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On the Representations of Haag Fields

by B. Misra

Institute of Theoretical Physics, University of Geneva, Geneva

(5. XI. 64)

Abstract. 1t is shown that the algebra of quasi-local operators of a Haag field (with certain
reasonable properties) is simple. Consequently all representations of such Haag fields are faithful.
The intuitive notion of the “‘physical equivalence” of two local fields is formulated mathematically.
It is then proved that all (faithful) representations of a given local Haag field are ‘“‘physically
equivalent”.

§ 1. Introduction

In recent years several mathematical frames have been proposed which are
expected to embody the essential features (such as: locality and relativistic invariance)
of quantized field theories. One of these was proposed by WiGHTMAN?). This frame
(which will be referred to as the Wightman field) is specified by a Hilbert space and a
linear and weakly continuous mapping f (x) = A(f) from a suitable test-function space
into the set of closed linear operators in H. Locality and relativistic invariance of the
theory are then expressed by appropriate properties of this mapping. A somewhat
different scheme was proposed by Haac?2)?)4)%). In this method the mathematical
structure (which will be called the Haag field) is specified by a Hilbert space H
and a correspondence 4 — (4) between (bounded) open space-time domains /1
and von Neumann algebras N(A) in H. Such features of the theory as locality
and relativistic invariance are now reflected by appropriate properties of the corres-
pondence A — N(4) (see definitions (1) and (6) of § 2).

Unfortunately the exact relationships of these two descriptions (of Wightman
field and Haag field) have not been fully explored. One might expect, at first sight,
that a given local Wightman field f - A (f) will correspond to a local Haag field if one
establishes the correspondence A = N(A); where N(A) is the von Neumann algebra
generated®) by all field operators A(f) with f vanishing outside the space-time domain
A. The correspondence A - () thus obtained may be called the local correspondence
generated by the given Wightman field. Two questions arise naturally in this con-
nection:

(1) When does the local correspondence A4 - N(A) generated by a Wightman field
define a local Haag field ?

(2) When is the correspondence 4 - R(4) of a given local Haag field the local
correspondence generated by a Wightman field ?

At present, the first of these questions has received only a partial answer ¢), whereas

the second question remains completely open.

The present paper is not directly concerned with the questions just mentioned.
Nevertheless the main result of this paper will enable us to comment on some aspects
of the second question of the previous paragraph.
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The principal questions discussed in this paper and the main conclusions arrived
at may be described roughly as follows: Let the (separable) Hilbert space # and the
correspondence A4 — N(A) characterize a given local Haag field. The set-theoretic
union of all 9t(4)’s corresponding to all bounded and open domains A will be a*--algebra
Q of bounded linear operators in #. Taking the completion of (, in the topology
determined by the operator norm, we shall obtain a so-called C*-algebra @ which will
be called the algebra of guasi-local operators of the given Haag field. The first important
problem is to study the structure of the C*-algebra (. Section 3 of this paper is
devoted to this problem. It will be shown there (under some additional mild assump-
tions about the local Haag fields) that the algebra Q as well as the incomplete algebra
Q of a local Haag field are simple. (For a precise statement of this result see theorem 1.)

Let us now consider a faithful, separable representation of the algebra Q of the
given Haag field. In other words we consider a *-isomorphism (say %) of the *-algebra ()
onto a *-algebra (say () of bounded operators of a separable Hilbert space . The
isomorphism % will map a local ring 9t(4) of the original Haag field onto a subalgebra
RM(A)) = N, (A4) of Q,. We then expect that the Hilbert space #,, and the corre-
spondence 4 - I,(A) will define a local Haag field. In fact, #sotony and local com-
mutativity (see definition 1 of § 2) of the given Haag field imply that the correspondence
A > N, (A4) will have the corresponding properties. Therefore, the only question that
needs further investigation is, as to whether; the algebras %,(4) are again von Neu-
mann algebras. This question will be discussed elsewhere?). It will be shown there
(with some additional assumptions about the given Haag field) that the algebras
J,(4) are indeed von Neumann algebras. Anticipating the result of reference 7 we
may then conclude that every separable (faithful) representation of the algebra Q
of a given local Haag field defines (in the manner just described) a local Haag field
which will be called a representation of the given Haag field.

Two local Haag fields are said to be isomorphic if they are faithful representations
of each other. Evidently the set of all Haag fields can be divided into equivalence
classes of isomorphic Haag fields.

We shall study in this paper the relationship existing between isomorphic Haag
fields. A very satisfying result in this direction would have been that all isomorphic
(irreducible) Haag fields are unitarily equivalent. This, however, is not true. We shall
therefore introduce a weaker notion than that of unitary equivalence (viz. the notion
of local unitary equivalence) and show that all isomorphic Haag are locally unitarily
equivalent (Theorem 2 of § 4). This mathematical theorem may be interpreted physi-
cally to say the following: two isomorphic Haag fields will predict the same outcome
for all experiments carried out in an arbitrarily chosen but finite space-time region.
In other words, if a given Haag field provides an adequate theory for a group of
physical phenomena which can be explored by experiments performed in an arbitrarily
chosen finite space-time domain then any (faithful) representation of the given Haag
field will also be adequate as the theory of the same group of phenomena. Since all
physical measurements are carried out in a finite space-time region, it seems reasonable
to conclude that all isomorphic Haag fields are physically equivalent®).

We now mention some of the implications of the above conclusion. First of all it is
clear that unitary equivalence is not a necessary condition for physical equivalence.
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In fact there exist unitarily inequivalent Haag fields which are isomorphic (and thus
physically equivalent).

Furthermore since all isomorphic Haag fields are physically equivalent it suggests
that only abstract algebraic properties (i.e. those properties which are invariant under
algebraic isomorphism) of the algebra Q of quasi-local operators and those of the local
correspondence 4 - () are physically relevant. It is thus both natural and possible
to develop a purely algebraic framework for quantum field theory?).

Finally in appendix (1) of this paper we shall exploit theorem 2 for answering the
following question: suppose that the local correspondence of one of the Haag fields
of a given equivalence class (of isomorphic Haag fields) is generated by a Wightman
field. Does it then follow that the local correspondence of every Haag field in the given
equivalence class is generated by a Wightman field ?

§ 2. Some Basic Definitions

In the introduction we have described some of the fundamental concepts (such as
those of a Haag field, isomorphic representations of Haag fields etc.) in an informal
manner. For the sake of ready reference we shall now state the precise definitions of
these concepts.

Definition 1

A separable Hilbert space H# and a correspondence A - N(A) between open space-
time domains A and algebras () of bounded linear operators in H are said to define
a (local) Haag field if the following conditions are fulfilled:

(a) The algebras M(4)’s are von Newmann algebras'?).

(b) 4, € A, implies that N(4,) C N(4,) (Isotony).

(c) If the space-time domains A,, and A, are totally space-like with respect to each
other then N(4,) C N'(A,) (Local commutativity). Here N'(A,) (called the com-
mutant of 9N(4,)) denotes the set of all bounded linear operators of # which com-
mute with every operator of R(4,).

Let Q denote the set-theoretical union of all 9t(A)’s which correspond to bounded
open domains /. Then the completion of Q in the uniform topology will be denoted by
Q and it is called the algebra of quasi-local operators of the given Haag field. A Haag
field is said to be 4rreducible if its algebra of quasi-local operators Q is irreducible
(e if Q' = {4 I}).

Invariance of a Haag field under a given symmetry group G is expressed by the
existence of a suitable representation of G in the automorphism group of the algebra
of quasi-local operators. We shall therefore state now the definitions of relevant
mathematical concepts. '

Definition 2

Let R, and R, be two *-algebras. A mapping ¢: I - ¢(7) from R, onto R, is
called a *-homomorphism of R, onto R, if the following relations hold for all T, T,
in R, and complex co-efficients «, §:
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la Ty + B Ty) = d(Ty) + B ¢(T) (1)
$(Ty T,) = ¢(T,) $(T5) (2)
¢(T1*) = (‘?S(Tﬂ)’k (3)

If the mapping ¢ is, in addition, one-one (bijective) then one speaks of *-iso-
morphism of *-algebra R; onto the *-algebra R,.

Definition 3

A *-isomorphism ¢: T > ¢(T) of the algebra R onto itself is called an awufo-
morphism of R. The class of all automorphisms of the algebra R forms a group
(denoted by A4(R)) when the product operation, inverse operation, and the identity
are defined as follows:

The product of two autmorphisms ¢, and ¢, is defined to be the automorphism
given by the mapping ¢, dy: T > ¢, (do(T)).

The inverse of an automorphism ¢: T —> ¢(T) is the inverse mapping ¢~ from R
onto itself. The identity of the automorphism group 4 (R) is now the identity mapping
T = T of R onto itself.

Definition 4

A group G is said to have a representation in the automorphism group A(R) of the

algebra R if there exists a mapping %: g > A(g) from G into A(R) such that

(a) 2(g18) = A(gy) 1(g2) and
(b) the identity of the group G is mapped into the identity of the group A(R).

Definition 5

Let G be a topological group!!) and a suitable topology be defined on 4 (R) so that
it becomes a topological group also. Then a continuous mapping from G into A(R)
which satisfies conditions (a) and (b) of the previous definition is called a continuous
representation of ¢ in the automorphism group 4 (R). Usually one speaks of representa-
tions of groups in more restricted sense. For example, one speaks of unitary representa-
tions of a group G when one considers mappings 4: g - k(g) from G into the group of
unitary operators of a Hilberts space, which satisfy conditions (a) and (b) of defini-
tion 4. It may be noted here that the concept of representation (in the sense of
definition 4) coincides with that of unitary representation when one specializes the
algebra R to be the algebra of all bounded operators in a Hilbert spacel2).

We are now prepared to express the invariance of a Haag field under a given
symmetry group.

Definition 6

Let the symmetry group G be a group of transformations of the space-time mani-
fold. (For example G may be the 4-translation group, Euclidean group or inhomo-
geneous Lorentz group etc.) A Haag field, characterized by the Hilbert space H, the
algebra of quasi-local operators Q and the correspondence A = R(A), is said to be
invariant under G if there exists a representation g - ¢, of the group G in the auto-
morphism group of ( such that

¢, R((4)) = N(g 4) ()

for all g in G and all open and bounded space-time domains /.
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Here ¢,(J(4)) denotes the set of all operators ¢ (T) with T € (A) and g is the
space-time domain into which /4 is mapped by the transformation g.

We may note that definition 6 ignores the topological structure of the symmetry
group G. It is of course desirable, both for mathematical and physical reasons, to
introduce an appropriate topology in the automorphism group A((j) and express the
G-invariance of a Haag field by the existence of a continuous representation of G in

A (Q) which fulfils the condition (1) of definition 6. However, we shall not discuss here

the details of the construction of an appropriate topology in A4(Q).
Instead of definition 6, one often adopts the following more restrictive definition of
G-invariance.

Definilion 7
A Haag field

{#, 0,4 > n4)}

1s said to be invariant under the symmetry group G if there exists a continuous unitary
representation ¢ - U g of G (in H#) such that

U, R(A) U;* = Rg A)

for all bounded and ope.n space-time domains A and every g € G.

Definition 8
A Haag field

{?’!2: 62: 4 — mz(d)}

1s said to be a representation of the given Haag field
{#,, 61: A —Ny(4)}

if there exists a *-homomorphism /4: T — A(T) from the *-algebra Q, on to the
*_algebra (), such that
ATy (4)) = My(4)

for all bounded and open domains /.
If the homomorphism # is a *-isomorphism then the Haag field

{Ha, 0, 4 > Ry(4)}
is said to be a faithful (or isomorphic) representation of the given Haag field.

Definition 9
Two Haag fields

{Hy, O, 4 - My(A)}; and {Hy, Oy, 4 — My(A)}

are said to be unitarily equivalent if there exists a unitary transformation U from #,
onto #, such that

U Ry(A4) UL = Jy(A)

for all open space-time domains 4.

13 H.P.A. 38, 2 (1965)
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Evidently two unitarily equivalent Haag fields are isomorphic (i.e. are faithful
representations of each other); but two isomorphic Haag fields need not be unitarily
equivalent. However, it will be shown (Theorem 2) that two isomorphic Haag fields
are always locally unitarily equivalent in the following sense:

Definition 10
Two Haag fields

{Hy, Q1,4 = Ry(A)}; and {Hy, 0y, 4 — My(A)}

are said to be locally unitarily equivalent if for any given bounded space-time domain 4
(no matter how large) there exists a unitary transformation U(A4) from H,, onto H,,
such that U(A) N,(4y) UHA) = Ny(4,) for all 4, C A.

Finally we give a mathematical formulation of the notion of physical equivalence
of two Haag fields:

Definition 11
Two Haag fields

(3, 0y, 4 — Ny (A)}; and {Hy, 0y, 4 — Ny(A)}

are said to be physically equivalent if the following two conditions are fulfilled:
(1) There exists a*-isomorphism 4: T - A(T) from @, onto (, such that

W% (4)) = Ry(4).

for all bounded and open domains A.

(2) For any given bounded domain A there exists a unitary transformation U(A)
from #,, onto H,, such that

U(4) T U Y(A) = #(T) for all T R, (4). (2a)

In other words, physical equivalence of two Haag fields implies that the two Haag
fields, are isomorphic, as well as locally unitarily equivalent; the local unitary
transformations U(4) being such that relation (2a) holds.

§ 3. The Structure of the Algebra of Quasi-Local Operators

It will be shown in this section that the algebra of quasi-local operators of a Haag
field with certain reasonable properties, is simple!3). For giving a more precise for-
mulation of this result we first introduce the

Definition 712
A Haag field

{H, 0,4 - RA)}

is said to have the property F (“F” for factor) if for any bounded open space-time
domain A,, there exists a bounded and open domain A, such that A, C A4, and the
von Neumann algebra R(4,) is a factor1?).

The result, alluded to earlier, can now be stated more precisely as follows:
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T heorem 1

Let the Hilbert space # and the correspondence A - R(A) characterize a transla-
tion invariant local Haag field (see definition 1 and 6) which has the property F.
Then the algebra Q = U R(A), as well as its completion Q in the uniform topology
are simple. 4, bounded A

Before proving theorem 1, we should of course, make sure that we are not talking
about empty set. In other words we should ascertain the existence of at least one
translation invariant local Haag field with the property F. It is known!%) that the
Haag field generated by free Boson field has the property F and it is of course
translation invariant. It is not known whether the property F is true for every Haag
field which is generated by (not necessarily free) Wightman field. Nevertheless it is
plausible that property F is true for a wide class of Haag fields. Thus the range of
applicability of theorem 1 seems to be rather general.

After these preliminary remarks we now turn to the proof of theorem 1. We shall
first prove that the algebra () which is the set-theoretical union of all R(A)’s cor-
responding to bounded and open domains A is simple. For this purpose we shall need
the following lemmata:

Lemma 1

Every non-trivial (left) ideal of a von Neumann algebra Jt contains at least one
non-zero projection operator.

A proof of lemma 1, under the additional assumption that 9t is the algebra of all
bounded operators of a Hilbert space, can be found in reference 16 (pp. 291-292).
In appendix 2 we shall give a proof of this lemma (without making the extra assump-
tion just mentioned).

Lemma 2

Let the Hilbert space # and the correspondence A - () define a translation-
invariant local Haag field with the property F. Let A, , be a bounded and open domain
such that N(4,) is an infinite factor?)2!). Then there exists a bounded and open domain
A such that:

(a) F(d,) € R(A);

(b) M(A) 1s a factor; and

(c) Every non-zero projection of N(A,) is infinite relative to R(A).

Proof of lemma 2

It is clear that by translating (spatially) the bounded domain A,, we can obtain a
domain A, which is totally space-like with respect to 4;. The property F of the Haag
field guarantees the existence of a bounded and open domain A which covers A, and A,
and such that N(4) is a factor. It is evident that N(A4,) C N(4) (isotony). Thus lemma
2 will be stablished if we show that every non-zero projection of (4,) is infinite
relative to R(A).

For this purpose it is sufficient to prove that if P (4 0) is a projection of (A4,)
then the reduction!$) (N(A4))p of N(A) to the range M of P is an infinite factor??).
Towards this end we first prove the existence of a *-isomorphism from (4,) into
(MN(A)p. ‘
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As a preliminary to the construction of the desired isomorphism, we recall that the
domain A, is constructed to be totally space-like with respect to A,, and therefore

N(d,) C N'(4,) (Local commutativity).

Consequently every operator T of N(A,) is reduced by the subspace # (1.e. the range
of the projection P e N(4,)). Hence if T € N(4,) then its restriction T, to the
subspace m will belong to (M(A4,))p; (and therefore a fortiori to (9t(4))p). Thus the
mapping T - T,y (with T € 9(4,)) is a mapping from N(4,) into (N(4))p. It is now
claimed that this mapping provides the desired isomorphism. In fact it can be easily
verified thatif S > S,), and T > T, (With S, T € N(4,)) then S + T > S,y + Ty 5
®S > Spy; ST =Sy Ty and T* > (T,,)*.

It only remains to show that the mapping T = T, (with T € N(4,)) is one-one.
In other words we have to show that if S and T are in (4,) and if S,,) = T}, then
S = T. As a matter of fact, S, = T, implies that SP=T Por (S—T) P=0.
The projection P (+ 0) belongs to the factor N(A,) and (S — T) belongs to Jt(4,)
which is contained in the commutant of 0(A,). Therefore (S — T) P = 0 if and only
it S — T = 0%). Hence S,y = Tiy (With S, T € N(A,)) implies that S = 7. We have
thus proved that the mapping T' - T}, is a *-isomorphism from M(4,) into (N(A4))p.

In order to complete the proof of lemma 2 we recall that the domain A4, is obtained
by translating the domain A;. Therefore translation invariance of the Haag field
entails that 9(4,) is *-isomorphic to N(4,). Since Jt(4,) is an infinite factor, N(4,) will
be an infinite factor too. Therefore there exists a projection, say PY, in 9(4,) which
1s infinite relative to (4,). Since the mapping T - T, (with T € R(Ay)) is a *-iso-
morphism of N(4,) into (N(A))p, it follows that Pf) is an infinite projection relative
to (9t(4))p. Thus the factor (M(A)p) is infinite. This establishes the lemma 2.

It may be useful to mention here the following variant of lemma 2.

Lemma 2a

Let the correspondence A - N(A) define a local Haag field, such that the algebras
N(A)’s of local observables corresponding to bounded and open space-time domains
are all infinate factors®t). If, now, /1, is a non-empty open space-time domain (no matter
how small) that is totally space-like with respect to the open space-time domain A4,
then every (non-zero) projection of 9(4,) is infinite relative to (4, L 4y)-

The proof of this lemma is the same as proof of lemma 2.

We now prove that @ is simple. Suppose, to the contrary of this assertion, that
J is a non-trivial (two-sided) ideal of (). We shall show that this hypothesis leads to a
contradiction.

Let T (# 0) be an operator of J. It follows from the definition of Q that there
exists a bounded domain A, such that 7 € %(4,). The property F of the Haag field
says that there is a bounded domain A; which covers A, and such that 9(4,) is a
factor. It can be easily verified that the set JO N(A,) = T, is a two-sided ideal of
N(4,); and sinceT; contains at least the operator T (+ 0), it is a non-trivial two-sided
ideal.

Now the factor Jt(4,) can either be a finite factor or an infinite factor?!). In the
case that it is a finite factor, the desired contradiction results immediately. For, it is
known that a finite factor has no non-trivial two-sided ideals?22).
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We now assume the only other possibility that R(,) is infinite. Since J, is a non-
trivial two-sided ideal of Jt(A,), it follows according to lemma 1 that there exists a
non-zero projection, say P, in J,. Now the projection P is either finite or infinite
relative to N(A4,).

In any case there exists (according to lemma 2) a bounded domain 4 such that
Ay C©AN(A) is a factor and P is infinite relative to 9t(4). It is evident that the set
JON(4) =T, is a non-trivial two-sided ideal of N(A) and it contains P. However,
P is infinite relative to R(4). Therefore there exist operators £2 and £2* in 9t(4) such
that |

O* Q=P and Q Q% = I %)

Hence P e J, implies that Q P Q* = Q 0* Q O* = [ belongs to J,. This would
mean that J = Q which is not possible.
This proves the assertion that Q is simple.
 We now show that “simplicity” of Q entails the “simplicity” of its closure Q in
uniform topology. This will be accomplished with the aid of the following lemma:

Lemma 3

If the mapping T - A, from (Q into the set of all bounded operators in a Hilbert
space (say #,) is a *-homomorphism (i.e. a *-representation) of Q then

| T]| = ||Ag|| forall TeQ.

Here || 7' || and || A7 || denote respectively the norm of the operator T (of H) and
Ay (of #,).

Proof of Lemma 3

First, it may be noted that since @ is simple, every *-homomorphism of Q is
automatically a *-isomorphism.

Thus we may consider a *-isomorphism T° - A, of Q. Let T be any given operator
of Q. We have to show that || T || = || A7 ||. Towards this end we remark that there
exists a bounded domain A such that 7" e (4). The *-isomorphism of @ into the
algebra B(#,) of bounded operators in H, automatically gives (by restriction to
R(A)) a *-isomorphism of R(A) into B(H,). The algebras N(A) and B(#,) can both be
considered as C*-algebras®%), (the norms in these algebras being the corresponding
operator norms).

It is well-known that every *-isomorphism of a C*-algebra into another C*-algebra
preserves the norm?23). Hence it follows that the norm of element 7" of the C*-algebra
9R(A) is the same as the norm of the element A, in the C*-algebra B(#,). However,
as mentioned earlier these norms coincide with the operator norms. Thus || T || =

|| Ar|].
Lemma 4

A C*-algebra R is simple if and only if all *-representations of R (i.e. *-homo-

morphisms of R into the algebra of bounded operators in some Hilbert space) are
Sfaithful. i
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The proof of this mathematical lemma is for convenience deferred to appendix 2.

We now show that Q is simple. According to lemma 4 it will be sufficient to prove
that every *-representation of () is faithful (observe that () is a C*-algebra).

Let the mapping T - A from Q into the algebra of bounded operators of some
Hilbert space be an arbitrary *-representation of Q. It will be shown that it is faithful.
In other words, it will be proved that if 7€ Q and 4, = 0 then T = 0.

Since T € Q, there exists a sequence {T,} (n =1, 2, ...) of operators in () such that
| T, — T || = 0as#»n—> co. We now have:

) |4z, - pll = [[4z, — Azl = |47, || < [IT, = T

(Here the first equality follows from the linearity of the mapping T - A ; the second
from the hypothesis that 4; = 0 and the last inequality follows from a well-known
result 26)).

Evidently the mapping 7" - A, when restricted to @ gives a *-homomorphism of
Q which maps T, into A4,. Thus according to lemma 3 || A4, || = || T, ||.

Now, || T, — T || > 0as# - oco; Hence it follows from relation (4) that || A4, || =
| T,|| >0asn-—>o00.But || T, — T|>0asn->occand ||T,||>0as n > o0
imply that 7" = 0.

This completes the proof of theorem 1.

Before ending this section we mention some immediate corollaries:

Corollary 1

All representations of a translation invariant local Haag field with the property F
are faithful.

Corollary 2

The algebra of quasi-local operators of a translation invariant local Haag field
with the property F does not contain any completely continuous (compact) operator
(other than 0). In fact every compact operator which belongs to Q will generate a
non-trivial two-sided ideal of Q.

§ 4. Physical Equivalence of Isomorphic Haag Fields

The main result of this section is that all (faithful) representations of a given Haag
field (or, in other words, all isomorphic Haag fields) are physically equivalent. This
result would of course be redundant if it so happened that all irreducible isomorphic
Haag fields were unitarily equivalent.

It can, however, be shown that Haag fields, with physically reasonable properties,
have unitarily inequivalent, irreducible representations??). We may therefore proceed
to prove the theorem on physical equivalence, without much fear of redundancy.

T heorem 2

Let {#, Q, 4 > N(A)} be a local Haag field with the following property:

The von Neumann algebra Jt(A4) of any open domain A is infinite 28).

Then all faithful representations of the field {¥, Q, 4 - N(4)} are physically
equivalent (in the sense of definition 11 (of § 2)).
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The proof of theorem 2 is based upon the following mathematical lemmata:

Lemma 1

Every infinite von Neumann algebra of a separable Hilbert space has a cyclic
vector2?).

Proof of lemma 1

It is known that if 9 is an infinite von Neumann algebra then its commutant 9N’
has a separating vector®®). On the other hand every separating vector of a von Neumann
algebra is a cyclic vector for its commutant?3!). It thus follows that every infinite von
Neumann algebra of separable Hilbert space possesses a cyclic vector.

Lemwma 2

Let # and #, be two separable Hilbert spaces and let 9t and R, be von Neumann
algebras in H and H, respectively. Assume further that 9%, M, as well as their (re-
spective) commutants %’ and N'; are infinite von Neumann algebras. Then for every
*-isomorphism 4: T - A(T) from N onto N, there exists a unitary transformation U
from H onto H, such that

UTU- = W(T) forall T e N .

Proof of lemma 2

Since N is infinite, it has a cyclic vector, say . Similarly 9t has also a cyclic
vector, say ¢. Since the vector ¢ is cyclic for 9, it is separating for " = N. Thus N
has a cyclic vector and also a separating vector. It now follows from a well-known
result32) that there exists a vector which is botk cyclic and separating for N. Similarly
one can prove the existence of a vector (in H,) which is dotk cyclic and separating
for N,.

The proof of lemma 2 will now follow immediately from the following well-known.

T heorem 3)

Let M be a von Neumann algebra (in a Hilbert space H) such that there exists a
vector (in H#) which is both cyclic and separating for 9. Let 9%, be another von Neu-
mann algebra (in a possibly different Hilbert space #,). Assume again that there
exists a vector in H#, which is cyclic as well as separating for 9%,. Then for every
*-isomorphism A: T - A(T) from 9t onto N, there exists an unitary transformation U
from # onto H, such that

UTU=h(T) forall T e N.

Theorem 2 can now be proved easily as follows:
Let the Haag fields

{H#y, 01, A — Ny(A)} and {H,, 05, A — Ny(A)}

be any two faithful representations of the given field

(H, 0,4 >NA)}.



200 B. Misra H.P.A.

Hence there exist *-isomorphisms 4, : T - k,(T) from Q onto Q, and hy: T - hy(T)
from Q onto Q, such that
hy(N(4)) = Ry(4) and

ho(M(4)) = Ny(4)

for every open space-time domain 4. It can be verified easily that the mapping
hs h7? = h is a *-isomorphism from Q, onto (), such that

h(ml(A)) = Ny(4) ,
for all open domains 4. The physical equivalence of the two Haag fields
(01, 4 > Ry(A)} and {Hy, Qo 4 > Ry(A)}

will be established if we show that for every given bounded space-time domain A4,
there exists an unitary transformation U(A,) such that

(A)Y U4y T UYAy) = h(T) forall T e N, (4,) .

Towards this end we first remark that the von Neumann algebras 9,(4) and R,(A)
are *-isomorphic to the von Neumann algebra 9t(A4) which is assumed to be infinite
(cf. footnote 28). Thus for any open domain A, the von Neumann algebras N, (4) and
Ny(A) are infinite too.

We now consider an arbitrarily chosen bounded domain 4, and prove the existence
of an unitary transformation U(A,) with property (4). Since A, is bounded there
evidently exists a non-empty open domain, say /A, which is totally space-like with
respect to 4;. It follows from the foregoing remark that the von Neumann algebras
Ri(4,), Ny(44), Ny(A4s) and Ny(A,) are all infinite. Furthermore local-commutativity
implies that the infinite von Neumann algebra 0, (4,) is a subalgebra of N’;(4,); and
thus M’';(4,) must be infinite too.

Similarly one sees that 9,(4,) is infinite.

We have therefore the following situation: The von Neumann algebras N;(4,),
Ny(4,) as well as their respective commutants N, (4,) and N;(4,) are all infinite and %
is a *-isomorphism from 9;(4;) onto My(A4;). Hence one can apply lemma 2 and
establish the existence of a unitary transformation U(A,) from #; onto #, such that

U(A,) T U-Y(A,) = (1) for all T e N,(4,) .

This establishes theorem 2. Since physical equivalence of two Haag fields implies
their local unitary equivalence, this argument establishes also that all isomorphic
Haag fields are locally unitarily equivalent.

The physical interpretation and some consequences of theorem 2 have already
been mentioned in the introduction. We shall discuss only one further consequence of
theorem 2 in appendix 1.
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Appendix 1

The problem of finding sufficient (and necessary) criteria so that a local Wightman
field may be associated with a given Haag field (in the sense that the correspondence
A = N(A) of the given Haag field is the local correspondence generated by the asso-
ciated Wightman field) is, at present, completely unsolved. An answer to the question,
which is formulated at the end of the introduction (§ 1) will provide some hints as to
where to look for such criteria. For example, if that question has an affirmative answer,
it would follow that only the representation independent properties of the Haag field
are relevant for the formulation of the desired criteria.

We show now (with some reservations) that the question mentioned at the end of
§ 1 has affirmative answer. Let us consider a local Haag field {#, Q, 4 > 9(4)} such
that it is associated with a local Wightman field {¥, f > ¢(f)}. Now let the Haag
field {#;, Q;, 4 - Ry (4)} be a faithful representation of {¥, Q, 4 - N(A)}. In other
words, let there exist a *-isomorphism 4: 7' = A(T) from Q onto Q, such that A(RN(4)) =
N, (A4) for every bounded space-time domain 4. We want to establish the existence
of a Wightman field {#,, f > ¢,(f)} such that the algebra R,() corresponding to any
bounded domain A is the von Neumann algebra generated by all operators ¢, (f) with f
vanishing outside the space-time region .

The construction of the field f - ¢,(f) can be carried out as follows: Let f be any
given test-function in the space D, let A be a bounded and open space-time domain
such that the support of fis contained in 4. (Such bounded space-time domains exist
because the supports of functions in D are compact). Let U(A) be a unitary operator
from # onto H, such that:

UA) T UXA) = W(T) for all T e R(4) . 1)

(The existence of such unitary transformations is guaranteed by theorem 2 of § 4.)
We may then define ¢,(f) by the equation:

$i(f) = Ud) ¢(/) UH(4) . (2)

We have to verify that definition 2 is unambiguous. Ambiguity may arise due to
two reasons. First of all the choice of the domain A is not unique. (The only require-
ment on 4 being that it contains the support of the given test-function). The other
possible cause of ambiguity is that even when 4 is chosen the unitary transformation
U(A) satisfying relation 1, is not unique.

We now verify that none of these will lead to an ambiguity in the definition of ¢,(f).

Let A, and A4, be any two bounded and open domains which contain the support
of the given test-function f and let U(A4,) and U(4,) be corresponding unitary trans-
formations. It will be shown that

U(dy) ¢(f) UMy = U(dy) ¢(f) U NAo) = i(/) - (3)

To this end we first observe that the set A, = A, N 4, is also a bounded and open
domain containing the support of f. Furthermore

WT)=U(d,) T UNAy) = Udy) T U (4y)
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for all
T eNd,) C (%(Al) N gﬁ(zjg)) .
Hence

U=H(dy) U(dy) T Uy U(dy) = T

for all T € N(4,). In other words the unitary operator U-1(A,) U(4,) = U, belongs to
N'(4y). Since the support of f is within A,, the operator ¢(f) is (by hypothesis)
affiliated with R(A4,). It thus follows that U, ¢(f) U,~! = &(f). Relation 3 can now be
proved easily. In fact

U4y $(f) UH(A) = Uldy) Ug$(f) Ug™ UH(Ay) = U(dy) (/) U7H(4,) .

We have thus verified that definition 2 is unambiguous.

The assertion that M,(A) is the von Neumann algebra generated by all operators
é,(f) which correspond to test-functions f vanishing outside the region A now follows
immediately from the definition 2. In fact (according to our hypothesis)

A) = {(f) | /, vanishing outside A}".
Therefore

Ny (4) = H(R(4)) = Ud) R(4) U(4) =
{U(A) ¢(f) U(A) = ¢4(f) | f, vanishing outside A}".

It thus remains to show that the mapping f - ¢,(f) defines a local Wightman
field. For this purpose we have to verify the following properties of the mapping
> éi(f)

(a) There exists a dense linear manifold D, in #, which is a common domain of defi-
nition of all ¢,(f) (with f€ D) and such that

¢:(f) D, € D, and ¢*(f) D, C D,
(b) If f; and f, are any two test-functions in D then
blafi+ By =ad(f)y+ By

for any y € D, and complex «, f.

(c) If £, = 0 (in the topology of D) then (y,, ¢,(f,) ws) — 0 for any v,, w, € D,.

(d) If the supports of the test-functions f and g are completely space-like with respect
to each other then

[B1(f), $1(8)] = [$1(/), J1(g)] = 0 on D, .

We can not at present prove the property (a) of the mapping f - ¢,(f). It can,
however, be proved easily that for every given bounded space-time domain A (no
matter how large) there exists a dense linear manifold D,(A) such that all operators
é1(f) (with [ vanishing outside A) are defined on D,(4); ¢,(f) Dy(4) C D,(4) and
7 (f) Dy(4) C Dy(A4). In fact, it follows from the def1n1t10n of &.(f) that the set
Di4)y=U (A) D 1s such a domain, where D is a common invariant dense domain of
the field operators ¢(f). (Here U(A) D denotes the set of all vectors of the form
U(d)yp withype D). Itis also quite likely that 0 (U(4) D) is still dense in H;. In this

A4, bounded
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case property (a) will hold strictly. However, we leave this question open for the
present.

As for the properties (b), (c) and (d), they can be proved easily from the corre-
sponding properties of ¢(f) and definition of ¢,(f) if D, is replaced by D,(4) = U(4) D
for suitably large A.

For example in (b) we replace D, by D,(A4) where A contains the supports of f;
and f,. Similarly in (c) we replace D, by D,(4) where A is any bounded domain which
contains the support of all test functions f, (n =1, 2, ...). (Such a bounded domain
always exists for every convergent sequence {f,} of test functions in D).

Finally we mention that the foregoing arguments cannot be carried through if it is
required that Wightman fields be defined on test-function space § instead of on D.

Appendix 2

In this appendix we shall supply the proofs of lemma 1 and lemma 4 of § 3.

Lemma 1

Every non-trivial (left) ideal of a von Neumann algebra contains at least one
non-zero projection operator.

Proof of lemma 1

Let the operator T (+ 0) belong to the non-trivial (left) ideal J of M. Then the
operator 7* T = H is also in J. Let E() denote the spectral family of the self-adjoint
operator H. Since H is positive definite, there exists an interval L = (o, 8) (0 < a0 <
f < o0) such that E(L) = E(f) — E(«) + 0. We shall show that the projection E(L)
belongs to the ideal J. Since H € N, the projection E(L) also belongs to N. Further-
more H E(L) = E(L) H. We denote by H,,, the restriction of H to range of E(L).
Thus H|,, is a bounded, linear, self-adjoint operator of the space m. Because of the
choice of the interval L the point O of the real line is outside the spectrum of H,,.
Therefore there exists a bounded, linear operator H,} in # which is the inverse of H,, .
We now consider the operator B which is defined by the equation:

By):H(;sy)ify)em
and

B¢ —0if ¢

is orthogonal to m. The operator B, when extended to the entire space by linearity,
is a bounded linear operator of the underlying Hilbert space #. We may also write
B = H,,; E(L). We shall now show that the operator B, thus defined, belongs to 9.

To this end, we consider the reduction (N),, of the algebra 3N to the subspace .
Evidently H ,, € (R) . Therefore H{,, belongs to (N,,)". In other words, any bounded
linear operator (of the space m) which commutes with all operators in N, will
commute with H,; also.

Furthermore one has

(m(m))’ = (G‘R’) (m) ).
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With the help of these facts we can now show that B commutes with every operator
T of the commutant N’ of N. In fact, we have:

BTy=H,} E(L) Ty=Hy! T E(L)yp = H;;) T, (E(L) p)
= T, H,, E(L)y = TH(;,} E(L)yyw =T By, forally e ¥ .

Here the second equality is valid because 7€ ' and E(L) € i and the fourth because
Hiie Ry and T, € Ny = (Riy)’. Thus we have proved that BeN. Since
HeJ and BeM; the operator BH = Hi} E(L)H = Hp,} HE(L) = E(L) also
belongs to J. This establishes lemma 1.

Lemma 4

A C*-algebra R with identity is simple if and only if all (cyclic) *-representations
of R are faithful.

Proof of lemma 4

Let T - A; be any *-representation of the algebra R. It can be verified easily
that the set J which consists of all elements T of R such that A, = 0; is a two-sided
ideal of R. Hence, if R is simple, the representation 7" - A, must be faithful (i.e.
A; = 0if and only if T = 0). This proves the “only if”’ part of the lemma.

For proving the “if”’ part of the lemma we now show that if the C*-algebra R hasa
non-trivial two-sided ideal then it has at least one (cyclic) *-representation which is
not faithful.

Let us suppose that J is a non-trivial t.s. ideal of R. Then the closure Tof T
(in the topology defined by the norm on R) is a non-trivial two-sided ideal (and hence,
a fortiori, a left ideal) of R3%). An application of two well-known theorems3¢) then
guarantees the existence of a positive linear functional®) ¢(T) on R such that

¢(I) =1, and ¢(T* T) = 0

for every T in the two-sided ideal T,

It can be easily verified that the Gelfand construction?8) corresponding to the
positive linear functional ¢ will yield a cyclic *-representation 7" - A7 of R such that
Ap=0whenever T € J. In fact we may recall that the Gelfand representation T - A
(corresponding to the functional ¢) has the following property: There exists a corre-
spondence T -y between the elements T of R and vectors 7 in the representation
space # (i.e. the Hilbert space in which the operators 4 act) such that

(a) The set D of all vectors g, (with 7 € R) is a dense linear manifold of ¥,
(b) As yr = ysr for every S and T in R, and
(c) (wp,pr) =¢(T*T) forall T e R.

Nowl et T € J. We shall show that 4, = 0. If ps s any vector in D then

HATTPSIP = (Arys, Arws) = (Wrs, Yrs) = ¢((T S)* (T S)) .
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Since J is a t.s. ideal (and hence a right ideal also) and T € T, it follows that

T Se J. Therefore || 4, ys ||2 = 0. In other words 4, ws = 0 for all 5 € D. Since D
is dense in H it follows that 4, = 0.

Y)

< B WM
e N e N e

w == &

10)

This completes the proof of lemma 4.
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