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Causality and One-Particle Singularities of the S-Matrix¥)
by G. Wanders

Laboratoire de Physique de I’Université, Lausanne, Switzerland
(1. X. 64)

Abstract. The existence of one-particle singularities located in the physical region of a three
body scattering amplitude is shown to result from suitable requirements of macrocausality.

1. Introduction

By macrocausality we mean the set of conditions an S-matrix has to satisfy in
order to describe correctly the macroscopic space-time development of the processes
we observe. Professor STUECKELBERG's scrutiny led him to recognizel), at a very
early stage, the importance of the causality principle in a non-lagrangian construction
of the S-matrix. Therefore, we found it appropriate to honour his sixtieth birthday
with a note concerning the role of causality in a non-perturbative approach of the
S-matrix.

In contrast with other requirements, as unitarity and relativistic invariance,
macrocausality cannot be expressed in a general, adequate, and technically useful
way. We recall only one of the difficulties encountered in such a formulation. Macro-
causality should deal with correlations of macroscopically separated events. However,
it appears very difficult to make a clear-cut distinction between macroscopic and
microscopic space-time distances. One is therefore forced to restrict oneself to state-
ments about events separated by infinite space-time distances. In other words, one
formulates conditions of asymptotic causality instead of macrocausality; the conse-
quences of such conditions may be very weak?).

Nevertheless, recently J. H. CRicHTON and E. H. WicHMAN3) established a prop-
erty as important as the cluster decomposition property, or vacuum structure of the
S-matrix on the basis of asymptotic conditions. Another structure, the one-particle
structure, i.e. the existence of singularities of the type

[i Pp'_'lﬁ — % 0 % — mz)],

g4

has been deduced from the axioms of field theory4). It is natural to ask if this structure
follows also from suitable asymptotic conditions. The purpose of this note is to show
that the answer to this question is affirmative, in the sense that, if a transition ampli-
tude has one-particle singularities in its physical domain, these singularities do follow
from asymptotic causality. This is due to the fact that such singularities describe an
exchange of a particle which can be real. As real particles may propagate over infinite
distances, contributions due to their exchange survive, and dominate, in some suitably
chosen limits. It follows from stability conditions that only amplitudes describing
processes with more then two particles in both final and initial states have one-

*) Work supported by the Fonds National de la Recherche Scientifique.
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particle singularities in their physical region. Therefore, asymptotic causality cannot
predict the one-particle structure of the amplitudes related with two body collisions.
The one-particle singularities of these amplitudes describe the exchange of virtual
particles, which cannot travel over macroscopic distances.

In the following two sections we show how asymptotic causality leads to one-
particle singularities in the case of a transition between three initial and three final
particles. This is the simplest transition exhibiting one-particle singularities in a
physical domain. Our analysis could easily be extended to more intricate transitions.
In a recent work, D. BRANSON discusses also three body scattering. He proves that
unitarity and vacuum structure imply the existence of a singularity of the type
0 (p* — m?). In order to show that a P (1/p? — m?)-type singularity combines with the
previous one, BRANSON uses some continuation to the amplitude outside its physical
domain®). Our considerations avoid such an artifice and involve only observable
quantities.

2. One-Particle Singularities of a Three Body Scattering Amplitude
We consider the three body process:

A, + Ay + A; - B, + B, + Bj. (2.1) .
All particles are supposed to have spin zero. In order to get a localized process, we

assign to the initial and final particles normalized wave packets g;(x) and y;(x)
(£==12 3):

Pd) = [ @) e 7 g8 . Blp) = Opo) O (B° — ) @) 210,

xi(x) = f(d‘])%_i(q’x) _}Ei(‘?) , )—65(9) = 0(gy) 0 (¢* — m§+i) 5(:(‘1) 2q;0- (2.2

We use the metric (a, b) = a,b, — (a, b); m,; is the non-vanishing mass of particle
A;, mg,; that of particle B;. @;(p) and ¥,(q) are supposed to be infinitely differentiable
and to have compact supports. Let T34 [qy, g5, g5/P;1. P2, Ps] be the connected part
of the transition amplitude <{qy, g5, 43| T | Py, P2, Ps>. (In our notation, T, .
describes a process with #; initial particles and #, final particles.) The contribution of
this connected part to the amplitude of process (2.1) is:

I,= fﬂ (dg:)* (dp,)* g(bs, 91 42) [(q35 P15 Pa) s

T53[q1, 9295/ P1. P2 Ps] 0 (91 + ga+ G5 — D1 — P2 — D) - (2.3)
We introduced the following notation, for further convenience:
f(qs, 1, P2) = }3*(93) &1(?1) 52(152), g(Ps, 01, q) = 673(?53) 9‘61*(91) _X_z* (g2) - (2.4)
The substitution:
(b3, 41, g2) —> &(bs, 41, o) X [4 (b3 — 1 — G2, @)] (2.5)

produces a space-time displacement of the wave packets ¢q, ¥;, and y, of particles
Ag, By, and B,, characterized by the four-vector a (ps(x) > @3 (¥ — a), ...). Performing
this substitution in (2.3), 7' becomes a function T'(a) of a:

7@ = @R TE ™0, T = [T () (@p)* alps, da. 90 Flgns pro £ X
X T53(91,92, 93 [ P1: P2, P3l O (B — Py — P2+ q3) 0 (kR — g1 — g+ P3) . (2.0)
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We insist on the fact that 7(a) is a physical transition amplitude; the integral
in (2.6) extends over the physical region of T3,. Therefore any property of T'(a) has a
direct physical meaning.

Imagine that the wave packets of particles 45, B,, and B, overlap in a space-time
region M (a), whereas the wave packets of particles 4,, 4,, and B, overlap in a region
N. As ay > + oo, the region M (a) moves into the infinitely remote future of the region
N. We postulate that, in this limit, the transition (2.1) is due to the double-scattering
(figure 1):

A+ A4, —- B3+ X; X+ A;— B, + B,. (2.7)

Figure 1

In other words, we assume that, once M and N are separated by a positive
macroscopic time interval, the connection between these two space-time regions is due
to the propagation of the stable free particle X. As a matter of fact, a transition like
(2.1) is always realized experimentally under such conditions that M and N are
magcroscopically disjoint, and the experiment is analyzed as a double scattering.
Furthermore, we have assumed that selection rules exclude the exchange of any other
single particle state than X. It would be easy to relax this latter restriction.

Let v, (x) be the wave packet of the particle X produced in N. This wave packet is
determined by the wave packets of particles A,, 4,, and B3 and by the amplitude
T, of the reaction 4, + A, > By + X:

1

Plk) = o [ @) (@p)* (@g3)* f g5, 1, o)

X T(gl)g (s, B[ P1,P2) 0 (R+q3 — Py — Ps) X O ((U(k) + G30— P10 — P 0) ,  (2.8)
w(k) = (| k|2 + u?)1?, u = mass of particle X. Similarly, the wave packet y,(x) of the
particle X absorbed in M is determined by:

iy | 0 @00 @9 1,0 X

2w
x Tftfzg [‘h: q, / k:PsJ 0 (R+ps—q, —qy) X
X 0 (w(k) + P30— q10— G20) €XP [_ 7 (w(k)“o — (k, a))} . (2.9)
T} is the amplitude of the reaction X + A - B, + B,.

i}'z*(k) =
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The scalar product of the wave packets y, and y, gives the amplitude f7(a) of the
double scattering (2.7):

-ﬂ@:ﬁwwwﬂ=fwﬂyﬁmemﬂ—iWW%%~Wham,
F(k) = i 2 (k) py* (k) (k) exp [+ i (w(k) ap — (k, a))] - (2.10)

As ay - — oo, M(a) recedes to the infinitely remote past of N. Macrocausality
excludes the propagation of a particle backward in time, over macroscopic time
intervals. Therefore, the contribution due to the double-scattering (2.7) must dis-
appear in the limit a;, - — oo. In this limit, macro causality would allow an exchange
due to the emission of a free particle, call it Y, in M, and its absorption in N:

A3 =B, +B,+Y; Y+ A4,+ A4,— B;.

However, the assumed stability of particles 4, and By excludes such a process.
We are led to the decomposition:

T(a) = G(a) + H(a) ; G(a) = 0(ay) F(a) . (2.11)

The step-function 6(a,) could be replaced by any function approaching sufficiently
rapidly the value + 1 for a, - -+ oo and the value 0 for g, > — co. We use 0(a,) for
simplicity; as F(a) is a bounded function of @, the multiplication by a step-function
introduces no ambiguity. As 7(a) and I(a) are bounded functions of &, the same is true
for H(a). Equation (2.11) becomes more then a definition of H(a) if we require some
asymptotic behavior for this function. We shall postulate that:

/(da)‘* | Ha) 2 < oo (2.12)

As f (da)? | G(a) |2 = cst. 6(a,), G(a) is not square integrable over R%. Therefore,
H(a) has an overall stronger decrease then G(a) for @, > + oc; (2.12) warrants
thereby the dominance of the double-scattering (2.7) in this limit. Condition (2.12)
leads to:

f(da)4 0(— ap) | T(a) |2 < oo,

this should express the impossibility of one-particle exchanges in the limit @, - — oo.
Finally, the decrease of H(a) in space-like directions implied by (2.12) is ensured by
the short range of the forces at work. A more detailed justification of (2.12) will be
given in the following section.

The Fourier transform of (2.11) reads:

T(k) = Gk) + H(k) . | (2.13)
According to (2.11) and (2.10):

Gk =— 3 [ kofw(k) i 8 (R — w(k))] F (k) . (2.14)
Condition (2.12) implies:
f @Ryt | H(E) |2 < oo (2.15)

10 H.P.A. 83 1 (1965)
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Equation (2.14) shows that G(k) has a singularity at &, = w(k) which is not square
integrable. From (2.15) it follows that H(k) is less singular then G(k) and cannot
compensate the singularity of the latter function. Therefore, T'(k) is certainly singular
at ky, = w(k), its leading singularity being that of G(k).

Finally, we have to make sure that the singularity of 7'(k) is due to a singularity
of T33. To this end, we eliminate the Dirac-distributions appearing in the integral
(2.6) defining T'(k). In a first step we get:

T(k) = [ (dg)° (dg:)® (a:)° (@42)" E(ds + 4 — B, 41, 00 %
Xf(Pl +Po— R P1,P2) T550(q:1,92.P1+P2o— R [Py, P2 @1+ G2 — E] X
X 0 (ko — wy(Py) — wy(Py) + V3 (P1 + Py — k)
X 0 (ko — v, (q1) — v5(qa) + w3 (qy + @5 — k)) . (2.16)

The functions g and f are obtained from the ¢’s and %’s in the same way as f and g
are obtained from the ¢’s and y’s in (2.4). In the last formula, we use the notation:

— (P[P mim, vi(q) = (| q [+ my? )
It is convenient to introduce the new variables:
P=p,+ps, P=P1—Ps,
Q=q¢+9, 9=9—49;,

and to define the vectors P and Q by their spherical polar coordinates with respect
to a system of coordinates whose z-axis is parallel to k. Let « and f be the polar angles
of P and Q, ¢ and v their azimuths. The Dirac-distributions remaining in (2.16) allow
us to get rid of the angles o and f:

) = ¢ kz/ﬁszfdQ@u/%g/@g[dq ¢ [ (apy

< (b 0, ) 5 P, D) Tualls 0. Pris .8) %
o on (@ sp) — ok 0] [ (& @) -
— (7 (@ =) | 0k P,y p) 0(Aulk. .. ) (2.17)

The conditions /4; > 0 make sure that « and f§ take on real values; they define the
physical region of our process.

As g(k, Q,v, q) and f (k, P, @, p) are bounded functions with compact support,
they cannot be responsible for the infinitude of T'(k) at &, = w(k). Furthermore, as the
location and nature of the singularity of 7'(k) are independent of the choice of g and 7,
T3 3 must have a singularity of the same type:

T53[41, 92,95 P1, P2, P3] =

1 1 1 ;
T ok [? P ol 10 (ko — w(k))] X (2.18)

x U [qlt 92 493 /Pl’ PZ’ P3:| + R [qlr 92 95 /pIJPZ’pS:I 4

N
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In this formula, %, and k stand for:

ko = wy(Py) + @3(P2) — v3(qs) = v1(qy) + v2(qa) — w3(Ps)

k=p+P—qs=q+q—Ps-
G(k) can be brought into a form similar to the expression (2.17) for 7(k). A com-
parison of these two expressions gives for the “residue” U':

U[‘Il» 92, 93 | P1, P2, P3} = T;2)2 (41, g5 | &, Ps] X T(21)2 [gs, k| Py, Pz] . (2.19)

The “regular’” term R verifies the condition:

[ g [da)* [@p)* [(@p* glar+ g2 b 41 4 Fips + £2— b b1 )
X R[qq, Qs 1+ P2 — k| P1, P2, @1 + Q2 — K] |2 < oo (2.20)

as a consequence of (2.15). Therefore, R is less singular at &, = w(k) then the first term
in (2.18). For example, it could behave like (2, — w(k))~* with o« << 1/,. On the other
hand, R can have stronger singularities in the remaining variables; these are smeared
out by the g- and p-integrations in (2.20). Such singularities cannot be excluded since
R contains the possible one-particle singularities arising in other channels then the
k-channel considered so far. Some of these singularities may appear in the physical
domain of process (2.1).

If we assume that T4 is an analytic function of %2, (2.18) can be brought into the
more familiar form:

Tyy=— ziﬁ ﬁ:,;T_i_E U((‘h + 42)%, (P14 £2)%, (91 — P3)% (ga — P1)2) + R,(¥2,...) (2.21)

with:

4 |
|

| (anye

1 1
4 w(k) (ky+ow(k)
R, has no pole at &y = w(k). Therefore, we succeeded in showing that conditions
(2.11) and (2.12) imply the existence of a one-particle pole in Ty4. The fact that we
cannot prove that R, is regular at 2, = w(k) is due to the weakness of condition (2.12).

- . U+R. (2.22)

3. Further Discussion of Condition (2.12)

The condition (2.12) played a crucial role in the discussion presented in the pre-
ceding section. It is this condition which allowed us to separate the one-particle pole
we were interested in. We devote the present section to a justification of the behavior
of H(a) as ay - oo implied by (2.12).

Beside the one-particle exchange considered so far, possible exchanges of real two-
particle states (figure 2) may contribute to the transition (2.1) in the limit a, - co.
We shall investigate the behavior of such a contribution. Its amplitude is given by:

K(a) = f (dR)* K (k) e~ "9 (3.1)
with:

K(k) = [ T (@p)* (@9)* f(@s, £r. $2) g5, 01, 3 >
X0+ G ps— B (pu+po— 95— B) [ (k)* [ (dho)* 32)
X T(z%:)g [ql’ q2/k1’ k2s p3] CS+ (ki‘ _Mf) 6+ (k: - ;u;) Tg; [klr kz: qs /Pl: p2] 0 (kl + k2 - k) :
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T, is the amplitude of the production process 4, + 4, > X; + X, + Bj, while
T?, is the amplitude of the process X; + X, + A3 > B; + B,.

Figure 2

_ Asthe functions fand g have compact supports, the same is true for the function
K (k). We shall further show that K(k) is bounded. It is convenient to perform the
following change of variables in (3.2):

?; _>'75; = A(k) p:, ¢ ‘*‘L; = A(k) g;, k; —>k£ = A(k) k;,

where A () is a Lorentz transformation bringing the system of particles X; and X, to
rest:

A(R) k= k*, k* = (/#2,0,0,0).
If:

Falgs, b1, o) = f(A g5, A7 Py, A2 py),

8a(Ps, 1, Ga) = (A pg, A7y, A7 q5)
K(k) becomes:

= fﬂ (dp:)* (dg,)* f4(qs, D1y P2) 4(P3s 15 G2) X

X 0 (g1 + ga— ps— k*) 0 (p1 + D2 — g5 — k%) L(g;, p:, B*) - (3.3)
L is given by:

Ligo oo B = [ (@0 T3 (01, 45 | Y %+ 1, Y5 B* — 1, 5]

ou((Gr+u) —ud) ou( (525 —u) i) x (3.4)
X T [Yo k¥ 4, Yo b* — u, g5 | py, o] = L;‘k‘z ok — M2)fd!) T® 70

In the last expression, u, = (u2 — u2)/2 k% and

|u 2= 41k2 (R — (g + p2)?) (B — (1 — p2)?)
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The amplitudes 7%, and T2, have no one-particle singularities in their physical
domains. Therefore, we may assume that these amplitudes are bounded functions in
these domains. This implies the boundedness of L. The elimination of some Dirac-
distributions in (3.3) gives:

K(F) :f(dpl)3f(d?52)3 [(d91)3 f(d%)s fa(P1+ Py P1, P2) X

9

X 84(q1 + 4s, 41, o) L6 (01(Py) + wa(Ps) — v3 (P1 + Po) — k:) X
X 8 (r1(qy) + va(qe) — w3(qy + qs) — k:) . (3.5)

The remaining Dirac-distributions disappear after integration over the angles
formed by p; and p,, q, and gq,. Once this has been done, K (k) appears as the integral
of a bounded integrand extended over a compact domain. This circumstance estab-
lishes the boundedness of K(&).

Now, as K(k) is a bounded function with compact support, we have:
f(da)4 | K(a) |2 = (27)4 /(dk)4 | K(#) |2 < oo (3.6)

It may be worthwhile to notice that, because of the discontinuities appearing in the
derivatives of Tg12 and T@), K(k) is not infinitely continously differentiable. As a
consequence, it is impossible to get more informations about the asymptotic behavior
of K(a) than those implied by its square integrability (3.6) without introducing very
specific assumptions about the discontinuities of 7§} and T(2

As mentioned before, H(a) may contain terms whlch behave asymptotically, for
ay — 00, like K(a). If we assume that the possible two-particle exchange terms govern
the behavior of H(a) as a, > oo, we are justified, from (3.6), to postulate:

fo;ao /(da)3 | H(a) |2 < oo . (3.7)

This is precisely that part of condition (2.12) we wished to make plausible.

Note added 1n proof: After completion of this work, the author received a pre-
print of an interesting article entitled ~’S-Matrix Theory and Double Scattering*, due
to D. IAGOLNITZER (Saclay). It is shown there that the existence of one particle poles
is consitent with assumptions about transition probabilities whereas our proof starts
from assumptions about transition amplitudes.
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