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Causality and One-Particle Singularities of the S-Matrix*)
by G. Wanders

Laboratoire de Physique de l'Université, Lausanne, Switzerland

(1. X. 64)

Abstract. The existence of one-particle singularities located in the physical region of a three
body scattering amplitude is shown to result from suitable requirements of macrocausality.

1. Introduction
By macrocausality we mean the set of conditions an S-matrix has to satisfy in

order to describe correctly the macroscopic space-time development of the processes
we observe. Professor Stueckelberg's scrutiny led him to recognize1), at a very
early stage, the importance of the causality principle in a non-lagrangian construction
of the S-matrix. Therefore, we found it appropriate to honour his sixtieth birthday
with a note concerning the role of causality in a non-perturbative approach of the
S-matrix.

In contrast with other requirements, as unitarity and relativistic invariance,
macrocausality cannot be expressed in a general, adequate, and technically useful

way. We recall only one of the difficulties encountered in such a formulation.
Macrocausality should deal with correlations of macroscopically separated events. However,
it appears very difficult to make a clear-cut distinction between macroscopic and
microscopic space-time distances. One is therefore forced to restrict oneself to
statements about events separated by infinite space-time distances. In other words, one
formulates conditions of asymptotic causality instead of macrocausality ; the
consequences of such conditions may be very weak2).

Nevertheless, recently J. H. Crichton and E. H. Wichman3) established a property

as important as the cluster decomposition property, or vacuum structure of the
S-matrix on the basis of asymptotic conditions. Another structure, the one-particle
structure, i. e. the existence of singularities of the type

[~P¥-m^^^-m%
has been deduced from the axioms of field theory4). It is natural to ask if this structure
follows also from suitable asymptotic conditions. The purpose of this note is to show
that the answer to this question is affirmative, in the sense that, if a transition amplitude

has one-particle singularities in its physical domain, these singularities do follow
from asymptotic causality. This is due to the fact that such singularities describe an
exchange of a particle which can be real. As real particles may propagate over infinite
distances, contributions due to their exchange survive, and dominate, in some suitably
chosen limits. It follows from stability conditions that only amplitudes describing
processes with more then two particles in both final and initial states have one-

*) Work supported by the Fonds National de la Recherche Scientifique.
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particle singularities in their physical region. Therefore, asymptotic causality cannot
predict the one-particle structure of the amplitudes related with two body collisions.
The one-particle singularities of these amplitudes describe the exchange of virtual
particles, which cannot travel over macroscopic distances.

In the following two sections we show how asymptotic causality leads to one-
particle singularities in the case of a transition between three initial and three final
particles. This is the simplest transition exhibiting one-particle singularities in a

physical domain. Our analysis could easily be extended to more intricate transitions.
In a recent work, D. Branson discusses also three body scattering. He proves that
unitarity and vacuum structure imply the existence of a singularity of the type
ô fp2 — m2). In order to show that a. P fl/p2 — m2)-type singularity combines with the
previous one, Branson uses some continuation to the amplitude outside its physical
domain6). Our considerations avoid such an artifice and involve only observable
quantities.

2. One-Particle Singularities of a Three Body Scattering Amplitude
We consider the three body process :

Ax + A2 + A3 -> Bx + B2 + B3 (2.1)

All particles are supposed to have spin zero. In order to get a localized process, we
assign to the initial and final particles normalized wave packets cpfx) and %fx)
fi 1,2, 3) :

cpfx) jfdpY e-'»¦*) ~fp) cpfp) 6(p0) ô fp2 - m2f cpfp) 2fi0,

Xfx) ffdq)*e-f^ xfq) xfq) %0) è fq2 - <H) Ifq) 2 q{ 0 (2.2)

We use the metric fa, b) a0b0— fa, b) ; mt is the non-vanishing mass of particle
Aj, m3+i that of particle Bt. cpfp) and ^;(q) are supposed to be infinitely differentiable
and to have compact supports. Let T33 [qx, q2,q3jpx, p2, p3] be the connected part
of the transition amplitude <<J,, q2, q3 I T \ px, p2, pf). (In our notation, T „.II /' %

describes a process with nt initial particles and nf final particles.) The contribution of
this connected part to the amplitude of process (2.1) is:

Tc fn fdq,A fdp,A gfPs, ft, qt)f(q„ Pi, P2)

T33[q1,q2,qilPi,p2,p3]ö (ft + ?2 + ?3 - Pi - Pi - Pz) ¦ (2-3)

We introduced the following notation, for further convenience :

/(ft. Pi, P2) Zs*(ft) VifPi) nfPè, gfPs, ft. ft) çZiZ) Xi*(ft) X2*(ft) • (2-4)

The substitution:

gfPs• ft. ft) -^gfPz.qi, ft) exp [i fp3 - ft - ft, «)] (2.5)

produces a space-time displacement of the wave packets cp3, %x, and %2 of particles
A g, Bx, and B2, characterized by the four-vector a fcp3 (x) -> cp3 fx — a), Performing
this substitution in (2.3), Tc becomes a function Tfa) of a:

Tfa) jfdkY Tfk) e-^ ffk) Ju (dq{)* fdpt)*gfp3, qx, ft)/(ft, fx, f2) X

x T3,3 [«1. <li, la IPi,Pz,P3] àfk-px-p2 + ft) ô fk - ft - ft + p3) (2.6)
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We insist on the fact that Tfa) is a physical transition amplitude ; the integral
in (2.6) extends over the physical region of T33. Therefore any property of T(a) has a

direct physical meaning.
Imagine that the wave packets of particles A3, Bx, and B2 overlap in a space-time

region M fa), whereas the wave packets of particles Ax, A2, and B3 overlap in a region
N. As a0 -> + oo, the region M fa) moves into the infinitely remote future of the region
N. We postulate that, in this limit, the transition (2.1) is due to the double-scattering
(figure 1) :

Ax + A2 -» B3 + X ; X + Az -» Bx + B2. (2.7)

A,

Figure 1

In other words, we assume that, once M and N are separated by a positive
macroscopic time interval, the connection between these two space-time regions is due
to the propagation of the stable free particle X. As a matter of fact, a transition like
(2.1) is always realized experimentally under such conditions that M and N are
macroscopically disjoint, and the experiment is analyzed as a double scattering.
Furthermore, we have assumed that selection rules exclude the exchange of any other
single particle state than X. It would be easy to relax this latter restriction.

Let tpfx) be the wave packet of the particle X produced in N. This wave packet is
determined by the wave packets of particles Ax, A2, and B3 and by the amplitude
T^2 of the reaction Ax + A2 -> B3 + X:

kW -f{(kf- [<W (#2)4 (^ft)V(ft. Pi, Pè x

x T£[ [q3, k lpx,p2] ô fk + q3 -px -pt) x Ò fwfk) + qs 0 - px 0 - p2 0) (2.8)

<w(ft) (| k I2 + /â2)112, pt mass of particle X. Similarly, the wave packet tpfx) of the
particle X absorbed in M is determined by :

^2*(fe) AcAkff^* (^2)4 (WZ^, ft. ft) x

x Ti2% ili> I21 k,p3] ôfk+p3-qx- q2) x

x Ò farfk) + p3 0 - qx 0 - q2 0) exp [- *' fco(k)a0 - fk, a))} (2.9)

T22^, is the amplitude of the reaction X + A —* Bx + B2.
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The scalar product of the wave packets tpx and tp2 gives the amplitude Ffa) of the
double scattering (2.7) :

Ffa) iftp2, tpx) j fdk)s Ffk) exp [— ifcofk) a0 — fk, a))]

Ffk) i 2 cofk) y2*fk) yfk) exp [+ i fcofk) a0 - fk, a))] (2.10)

As«0^— oo, M fa) recedes to the infinitely remote past of N. Macrocausality
excludes the propagation of a particle backward in time, over macroscopic time
intervals. Therefore, the contribution due to the double-scattering (2.7) must
disappear in the limit a0 -> — oo. In this limit, macro causality would allow an exchange
due to the emission of a free particle, call it Y, in M, and its absorption in N :

A3^BX+ B2+Y; Y + AX + A2-^B3.

However, the assumed stability of particles A3 and B3 excludes such a process.
We are led to the decomposition :

Tfa) Gfa) + Hfa) ; Gfa) dfa0) Ffa) (2.11)

The step-function 6 faf) could be replaced by any function approaching sufficiently
rapidly the value + 1 for a0 -> + oo and the value 0 for a0 ->— oo. We use 6fa0) for
simplicity; as Ffa) is a bounded function of a, the multiplication by a step-function
introduces no ambiguity. As Tfa) andina) are bounded functions of a, the same is true
for Hfa). Equation (2.11) becomes more then a definition of Hfa) if we require some
asymptotic behavior for this function. We shall postulate that :

ffda)* | Hfa) \2<oo. (2.12)

As f fda)3 | Gfa) |2 est. dfa0), Gfa) is not square integrable over i?4. Therefore,
Hfa) has an overall stronger decrease then Gfa) for a0->+ oo; (2.12) warrants
thereby the dominance of the double-scattering (2.7) in this limit. Condition (2.12)
leads to :

ffda)* 0(- a0) | Tfa) \2 < oo

this should express the impossibility of one-particle exchanges in the limit a0 -> — oo.

Finally, the decrease of Hfa) in space-like directions implied by (2.12) is ensured by
the short range of the forces at work. A more detailed justification of (2.12) will be

given in the following section.
The Fourier transform of (2.11) reads:

Tfk) Gfk) + Hfk) (2.13)

According to (2.11) and (2.10) :

Gfk) - Z [ JL p _Z_ _ ,• ô (k0 - m(k))} F (k) (2.14)

Condition (2.12) implies:

ffdkY | Hfk) |2 < oo (2.15)

10 H.P.A. 83 1 (1965)
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Equation (2.14) shows that Gfk) has a singularity at k0 cofk) which is not square
integrable. From (2.15) it follows that Hfk) is less singular then Gfk) and cannot
compensate the singularity of the latter function. Therefore, Tfk) is certainly singular
at k0 cofk), its leading singularity being that of Gfk).

Finally, we have to make sure that the singularity of Tfk) is due to a singularity
of T33. To this end, we eliminate the Dirac-distributions appearing in the integral
(2.6) defining Tfk). In a first step we get:

Tfk) ffdqf* (dq2Y fdpxf fdp2f~gfqx + q2-k, qx, q2) x

x /(Pi + Pa - k, px,p2) T33 [qx,q2,Pi+p2-k lpx,p2,qx + q2~k]x
xô(k0- coxfpx) - co2fp2) + v3 (px +p2-k))x

xòfk0- vx fqx) - v2 fq2) + co3 fqx + q2- k)) (2.16)

The functions g and/ are obtained from the cp's and #'s in the same way as/and g
axe obtained from the cp's and ^'s in (2.4). In the last formula, we use the notation:

coifp) (|P |2 + m\)W vfq) f\q\2 + «,«,)««

It is convenient to introduce the new variables :

P=Pl+p2, P=P1-P2.
Q qx + q2, q qi-q2,

and to define the vectors P and Q by their spherical polar coordinates with respect
to a system of coordinates whose z-axis is parallel to k. Let a and ß be the polar angles
of P and Q, cp and tp their azimuths. The Dirac-distributions remaining in (2.16) allow
us to get rid of the angles a and ß :

oo co 2n 2n

T® ATA AA^IdP P IdQ Q Id(p Idf /{dq)31{dp)S X

0 0 0 0

x gfk, Q,tp,q)f fk, P, cp, p) T3:Sfk, Q, P, tp, tp, q,p) x

x [*0 - cox (Z (P + p)) - w2(Z (P _ p))j [£0 _ Vl (A (Q + q)) _

-"a (| «?-«))] 6fAfk,P,<p,p))efA2fk,Q,tp,q)). (2.17)

The conditions A { > 0 make sure that a and ß take on real values ; they define the
physical region of our process.

As gfk, Q, tp, q) and J fk, P, cp, p) are bounded functions with compact support,
they cannot be responsible for the infinitude of Tfk) at k0 cofk). Furthermore, as the
location and nature of the singularity of Tfk) are independent of the choice of g and/,
T33 must have a singularity of the same type :

T3,3[qx,q2,qslPi,p2,p3Ì

- Tysr\~p-b 1

m - i ô fk0 - œfk))] x (2.18)
Aco(k) I it k0-co(k) v " 'J

x U [qx, q2, q3, / px, p2, p3] + R [qx, q2, q3 / Pi,p2,p3] •
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In this formula, k0 and k stand for:

k0 coxfpx) + ojfp2) - v3(q3) vxfqx) + vfq2) - co3fp3)

k=px+p2-q3 qi + q2-p3-
Gfk) can be brought into a form similar to the expression (2.17) for Tfk). A

comparison of these two expressions gives for the "residue" U:

U[qi, q2, q31 px, p2, Ps] T[% [qx, q2 / k, p3] x T% [q3, k / px, p2] (2.19)

The "regular" term R verifies the condition:

fdky j /Vft)4 J(dq2y J(dpxy j(dp%y gfqx + q2-k, qx, q2)ffpx + p2-k, px, p2)

x R [qi, q2, Pi + p2-kl px, p2, qx + q2 - k] |2 < oo (2.20)

as a consequence of (2.15). Therefore, R is less singular at k0 cofk) then the first term
in (2.18). For example, it could behave like fk0 — cofk))-* with a < 1/2. On the other
hand, R can have stronger singularities in the remaining variables ; these are smeared
out by the q- and ^»-integrations in (2.20). Such singularities cannot be excluded since
R contains the possible one-particle singularities arising in other channels then the
A-channel considered so far. Some of these singularities may appear in the physical
domain of process (2.1).

If we assume that r33 is an analytic function of k2, (2.18) can be brought into the
more familiar form :

T" - -k ATI nAAAe *%i + *¦)'• ^ + *»>'• fe - &>"' (ft - ^2) + R^k2' ' ' ¦) (2-21)

with:

Ri - -r -lürrr ^- U+R (2.22)1 A n cu(fe) (A0 + cu(fe)) v ;

Rx has no pole at k0 cofk). Therefore, we succeeded in showing that conditions
(2.11) and (2.12) imply the existence of a one-particle pole in T33. The fact that we
cannot prove that Rx is regular at k0 mfk) is due to the weakness of condition (2.12).

3. Further Discussion of Condition (2.12)
The condition (2.12) played a crucial role in the discussion presented in the

preceding section. It is this condition which allowed us to separate the one-particle pole
we were interested in. We devote the present section to a justification of the behavior
of Hfa) as aa -> oo implied by (2.12).

Beside the one-particle exchange considered so far, possible exchanges of real two-
particle states (figure 2) may contribute to the transition (2.1) in the limit a0 -> oo.
We shall investigate the behavior of such a contribution. Its amplitude is given by:

Kfd) ffdk)*Kfk) e~i{k'a) (3.1)

with :

Kfk) =Jn fdpy fdqtAffq3, px, p2) g(p„ qx, q2) X

XÔfqx + q2~p3-k)Ô fpx + p2-q3- k)f fdkx)* J fdk2Y x (3.2)
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TQ2 is the amplitude of the production process Ax + A2 -> Xx + X2 + B3, while

r^3 is the amplitude of the process Xx + X2 + A3 -> Bx + B2.

N/

A»

Figure 2

As the functions/and g have compact supports, the same is true for the function
Kfk). We shall further show that Rfk) is bounded. It is convenient to perform the
following change of variables in (3.2) :

P-t -> Pi Afk) p{, q, -> q\ Afk) q„ k, -> k't Afk) kt,

where A fk) is a Lorentz transformation bringing the system of particles Xx and X2 to
rest:

Afk) k k*. k* fXJ~k2, 0,0,0)
If:

/a (ft. Pi, Pè /fA-1 ft, /I"1 px, A-1 pè

gAfP3, ft. ft) gfA-1 P3,A~l qx,A~1 q2)

K(k) becomes:

Kfk) fn(dp,)* (^Z/Zft. Pi, Pè gAfP3, ft. ft) x

X ô (ft + q2 - p3 - k*) ô (px + p2-q3- k*) L(q{, p„ k*) (3.3)

L is given by:

Lfq(, Pt, k*) ffduY T% [qx, q2 / % k* + u, % k* - u, fa] x

ô+(&k*+ ")*-A) ^{(t**-»)'-£)* (3-4)

X 1^ [Vi k* + U' Vt k* - U> ft / Pi, P*] l^A6^-^-^ fdQ« T223 T™ '

In the last expression, u0 (pi\ — /t2)/2 k2 and

12
1

4, fk2-fptx + pi2)2)fk2-(Fx-pt2)2)
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The amplitudes Tfp2 and Tf>} have no one-particle singularities in their physical
domains. Therefore, we may assume that these amplitudes are bounded functions in
these domains. This implies the boundedness of L. The elimination of some Dirac-
distributions in (3.3) gives:

Kfk) ffdPi? jfdp2f /Vft)3 j fdq2f fAPi+p2,Pi,Pè X

x gAfqi + g2, qi, qè L ò fcoxfpx) + cofp2) - v3 fpx + p2) - k*0) x

x ô fvxfqx) + v2fq2) - co3(qx + q2) - k*) (3.5)

The remaining Dirac-distributions disappear after integration over the angles
formed by px and p2, qx and q2. Once this has been done, Kfk) appears as the integral
of a bounded integrand extended over a compact domain. This circumstance establishes

the boundedness of Kfk).
Now, as Kfk) is a bounded function with compact support, we have :

ffda)* | Kfd) |2 (2 tt)4 f fik)* \ Kfk) ]2 < oo (3.6)

It may be worthwhile to notice that, because of the discontinuities appearing in the
derivatives of T^a and 7^23, Rfk) is not infinitely continously differentiable. As a

consequence, it is impossible to get more informations about the asymptotic behavior
of Kfd) than those implied by its square integrability (3.6) without introducing very
specific assumptions about the discontinuities of T3*2 and T^3.

As mentioned before, Hfa) may contain terms which behave asymptotically, for
a0 -> oo, like Kfd). If we assume that the possible two-particle exchange terms govern
the behavior of Hfa) as a0 -> oo, we are justified, from (3.6), to postulate:

oo

fda0 /V«)3 | Hfa) |2 < oo (3.7)

This is precisely that part of condition (2.12) we wished to make plausible.

Note added in proof: After completion of this work, the author received a
preprint of an interesting article entitled "S-Matrix Theory and Double Scattering", due
to D. Iagolnitzer (Saclay). It is shown there that the existence of one particle poles
is consitent with assumptions about transition probabilities whereas our proof starts
from assumptions about transition amplitudes.
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