Formenzeiger X verwandelt. In (2.4b) dagegen werden Formenzeiger q nach
rechts über das Komma verschoben und damit in Koordinatenzeiger 1 verwandelt.

Damit bei diesen Prozessen auf der einen Seite des Kommas der erforderliche
Platz und auf der anderen Seite keine Lücke entsteht, müssen offenbar alle Spalten
starr miteinander verbunden die gleiche Verschiebung durchführen.

3. Vertikale Verschiebungen von Formenzeigern:

T'i ex T':; ; Z1; <?' Tr. (2.5)

4. Vertikale Verschiebungen von Koordinatenzeigern: Durch Zusammensetzung
aus 2. und 3. nach den Mustern

Tf ga;, ea g\ Tf, (2.6a)

ZA gf" e% 8«s Zs • (2-6b)

Wegen (2.3) sind dieselben gleichwertig mit den Regeln

77 G, TQ ; T'A &'•« T<- (2.7)

der quadratischen Theorie.

§3. Allgemeine Feldgleichungen

Zur Illustration des Vorausgehenden sowie für weitere Zwecke sollen hier einmal
diejenigen Formeln zusammengestellt werden, welche erforderlich sind, um die zu
einer beliebigen linearen Kombination der Invarianten (1.2a) gehörigen Feldgleichungen

anschreiben zu können.
Jede lineare Kombination dieser Invarianten liefert eine Funktion W von der

Struktur

4) Z. Physik 138, 16-21 (1954).
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Bezeichnen wir also wie üblich die zu W gehörige invariante Dichte mit dem gotischen
Buchstaben

3)i Wg, (3.2)

so besitzen die zum Wirkungsprinzip

ô [wdx 0 (3.3)

gehörenden Feldgleichungen die Gestalt

fvm.
0 (3.4)

ö I m am

l \ dx v I

Führen wir also zur Abkürzung die Tensordichten

Ô9B „, „ Ö2B
s "-^^;ZA

\ dxv I

ein, so geht (3.4) über in

(3.5)

dt,''"-^r--V °- (3.6)

In allen den Fällen, wo tA ¦'"' in bezug auf die Zeiger /u. und i> antisymmetrisch ist - z. B.
für jede der Invarianten (1.2a) -, gilt also der différentielle Erhaltungssatz

dzy-ai—° • (3-7)

Führen wir also noch die Abkürzung

dt/'*Z=T (3-8)

ein, so haben wir in

ÏB/ tf - %i? 0 (3.9)

die knappste Symbolisierung der Feldgleichungen.
Wenn wir schliesslich vermittels Division durch g von den Tensordichten zu den

Tensoren übergehen, erhalten die Feldgleichungen folgende Gestalt :

W? ee Hf - Tif 0 (3.10)

Jetzt empfiehlt es sich, den kontravarianten Koordinatenzeiger pt vermittels der
Operation

W^-e^Wjt (3.11)
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in einen kovarianten Formenzeiger zu verwandeln. Die Gleichung (3.10) wird dadurch
übergeführt in

WXß s tXß - Tlß 0 (3.12)

Dieses System bildet für uns gleichsam die «Normalform» der Feldgleichungen, von
der aus man je nach Bedarf zu anderen Formen übergehen kann. Insbesondere eignet
es sich zur Symmetrisierung. Setzt man nämlich

Ux, y (^Z + %x) n,4 {W^ - W^ ' (3-13)

so zerfällt (3.12) in die beiden Systeme

UXß 0 (3.14a)

VXfl 0, (3.14b)

bestehend aus 10 symmetrischen und 6 antisymmetrischen Gleichungen.
Um nun die zu einer beliebigen Kombination

W=2JAH (3.15)
* 1 i i

gehörigen Feldgleichungen anschreiben zu können, genügt es offenbar, für jedes
einzelne W H die Terme tx und Tx in

waß kn - TXßiiizu ermitteln. Die gesuchten Feldgleichungen sind dann gegeben durch

WXß=ZA(tXß-Tx\ 0. {3.16)
i 1 i \i i /

Auf Grund der anschliessenden Tafel ist man also imstande, die Feldgleichungen für
jede Kombination (3.15) anzuschreiben.

^ 2(d„ + 2fa)fif;-2fi;if;?f (3.17,)
i
h, K + 2 [J f;f i + fda + 2 fj f?i; + 2 ]fxß [/A • (3-172)
2

h, s eXß (d„ + 2 f;) f« - (ö, + 2 y fc - 2 f. fc?i • (3-173)
3

^ -4F;i>ü;f + ^H. (3.18J
i i

^ - 2 f;i • ff;f + 2 f;i ¦ f/- + eXßH (3.1&2'
2

2i„s-2r;t?i-2F1r<, + ^F. (3.I83)
3 3
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Für unsere Aufgabe aktuell ist also die Kombination (1.2), und speziell gestützt auf
die Formeln (3.18) erhält man die zugehörige Energiedichte des Gravitationsfeldes.
Insbesondere sei daran erinnert, dass die zu dieser Kombination gehörigen Gleichungen

(3.14b) sich reduzieren auf die Identität

Vx» s Z fc -d,h+ (Z + 2 fc) ft; ee 0 (3.19)

Schliesslich sei noch vermerkt, dass der Differentiator dx wie folgt allgemein kovariant
geschrieben werden kann :

Z ii? àtQ (3.20)

wobei diB die koordinatenkovariante Ableitung der linearen Feldtheorie bedeutet,

§ 4. Anwendung

Um die eben entwickelte Symbolik für das Wirkungsprinzip (1.5) verwerten zu
können, empfiehlt es sich, zu setzen

W H ; W M (4.1)
H M

so dass das Prinzip die Gestalt

W xr1W + coW (4.2)
H M

annimmt. Die aus der Variation der g'' fliessenden Gleichung lauten dann

£Z x* UA, + coUXß 0, (4.3a)
H M

V,ß h-1 VXß + mVXß 0. (4.3b)
H M

Da uns die Terme U!ß und VXß von der Bearbeitung des Prinzips (1.2) her schon zur
H H

Verfügung stehen, reduziert sich unsere Aufgabe auf die Ermittlung der Terme UXß
M

und VXß, sowie der aus der Variation der &e entspringenden Differentialgleichungen.
M

Wir müssen also zuerst

SB/ ee - Z_Z_ _ XA (4.4)
dg A m '

berechnen gestützt auf

W=T********* (4-5)

unter Beachtung von (1.8) und der Formeln

ggA> -cj-=-gfi<?- f4-6)^ " ' <V
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dm
dg'

und durch Symmetrisierung ergibt sich

— _ p j?*ß p p ,p 4---F Faß p p ,f
>., rkn.r S 6ß, r rnß r g SA, '

TT p* F F — e F F** — T

v,ß s o.
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(4.7)

(4.8a)

(4.8b)

Da nun nach (3.19) auch VXß 0 gilt, reduziert sich (4.3) auf dieGravitationsgleichungen
H

UXß s x"1 UXß + coUXß 0 (4.9)

wobei die Terme UXß uns von früher her bekannt und die UXß durch (4.8a) gegeben
sind. H m

Die Berechnung des Effekts der Variation der 0 s verläuft in enger Analogie zur
quadratischen Feldtheorie und liefert

d(g FAß)
dxß

0 (4.10)

also das erste Maxwellsche System für das Vakuum.
Schliesslich sei noch der Formenenergietensor des Gesamtfeldes notiert, nämlich

mit

Z/i— Z/» + iif.

EXß — x TXß ; TXß co TXß

(4.11)

(4.11a)

wobei TXß gemäss (1.2) aus der Tafel (3.18) kombiniert werden muss.

§ 5. Statisch kugelsymmetrisches Feld

Wir verwenden genau dieselbe Basis wie im Fall der ungeladenen Masse5), die mit
den räumlichen Polarkoordinaten

x1 r, x2 &, x3 ip

zum Linienelement

führt, wobei gilt

ds2 c2 P dt2 - h2 dr2 - r2 fdê2 + sin2# dtp2

] ](r) ; h h(r)

(5.1)

(5.2)

(5.3)

5) A. a. O.1), siehe §3.
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Eine formale Erleichterung gegenüber der früheren Rechnung erzielt man durch
Einführung der Logarithmen

<P Lg | f | ; n Lg | h | (5.4)

Mit k h - 1 (5.5)

erhalten wir dann folgende Tafel für die nicht verschwindenden und als
Formentensoren geschriebenen Gravitationsfeldstärken :

fo*o =^v' h~x Z'1 - \iki - y '-1 »-1 Ä («5.*^ - <Z V) ' f«s 2-Ä_1 fo' -2 r_1 Ä) ^-
(5.6)

wobei der Strich die Ableitung nach r bedeutet. Für das Vektorpotential machen wir
den statischen Ansatz

f0=^(r);^- 0 (»=1,2,3), (5.7)

und für die nicht verschwindenden elektromagnetischen Feldstärken erhalten wir

F10 - F01 f Fi0> s - F0. s A1 h-1 cp' tf (5.8)

Für die elektromagnetische Wirkungsfunktion ergibt sich

M -12A-2h-2<f>'2 (5.9)

und für die nichtverschwindenden Komponenten des zugehörigen Energietensors
erhält man

r00 ee \ co f-2 h-2 cj>'2, Tih | <*,* <o F"2 Ä-2 f 2 - o, f-2 h-2 cp'2 tf t* (5.10)
e e

Jetzt sind wir imstande, die Gravitationsgleichungen (4.9) explizite anzugeben. Es
sind deren drei :

x-1 h~2 [2 r-1 rf + r~2 fh2 - 1)] + \ co h~2 [~2 cp'2 0 (5.11J

x'1 h-2 [cp" + cp'2 -r{ cp' + r-1 (cp' - rj')] A—cah'2 \-2tf>'2 0 (5.11a)

x-1 h~2 [cp" + cp'2 -rf cf' - r-1 (cp' + rj') + r~2 (h2 - 1)] + co h~2 ]~2 cp'2 0 (5.113)

Das System (4.10) dagegen reduziert sich auf die einzige Gleichung

fA1 h-1 r2 <p')'= 0 (5.12)

Sie liefert das intermediäre Integral

<p' -b\hr~2 (5.13)

vermittels dessen cf> aus den Gravitationsgleichungen eliminiert werden kann, so dass
3 Gleichungen zur Bestimmung der 2 Funktionen f (r) und hfr) vorliegen. Dieselben
erweisen sich als verträglich, und die auf die Forderung «Lichtgeschwindigkeit im
Unendlichen c » normierte Lösung lautet :

F (1 - 2 a r-1 - Z co x b2 r~2)112 h f-1 (5.14)
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Somit ergibt sich aus (5.13) das Potential

cp JA.
T y

223

(5.15)

Setzt man jetzt co — 1, so erhält man aus (5.14) die seit bald 50 Jahren bekannte
Lösung der quadratischen Feldtheorie. Der wesentliche Zusatz der linearen
Feldtheorie besteht nun darin, dass sie eine absolut invariante Totalenergie liefert.

Durch Berechnung der Kombination

* ^oo J ^oo > -"oo — ^ ^oo

aus der Tafel (3.18) gewinnt man zuerst

T00 x-1 r-2 h-2 k2 (5.16)

hierauf wegen

und

g r2 [ h sin# ; g0;° f-1

*d', ~ -'oo go, l

die gemischte Komponente

X0'° «-i y-2 h-1 fh - l)2 sin# (5.17)

der Gravitationsenergiedichte.
Entsprechend gilt

"W ^oo go, i

und wegen (5.10) folgt

X» =l-co b2r~2 h sin® (5.18)

für die elektromagnetische Energiedichte. Für die totale Energiedichte können wir
daher schreiben

Z0'° [-1 [ar1 (f - l)2 + \mb2 r"2] sin«? (5.19)

Die Totalenergie des Gesamtfeldes wird daher gegeben durch das Integral
oo n 2jt

E f f I X0fi dtp de dr (5.20)

a, 0 Ö

wobei ax den Gravitationsradius, d.h. die grösste positive Nullstelle von/bedeutet.
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Für die zwischen ax und einem grösseren Radius r liegende Energie ergibt die

Berechnung

El =8: ¦¦**[\Yi <2 — 2 a q — —co x b2\ — o

mit

a2 + - - co x
11/ i

ax a + I I/ a2 + — oò x b2 a2 a -

Als expliziten Wert erhält man

_, A i 1 /7, fi - ~Z 2 a r + (1/2) co x ò2
Er 8 n x~x a + / a2 + —- co x b2 r .- =^-7-

t V 2 r + | |72 - 2 a f - (1/2) co x b2 \

Der Grenzübergang r -> 00 liefert daher die behauptete Formel (1.3) :

£ 8 tc jir1 h a2 + — co « è2, •

(5.21)

(5.22)

(5.23)

(5.24)

Die eventuelle Wahl der reellen Einheit co nötigt zu einer auch die Grundlagen
berührenden Diskussion, die im nächsten § Platz finden soll.

§ 6. Diskussion

Um die Übersicht zu erleichtern, nummeriere ich die zu diskutierenden Fragen.
1. Das Prinzip (1.5) ist unvollständig, weil es zur Bestimmung der 20 Funktionen

gX',ß '• &,k nur 14 Gleichungen liefert. Die 6 antisymmetrischen Gleichungen (4.3b) sind
nämlich, wie wir gesehen haben, ausnahmslos identisch erfüllt. Wenn sich in unserer
konkreten Aufgabe trotzdem eine eindeutig bestimmte Lösung ergab, so ist dies nur
der hohen Symmetrie des statisch kugelsymmetrischen Ansatzes zu verdanken.

Bei allgemeinen Erwägungen müssen wir uns also immer die Notwendigkeit eines

Ersatzes für die 6 Gleichungen (4.3b) vor Augen halten.
2. Unterdrücken wir in (4.3a) den Term UXß, so erhalten wir in

A/\ft
0 (6.1)

die aus dem Prinzip (1.2) fliessenden Feldgleichungen. Dieselben sind, wie schon
erwähnt, identisch mit den Einsteinschen Vakuumsgleichungen. Unter Benutzung von
Koordinatenzeigern kann diese Identität mit Hilfe der in § 3 eingeführten Bezeichnungen

folgendermassen expliziert geschrieben werden:

U,Xß Zr LAß s^-Xä=0 (6.2)

Beim Übergang zu den entsprechenden phänomenologischen Gleichungen ergibt sich

nun ein Unterschied zwischen der qudratischen und der linearen Feldtheorie. Im
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ersten Falle ergab der approximative Vergleich der Gravitationsgleichungen mit der
Poissonschen Differentialgleichung bekanntlich das System

R-, G,AßR *QC u,x »,„

wobei o die Massendichte und ux die Vierergeschwindigkeit bedeutet.
Im zweiten Falle wird man auf

Z/. ~T,iß xQc2 u,a u,ß

(6.3)

(6.4)

geführt, weil Tj00 das Vorzeichen des Gravitationsradius hat. Derselbe muss aber im
h'

Vakuumsfalle positiv gewählt werden, damit die Gravitationsenergie endlich bleibt.
Dass die hiermit festgestellte Differenz der beiden Theorien bei der Erfahrungskontrolle

keine Rolle spielt, ersieht man am besten aus folgendem Argument : Die auf
das Verschwinden der Divergenz der linken Seite von (6.3) sich stützende Herleitung
der phänomenologischen Bewegungsgleichungen ist absolut invariant und unabhängig
vom Vorzeichen von x.

3. Es ist jetzt möglich, das Vorzeichen von oo zu diskutieren. Da das endgültige
Vorzeichen der Energie eine Konventionssache ist, können wir, in Übereinstimmung
mit (6.4), bei unserem positiven x verbleiben.

Für die Diskussion wegleitend muss natürlich das Prinzip der Äquivalenz von
Masse und Energie sein :

m E c~ (6.5)

Wenden wir uns jetzt zu der in Frage stehenden Alternative.
a) co + 1: Beide Energiearten haben nach (5.19) das gleiche Vorzeichen. Aus

(5.24) und (5.22) folgt

a +

E 8 ti x-1

:b2

]/a2 + ~x b2

J/et2 +jxt ]ja2+\x bA ¦

(6.7ax)

(6.7«2)

Dieser Fall entspricht zweifellos der ursprünglichen Intention Einsteins, gehört aber,

wegen des oben beschriebenen Vorzeichenwechsels von x, nicht zur klassischen Lösung.
Er liefert also für jedes reelle a und b eine endliche Energie. Berechnet man, wie es bis
anhin nicht anders möglich war, die Energie ohne Berücksichtigung der Gravitation,
so ergibt sich bekanntlich in keinem Falle ein endlicher Wert.

ß) co — 1 : Die beiden Energiearten haben verschiedenes Vorzeichen, und es folgt

15 H.P.A. 38, 2 (1965)

a2 j X b2 j

¦b2

a9 a — f xb2

(6.7p\)

(6.7/?,)
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Er liefert für jedes positive

Willy Scherrer

a ~y Vi**2!

H.P.A.

(6.7/y

und jedes reelle b eine endliche Energie. Der Fall gehört insofern zur klassischen

Lösung, als dieselbe ebenfalls die Gravitationsradien (6.7/?2) besitzt. In der Formel
(6.7/3,) blieb die klassische Lösung jedoch auf a 0 beschränkt, so dass es den
Anschein hatte, auch die allgemeine Relativitätstheorie sei nicht imstande, eine endliche
Energie zu liefern.

Wenn man nun in den gewonnenen Formeln versuchsweise die Elementarladung
b e einführt, so erhält man aus (6.7 oc,) für a 0 als kleinste Energie

E0 8 n x~x a0 (6.8)

n* e2 \ ~ 10~33 cm (6.9)

den sogenannten Gravitationsradius des Elektrons darstellt, der zu ca. 1020

Elektronenmassen äquivalent ist.
Diese Schwierigkeit besteht im Falle ß) nicht, denn aus (6.7 ßx) erhält man für

a a0 die kleinste Energie zu

E0 0 (6.8)

Doch wäre es verfrüht, schon jetzt eine Entscheidung zu treffen. Die Wirkungsfunktion

(1.6) der Vakuumselektrodynamik sollte zuerst in der Weise ergänzt werden,
dass sie einen feldmässigen Ersatz für den in (4.10) fehlenden Elektronenstrom liefert.
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