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On the Representations of Haag Fields

by B. Misra
Institute of Theoretical Physics, University of Geneva, Geneva

(5. XI. 64)

Abstract. It is shown that the algebra of quasi-local operators of a Haag field (with certain
reasonable properties) is simple. Consequently all representations of such Haag fields axe faithful.
The intuitive notion of the "physical equivalence" of two local fields is formulated mathematically.
It is then proved that all (faithful) representations of a given local Haag field are "physically
equivalent".

§ 1. Introduction

In recent years several mathematical frames have been proposed which are
expected to embody the essential features (such as : locality and relativistic invariance)
of quantized field theories. One of these was proposed by Wightman1). This frame
(which will be referred to as the Wightman field) is specified by a Hilbert space and a

linear and weakly continuous mapping/^) -> Aff) from a suitable test-function space
into the set of closed linear operators in ?/. Locality and relativistic invariance of the
theory are then expressed by appropriate properties of this mapping. A somewhat
different scheme was proposed by Haag2)3)4)5). In this method the mathematical
structure (which will be called the Haag field) is specified by a Hilbert space "ìl

and a correspondence A -> 9t(d) between (bounded) open space-time domains A
and von Neumann algebras 31(A) in 71. Such features of the theory as locality
and relativistic invariance are now reflected by appropriate properties of the
correspondence A -> 31(A) (see definitions (1) and (6) of § 2).

Unfortunately the exact relationships of these two descriptions (of Wightman
field and Haag field) have not been fully explored. One might expect, at first sight,
that a given local Wightman field/ -> A ff) will correspond to a local Haag field if one
establishes the correspondence A -> 91(d); where 91(d) is the von Neumann algebra
generated5) by all field operators Aff) with /vanishing outside the space-time domain
A. The correspondence A -> 91(d) thus obtained maybe called the local correspondence
generated by the given Wightman field. Two questions arise naturally in this
connection :

(1) When does the local correspondence A -> 91(d) generated by a Wightman field
define a local Haag field

(2) When is the correspondence A +-3tfA) of a given local Haag field the local
correspondence generated by a Wightman field

At present, the first of these questions has received only a partial answer6), whereas
the second question remains completely open.

The present paper is not directly concerned with the questions just mentioned.
Nevertheless the main result of this paper will enable us to comment on some aspects
of the second question of the previous paragraph.
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The principal questions discussed in this paper and the main conclusions arrived
at may be described roughly as follows : Let the (separable) Hilbert space ~H and the
correspondence A -> 3ifA) characterize a given local Haag field. The set-theoretic
union of all 3lfA 's corresponding to all bounded and open domains A will be a *—algebra
Q of bounded linear operators in 71. Taking the completion of Q, in the topology
determined by the operator norm, we shall obtain a so-called C*-algebra Q which will
be called the algebra of quasi-local operators of the given Haag field. The first important
problem is to study the structure of the C*-algebra Q. Section 3 of this paper is
devoted to this problem. It will be shown there (under some additional mild assumptions

about the local Haag fields) that the algebra Q as well as the incomplete algebra
Ç of a local Haag field are simple. (For a precise statement of this result see theorem 1.)

Let us now consider a faithful, separable representation of the algebra Q of the

given Haag field. In other words we consider a *-isomorphism (say h) of the *-algebra Q

onto a *-algebra (say Qf of bounded operators of a separable Hilbert space -Hx. The
isomorphism h will map a local ring 9i(d) of the original Haag field onto a subalgebra
A(9î(d)) yifA) of Qx. We then expect that the Hilbert space "Ux, and the
correspondence A -> 3lfA) will define a local Haag field. In fact, isotony and local
commutativity (see definition 1 of § 2) of the given Haag field imply that the correspondence
A -> 9l1(d) will have the corresponding properties. Therefore, the only question that
needs further investigation is, as to whether; the algebras 9i.,(d) are again von
Neumann algebras. This question will be discussed elsewhere7). It will be shown there
(with some additional assumptions about the given Haag field) that the algebras
3lxfA) are indeed von Neumann algebras. Anticipating the result of reference 7 we

may then conclude that every separable (faithful) representation of the algebra Q
of a given local Haag field defines (in the manner just described) a local Haag field
which will be called a representation of the given Haag field.

Two local Haag fields are said to be isomorphic if they are faithful representations
of each other. Evidently the set of all Haag fields can be divided into equivalence
classes of isomorphic Haag fields.

We shall study in this paper the relationship existing between isomorphic Haag
fields. A very satisfying result in this direction would have been that all isomorphic
(irreducible) Haag fields are unitarily equivalent. This, however, is not true. We shall
therefore introduce a weaker notion than that of unitary equivalence (viz. the notion
of local unitary equivalence) and show that all isomorphic Haag are locally unitarily
equivalent (Theorem 2 of § 4). This mathematical theorem may be interpreted physically

to say the following : two isomorphic Haag fields will predict the same outcome
for all experiments carried out in an arbitrarily chosen but finite space-time region.
In other words, if a given Haag field provides an adequate theory for a group of
physical phenomena which can be explored by experiments performed in an arbitrarily
chosen finite space-time domain then any (faithful) representation of the given Haag
field will also be adequate as the theory of the same group of phenomena. Since all
physical measurements are carried out in a finite space-time region, it seems reasonable
to conclude that all isomorphic Haag fields are physically equivalent*).

We now mention some of the implications of the above conclusion. First of all it is
clear that unitary equivalence is not a necessary condition for physical equivalence.
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In fact there exist unitarily inequivalent Haag fields which are isomorphic (and thus
physically equivalent).

Furthermore since all isomorphic Haag fields are physically equivalent it suggests
that only abstract algebraic properties (i. e. those properties which are invariant under

algebraic isomorphism) of the algebra Q of quasi-local operators and those of the local
correspondence A -> 91(d) are physically relevant. It is thus both natural and possible
to develop a purely algebraic framework for quantum field theory9).

Finally in appendix (1) of this paper we shall exploit theorem 2 for answering the
following question: suppose that the local correspondence of one of the Haag fields
of a given equivalence class (of isomorphic Haag fields) is generated by a Wightman
field. Does it then follow that the local correspondence of every Haag field in the given
equivalence class is generated by a Wightman field

§2. Some Basic Definitions

In the introduction we have described some of the fundamental concepts (such as

those of a Haag field, isomorphic representations of Haag fields etc.) in an informal
manner. For the sake of ready reference we shall now state the precise definitions of
these concepts.

Definition 1

A separable Hilbert space 71 and a correspondence Zl -> 91(d) between open space-
time domains A and algebras 91(d) of bounded linear operators in Tt are said to define
a (local) Haag field if the following conditions are fulfilled :

(a) The algebras 91(d)'s are von Neumann algebras10).
(b) Ax Q A2 implies that 3lfAx) g 9c(d2) flsotony).
(c) If the space-time domains A x, and A 2 are totally space-like with respect to each

other then 9t(d1) Q 91'(d2) (Local commutativity). Here 9c'(d2) (called the
commutant of 9t(d2)) denotes the set of all bounded linear operators of 71 which
commute with every operator of 3lfA2).

Let Q denote the set-theoretical union of all 9l(Zl)'s which correspond to bounded

open domains A. Then the completion of Q in the uniform topology will be denoted by
Q and it is called the algebra of quasi-local operators of the given Haag field. A Haag
field is said to be irreducible if its algebra of quasi-local operators Q is irreducible
(i.e. if Ç' {A 7».

Invariance of a Haag field under a given symmetry group G is expressed by the
existence of a suitable representation of G in the automorphism group of the algebra
of quasi-local operators. We shall therefore state now the definitions of relevant
mathematical concepts.

Definition 2

Let Rx and R2 be two *-algebras. A mapping tf>: T -^-<f>fT) from Rx onto R2 is
called a *-homomorphism of Rx onto R2 ii the following relations hold for all Tx, T2
in Rx and complex co-efficients a, ß:
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4faiTx + ßT2)=a:c/>fTx)+ßcf>fT2) (1)

cßfTx T2) c/>fTx) tfT2) fl)
<f>fTx*) fcf,fTx))* (3)

If the mapping cf> is, in addition, one-one (bijective) then one speaks of *-iso-
morphism of *-algebra Rx onto the *-algebra R2.

Definition 3

A *-isomorphism <j>: T -^-<j)fT) of the algebra R onto itself is called an
automorphism of R. The class of all automorphisms of the algebra R forms a group
(denoted by AfR)) when the product operation, inverse operation, and the identity
are defined as follows :

The product of two autmorphisms cf>x and <f>2 is defined to be the automorphism
given by the mapping tf>xcf>2: T -A» cf>xfcj>2fT)).

The inverse of an automorphism cj>: T -> cj>fT) is the inverse mapping cf)*1 from R
onto itself. The identity of the automorphism group A fR) is now the identity mapping
T -> T of R onto itself.

Definition 4

A group G is said to have a representation in the automorphism group AfR) of the
algebra R if there exists a mapping h: g -> hfg) from G into A fR) such that

(a) hfgx g2) h(gx) hfg2) and
(b) the identity of the group G is mapped into the identity of the group AfR).

Definition 5

Let G be a topological group n) and a suitable topology be defined on A fR) so that
it becomes a topological group also. Then a continuous mapping from G into AfR)
which satisfies conditions (a) and (b) of the previous definition is called a continuous

representation of G in the automorphism group AfR). Usually one speaks of representations

of groups in more restricted sense. For example, one speaks of unitary representations

of a group G when one considers mappings h: g -> hfg) from G into the group of

unitary operators of a Huberts space, which satisfy conditions (a) and (b) of definition

4. It may be noted here that the concept of representation (in the sense of
definition 4) coincides with that of unitary representation when one specializes the
algebra R to be the algebra of all bounded operators in a Hilbert space12).

We are now prepared to express the invariance of a Haag field under a given
symmetry group.

Definition 6

Let the symmetry group G be a group of transformations of the space-time manifold.

(For example G may be the 4-translation group, Euclidean group or inhomogeneous

Lorentz group etc.) A Haag field, characterized by the Hilbert space Ti, the

algebra of quasi-local operators Q and the correspondence A -> 91(d), is said to be
invariant under G if there exists a representation g ->- <f>g of the group G in the
automorphism group of Q such that

^9c((d)) 9c(gd) (4)

for all g in G and all open and bounded space-time domains A.
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Here <f>e(3l(A)) denotes the set of all operators <f>gfT) with T e 91(d) and gA is the
space-time domain into which A is mapped by the transformation g.

We may note that definition 6 ignores the topological structure of the symmetry
group G. It is of course desirable, both for mathematical and physical reasons, to
introduce an appropriate topology in the automorphism group A fQ) and express the
G-invariance of a Haag field by the existence of a continuous representation of G in
AfQ) which fulfils the condition (1) of definition 6. However, we shall not discuss here
the details of the construction of an appropriate topology in AfQ).

Instead of definition 6, one often adopts the following more restrictive definition of
G-invariance.

Definition 7

A Haag field

{7l,Q,A^9lfA)}
is said to be invariant under the symmetry group G if there exists a continuous unitary
representation g -> U g of G (in 71) such that

Ug3lfA)Uf1 3lfgA)
tor all bounded and open space-time domains A and every g eG.

Definition 8
A Haag field

(U2,Q2,A^%fA)}
is said to be a representation of the given Haag field

{7ix,Qx,A-+%fA)}

if there exists a *-homomorphism h: T ->-A(T) from the *-algebra Qx on to the

*-algebra Q2 such that
hf%fA)) 3l2fA),

for all bounded and open domains A.
If the homomorphism Â is a ""-isomorphism then the Haag field

{7l2,Q2,A^%fA)}
is said to be a faithful for isomorphic) representation of the given Haag field.

Definition 9

Two Haag fields

{7ix, Qx, A -> %fA)}; and {7i2, Q2, A -> 9c2(d)}

are said to be unitarily equivalent if there exists a unitary transformation U from 7lx

onto 7l2 such that
U %fA) U-1 9c2(d)

for all open space-time domains A.

13 H.P.A. 38, 2 (1965)
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Evidently two unitarily equivalent Haag fields are isomorphic (i.e. are faithful
representations of each other) ; but two isomorphic Haag fields need not be unitarily
equivalent. However, it will be shown (Theorem 2) that two isomorphic Haag fields
are always locally unitarily equivalent in the following sense :

Definition 10

Two Haag fields

{fa. Qt, A -> 3lxfA)}; and {7i2, Q2,A -> %fA)}

ave said to be locally unitarily equivalent if for any given bounded space-time domain A

(no matter how large) there exists a unitary transformation UfA) from 7ix, onto 7l2,
such that UfA) %(A0) U^fA) %fA0) for all d0 Q A.

Finally we give a mathematical formulation of the notion of physical equivalence
of two Haag fields :

Definition 11

Two Haag fields

{7lx, QX,A -> WlfA)}; and {7i2, Q2, A -> %fA)}

are said to be physically equivalent if the following two conditions are fulfilled:
(1) There exists a*-isomorphism h: T -A» hfT) from Qx onto Q2 such that

hf3l1fA)) %fA).
for all bounded and open domains A.

(2) For any given bounded domain A there exists a unitary transformation UfA)
from 7lx, onto 7i2, such that

UfA) T U~\A) hfT) for all Te 3lx fA). (2a)

In other words, physical equivalence of two Haag fields implies that the two Haag
fields, are isomorphic, as well as locally unitarily equivalent; the local unitary
transformations UfA) being such that relation (2a) holds.

§3. The Structure of the Algebra of Quasi-Local Operators

It will be shown in this section that the algebra of quasi-local operators of a Haag
field with certain reasonable properties, is simple13). For giving a more precise
formulation of this result we first introduce the

Definition 12

A Haag field

{% Q,A^ 91(d)}

is said to have the property F f"F" for factor) if for any bounded open space-time
domain Ax, there exists a bounded and open domain A2 such that AXQ A2 and the
von Neumann algebra 3lfA2) is a factor1*).

The result, alluded to earlier, can now be stated more precisely as follows:
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Theorem 1

Let the Hilbert space 71 and the correspondence A -> 3lfA) characterize a translation

invariant local Haag field (see definition 1 and 6) which has the property F.
Then the algebra Q U 31 fA), as well as its completion Q in the uniform topology
are simple. A- bounded

Before proving theorem 1, we should of course, make sure that we are not talking
about empty set. In other words we should ascertain the existence of at least one
translation invariant local Haag field with the property F. It is known15) that the
Haag field generated by free Boson field has the property F and it is of course
translation invariant. It is not known whether the property F is true for every Haag
field which is generated by (not necessarily free) Wightman field. Nevertheless it is

plausible that property F is true for a wide class of Haag fields. Thus the range of
applicability of theorem 1 seems to be rather general.

After these preliminary remarks we now turn to the proof of theorem 1. We shall
first prove that the algebra Q which is the set-theoretical union of all 9i(d)'s
corresponding to bounded and open domains A is simple. For this purpose we shall need
the following lemmata:

Lemma 1

Every non-trivial (left) ideal of a von Neumann algebra 91 contains at least one
non-zero projection operator.

A proof of lemma 1, under the additional assumption that 31 is the algebra of all
bounded operators of a Hilbert space, can be found in reference 16 (pp. 291-292).
In appendix 2 we shall give a proof of this lemma (without making the extra assumption

just mentioned).

Lemma 2

Let the Hilbert space 71 and the correspondence A -> 9c(d) define a translation-
invariant local Haag field with the property F. Letzl,, be a bounded and open domain
such that 9i(dj) is an infinite factor17)21). Then there exists a bounded and open domain
A such that :

(a) 3tfAx) g 91(d);
(b) 91(d) is a factor; and
(c) Every non-zero projection of 9i(dj) is infinite relative to 3lfA).

Proof of lemma 2

It is clear that by translating (spatially) the bounded domain A x, we can obtain a
domain A2 which is totally space-like with respect to Ax. The property F of the Haag
field guarantees the existence of a bounded and open domain A which covers Ax and d2
and such that 3lfA) is a factor. It is evident that 3lfAx) g 31(A) (isotony). Thus lemma
2 will be stablished if we show that every non-zero projection of 9t(Zl1) is infinite
relative to 91(d).

For this purpose it is sufficient to prove that if P (+ 0) is a projection of 3ifAx)
then the reduction18) (9t(Zl))p of 91(d) to the range M of P is an infinite factor19).
Towards this end we first prove the existence of a *-isomorphism from 3lfA2) into
(9l(d)p.
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As a preliminary to the construction of the desired isomorphism, we recall that the
domain d2 is constructed to be totally space-like with respect to Ax, and therefore

3lfA2) g 3l'fAx) (Local commutativity).

Consequently every operator T of 9c(d2) is reduced by the subspace m (i.e. the range
of the projection Pe3lfAx)). Hence if re9i(d2) then its restriction T{m) to the
subspace m will belong to (9t(d2))P ; (and therefore a fortiori to f3lfA))f). Thus the
mapping T -> T{m) (with T e 9t(d2)) is a mapping from 9l(d2) into f3l(A))P. It is now
claimed that this mapping provides the desired isomorphism. In fact it can be easily
verified that if S -> S{m), and T -> T(m) (with S,T e 9î(Zl2)) then S + T ->¦ S{m) + T{m) ;

a S -> a S(m) ; S T -> S(m) T(m) and T* -> (r(m))*.
It only remains to show that the mapping T -> 7[m) (with T e 9t(d2)) is one-one.

In other words we have to show that if S and T are in 9i(Zl2) and if S(m) T(m) then
S 7". As a matter of fact, S(m) T(OT) implies that S P T P or (S — T) P 0.

The projection P (#= 0) belongs to the factor 9î(d1) and (S — T) belongs to 9c(d2)
which is contained in the commutant of 3l(Ax). Therefore (S — T) P 0 if and only
US - T 020). Hence S{m) T(m) (with S, T e 9l(d2)) implies that S T. We have
thus proved that the mapping T -> 77,) is a *-isomorphism from 3lfA2) into (3lfA))P.

In order to complete the proof of lemma 2 we recall that the domain A2 is obtained
by translating the domain Ax. Therefore translation invariance of the Haag field
entails that 3lfA2) is *-isomorphic to 3lfAx). Since 3lfAx) is an infinite factor, 9t(d2) will
be an infinite factor too. Therefore there exists a projection, say P(1), in 3lfA2) which
is infinite relative to 9l(d2). Since the mapping T -> T"(m) (with T e 3l(A2)) is a ?-iso¬

morphism of 3lfA2) into f3lfA))p, it follows that P(™( is an infinite projection relative
to (91(d))p. Thus the factor (91(d)P) is infinite. This establishes the lemma 2.

It may be useful to mention here the following variant of lemma 2.

Lemma 2a

Let the correspondence A -> 3ifA) define a local Haag field, such that the algebras
91(d)'s of local observables corresponding to bounded and open space-time domains
are all infinite factors21). If, now, d0 is a non-empty open space-time domain (no matter
how small) that is totally space-like with respect to the open space-time domain A x,
then every (non-zero) projection of 3tfAx) is infinite relative to 3lfAx \j Af).

The proof of this lemma is the same as proof of lemma 2.

We now prove that Q is simple. Suppose, to the contrary of this assertion, that
CT is a non-trivial (two-sided) ideal of Q. We shall show that this hypothesis leads to a
contradiction.

Let T (4= 0) be an operator of U. It follows from the definition of Q that there
exists a bounded domain d0 such that T e 9l(d0). The property F of the Haag field
says that there is a bounded domain Ax which covers d0 and such that 9l(dx) is a

factor. It can be easily verified that the set Uo 3lfAx) *JX is a two-sided ideal of
3lfAx) ; and sinceUx contains at least the operator T f+ 0), it is a non-trivial two-sided
ideal.

Now the factor 91^!) can either be a finite factor or an infinite factor21). In the
case that it is a finite factor, the desired contradiction results immediately. For, it is
known that a finite factor has no non-trivial two-sided ideals22).
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We now assume the only other possibility that 9t(Zl1) is infinite. Since Uxis a non-
trivial two-sided ideal of 3tfAx), it follows according to lemma 1 that there exists a

non-zero projection, say P, in Ux. Now the projection P is either finite or infinite
relative to 3lfAx).

In any case there exists (according to lemma 2) a bounded domain A such that
AXC A 31(A) is a factor and P is infinite relative to 31(A). It is evident that the set
Jn 91(d) J0 is a non-trivial two-sided ideal of 3ifA) and it contains P. However,
P is infinite relative to 9t(Zl). Therefore there exist operators û and Q* in 3lfA) such
that

Q* Q=P axid Q Q* 123)

Hence P e J0 implies that Q P Q* û Ü* Q Q* I belongs to U0. This would
mean that U Q which is not possible.

This proves the assertion that Q is simple.
We now show that "simplicity" of Q entails the "simplicity" of its closure Q in

uniform topology. This will be accomplished with the aid of the following lemma:

Lemma 3

If the mapping T -> AT from Q into the set of all bounded operators in a Hilbert
space (say 7tx) is a »-homomorphism (i. e. a *-representation) of Q then

||T|| \\AT\\ forali T eQ

Here || T || and || AT || denote respectively the norm of the operator T (of 71) and
ATfoi7lx).

Proof of Lemma 3

First, it may be noted that since Q is simple, every *-homomorphism of Q is

automatically a *-isomorphism.
Thus we may consider a *-isomorphism T -> AT of Q. Let T be any given operator

of Q. We have to show that ||T|| ||.4T||. Towards this end we remark that there
exists a bounded domain A such that T e 31(A). The *-isomorphism of Q into the
algebra Bf7ix) of bounded operators in 7ix automatically gives (by restriction to
91(d)) a »-isomorphism of 91(d) into B^). The algebras 3lfA) and Bf7lx) can both be
considered as C*'--algebras24), fthe norms in these algebras being the corresponding
operator norms).

It is well-known that every »-isomorphism of a C*-algebra into another C*-algebra
preserves the norm25). Hence it follows that the norm of element T of the C*-algebra
91(d) is the same as the norm of the element AT in the C*-algebra "BfTlfj. However,
as mentioned earlier these norms coincide with the operator norms. Thus || T ||

iMrll-
Lemma 4

A C*-algebra R is simple if and only if all »-representations of R (i.e. *-homo-
morphisms of R into the algebra of bounded operators in some Hilbert space) are
faithful.
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The proof of this mathematical lemma is for convenience deferred to appendix 2.

We now show that Q is simple. According to lemma 4 it will be sufficient to prove
that every »-representation of Q is faithful (observe that Ç is a C*-algebra).

Let the mapping T -> AT from Q into the algebra of bounded operators of some

Hilbert space be an arbitrary »-representation of Q. It will be shown that it is faithful.
In other words, it will be proved that if T e Q and AT 0 then T 0.

Since TeQ, there exists a sequence {Tn} fn 1, 2, of operators in Q such that
II Tn— T 11 -> 0 as n -> oo. We now have :

IA)\\AIT r,|| |UT ~AT\\ \\AT II < \\Tn- T\\v 'II \ln — c l\\ I I Cn -< I I II 1 nil II " II

(Here the first equality follows from the linearity of the mapping T -> AT ; the second
from the hypothesis that AT 0 and the last inequality follows from a well-known
result26)).

Evidently the mapping T -> A T when restricted to Q gives a »-homomorphism of
Q which maps Tn into ATn. Thus according to lemma 3 || ATn || || Tn ||.

Now, || Tn— r 11 -> 0 as w ^- oo ; Hence it follows from relation fA that 11 A Tn \ \

|| Tn || ->0 as m^oo. But || T„ - 7/ || -> 0 as n -> oo and || T„ || -> 0 as « -> co

imply that T 0.

This completes the proof of theorem 1.

Before ending this section we mention some immediate corollaries :

Corollary 1

All representations of a translation invariant local Haag field with the property F
are faithful.

Corollary 2

The algebra of quasi-local operators of a translation invariant local Haag field
with the property F does not contain any completely continuous (compact) operator
(other than 0). In fact every compact operator which belongs to Çwill generate a

non-trivial two-sided ideal of Q.

§4. Physical Equivalence of Isomorphic Haag Fields

The main result of this section is that all (faithful) representations of a given Haag
field (or, in other words, all isomorphic Haag fields) are physically equivalent. This
result would of course be redundant if it so happened that all irreducible isomorphic
Haag fields were unitarily equivalent.

It can, however, be shown that Haag fields, with physically reasonable properties,
have unitarily inequivalent, irreducible representations27). We may therefore proceed
to prove the theorem on physical equivalence, without much fear of redundancy.

Theorem 2

Let {71, Q, A -> 9i(d)} be a local Haag field with the following property:
The von Neumann algebra 91(d) of any open domain A is infinite28).
Then all faithful representations of the field (Ti, Q, A -> 91(d)} are physically

equivalent (in the sense of definition 11 (of § 2)).
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The proof of theorem 2 is based upon the following mathematical lemmata :

Lemma 1

Every infinite von Neumann algebra of a separable Hilbert space has a cyclic
vector29).

Proof of lemma 1

It is known that if 91 is an infinite von Neumann algebra then its commutant 91'

has a separating vector90). On the other hand every separating vector of a von Neumann
algebra is a cyclic vector for its commutant31). It thus follows that every infinite von
Neumann algebra of separable Hilbert space possesses a cyclic vector.

Lemma 2

Let 71 and 7ix be two separable Hilbert spaces and let 31 and 3lx be von Neumann
algebras in 71 and 7ix respectively. Assume further that 91, 3lx as well as their
(respective) commutants 91' and 3l\ are infinite von Neumann algebras. Then for every
»-isomorphism h: T -+ hfT) from 9c onto 3lx there exists a unitary transformation U
from 71 onto 7lx such that

UTU-1 hfT) forali T e 9c

Proof of lemma 2

Since 31 is infinite, it has a cyclic vector, say rp. Similarly 91' has also a cyclic
vector, say cj>. Since the vector ^ is cyclic for 91', it is separating for 9Ì" 31. Thus 91

has a cyclic vector and also a separating vector. It now follows from a well-known
result32) that there exists a vector which is both cyclic and separating for 91. Similarly
one can prove the existence of a vector (in 7ix) which is both cyclic and separating
for9V

The proof of lemma 2 will now follow immediately from the following well-known.

Theorem33)

Let 91 be a von Neumann algebra (in a Hilbert space 71) such that there exists a
vector (in Ti) which is both cyclic and separating for 91. Let 9^ be another von
Neumann algebra (in a possibly different Hilbert space 7lx). Assume again that there
exists a vector in 7ix which is cyclic as well as separating for 3lx. Then for every
»-isomorphism h: T -> hfT) from 91 onto 3tx there exists an unitary transformation U
from 71 onto 7lx such that

UTU~x hfT) forali T e 31.

Theorem 2 can now be proved easily as follows :

Let the Haag fields

{7tx, Qx,A->3lxfA)} and {7/2, Q2,A^3l2fA)}
be any two faithful representations of the given field

{7l,Q,A->3lfA)}.
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Hence there exist »-isomorphisms hx : T -> hxf T) from Q onto Qx and h2 : T -> h2f T)
from Q onto Q2 such that

hxf3lfA)) 3lfA) and

A2(9t(d)) 9c2(d)

for every open space-time domain A. It can be verified easily that the mapping
h2 hf1 h is a »-isomorphism from Qx onto Q2 such that

A(9î1(/1)) 9î2(d),

for all open domains A. The physical equivalence of the two Haag fields

{7ix, Qx,A^3lfA)} and {7l2, Q2,A^3l2fA)}

will be established if we show that for every given bounded space-time domain Ax
there exists an unitary transformation UfAx) such that

(A) UfAx) T U^fAf hfT) for all T e 3lfAx)

Towards this end we first remark that the von Neumann algebras 3txfA) and 9Z2(d)

are »-isomorphic to the von Neumann algebra 91(d) which is assumed to be infinite
(cf. footnote 28). Thus for any open domain A, the von Neumann algebras 3lxfA) and
9c2(/l) are infinite too.

We now consider an arbitrarily chosen bounded domain A, and prove the existence
of an unitary transformation UfAx) with property fA). Since Ax is bounded there
evidently exists a non-empty open domain, say A2 which is totally space-like with
respect to Ax. It follows from the foregoing remark that the von Neumann algebras
3lxfAx), 3l2fAx), 9l1(d2) and 9l2(d2) are all infinite. Furthermore local-commutativity
implies that the infinite von Neumann algebra 3lxfA2) is a subalgebra of 3l\fAx) ; and
thus 3l'xfAx) must be infinite too.

Similarly one sees that 3l'2(Ax) is infinite.
We have therefore the following situation: The von Neumann algebras 9l1(d1),

3l2fAx) as well as their respective commutants 9l1(d1) and 9t2(d2) are all infinite and h
is a »-isomorphism from 3txfAx) onto 3lfAx). Hence one can apply lemma 2 and
establish the existence of a unitary transformation UfAx) from 7lx onto 7l2 such that

UfAx) T U-\AX) hfT) for all T e 3lfAx)

This establishes theorem 2. Since physical equivalence of two Haag fields implies
their local unitary equivalence, this argument establishes also that all isomorphic
Haag fields are locally unitarily equivalent.

The physical interpretation and some consequences of theorem 2 have already
been mentioned in the introduction. We shall discuss only one further consequence of
theorem 2 in appendix 1.
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Appendix 1

The problem of finding sufficient (and necessary) criteria so that a local Wightman
field may be associated with a given Haag field (in the sense that the correspondence
A -> 91(d) of the given Haag field is the local correspondence generated by the
associated Wightman field) is, at present, completely unsolved. An answer to the question,
which is formulated at the end of the introduction (§ 1) will provide some hints as to
where to look for such criteria. For example, if that question has an affirmative answer,
it would follow that only the representation independent properties of the Haag field
are relevant for the formulation of the desired criteria.

We show now (with some reservations) that the question mentioned at the end of
§ 1 has affirmative answer. Let us consider a local Haag field (U, Q,A-^ 91(d)} such
that it is associated with a local Wightman field {7t,f->c/>ff)}. Now let the Haag
field (Ux, QX,A -> 3lx(A)} be a faithful representation of {71, Q, A -> 31(A)}. In other
words, let there exist a »-isomorphism h:Tr>-hfT) from Q onto Qx such that A(9l(d))
3txfA) for every bounded space-time domain A. We want to establish the existence
of a Wightman field {7lx, f -> Uf)} such that the algebra 3\fA) corresponding to any
bounded domain A is the von Neumann algebra generated by all operators Uf) with/
vanishing outside the space-time region A.

The construction of the field /-> <f>xff) can be carried out as follows: Let/be any
given test-function in the space V, let A be a bounded and open space-time domain
such that the support of/is contained in Zl. (Such bounded space-time domains exist
because the supports of functions in T) are compact). Let UfA) be a unitary operator
from Ti onto 7lx such that :

UfA) T U-fA) hfT) for all T e 91(d) (1)

(The existence of such unitary transformations is guaranteed by theorem 2 of § 4.)
We may then define cf>ff) by the equation:

Uf) UfA) cpff) U~fA) (2)

We have to verify that definition 2 is unambiguous. Ambiguity may arise due to
two reasons. First of all the choice of the domain A is not unique. (The only requirement

on A being that it contains the support of the given test-function). The other
possible cause of ambiguity is that even when A is chosen the unitary transformation
UfA) satisfying relation 1, is not unique.

We now verify that none of these will lead to an ambiguity in the definition of Uf)-
Let Ax and d2 be any two bounded and open domains which contain the support

of the given test-function/ and let UfAx) and UfA2) be corresponding unitary
transformations. It will be shown that

UfAx) cpff) U~HAX) UfA2) <f>ff) U~HAt) Uf) ¦ (3)

To this end we first observe that the setd0 AxO A2is also a bounded and open
domain containing the support of/ Furthermore

hfT) UfAx) T U-\AX) UfA2) T U^fA2)
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for all

Te3lfA0)Qf3lfAx)n3lfA2)).
Hence

U~HA2) UfAx) T U-HAX) UfA2) T

for all T e 9t(d0). In other words the unitary operator t7_1(d2) UfAx) U0 belongs to
91'(d0). Since the support of / is within d0, the operator cp'ff) is (by hypothesis)
affiliated with 9c(d0). It thus follows that U0 cf>ff) U^1 cp'ff). Relation 3 can now be

proved easily. In fact

UfAx) 4(f) U-\AX) UfA2) U0cf>ff) U»*1 U-HA2) UfA2) cp'ff) U~fA2)

We have thus verified that definition 2 is unambiguous.
The assertion that 31fA) is the von Neumann algebra generated by all operators

Uf) which correspond to test-functions/ vanishing outside the region A now follows
immediately from the definition 2. In fact (according to our hypothesis)

31(A) {cf>(f) |/, vanishing outside A}".
Therefore

3lfA) hf3lfA)) UfA) 91(d) U^fA)
{UfA) cp'ff) U^fA) r Uf) \f, vanishing outside A}".

It thus remains to show that the mapping / -> cp'ff) defines a local Wightman
field. For this purpose we have to verify the following properties of the mapping
f+Uf)'-
(a) There exists a dense linear manifold Dx in 7ix which is a common domain of defi¬

nition of all Uf) (with/g V) and such that

Uf) Di Q Dx and cf>*ff) Dx g Dx

(b) If fx and /2 are any two test-functions in V then

U*A + ß h) v> * <f>ffi) y + ß W») y
for any %p e Dx and complex a, ß.

(c) If fn -A» 0 (in the topology of V) then fipx, UA) Vz) "*" 0 f°r anv fi>W2e Di-
(d) If the supports of the test-functions/ and g are completely space-like with respect

to each other then

[Uf Ug)ì lUf),</>ìfg)}=0 on Dx.

We can not at present prove the property (a) of the mapping/^- Uf)- ^ can,
however, be proved easily that for every given bounded space-time domain A fno
matter how large) there exists a dense linear manifold DfA) such that all operators
Uf) (with f vanishing outside A) are defined on DfA); Uf) Dx(A) g DfA) and
r>*(/) DifA) g DfA). In fact, it follows from the definition of Uf) that the set

DfA) UfA) D is such a domain, where D is a common invariant dense domain of
the field operators cf>ff). (Here UfA) D denotes the set of all vectors of the form
UfA) ip with ipe D). It is also quite likely that D fUfA) D) is still dense in 7tx. In this
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case property (a) will hold strictly. However, we leave this question open for the
present.

As for the properties (b), (c) and (d), they can be proved easily from the
corresponding properties of tf>(f) and definition of Uf) ^ Dx is replaced by DfA) U(A) D
for suitably large A.

For example in (b) we replace Dx by DfA) where A contains the supports of fx
and/2. Similarly in (c) we replace Dx by DfA) where A is any bounded domain which
contains the support of all test functions/, fn 1, 2, (Such a bounded domain
always exists for every convergent sequence {/„} of test functions in Tf).

Finally we mention that the foregoing arguments cannot be carried through if it is

required that Wightman fields be defined on test-function space S instead of on V.

Appendix 2

In this appendix we shall supply the proofs of lemma 1 and lemma 4 of § 3.

Lemma 1

Every non-trivial (left) ideal of a von Neumann algebra contains at least one
non-zero projection operator.

Proof of lemma 1

Let the operator T f+ 0) belong to the non-trivial (left) ideal J of 91. Then the

operator T* T H is also in U. Let E(X) denote the spectral family of the self-adjoint
operator H. Since H is positive definite, there exists an interval L (a, ß) (0 < a <
ß < oo) such that EfL) E fß) - E (a) + 0. We shall show that the projection EfL)
belongs to the ideal J. Since H e 9c, the projection EfL) also belongs to 9c. Furthermore

H EfL) EfL) H. We denote by H(m) the restriction of H to range of EfL).
Thus H(m) is a bounded, linear, self-adjoint operator of the space m. Because of the
choice of the interval L the point 0 of the real line is outside the spectrum of H^my
Therefore there exists a bounded, linear operator Hffj in m which is the inverse of H(m).
We now consider the operator B which is defined by the equation :

Bip Hf^ ip iitp em
and

B cf> 0 if ^

is orthogonal to m. The operator B, when extended to the entire space by linearity,
is a bounded linear operator of the underlying Hilbert space Ti. We may also write
B Hffj EfL). We shall now show that the operator B, thus defined, belongs to 9Î.

To this end, we consider the reduction f3l){m) of the algebra 9c to the subspace m.
Evidently H[m) e (91) (m). Therefore Hff) belongs to (9l(m)) ". In other words, any bounded
linear operator (of the space m) which commutes with all operators in 9c(m) will
commute with Hff^ also.

Furthermore one has
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With the help of these facts we can now show that B commutes with every operator
T of the commutant 91' of 9c. In fact, we have :

BTrp HfJ} EfL) T rp H^ T E(L) rp H~f} T{m) (E(L) rp)

T{m)H{m)E(L)rp= THff)E(L)rp= T B rp for ally eTi

Here the second equality is valid because T e 31' and EfL) e 31 and the fourth because

Hr^j e (9l(„))" and T{m)&3l\m) (9c(m))'. Thus we have proved that B e 31. Since

r/eJ and B e 91; the operator B H Hr1 EfL) H Hf^ H EfL) EfL) also

belongs to J. This establishes lemma 1.

Lemma 4

A C*-algebra R with identity is simple if and only if all (cyclic) »-representations
of R are faithful.

Proof of lemma 4

Let T -> AT be any »-representation of the algebra R. It can be verified easily
that the set U which consists of all elements T of R such that A T 0 ; is a two-sided
ideal of R. Hence, if R is simple, the representation T -> AT must be faithful (i.e.
AT 0 if and only if T 0). This proves the "only if" part of the lemma.

For proving the "if" part of the lemma we now show that if the C*-algebra R has a
non-trivial two-sided ideal then it has at least one (cyclic) »-representation which is
not faithful.

Let us suppose that Ü is a non-trivial t.s. ideal of R. Then the closure Ü ol U
(in the topology defined by the norm on R) is a non-trivial two-sided ideal (and hence,
a fortiori, a left ideal) of 7?35). An application of two well-known theorems36) then
guarantees the existence of a. positive linear functional37) <f>fT) on R such that

cf>(I) 1, and </>(T* T) 0

for every T in the two-sided ideal J.
It can be easily verified that the Gelfand construction38) corresponding to the

positive linear functional tp' will yield a cyclic »-representation T -> AT of R such that
A T 0 whenever T e Ü. In fact we may recall that the Gelfand representation T -> A T

(corresponding to the functional cf>) has the following property : There exists a
correspondence T -> rpT between the elements T of R and vectors rpT in the representation
space Ti (i.e. the Hilbert space in which the operators AT act) such that

(a) The set D of all vectors rpT (with T e R) is a dense linear manifold of Ti,

(b) ^4S rpT tpST for every S and T in R, and

(c) frpT, rpT) cj>(T* T) for all T e R.

Nowl et T e CT. We shall show that AT 0. If y's 1S anY vector in D then

\\AtV>s\\2= fATrps,ATfs) fipTS'frs) 4>((T S)* (T S)) ¦
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Since J is a t.s. ideal (and hence a right ideal also) and T e Ü, it follows that
TSe 7. Therefore || ATrps ||2 0. In other words ATrps 0 for all y>s e D. Since D
is dense in Ti it follows that AT 0.

This completes the proof of lemma 4.
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