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Induktionszeitmethoden zur Bestimmung
von Diffusionskoeffizienten und Wirmeleitfihigkeiten

von F. Grin und D. Walz

(25. XI. 64)

1. Einleitung

Soviel wir wissen, hat DAYNEs?) als erster eine Induktionszeitmethode zur Be-
stimmung von Diffusionskoeffizienten angegeben. Seine Methode wurde anschlies-
send — zum Teil etwas modifiziert — von anderen Autoren angewandt und auch auf
Wairmeleitungsprobleme iibertragen; spiter wurden theoretisch und experimentell
neuartige Induktionszeitmethoden entwickelt?-%)7). Einige davon sind &usserlich
sehr verschieden von der von DAYNES angegebenen Methode, sie gehéren aber inso-
fern mit dieser in eine Gruppe, als die Bestimmung des Diffusionskoeffizienten oder
der Wirmeleitfihigkeit stets auf die Bestimmung einer Zeit, eben der Induktionszeit,
zuriickgefithrt wird.

In der vorliegenden Arbeit wollen wir einen Teil dieser Methoden einheitlich und
rationell darstellen, bei anderen eine solche Darstellung im Sinne eines Programmes
skizzieren. Wir stiitzen uns dabei auf 2 in diesem Zusammenhang noch nicht beniitzte
Theoreme iiber das asymptotische Verhalten von parabolischen Differentialgleichun-
gen. Die Darstellung wird dadurch einfacher als diejenigen mit zum Teil dhnlichem
Ziel von JAEGER?®), von FriscH*?) und auch von uns selbst ).

Im folgenden sprechen wir nur von Diffusionsvorgingen. Natiirlich ldsst sich fast
alles auf Wirmeleitungsvorgidnge iibertragen. Im {ibrigen beschrdnken wir uns im
Hauptteil der Arbeit, ndmlich in den Abschnitten 2-5, auf die Betrachtung homogener,
aus Diffusionsmedium und diffundierender Substanz bestehender Einphasensysteme;
weiter sollen die Diffusionsvorginge eindimensional sein. Fiir diese Systeme geben
wir in Abschnitt 2 die spiter benétigten Definitionen, in 3 — unter nochmaliger
Spezialisierung der Vorginge — die Berechnung der beiden «zugeordneten Funktionen»
und in 4 und 5 einige praktisch wichtige Beispiele fiir Diffusionsvorgidnge und
Induktionszeitdefinitionen. In Abschnitt 6 skizzieren wir die Anwendung unserer
Darstellung auf kompliziertere und allgemeinere Diffusionsvorginge, in 7 folgt
eine abschliessende Diskussion.

2. Definition und Veranschaulichung der Induktionszeit
bei eindimensionalen Diffusionsvorgingen

Wir betrachten die Diffusion einer Substanz S in einem homogenen Medium M,
wobei die Versuchsanordnung so gewihlt sei, dass Konzentrationsunterschiede und
Substanzstrome nur in einer Richtung auftreten. Parallel zu dieser Richtung legen
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wir die x-Achse eines cartesischen Koordinatensystems. Wir setzen voraus, dass fiir
die Konzentration ¢ von S als Funktion des Ortes x und der Zeit ¢

lim ¢(x, ?) = g(x) (1)
t—o00
gilt. Die Konzentrationsverteilung und damit der Diffusionsvorgang selbst sollen sich
also fiir grosse Zeiten einem stationdren Zustand nidhern. Wir setzen weiter voraus,

dass ~

J [glx) —e(x, 7)] dv = h(x) , (2)
0
das heisst, dass die Anndherung an den stationdren Zustand so rasch erfolgt, dass das
uneigentliche Integral (2) existiert. (In den in Abschnitt 4 behandelten Beispielen und
in weiteren Fillen ist (2) eine Folge von (1), stellt somit keine zusitzliche Annahme
dar.) Fiir einen Diffusionsvorgang dieser Art kénnen wir nun charakteristische Zeiten
definieren, beispielsweise durch

Ox) = h(x) [ glx) ; (3)

allgemeinere Beziehungen dieser Art werden wir in Abschnitt 5 angeben. Die Grosse
©(x) kann als Mass fiir die Schnelligkeit betrachtet werden, mit der sich an der Stelle x
die Konzentration ihrem stationdren Wert ndhert. Analoges gilt fiir die spater zu
behandelnden Definitionen. Diese Interpretation ergibt sich zum Beispiel aus der
Veranschaulichung in Abbildung 1.

|

—t

Abb. 1: Die Kurven c¢(x, ¢) und g(x).

Die Fliache zwischen der Kurve c(x, #), der Geraden g(x) und der Ordinatenachse ist
gemdss (2) endlich und gleich 4(x). Dividieren wir diese Fliache durch g(x) (g(x) = 0)*),
so erhalten wir @(x) mit der Dimension einer Zeit. Diese Zeit oder der Zeitbedarf @(x)
muss von den Grodssen abhingen, welche die Schnelligkeit bestimmen, mit der sich das
System dem stationdren Zustand nidhert. Sobald wir also einerseits G(x) messen
kénnen, und sobald wir andererseits die Beziehung zwischen @(x) und D kennen,
kénnen wir D berechnen. Vorausgesetzt ist dabei, dass die weiteren Parameter, die
in die genannte Beziehung eingehen, bekannt sind; dies ist meist der Fall. Die Be-

*) Wenn g(x) = 0, muss die Definition (3) abgedndert werden.
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zeichnung Induktionszeit oder deutlicher die urspriingliche englische Bezeichnung

«time-lag» kommt daher, dass (2) mit (3) umgeschrieben werden kann zu
¢

f c(x, T)dt = g(x) [t — O(x)] + o(1) ( —o0). (4)

0
Der Wert des Integrals «hinkt» hinter dem asymptotischen Wert g(x) ¢ nach.

3. Die Funktionen g und h fiir eindimensionale Diffusionsvorginge
mit linearen Randbedingungen
Wir beschrinken uns in diesem Abschnitt auf die Betrachtung eindimensionaler
Vorgédnge mit linearen Randbedingungen, wobei in diesen Bedingungen die Koeffi-
zienten iiberdies konstant sein sollen. Das allgemeinste Diffusionsproblem € dieser
Art wird durch die Gleichungen (5)—(8) dargestellt.

Oc 0%
0 0
wc+Bs +ys +6=0 £=0,t>0 (6)
o+ Bty 8 = x=a,t>0 )
c=flx) O<zx<a t=0 (8)

Die Koeffizienten sollen solche Werte haben, dass (1) gilt; a ist die Ausdehnung des
Diffusionsmediums in der x-Richtung. Wir betrachten im weiteren 2 Probleme, die
dem Problem € zugeordnet sind, sie werden formal aus ¢ in leicht ersichtlicher Weise
erhalten. '

Das erste dieser zugeordneten Probleme — wir bezeichnen es mit & — wird durch
die Gleichungen (9)—(11) gegeben. &g

ocg—i—ﬁ%—{—é:o =0 (10)
d
ow'g+ B+ =0 x=a. (11)

Es gilt nun das Theorem — wir nennen es Theorem I —: Zwischen den durch die Pro-
bleme € und ® definierten Funktionen c(x, t) und g(x) besteht die Beziehung (7). Dies
vorwegnehmend haben wir fiir die Losung von & die Bezeichnung g(x) gewdhlt.
Dieses Theorem ist wohlbekannt und gilt, wie FrRIEDMAN®) kiirzlich gezeigt hat, fiir
ganze Klassen von parabolischen Differentialgleichungen. Eine davon enthidlt als
Spezialfall — unter gewissen einschrinkenden Bedingungen fiir die Koeffizienten —
auch das Problem €.

Das zweite zugeordnete Problem — wir bezeichnen es mit § — wird durch die

Gleichungen (12)-(14) gegeben.
DS%E:f—g O0<x<a (12)
ah
ah+f—+y[f—gl=0 % =0 (13)
dak
a’h%—ﬁ’é——&—y'[f—g]:O gy (14)

Wir haben die durch § definierte Funktion mit /4(x) bezeichnet, um auszudriicken,
dass zwischen ihr und der durch € definierten Funktion c(x, {) die Beziehung (2) be-

14 H.P.A. 38, 2 (1965)
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stehen soll. Wie man durch Nachrechnen von Beispielen feststellt, ist dies oft der Fall.
Wir postulieren daraufthin das Theorem I1: Zwischen den durch die Probleme € und $
definierten Funktionen c(x, t) und h(x) besteht die Beziehung (2). Es scheint, dass dieses
Theorem, das dhnlich wie I eine Aussage iiber das asymptotische Verhalten der
Losung einer parabolischen Differentialgleichung macht, bis jetzt noch nicht for-
muliert wurde. Wir vermuten, dass es einen dhnlichen Giiltigkeitsbereich hat wie I*).

Hieraus ergibt sich: Sobald fiir einen Diffusionsvorgang bzw. fiirdasihn darstellende
parabolische Problem € die Theoreme I und II gelten (wie wir erwdhnt haben, gibt
es solche Vorgdnge), so lassen sich durch Losen der beiden zugeordneten elliptischen
Probleme ® und $ nicht banale Aussagen iiber € gewinnen. Insbesondere lisst sich so
auf Grund von Beziehung (3) die Induktionszeit @ ermitteln bzw. die fiir die Induk-
tionszeitmethode entscheidende Beziehung zwischen @, D und den {ibrigen Para-
metern des Versuchs gewinnen. Die Losung der zugeordneten elliptischen Probleme
erfordert einen verhdltnismissig geringen Aufwand. (Seit jeher hat man in solcher
Weise unter Beniitzung von Theorem I allein Aussagen iiber den stationdren Zustand
des betreffenden Versuches erhalten. Diese Aussagen sind aber insofern banal, als man
so nichts iiber die Schnelligkeit erfihrt, mit welcher der stationire Zustand erreicht
wird.)

Insbesondere erhilt man so die Relation (3) in einfacherer und befriedigenderer Weise als mit
den hierfiir bis jetzt verwendeten Verfahren. Es sind dies:

a) Die Anwendung der Definitionsgleichungen (1) und (2) auf die explizite Lésung von
( 1)22)52)  Man hat dabei unendliche Reihen zu summieren. Wenn die Koeffizienten von € nicht
sehr spezielle Werte haben, ist der Rechenaufwand prohibitiv.

b) Die direkte Gewinnung der Funktionen g(x) und %(x) aus dem System (5)—(8), ohne dass
dieses explizit gelost wird42-d)5h)5¢). Das Vorgehen ist von Fall zu Fall verschieden und weniger
durchsichtig als das hier geschilderte.

¢) Die Gewinnung der Funktionen g(x) und k(¥) aus der La Place-Transformierten L{c}, ohne
dass ¢(x, £) explizit angegeben wird (JAEGER®2)3)3d)). Dieses Vorgehen ist wesentlich einfacher als
dasjenige nach a), vor allem vermeidet es die Summation der Reihen. Es ist aber weniger direkt

als das in dieser Arbeit geschilderte, auch erfordert die Ermittlung von L{c} mehr Aufwand als die
Losung von ® und 9.

4. Beispiele

Einige experimentell leicht realisierbare und bereits in der Literatur behandelte
Diffusionsanordnungen werden durch Diffusionsprobleme vom Typus € beschrieben.
Zur Verdeutlichung des in Abschnitt 3 Gesagten geben wir im folgenden die fiir diese
Beispiele durch Losung der Probleme & und §) erhaltenen Funktionen g(x) und 4(x).
Die Korrektheit der Resultate wurde durch andersartige Berechnung der gleichen
Funktionen nachgewiesen. Dies bildet einen Ersatz fiir den Nachweis, dass in diesen
Fillen die Voraussetzungen fiir das Gelten der Theoreme I und II erfiillt sind. (Es ist
zu beachten, dass es, wie man leicht sieht, Probleme € gibt, fiir die (1) nicht gilt.)

4.1. Das Diffusionsmedium M grenzt an zwei Rdume, die S in voneinander ver-
schiedenen, zeitlich konstanten Konzentrationen enthalten. An den Begrenzungen
von M herrscht beziiglich S das Verteilungsgleichgewicht. Zu Beginn des Versuchs ist
M von S frei. Diese Anordnung ist mit " = 0 bei DAYNES!), BARRER?2), HAEFEL-
FINGER und GRUN®¢) verwirklicht.

*) Diese Vermutung stiitzt sich auf eine briefliche Mitteilung von Prof. A. FRIEDMAN. Er
skizziert darin einen Beweis, der analog zu dem von Theorem 1 ist.
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Mit « =1 g =0 =0, d <0
@' =1, f'=0, =0, <0
fx) =0
wird

gx) = d(xja — 1) — &' x/a
h(x) = a®[6D { — 6 [(x/a — 1)* — (x/a — 1)] + 0" [(x/a)* — x/al} .

4.2. Wie 4.1, jedoch verindert sich im einen Raum die Konzentration von S infolgé
des Substanzdurchtritts durch M. Zu Beginn des Versuchs ist die Konzentration von
S in diesem Raum 0. Diese Anordnung ist bei MARZETTA und GRUNS54) verwirklicht.

Mit

=1, =0 =0 6<0
O(.’:l, ﬁ,>0, yI>O, 6/=

wird
glx) = (5[ at+p 1]
_ a2 ¥ 22 a ’ ﬂ’x
M) = = 5 0% [awepy — 35 + Zarpn — Sarp + 6|~ G

4.3. Das Diffusionsmedium M ist auf der einen Seite abgeschlossen, auf der ande-
ren grenzt es an einen Raum, der S in zeitlich konstanter Konzentration enthilt. Zu
Beginn des Versuches ist M von S frei. Diese Anordnung ist bei vaAN TETS und
GUNTHARD *) (siehe auch ®¢)) verwirklicht. Mit

« =0, =1, » =0, 6 =
o =1 p >0 =0 <0
flx) =0 |
gx) = — o
hix) = a*2D {&'[(x/a)? —1] —26" B’ |a}.
4.4 Das Diffusionsmedium ist beidseitig abgeschlossen. Es enthélt zu Beginn des

Versuchs S in ungleichmissiger Verteilung. Diese Anordnung ist bei GRUN und
MARZETTASP) verwirklicht. Mit

wird

(e d
o

—_ “ x ﬂ .
h(x) = a®6 D {c — 3 ¢ (x/a)® + 6/a® [ ff )ddn — 6/a® [ [ [ f(E)dE dndx}.
0 0 0
*) In den Beispielen 4.4 und 4.5 verschwinden so viele Koeffizienten, dass die Lésungen von ®
und 55 nicht eindeutig bestimmt sind. Man hat dann die zusitzlichen Bedingungen f gx)dx =ca

und f h(¥) dx = 0 zu beriicksichtigen.
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4.5. Wie 4.4, zu Beginn des Versuchs ist S in einer unendlich diinnen Schicht be1
x¥ = 0 konzentriert. Diese Anordnung ist bei GRUN und JEANNERET52) verwirklicht.
Mit

f(x) = cd(x) (6-Funktion)
wird
gx) = ¢

h(x) = a6 D{c[1 — 3 (xja— 1)%]} x> 0.

5. Weitere Definitionen von Induktionszeiten

Um die Induktionszeit auf Grund der Definition (3) zu bestimmen, miissen wir
t

Y(?) = [ c(x, 7) dr fiir verschiedene Zeiten ¢ kennen. In praxi bestimmt man jedoch
0

anstelle von Y (¢) Grossen X(f), die zeitliche Integrale iiber ortliche Ableitungen oder
Integrale von c(¥, ¢) sind und deren experimentelle Ermittlung oft sehr einfach ist.
Bevor wir hiefiir einige Beispiele geben, haben wir die Postulate (1) und (2) und die
Definition (3) zu verallgemeinern. In den folgenden Formeln bedeutet c*(x, ¢) die
Ableitung, das Integral oder eine dhnliche Transformation von c¢(x, ¢) beziiglich des
Ortes x. Analoges gilt fiir g(x) und A4(x). Zusammen mit (1) und (2) soll nun gelten

lim c*(x, £) = g*(x) (15)
und o
J [g*(x) — c*(x, )] dv = h*(x) . (16)
Dann wird
Ox) = h*(x)/g* (x) (17)
und
[ c*(x, 7) dr = g*(x) [t — Ox)] + c(1) (¢t —o0) . (18)

Aus (18) ergibt sich das Verfahren zur Ermittlung von @: Man bestimmt die Grosse

X(?)

t; und

i

t
[ ¢*(x, ) dt (oder ihr proportionale Grossen) fiir 2 geniigend grosse Zeiten
0
t, und errechnet @ nach

@:tl_ (fy — t) X1/(X2 - X1)- (19)

Folgende Induktionszeiten sind bis jetzt in der Literatur beschrieben worden:

5.1. Man ermittelt die gesamte im Diffusionsmedium enthaltene Substanzmenge
M (t) oder eine ihr proportionale Grosse als Funktion der Zeit und bildet das zeitliche
Integral tiber M(f). In diesem Fall wird

=/ / c(x, 7) dx dr . (20)

In der Arbeit %) wird dies auf Anordnung 4.3 angewandt.
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5.2. Man beobachtet das Diffusionsmedium M, in dem eine radioaktiv markierte
Substanz S diffundiert, mit einem Zahlrohr und registriert die totale seit Beginn des
Diffusionsvorganges gezahlte Impulszahl oder eine ihr proportlonale Grosse. In
diesemn Falle wird mit einer Gewichtsfunktion g(x)

ff(p c(x, T) dx dt . (21)

Diese Definition von X (f) wird in der Arbeit %2) auf die Anordnung 4.5, in 5°) auf 4.4,
in °¢) auf 4.1 und in %) auf 4.2 angewandt.

5.3. Man ermittelt die Gesamtmenge der Substanz S, die seit Versuchsbeginn in
das Diffusionsmedium eingetreten ist oder dieses verlassen hat, oder zu diesen pro-
portionale Grossen. Es wird, wenn a die Lage der Grenzfliche, durch welche die
Substanz tritt, angibt,

X(f) = f (gi) ar (22)

Diese Definition von X (f) wird in der ersten Arbeit iiber die Induktionszeitmethode?)
und in den daran anschliessenden Arbeiten?) und zum Teil auch in 3) auf die Anord-
nung 4.1 angewandt.

6. Diffusionsanordnungen allgemeinerer Art

Wir haben in Erfiilllung des ersten Teils unseres Programmes einige der in der
Literatur beschriebenen Induktionszeitmethoden unter Beniitzung der Theoreme I
und IT dargestellt. Bei allen diesen Methoden werden Versuchsanordnungen beniitzt,
denen Diffusionsprobleme vom Typus € entsprechen. Es wurde bereits bemerkt, dass
einerseits das Theorem I sicher und das Theorem II wahrscheinlich nicht nur fiir
Probleme vom Typus €, sondern fiir ganze Klassen von parabolischen Differential-
gleichungen gelten, von denen € nur eine ganz spezielle darstellt. Andererseits sind
auch bereits Induktionszeitmethoden fiir Diffusionsanordnungen beschrieben, welche
allgemeineren Problemen als € entsprechen. Wir erwidhnen:

6.1. Diffusion in eindimensionalen, geschichteten Diffusionsmedien?®).

6.2. Diffusion in Anordnungen von anderer Geometrie 22-4)3a),

6.3. Fille, in denen die Koeffizienten der Gleichungen nicht konstant sind42)%b).

6.4. Diffusion mit iiberlagerter Konvektion3c)?).

Es wire interessant, auch diese Anordnungen und Experimente in der hier ent-
wickelten Art darzustellen. Vor allem erscheint es aussichtsreich, unsere Technik auf
noch andere und verwickeltere Probleme anzuwenden, bei denen man sonst iiberhaupt
nicht zum Ziel kommt.

7. Diskussion

7.1. Induktionszeitmethoden betreffen grundsitzlich den stationdren Zustand.
Die Vorteile, die dies bietet, wurden in 5?) geschildert. Natiirlich besteht der Nachteil,
dass alle Versuche, die aus irgendeinem Grunde #nicht zu einem stationdren Zustand
fithren, ausgeschlossen sind.
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7.2. Gemessen wird stets ein zeitliches Integral. Besonders einfach in der Durch-
fiihrung sind die Methoden, bei denen die Integration durch die experimentelle An-
ordnung erfolgt (zum Beispiel bei der Bestimmung der totalen Impulszahl oder der
gesamthaft tibergetretenen Menge).

7.3. Da @ als Verhiltnis zweier Grossen definiert ist, die beide proportional zu
Konzentrationen sind, miissen Konzentrationen nur bis auf einen Proportionalitits-
faktor bekannt sein. Aus dem gleichen Grunde braucht man in vielen Fillen Ver-
teilungskoeffizienten nicht zu kennen.

7.4. Aus jedem Diffusionsversuch wird eine Zahl @ erhalten, dies bietet Vor- und
Nachteile.

Wir danken Herrn Prof. A. FRiEDMAN, Evanston, fiir schriftlich erteilte Auskiinfte,
Herrn B. MArzETTA, Basel, und Herrn Prof. M. PESHKIN, Argonne, fiir férdernde
Diskussionen. Dem Schweizerischen Nationalfonds danken wir fiir einen finanziellen
Beitrag, die Arbeit gehort zu einem von ihm subventionierten Forschungsprojekt.

Summary

The theory of the so called time-lag-method for measuring diffusion coefficients
and thermal conductivities is reconsidered. By making use of two theorems concerning
the asymptotic behavior of parabolic differential equations the formulae necessary
for the application of some of these methods can be obtained in a particularly straight-
forward and simple way. Probably several other methods and experiments of this
type can be treated in the same way.

Universitdts-Augenklinik Basel
(Vorsteher Prof. F. RINTELEN)
Wissenschaftliches Laboratorium
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