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On the Propagator Form of Thermodynamic Perturbation Theory

by Charles P. Enz

Institut de Physique Théorique, Université de Genéve

E. C. G. STUECKELBERG zum 6(. Geburtstag

(9. X. 64)

Zusammenfassung. Die Schwierigkeit bei der Entwicklung der Propagator-Version der thermo-
dynamischen Stérungstheorie liegt darin, dass die Mittelwerte von Normal (:M-) Produkten nicht
verschwinden. In MaTsuBara's Methode wird sie durch den Kunstgriff einer Aufspaltung der
Feldoperatoren umgangen, die nicht der physikalischen Aufspaltung in Emissions- und Absorp-
tions-Teile entspricht. Hier wird gezeigt, dass die letztere zu denselben Resultaten fiihrt. Insbe-
sondere wird eine allgemeine Reduktionsformel fiir Mittelwerte von M-Produkten hergeleitet.
Ferner wird gezeigt, dass diese einen typischen Beitrag, proportional zur Verteilungsfunktion,
zu den thermodynamischen Propagatoren liefern. Explizite Ausdriicke fiur allgemeine freie
Propagatoren werden angegeben.

1. Introduction

In the application of field theoretical methods to statistical mechanics the devel-
opment of a propagator technique, i.e. of a reduction formula for temperature ordered
(or T-)products, was an important and not quite trivial step. For, whereas in field
theory all averages (vacuum expectation values) of normal (or :-)products of field
operators vanish by definition this is not so with statistical averages (taken over a
grand canonical ensemble). And hence it is not immediately obvious how to obtain a
resolution of perturbation theoretical expressions into the analogue of the celebrated
causal Green’s functions pioneered by STUECKELBERG!).

In statistical mechanics the pioneering contribution came from MATSUBARA %) who
observed that by a suitable redefinition of “positive”” and ‘‘negative’ parts of field
operators (as implied in the definition of t-products) the averages of JN-products could
be made to vanish. Together with the general proof of this given by THOULEsSs?®)
MATSUBARA’s procedure forms the basis for the propagator technique of modern
thermodynamic perturbation theory4).

A disadvantage of MATSUBARA’s method is the fact that in his definition the posi-
tive and negative parts of field operators have lost their physical meaning of emission
and absorption parts. In the present paper identical results are obtained without giving
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up this natural division of field operators. In particular we derive a general reduction
formula for averages of J-products (for bosons it had been indicated without proof
in reference 3). For systems without a condensed phase non-vanishing averages of
N-products are characteristic of finite temperatures and contribute typically to the
thermodynamical propagators. In fact, the latter fall naturally into two parts for
which the designation “‘spontaneous’ and “induced’ are appropriate, in analogy with
EINSTEIN’s probabilities of black body radiation.

The spontaneous part is due to the contractions in the M-products and hence is
independent of the statistical average (distribution function) and, consequently,
independent of temperature. The induced part comes from the statistical average of
N-products, it is proportional to the distribution function and hence disappears at
zero temperature.

Since the emission and absorption parts of field operators are in direct relation
with the definition of the groundstate (vacuum), MATSUBARA’s method could be
characterized as using an unphysical ground state. Now it is well known that for
systems with a condensed phase (superfluids, superconductors) the ground state plays
a very particular role, in that for this state N-product averages do not vanish, even
not at zero temperature?). It is clear that MATSUBARA’s method does not apply to this
situation, as is emphasized in reference 4, page 32. On the other hand bose condensa-
tion might be an interesting application of our reduction formula for Jt-product
averages. ¥)

In order to facilitate the application of the reduction formulas for - and X-
products derived here to any type of “vertices” of “fields” and ‘“‘particles” the
following terminology is used for convenience: A field operator (defined as a linear
combination of emission and absorption operators **) has the appearance of a “field”
if it contains emission and absorption parts in equal proportion, it has the appearance
of a “particle” if it consists of an emission or an absorption part only. The “field” case
is realized throughout in field theoretical interaction hamiltonians but also in all the
couplings of phonons, which justifies the designation phonon field ***)6)7),

The “particle’” case is realized in all the two-body interactions of many-body
theory because of the very form of two-body operators in second quantization?).
Clearly, this case also occurs in the operators that build up many particle states both
in field theory and in many-body theory.

The “‘vertices” are characterized by the number of field operators (“branches”)
united by the same temperature argument, and by a coefficient (matrix element).
In this terminology the simplest vertex is one with one branch, representing e.g. the

*) A quite different but very simple application are GLAUBER’s correlation functions of
higher order for black body radiation; see R.J. GLAUBER, Phys. Rev. 737, 2766 (1963);
C.L.MenTA and E. WoLF, Phys. Rev. 734, A1149 (1964).

**) Note that this linearity is a property reflecting in second quantlzatlon the superposition
principle of first quantization or of classical fields.

*#%) Spin waves are similar to bosons, however, their commutators are not c-numbers. As a
consequence WICK’s theorem is a relatively complicated problem which has been solved only
recently®). From another point of view, related to the mass carried by excitations in solids, spin
waves (magnons) have an intimate analogy to phonons and have therefore both been called
“fields” elsewhere?).
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operator of a one-particle state. Vertices with two branches are realized in couplings
to external (1.e. non-quantized) fields or, more generally, in density operators. The
latter are of particular importance in calculations of transport coefficients with Kubo-
type formulas®). Whereas conventional field theoretic and many-body interactions
are characterized by vertices with 3 or 4 branches, the phonon-phonon interaction
(describing anharmonic effects in crystals) has in addition vertices with 5, 6,...
branches. The technique developed in this paper is general enough to handle this case,
in which all kinds of vertices may be mixed together. It also includes a general and
concise proof of the well known theorem concerning connected graphs?®). The results
will be used in a forthcoming work?) to evaluate the energy density correlation
function of a phonon system with the hope to gain some insight into the question of
second sound in dielectric crystals!?).

In connection with the last mentioned work an additional remark may be made
in support of the terminology field-particle used here. It has recently been noticed by
several people?) that the construction of density operators for a phonon system is not
trivial. In reference 10 it will be shown that this construction is quite different from
the analogous problem in many-body systems. The reason is that many-body theory
applies only to the ions of the lattice but not to their phonon excitations, which,
particularly from this point if view, are very analogous to the electromagnetic field.

One difficulty with the correlation functions used in transport theory is that they
depend both on temperature and time so that the orderings with respect to these two
variables in perturbation expansions interfere. Except for special cases there does not
yet exist a method to handle this problem'?). In some applications, however, the
knowledge of these correlation functions in the neighbourhood of zero time is suffi-
cient1?). Here we give explicit expressions for the temperature and time dependent
free propagators for arbitrary field operators as well as rules for their evaluation
in the cases of interest.

2. General Perturbation Expression

Each species (bosons or fermions) of field operators may be linearly built up from
operators of the form

A=, a, + ‘11; aty, (1)

where - % labels the momentum + k and any other variables necessary to charac-
terize a one-particle state, such as polarization and mode. ;" and 4, are the emission
and absorption operators; they are the basic operators in “‘particle’” couplings. The
“positive” and “‘negative’’ parts of 4, are

AP =wpaty; A =a,a,. ()

In “field” couplings the basic operators are of the form

—3 1
P,=P; = 1/2; (@ — yea™y) Q= 0% = fy‘: (ax +yraly) (3)
. .

where y, is an arbitrary phase factor satisfying

Vet = V& - (3"
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A pair of canonically conjugate field operators may be written as
— ) 1 ikr
ITi(r, t) =25m I/wk B(t) e*" D(r, t) Zzeik_—--; Qult) €* (4)
k

where the time dependence is given by (free fields)
d:(t) = BiH“t a;— 6~1,Hnt = a;— giwkt : dk(t) = gtH,,t a, e—zHut = a, e"“”‘t . (5)

With appropriate identification of coefficients and labels (4) is the standard form both.
in field theory and in many-body theory. Thus (1) has the generality necessary to
describe any type of vertices and propagators.

A general term of a thermodynamic perturbation expression is an averaged
temperature ordered product of vertex terms V, with reciprocal temperature argument
A; (we use units such that # = &, = 1, where kg is BOLTZMANN's constant),

- ( ]J Vi[lil)> (6)

0
T is WICK's time (here temperature) ordering operator!4), the temperature dependence
being that of the interaction representation as defined for any operator O by
O[A] = %0 0 ¢~ Ko, (7)
In particular
af (Al =af &% afA] = ape ", (7')

K, is the sum of the unperturbed hamiltonian

H():Zwk“: A+ e (8)
and the chemical potential term — u X' a;" a, ... of the grand canonical ensemble,
Kozzeka;ak+"';8k:8—k:wk_tu‘ (8

Here and in the following the dots indicate similar expressions for all the other species
of field operators occurring in the theory.
A vertex V, has the general form

=2 I = I A, > -, (10)
(Bee") =1

where #; is the number of branches of the A4-species and 4,, is of the form (1) with
parameters o, ,, o, . I’((,Q__) is the matrix element. In (6) some of the vertices may
represent the operators of state vectors and density operators, the remaining V; come

from the expansion of the operator

B
S(B) = ePKe ¢ FEHH) _ T exp (— f il H'm), (11)
0
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which makes the transition from the exact density matrix const. X exp (— 8 (K, + H'))
to the unperturbed one. The latter defines the average occurring in Equation (6),
_ Tr(e?%o0)
(0)0 - Tr( ﬁK) (12)
H’ is the sum of all types of interaction terms.
Since different species of field operators in (6) factor out (statistical independence)
one is left with expressions of the form

<I (1()]As)>0 P Ay = Avsks[}*is] ) (13]

where a relabeling of indices has been introduced such that factors in the product are
distinguished by the set of numbers s =1, 2, .. ..

3. Reduction of N-Product Averages

As in field theory the evaluation of expressions like (13) proceeds via -products.
Their definition is
ER(HAS) =3 (+ 17 [T A +>[[A (14)
(s) (t/s) ()
Here and in the following the upper sign is for bosons the lower for fermions. (¢) is an
ordered subset #; < #, < ... of the set (s) and () the complement (s) — (£). (/s) are all
the subdivisions; their number is
Nis)

N(s)! Ni(s

n=0
N (s) being the number of elements in the set (s). o(¢/s) is the number of transpositions
of adjacent numbers necessary to separate the subsets () and (¢).
The result to be derived is a resolution of the average of (14) into factors

A, A, = {AD A7), . (15)

It is based on the following formula (see appendix) which for bosons has been derived
independently by BLocH and pE DoMminicis1®) and by THOULESs®) whereas it is trivial
for fermions since (a;7)" = (a;)" = 0 for n >> 2 (PAuLI principle):

bosons: n=0,1,2, .-
+ n n = ! # ¥ ’ ’ , 1
((“k )" (a) )0 nlf s fermions: n =0, 1 -

Here

fi= (o aga= (" F 1) (17)
is the unperturbed one-particle distribution function. This formula will now be
generalized in several steps. First it is evident that

((a;')n (ak’)n’)(] = ann’ n! ((d: ak’) O)H % 6kk' )
so that with Equation (2)

+ —_ 'A' ’ y
< A( ) [Z"-'rs] l l Altk > ’\7(3 N () ﬂ av s 6 ;sﬁk H thk’ e '5 1#‘3’(5 X
(s) (¢

x N(s)! ((afk ak,> O)N( )
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(for fermions N(s) = 0 or 1). Now for N(s
into pairs (s, ¢) and this can be done in N (s
Hence, making use again of Equation (2)

) = N(¢) the sets (s) and (¢) can be grouped
)! ways by permutations, P(¢), of the set (f).

b

(IT 4506 TT 45000y = by wa 37 LT (A0 ALdAe. (19

Next we remark that this equation is still correct if we assign to each ¢ of the set (£) an
individual label %,. In fact, (18) is identically zero unless all £, equal k. Now take a
product of expressions of the form of the left hand side of (18) each factor with a
different value of k. Because of the statistical independence of factors with different &
the product may again be written as a single expression of the same form but with
individual labels &,. Making use of the contraction symbol (15) and of the abbreviated
notation (13) we have

<]()YA(S+) 1)]1‘%") = O, vy Oy (= 1) 2N Do pg HA 4., (19)
s (¢ 0

Pit) (s)

op( 18 the number of transpositions of adjacent numbers from which the permutation
P(¢) can be built up.

At this point a more careful consideration of the fermion case is necessary. First
the %, in Equation (19) are all different by construction, and their number, N(s), may
now be any integer. Next we assert that the condition of different £, may actually be
droped since coincidence of some &, values makes Equation (19) vanish identically.
This is trivial for the left hand side. For the right hand side it is a consequence of the
anticommutativity combined with taking the sum over permutations P(¢). Indeed,
suppose Ag;r) AS ) are degenerate in &, (k'ﬁ = ksz = ... =k, ; d > 2). Now consider
among all P(?) the 4! permutations which act only on a given subset £, ... {, which is
paired with the set s; ...s,. It is easily seen that even and odd permutations just
compensate each other, which proves the assertion. Hence Equation (19) is valid
without restriction also for the fermion case. In other words the pairings may be made
wrrespective of the PAULL principle, a fact which in other contexts of perturbation
theory is well known16) and follows here for t-products in an explicit and direct way.

Combining the result (19) with the definition (14) one obtains

<91(H As)> = (£ ) 3 [T A, 4 (20)
(s) 0 P (&) T

(t/s)
where o(t, £) = o(t/s) + op@ - (20) vanishes unless N(s) is even,
N(s)=2N. (20"
The number of terms in the double sum is

(2 N)!
(N1)2

~NI=@2N)@2N—-1)-- (N+1) =22 N - 1)!! (20"

Another way of writing (20) is
1

3 9 SaN -1 "92N

= L YL 1)POA, A A A A 4, . (21)
LA, = w afa el vt
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Here the factor 1/N ! corrects for the repetitions due to the commutability of contracted
pairs within the product. '

The sum over P(s) contains in particular the sum (with appropriate sign) over
transpositions within each contracted pair, the result of which are symmetrized
(antisymmetrized) contractions

N

ASAtEASAtj:AtAs: (m(AsAt))O‘ (22)
N’ N—r
Hence Equation (21) may also be written as
1 s —_— —_— 7~
<m(1(s)]A‘)>o = SN %’(j: 1 A, A, A A, Ay, A, =
S S CIRICCC y Y (23)
all pairings (t)

where the last sum, according to (20”), has (2 N — 1)!! terms. This is the fundamental
reduction formula.

4. Reduction of T-Product Averages
Wick’s definition of the T-product!4) is

N(s) -1

z(]“] As[ﬁs]) =X (£ 1% [T 6B, —8B.) ](S)]As[ﬁs] _ 24)

P(s) j=1

Here the arguments are reciprocal temperatures g, which are ordered with the help
of the step functions,

[1;8>0
|0;8<0.

The important step in the reduction of T-products is contained in Wick’s theorem14)
giving the resolution of T-products into M-products, plus contractions of the form

0(8) =

AJA) AJ2] = 04— A) AJA] 4[] £ 6(4 — 4) 4,[AT A[4]. (25)

FEEEEEEE | —_—d

Here it is of course assumed that the commutators (anticommutators)

A A, =40 AL (25")

are c-numbers, which excludes the magnon case*). Wick’s theorem now reads

1(I(S)IAM:S]) = m(l(s)]/ls) 4 2 (4 1 A;At'%((]ﬂzwt, As) +

t< t’

() —ti— 1
—t =t

<t fasty
(t<t2)

+2 2 (& 1)"‘1*%’“"e*"%’fh,Az;AtzAtz,‘R( As) + e, (26)

*) See footnote ***) on page 151.
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where o, is the number of transpositions necessary to bring ¢ in front of the set (s).
Because of the symmetry (antisymmetry) of it- and T-products and of the contraction
(25) Equation (26) can be written

1P A A
z(I(JAS ) 2 2nn! (2(N ‘*)wZ(i " 5 e %
—
X Ay AL R(A, A ) (27)

Here the factor 1/(2* #!) has the same origin and significance as in Equation (23).
The factor 1/(2 (N — #n))! corrects for the repetitions in the sum over P(s) due to the
symmetry (antisymmetry) of the M-product. Combining Equation (27) with the basic
formula (23) leads to the reduction formula for T-product averages:

< ( )> 2 an 2(N=m)) ! 2 1)7Pes) Azzsz X

r—— 1 /“_‘\ D i
& ASzn-1A32nmIZ Aspnir Aognrn " Asay_14daay”
(S2n+1"52N)
Now the sum over the (2 (N — #))! permutations P(S,.;...Ss,) is already contained
in the sum over P(s), so that it may be canceled against the factor 1/(2 (N — »))!.
The sum over # is then simply a binomial sum over ——- and —. -contractions. Thus

we may write symbolically

1

i A A g T o Pipm § e
< (l(g S[&S])>0 2n N1 Pls) =) ,;,”!(N*”)T e
X () (T T A= g X0 (—+ =)V [T A, @
(s) " P(s) (s)

The new contraction —— + — occurring in the second line is now just the prop-
agator, as 1s easily seen by taking N = 1 in Equation (28), or by direct verification
with the help of the definitions (15), (22), (24), (25):

Eagay A — 1) = (TAN AAD)o=4,4,+ 4, 4,. (29)
Thus (28) takes the final form analogous to (23)
1
. e SR OP(s) . 0
<z('l(s)YAS[l@s])>o 2N NI PZ(S; (&= 1 Sdsuds gAsz.?V—1A32N o0}

The graphical representation of this formula is as usual: Each vertex of the left hand
side is drawn with the appropriate number of branches. The latter are connected in
pairs according to the contractions of the right hand side, except for those branches
representing incoming and outgoing particles which stay free.

In order to complete this discussion we briefly derive a general formula concerning
connected diagrams which includes the possibility that the interaction H’ may consist
of many different types of vertices. For this purpose we rewrite the general pertur-
bation term (6) more specifically with the use of (11)%),

*) Note that T2 = T, so that the double application of T in S(f) implied by (31) is alright.
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T = (S8 [T viad)), 31)

where all the vertices indicated explicitely are of dynamical origin, i.e. come from
operators in state vectors and from density operators. The general term of the power
series expansion of S(f),

SAB) = 1 TW ), (32)
where
8
W) = — / ) H'[A], (32)
contributes to 7" the term
T,= - (V@) [TVIR)) - (33)

According to the reduction formula (30) some of the dynamical vertices V; and of the
vertices in S, are linked by a propagator contraction (29). Now we order the contribu-
tions to T, according to the number of factors W(B) of S, that are linked to J] V.

%
The number of ways [V, can be linked to a group of & out of #» factors W is

T

n!f(k! (n — k)!). Hence, if we denote the terms in which there are no disconnected
parts between H V; and the W’s by an index “¢” (connected) and define

I, =), &

(which does not necessarily mean that all the V, must be linked together, although

this is the case in most applications), then

O T @), E e e
With (32), (32) and (33) Equation (35) can be written, after division by #»!,

T, = 3 (S IT Vi), (Sudo- (36

Hence
e 2 2 B, e B TR, 0
or finally

(E(S@ TTVira)y = (%(S@) L1 Vir)y (SE)o. 37)
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Note that here connectedness ““c” refers to the factors in S, and to the product H V;
as a whole (some of the factors V; may still be disconnected).

As an application consider the sum of Equation (37) for all vertices occurring in H’,
so that

(T(SB) H'IB))o= (T(SPB) H'B])) o (SB))o - (37)

Now from the definition (11) follows

as(B) ,
—ag —  HIAISP).

Hence

or integrated, remembering that S(0) = 1,
(S(B) o = eI~ 10r. (39)

At zero temperature (f = oo) this leads to the well known BRUECKNER-GOLDSTONE
formula for the ground state energy?) (generalized to an interaction consisting of an
arbitrary number of different types of vertices).

5. Propagators

According to the definition (29) the propagator g4 4, is the sum of the two con-

tractions (25) and (22). The first is independent of statistics and may therefore be
called the “spontaneous’ part,

 — P
gilpskAtk’(A - Al) = Ask[}“:l Atk’ [}‘I] - {0()L - /1’) Lsp O _p X
X e BRI LA~ 2) ooy e Y B (39)

In particular (o, =1, &', =0, etg, = 0, &'y, = 1),

Ghay ) = 0(A) e™%; g% (1) = £ 6(—2) &% (39')

gk

The second contraction is proportional to the one-particle distribution function f;
suggesting the designation “induced’ part,

R,
gfan;ikA“c' (A —2) = A, 4,,[] = {O‘;k % X
%A g g B AIEL L O —p - (40)
In particular
g () = ks g (1) = £y (40

apag ap al
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Hence
gAskAtk'(;l) - gili;cAtk'(l) + gzl:];Atk’(j') = {O(';k %—p X
X (fk + 6(— }“)) ek 4 s & “;_k (fe + 6(1)) e Agk} 5;:, —K (41)

which is a generalization of Equation (I), appendix 2, of reference 4. (39), (40) and
(41) all have the property

8iplA) = £ gHa(= 7). (42)
Another important property of the propagator is obtained from the identity
(A[A+ B B)o= (B 4[A)), (43)

by writing
O0(—2) 00 + B) gap( + B) = 0(— ) 04 + B) <A[A+ B] Boo =
= 0(=2) 0(A + B) <B A[A]>g= £ 0(—4) (2 + B) g45(4) -
This is the well known periodicity (antiperiodicity)

gapA+B) =4 g45(); 02> -8 (44)

(see e.g. reference 4).
Combining (43) and (44) for A = /2 gives

) =
In particular
GGl e

(the first term on the right is zero) or with (39"), (40"

(14 f)e ®Der— f gt (BI2) ek
and solving for f,

1
P Jael

fk:

which is Equation (17). This determination of f, is noteworthy because of its close
analogy with the derivation of PLANCK’s radiation law by EINSTEIN.
The property (44) suggests a Fourier representation

+00 ‘
gasd) =2 gaplo,) e (40)
in which the condition on o, is
iorf _ 8 : '
P =14+1; o= 3 {(1’+1/2) (46")
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Because of the orthogonality

B
1 i .
= [ dAelrERt =g (47)
i
one has
8 8
Eunlo) = [ dhgush) et = - [ @b (AT B)g e (48)
0 0

With (77), (17) and (46') integration of (48) for the case 4 = a3, B = a,-, and vice
versa, yields

~ 1 1 1 1

gakazr(ar) - ? W 6’6]6’; ga;;akJ(Gr) - :I: _B_ ek_,i P 6kk’; gaza;gr = ga,kaki =0. (49)

r

With (1) the general propagator has the Fourier representation

- 5 1 Osg O 4 o5k %y i
, Or e 50
Bdsp Atk ( ’) B { gt+io, + £—10, Bt ( )

For the operators P,, Q,, Equation (3), one has

~ ~ 1 1 &g
80k ox’ (Gr) = ngPk'(G’) = '_ﬁ— 7}2?&3_ O X { (—ia,)’
) ' 1 1 (—0o,)
8oxpy(0) = — Eproy(oy) = B Wak,—k' X {i% . (51)

In some applications propagators with mixed temperature and time dependence are of
interest 1°), where as before the T-ordering refers to the variable .

ganld; ) = (T(A((A; 1) B))y - (52)
Here
A([A; t) = & A[A] e 1 (52")
or with (5), noting that according to (8), (8') H, and K, commute,
A([A]; t) = ADP[A] e 7% - AO[A] e ™ (52")

With (2) and (49) we then obtain the general result

— iyt +iwkt

’
Ogp %p_g €
g—10,

~ 1 Oz Olp_f €
Ao 1) = — sk Si—k
gAskAt'c ( re ) B { e+10,

+ |8, (53)

We close this paper with some rules to evaluate the Fourier sums (see reference 4,
appendix 2; LUTTINGER and WARD, reference 17). By definition

gap(+ 0) = (A B)o ) Bapl—0) = (B A)o

11 H.P.A. 38 1 (1965)
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so that from (46), (49)

1 1 ISR
1 i fh ga;i ajg (—+ O) = T Zﬂi" PR )

f g.t+io0,
o= el Oy = g o e gorlt® (54)
k apag ﬁ £, —i0
Hence
1 i | 1 1 1
27 :ek—l—z o *ek’;iricjr— - T,;’W—T; (7 E;L;” o ”;:}C‘+z a, ) T ﬁ —Ek
1 B 1 o - 1 7”1 1 R 1+ f,;’ =+ fk
;1 Bk_z.a?‘ Ek+/”6r a 7 E;C"f'ek ( Sk“’t‘O’r + Ek’-f—ia'r)ﬂ Sk,+8k TR (55)
The first equation also exists for £ = &’ and reads
1 ()f ’
Z(H;g =F 8 5% Tﬂgfk(fkil) : (55

More complicated expressions can be summed by the same method.

Appendix

A simple derivation of formula (16) for bosons is obtained with the help of the
following generating function:

with
- ;”O( " (@) |m) wn
Now
(ml(a )y (@ lm) ="

which vanishes automatically for » > m. Hence interchange of the #n- and m-
summations yields

o0 00
—_— wim m
mzv o Z n! (m—

n=0

1 1 w A\
e e ) n
Ticw(irw | l-w ;(1—10) &
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or

But with » — e~ Pek

which is Equation (16).
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