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Induktionszeitmethoden zur Bestimmung
von Diffusionskoeffizienten und Wärmeleitfähigkeiten

von F. Grün und D. Walz

(25. XI. 64)

1. Einleitung
Soviel wir wissen, hat Daynes1) als erster eine Induktionszeitmethode zur

Bestimmung von Diffusionskoeffizienten angegeben. Seine Methode wurde anschliessend

- zum Teil etwas modifiziert - von anderen Autoren angewandt und auch auf
Wärmeleitungsprobleme übertragen; später wurden theoretisch und experimentell
neuartige Induktionszeitmethoden entwickelt2-5)7). Einige davon sind äusserlich
sehr verschieden von der von Daynes angegebenen Methode, sie gehören aber insofern

mit dieser in eine Gruppe, als die Bestimmung des Diffusionskoeffizienten oder
der Wärmeleitfähigkeit stets auf die Bestimmung einer Zeit, eben der Induktionszeit,
zurückgeführt wird.

In der vorliegenden Arbeit wollen wir einen Teil dieser Methoden einheitlich und
rationell darstellen, bei anderen eine solche Darstellung im Sinne eines Programmes
skizzieren. Wir stützen uns dabei auf 2 in diesem Zusammenhang noch nicht benützte
Theoreme über das asymptotische Verhalten von parabolischen Differentialgleichungen.

Die Darstellung wird dadurch einfacher als diejenigen mit zum Teil ähnlichem
Ziel von Jaeger 3b), von Frisch 4a) und auch von uns selbst5b).

Im folgenden sprechen wir nur von Diffusionsvorgängen. Natürlich lässt sich fast
alles auf Wärmeleitungsvorgänge übertragen. Im übrigen beschränken wir uns im
Hauptteil der Arbeit, nämlich in den Abschnitten 2-5, auf die Betrachtung homogener,
aus Diffusionsmedium und diffundierender Substanz bestehender Einphasensysteme ;

weiter sollen die Diffusionsvorgänge eindimensional sein. Für diese Systeme geben
wir in Abschnitt 2 die später benötigten Definitionen, in 3 - unter nochmaliger
Spezialisierung der Vorgänge - die Berechnung der beiden «zugeordneten Funktionen»
und in 4 und 5 einige praktisch wichtige Beispiele für Diffusionsvorgänge und
Induktionszeitdefinitionen. In Abschnitt 6 skizzieren wir die Anwendung unserer
Darstellung auf kompliziertere und allgemeinere Diffusionsvorgänge, in 7 folgt
eine abschliessende Diskussion.

2. Definition und Veranschaulichung der Induktionszeit
bei eindimensionalen Diffusionsvorgängen

Wir betrachten die Diffusion einer Substanz S in einem homogenen Medium M,
wobei die Versuchsanordnung so gewählt sei, dass Konzentrationsunterschiede und
Substanzströme nur in einer Richtung auftreten. Parallel zu dieser Richtung legen
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wir die #-Achse eines cartesischen Koordinatensystems. Wir setzen voraus, dass für
die Konzentration c von S als Funktion des Ortes x und der Zeit t

lim cfx, t)
t—>co

gfx) (1)

gilt. Die Konzentrationsverteilung und damit der Diffusionsvorgang selbst sollen sich
also für grosse Zeiten einem stationären Zustand nähern. Wir setzen weiter voraus,
dass „

(2)/ [g(x) — cfx> r)~l df Hx)

das heisst, dass die Annäherung an den stationären Zustand so rasch erfolgt, dass das

uneigentliche Integral (2) existiert. (In den in Abschnitt 4 behandelten Beispielen und
in weiteren Fällen ist (2) eine Folge von (1), stellt somit keine zusätzliche Annahme
dar.) Für einen Diffusionsvorgang dieser Art können wir nun charakteristische Zeiten
definieren, beispielsweise durch

0fx) hfx) I g(x) ; (3)

allgemeinere Beziehungen dieser Art werden wir in Abschnitt 5 angeben. Die Grösse

©fx) kann als Mass für die Schnelligkeit betrachtet werden, mit der sich an der Stelle x
die Konzentration ihrem stationären Wert nähert. Analoges gilt für die später zu
behandelnden Definitionen. Diese Interpretation ergibt sich zum Beispiel aus der
Veranschaulichung in Abbildung 1.

9(x>

C(>t(>

Abb. 1: Die Kurven c(x, t) und g(x).

Die Fläche zwischen der Kurve cfx, t), der Geraden g(x) und der Ordinatenachse ist
gemäss (2) endlich und gleich hfx). Dividieren wir diese Fläche durch gfx) fgfx) + 0)*),
so erhalten wir 0(x) mit der Dimension einer Zeit. Diese Zeit oder der Zeitbedarf 0(x)
muss von den Grössen abhängen, welche die Schnelligkeit bestimmen, mit der sich das

System dem stationären Zustand nähert. Sobald wir also einerseits &(x) messen
können, und sobald wir andererseits die Beziehung zwischen ©fx) und D kennen,
können wir D berechnen. Vorausgesetzt ist dabei, dass die weiteren Parameter, die
in die genannte Beziehung eingehen, bekannt sind; dies ist meist der Fall. Die Be¬

Wenn g(x) 0, muss die Definition (3) abgeändert werden.
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Zeichnung Induktionszeit oder deutlicher die ursprüngliche englische Bezeichnung
«time-lag» kommt daher, dass (2) mit (3) umgeschrieben werden kann zu

t

f cfx, r) dr gfx) [t - ©fx)] + o(l) (* -> oo) (4)
o

Der Wert des Integrals «hinkt» hinter dem asymptotischen Wert gfx) t nach.

3. Die Funktionen g und h für eindimensionale Diffusionsvorgänge
mit linearen Randbedingungen

Wir beschränken uns in diesem Abschnitt auf die Betrachtung eindimensionaler
Vorgänge mit linearen Randbedingungen, wobei in diesen Bedingungen die
Koeffizienten überdies konstant sein sollen. Das allgemeinste Diffusionsproblem £ dieser
Art wird durch die Gleichungen (5)-(8) dargestellt.

Ì Dt 0<x<a,t>0 (5)

*c + ß£ + vi-+a=0 x 0,t>0 (6)
dx r dt
de de

dx + t Atx'c + ß'^A + y,dA + Ô' 0 x=a,t>0 (7)

c ffx) 0 < x < a, t 0 (8)

Die Koeffizienten sollen solche Werte haben, dass (1) gilt; a ist die Ausdehnung des

Diffusionsmediums in der *-Richtung. Wir betrachten im weiteren 2 Probleme, die
dem Problem f£ zugeordnet sind, sie werden formal aus (£ in leicht ersichtlicher Weise
erhalten.

Das erste dieser zugeordneten Probleme - wir bezeichnen es mit © - wird durch
die Gleichungen (9)-(ll) gegeben. ,2

di=° 0<x<a (9)

a.g + ßdA + o 0 x 0 (10)

oe'g + ß'2 +à' 0 x a. (11)

Es gilt nun das Theorem - wir nennen es Theorem I -: Zwischen den durch die
Probleme Œ und © definierten Funktionen cfx, t) und gfx) besteht die Beziehung fl). Dies

vorwegnehmend haben wir für die Lösung von © die Bezeichnung gfx) gewählt.
Dieses Theorem ist wohlbekannt und gilt, wie Friedman8) kürzlich gezeigt hat, für
ganze Klassen von parabolischen Differentialgleichungen. Eine davon enthält als

Spezialfall - unter gewissen einschränkenden Bedingungen für die Koeffizienten -
auch das Problem £.

Das zweite zugeordnete Problem - wir bezeichnen es mit § - wird durch die

Gleichungen (12)-(14) gegeben. (Ph
D~dx*=-f~g °<x<a (12)

«* + /*§+ y[/-g] 0 * ° (13)

«¦'h + ß'~ + Y'Lf-gi 0 x a. (14)

Wir haben die durch § definierte Funktion mit h(x) bezeichnet, um auszudrücken,
dass zwischen ihr und der durch d definierten Funktion cfx, t) die Beziehung (2) be-

14 H.P.A. 38, 2 (1965)
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stehen soll. Wie man durch Nachrechnen von Beispielen feststellt, ist dies oft der Fall.
Wir postulieren daraufhin das Theorem II: Zwischen den durch die Probleme d und <?>

definierten Funktionen cfx, t) und hfx) besteht die Beziehung (2). Es scheint, dass dieses

Theorem, das ähnlich wie I eine Aussage über das asymptotische Verhalten der
Lösung einer parabolischen Differentialgleichung macht, bis jetzt noch nicht
formuliert wurde. Wir vermuten, dass es einen ähnlichen Gültigkeitsbereich hat wie I*).

Hieraus ergibt sich : Sobald für einen Diffusionsvorgangbzw. für das ihn darstellende
parabolische Problem (£ die Theoreme I und II gelten (wie wir erwähnt haben, gibt
es solche Vorgänge), so lassen sich durch Lösen der beiden zugeordneten elliptischen
Probleme © und § nicht banale Aussagen über (£ gewinnen. Insbesondere lässt sich so
auf Grund von Beziehung (3) die Induktionszeit © ermitteln bzw. die für die
Induktionszeitmethode entscheidende Beziehung zwischen 0, D und den übrigen
Parametern des Versuchs gewinnen. Die Lösung der zugeordneten elliptischen Probleme
erfordert einen verhältnismässig geringen Aufwand. (Seit jeher hat man in solcher
Weise unter Benützung von Theorem I allein Aussagen über den stationären Zustand
des betreffenden Versuches erhalten. Diese Aussagen sind aber insofern banal, als man
so nichts über die Schnelligkeit erfährt, mit welcher der stationäre Zustand erreicht
wird.)

Insbesondere erhält man so die Relation (3) in einfacherer und befriedigenderer Weise als mit
den hierfür bis jetzt verwendeten Verfahren. Es sind dies:

a) Die Anwendung der Definitionsgleichungen (1) und (2) auf die explizite Lösung von
(£1)2a)5a). Man hat dabei unendliche Reihen zu summieren. Wenn die Koeffizienten von (£ nicht
sehr spezielle Werte haben, ist der Rechenaufwand prohibitiv.

b) Die direkte Gewinnung der Funktionen g(x) und h(x) aus dem System (5)-(8), ohne dass
dieses explizit gelöst wird4a-d)5b)5c). Das Vorgehen ist von Fall zu Fall verschieden und weniger
durchsichtig als das hier geschilderte.

c) Die Gewinnung der Funktionen g(x) und h(x) aus der La Place-Transformierten L{c}, ohne
dass c(x, t) explizit angegeben wird (Jaeger32)31")311)). Dieses Vorgehen ist wesentlich einfacher als
dasjenige nach a), vor allem vermeidet es die Summation der Reihen. Es ist aber weniger direkt
als das in dieser Arbeit geschilderte, auch erfordert die Ermittlung von L(c) mehr Aufwand als die
Lösung von ffi und §.

4. Beispiele
Einige experimentell leicht realisierbare und bereits in der Literatur behandelte

Diffusionsanordnungen werden durch Diffusionsprobleme vom Typus (£ beschrieben.
Zur Verdeutlichung des in Abschnitt 3 Gesagten geben wir im folgenden die für diese

Beispiele durch Lösung der Probleme © und § erhaltenen Funktionen g(x) und h(x).
Die Korrektheit der Resultate wurde durch andersartige Berechnung der gleichen
Funktionen nachgewiesen. Dies bildet einen Ersatz für den Nachweis, dass in diesen
Fällen die Voraussetzungen für das Gelten der Theoreme I und II erfüllt sind. (Es ist
zu beachten, dass es, wie man leicht sieht, Probleme £ gibt, für die (1) nicht gilt.)

4.1. Das Diffusionsmedium M grenzt an zwei Räume, die S in voneinander
verschiedenen, zeitlich konstanten Konzentrationen enthalten. An den Begrenzungen
von M herrscht bezüglich S das Verteilungsgleichgewicht. Zu Beginn des Versuchs ist
M von S frei. Diese Anordnung ist mit ò' 0 bei Daynes1), Barrer2"), Haefel-
finger und Grün5c) verwirklicht.

*) Diese Vermutung stützt sich auf eine briefliche Mitteilung von Prof. A. Friedman. Er
skizziert darin einen Beweis, der analog zu dem von Theorem I ist.
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Mit a-l, ß 0, y o, ô <0
oc' 1, ß' 0, y' o, <5'<0

/(*) -0
1) - Ô' xja

wird
g(*) òfxja

hfx) a2/6D { - Ò [(xia - l)3 - (xja - 1)] + Ô' [fx/a)3 - x/a]}
4.2. Wie 4.1, jedoch verändert sich im einen Raum die Konzentration von S infolge

des Substanzdurchtritts durch M. Zu Beginn des Versuchs ist die Konzentration von
S in diesem Raum 0. Diese Anordnung ist bei Marzetta und Grün50) verwirklicht.

Mit
a 1, ß 0, y 0, ô < 0

a.' 1, ß' > 0, y' > 0, ô' 0
wird

(1 oc P 0C JC (I {X 1 Ö ^f
*W - Td ôA [afaAß') -3â + 2faAWA - 6AW' + 6\ ~ h ~^W

4.3. Das Diffusionsmedium M ist auf der einen Seite abgeschlossen, auf der anderen

grenzt es an einen Raum, der 5 in zeitlich konstanter Konzentration enthält. Zu
Beginn des Versuches ist M von S frei. Diese Anordnung ist bei van Tets und
GüNTHARD5f) (siehe auch 5e)) verwirklicht. Mit

<x=0, /5 1, y =0, 0=0
a' 1, ß' > 0, y' 0, ô' < 0

wird /W ~ °

fW - <5'

&(*) a2/2JD{(5'[(*/a)2 -1] -2d' ß' /a}.
4.4 Das Diffusionsmedium ist beidseitig abgeschlossen. Es enthält zu Beginn des

Versuchs S in ungleichmässiger Verteilung. Diese Anordnung ist bei Grün und
Marzetta5b) verwirklicht. Mit

x 0, /3=1, y =0, 0=0
«' =0, /3' 1, y' 0, ó' 0*)

wird f{x) beliebig

a

gfx) c — y/(*) <**

0

Ä(*) a2/6 Z) {e - 3 e (*/«)2 + 6/a2 / //(1) il dr, - 6/a3 / / //(|) i| cfy <**}.
0 0 0 0 0

*) In den Beispielen 4.4 und 4.5 verschwinden so viele Koeffizienten, dass die Lösungen von ©
a

und S) nicht eindeutig bestimmt sind. Man hat dann die zusätzlichen Bedingungen ] g(x) dx c a
a 0

und l h(x) dx 0 zu berücksichtigen.
0
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4.5. Wie 4.4, zu Beginn des Versuchs ist S in einer unendlich dünnen Schicht bei
x 0 konzentriert. Diese Anordnung ist bei Grün und Jeanneret5ì1) verwirklicht.
Mit

f(x) c dfx) (d-Funktion)
wird

hfx) «2/6 D{c [1-3 (x/a- l)2]} x > 0

5. Weitere Definitionen von Induktionszeiten

Um die Induktionszeit auf Grund der Definition (3) zu bestimmen, müssen wir
t

Y ft) J cfx, x) dx für verschiedene Zeiten t kennen. In praxi bestimmt man jedoch
o

anstelle von Yff) Grössen Xft), die zeitliche Integrale über örtliche Ableitungen oder
Integrale von cfx, t) sind und deren experimentelle Ermittlung oft sehr einfach ist.
Bevor wir hiefür einige Beispiele geben, haben wir die Postulate (1) und (2) und die
Definition (3) zu verallgemeinern. In den folgenden Formeln bedeutet c*fx, t) die

Ableitung, das Integral oder eine ähnliche Transformation von cfx, t) bezüglich des
Ortes x. Analoges gilt für gfx) und hfx). Zusammen mit (1) und (2) soll nun gelten

und

Dann wird

und

Um c*fx, t) g*fx) (15)
t—*oo

f [g*(x) - c*fx, r)]dx= h*(x) (16)
o

©fx) h*fx)lg* (x) (17)

/ c*(x, r) dx g*fx) [t - ©fx)} + cfl) ft -*-oo) (18)
0

Aus (18) ergibt sich das Verfahren zur Ermittlung von 0: Man bestimmt die Grösse
t

Xft) \ c*fx, x) dx (oder ihr proportionale Grössen) für 2 genügend grosse Zeiten
o

tx und t2 und errechnet 0 nach

0 tx-(t2- tx) Xf(X2 - Xx). (19)

Folgende Induktionszeiten sind bis jetzt in der Literatur beschrieben worden:
5.1. Man ermittelt die gesamte im Diffusionsmedium enthaltene Substanzmenge

M ft) oder eine ihr proportionale Grösse als Funktion der Zeit und bildet das zeitliche
Integral über Mft). In diesem Fall wird

t a

Xft) ff cfx, x) dx dx (20)
0 0

In der Arbeit 5f) wird dies auf Anordnung 4.3 angewandt.



Vol. 38, 1965 Induktionsmethoden zur Bestimmung von Diffusionskoeffizienten 213

5.2. Man beobachtet das Diffusionsmedium M, in dem eine radioaktiv markierte
Substanz 5 diffundiert, mit einem Zählrohr und registriert die totale seit Beginn des
DiffusionsVorganges gezählte Impulszahl oder eine ihr proportionale Grösse. In
diesem Falle wird mit einer Gewichtsfunktion <p(x)

t a

Xft) f f cpfx) cfx, x) dx dx (21)
0 0

Diese Definition von Xft) wird in der Arbeit5a) auf die Anordnung 4.5, in 5b) auf 4.4,
in 5c) auf 4.1 und in 5d) auf 4.2 angewandt.

5.3. Man ermittelt die Gesamtmenge der Substanz S, die seit Versuchsbeginn in
das Diffusionsmedium eingetreten ist oder dieses verlassen hat, oder zu diesen
proportionale Grössen. Es wird, wenn a die Lage der Grenzfläche, durch welche die
Substanz tritt, angibt,

0

Diese Definition von Xft) wird in der ersten Arbeit über die Induktionszeitmethode1)
und in den daran anschliessenden Arbeiten2) und zum Teil auch in 3) auf die Anordnung

4.1 angewandt.

6. Diffusionsanordnungen allgemeinerer Art
Wir haben in Erfüllung des ersten Teils unseres Programmes einige der in der

Literatur beschriebenen Induktionszeitmethoden unter Benützung der Theoreme I
und II dargestellt. Bei allen diesen Methoden werden Versuchsanordnungen benützt,
denen Diffusionsprobleme vom Typus (£ entsprechen. Es wurde bereits bemerkt, dass

einerseits das Theorem I sicher und das Theorem II wahrscheinlich nicht nur für
Probleme vom Typus d, sondern für ganze Klassen von parabolischen Differentialgleichungen

gelten, von denen (£ nur eine ganz spezielle darstellt. Andererseits sind
auch bereits Induktionszeitmethoden für Diffusionsanordnungen beschrieben, welche
allgemeineren Problemen als & entsprechen. Wir erwähnen:

6.1. Diffusion in eindimensionalen, geschichteten Diffusionsmedien3b).
6.2. Diffusion in Anordnungen von anderer Geometrie 2a-d)3a).
6.3. Fälle, in denen die Koeffizienten der Gleichungen nicht konstant sind4a)4b).
6.4. Diffusion mit überlagerter Konvektion30)7).
Es wäre interessant, auch diese Anordnungen und Experimente in der hier

entwickelten Art darzustellen. Vor allem erscheint es aussichtsreich, unsere Technik auf
noch andere und verwickeitere Probleme anzuwenden, bei denen man sonst überhaupt
nicht zum Ziel kommt.

7. Diskussion

7.1. Induktionszeitmethoden betreffen grundsätzlich den stationären Zustand.
Die Vorteile, die dies bietet, wurden in 5b) geschildert. Natürlich besteht der Nachteil,
dass alle Versuche, die aus irgendeinem Grunde nicht zu einem stationären Zustand
führen, ausgeschlossen sind.
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7.2. Gemessen wird stets ein zeitliches Integral. Besonders einfach in der
Durchführung sind die Methoden, bei denen die Integration durch die experimentelle
Anordnung erfolgt (zum Beispiel bei der Bestimmung der totalen Impulszahl oder der
gesamthaft übergetretenen Menge).

7.3. Da © als Verhältnis zweier Grössen definiert ist, die beide proportional zu
Konzentrationen sind, müssen Konzentrationen nur bis auf einen Proportionalitätsfaktor

bekannt sein. Aus dem gleichen Grunde braucht man in vielen Fällen
Verteilungskoeffizienten nicht zu kennen.

7.4. Aus jedem Diffusionsversuch wird eine Zahl © erhalten, dies bietet Vor- und
Nachteile.

Wir danken Herrn Prof. A. Friedman, Evanston, für schriftlich erteilte Auskünfte,
Herrn B. Marzetta, Basel, und Herrn Prof. M. Peshkin, Argonne, für fördernde
Diskussionen. Dem Schweizerischen Nationalfonds danken wir für einen finanziellen
Beitrag, die Arbeit gehört zu einem von ihm subventionierten Forschungsprojekt.

Summary
The theory of the so called time-lag-method for measuring diffusion coefficients

and thermal conductivities is reconsidered. By making use of two theorems concerning
the asymptotic behavior of parabolic differential equations the formulae necessary
for the application of some of these methods can be obtained in a particularly straightforward

and simple way. Probably several other methods and experiments of this
type can be treated in the same way.

Universitäts-Augenklinik Basel

(Vorsteher Prof. F. Rintelen)
Wissenschaftliches Laboratorium
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