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Affine Vollstindigkeit und kompakte Lorentz’sche Mannigfaltigkeiten

von Markus Fierz und Res Jost
Seminar fiir Theoretische Physik, ETH Ziirich

(1. X. 64)

1. Evnleitung: Die Frage, wann eine Mannigfaltigkeit mit metrischer Struktur als
vollstdndig zu gelten habe, ist fiir Riemannsche Mannigfaltigkeiten durch die Sitze
von H. Hoprund A. RiNow seit langem hdchst befriedigend gelost. Auf Mannigfaltig-
keiten mit beliebigem affinem Zusammenhang, also auch auf Lorentzsche Mannigfaltig-
keiten, ldsst sich die Hopf-Rinowsche Definition der Vollstindigkeit mit geringer Modi-
fikation iibertragen. Man erhilt dann eine Eigenschatf solcher Mannigfaltigkeiten, die
affine Vollstindigkeit, welche aber sehr wenig mit dem naiven Begriff von Vollstdndig-
keit zu tun hat. Wir méchten dies fiir Lorentzmetriken auf dem 2 dimensionalen Torus
illustrieren. Sicher ist der Torus als kompakte Mannigfaltigkeit in einem naiven Sinn
vollstindig. Leider lassen sich auf ihm aber sehr leicht Lorentzsche Strukturen an-
geben, die affin unvollstindig sind.

Unsere Beispiele und unsere Uberlegungen sind ginzlich elementar. Auch wieder-
holen wir Bekanntes und méglicherweise ist alles, was wir zu sagen haben, bekannt.
Vielleicht gibt es aber doch da oder dort einen Physiker, dem diese Dinge auch nicht
so geldufig sind und der uns anzuhéren bereit ist.

Im folgenden Abschnitt diskutieren wir die Mannigfaltigkeiten, die iiberhaupt eine
Lorentzsche Metrik zulassen. Im 3. Abschnitt rufen wir die Sidtze von Hopr und
Rixow in Erinnerung. Der 4. Abschnitt endlich diskutiert die affine Vollstandigkeit
an 3 Beispielen. '

Motiviert ist diese kleine Untersuchung natiirlich aus der allgemeinen Relativitits-
theorie und durch unsere Uberzeugung, dass auch der Physiker in dieser Disziplin
wohl auf die Dauer globale Gesichtspunkte nicht véllig ausser acht lassen kann.
Insbesondere ist die Frage der Fortsetzbarkeit einer Lorentzschen Mannigfaltigkeit
offenbar enscheidend und man méchte sie gerne mit einem niitzlichen Begriff der
«Vollstandigkeit» verbunden wissen.

Wir freuen uns, diese bescheidene Note unserem lieben Kollegen E. C. G. STUECKEL-
BERG-VON BREIDENBACH zum 60. Geburtstag widmen zu diirfen.

2. Unter einer « Mannigfaltigkeit» verstehen wir im folgenden eine reelle, zusammen-
hingende, parakompakte, differenzierbare (C*) Mannigfaltigkeit?).

Jede solche Mannigfaltigkeit M kann eine differenzierbare (C*) Riemannsche
Metrik, oder, was dasselbe ist, ein iiberall positiv definites, symmetrisches, kovariantes
Tensorfeld zweiten Ranges tragen, und wird dadurch zu einer Riemannschen Mannig -
faltigkeit. Der Beweis dieser Tatsache erfolgt leicht mit Hilfe einer passenden Zer-
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legung der Einheit und auf Grund der Tatsache, dass endlich viele positiv definite
quadratische Formen mit nicht negativen Koeffizienten linear kombiniert, abgesehen
vom trivialen Fall, wieder eine positiv definite Form ergeben.

Tragt M ein (nirgends singuldres) symmetrisches, differenzierbares, kovariantes
Tensorfeld zweiten Ranges mit der Signatur (+, —, —, -++, —), so wird M zu einer
Lorentzschen Mannaigfaltigkest. Wir sagen auch: M frigt eine Loventzsche Metrik. Im
Gegensatz zum Fall der Riemannschen Metrik kann nicht jede Mannigfaltigkeit eine
Lorentzsche Metrik tragen. Es ist aber leicht, ein notwendiges und hinreichendes
Kriterium fiir die Existenz einer Lorentzschen Metrik anzugeben.

Kriterium: M kann genau dann eine Lorentzsche Metrik tragen, falls es auf M ein
(C*®) Geradenfeld gibt?).

Dies ldsst sich wie folgt einsehen: Wir denken uns M mit einer Riemannschen
Metrik versehen. Jeder Tangentialraum 7, tridgt dann eine positiv definite quadra-
tische Form Q(¢, &). Ist nun M eine Lorentzsche Mannigfaltigkeit, dann tragt 7, auch
eine quadratische Form L, (&, &) mit der Signatur (+, —, ---, —). Nun bestimmt das
Extremalprinzip «L (&, §) maximal unter der Nebenbedingung Q,(§, &) = 1» bis auf
das Vorzeichen genau einen Eigenvektor &, und damit einen eindimensionalen Unter-
raum /, von T,. {/,} ist das gesuchte Geradenfeld.

Ist umgekehrt ein Geradenfeld {/,} gegeben, dann spaltet man T, beziiglich der
Metrik Q,in /,und das orthogonale Komplement [;-. Sei £ e T,, & = & + &, & €1,
& el} soist L (& &) = Q,(&,,&) — 0,(&,, &) eine quadratische Form der Signatur
(4, —, «++, —) und bestimmt eine Lorentzsche Metrik.

Jede offene Mannigfaltigkeit kann ein Geradenfeld und damit eine Lorentzsche
Metrik tragen. Fiir kompakte Mannigfaltigkeiten ist das, nach einem klassischen
Resultat von H. HopF, dann und nur dann méglich, falls die Eulersche Charakieristik
verschwindet?). In 2 Dimensionen kénnen also nur die Kleinsche Fliche und der Torus
eine Lorentzsche Metrik tragen.

3. Jede Riemannsche oder Lorentzsche Mannigfaltigkeit bestimmt eindeutig einen
torsionsfreien affinen Zusammenhang. Unter einer «geoddtischen Linie» in einer
Mannigfaltigkeit mit affinem Zusammenhang verstehen wir eine vollstindige geoddti-
sche Linie, die also nicht echter Teil einer (zusammenhédngenden) geoddtischen Linie
ist. Der affine Parameter einer geoddtischen Linie ist genau bis auf affine Trans-
formationen in R! bestimmt und variiert in einem endlichen oder unendlichen Inter-
vall in R!. Eine geoditische Linie gehort also einem der drei folgenden Typen an:
Typus I:  Der Bereich des affinen Parameters ist R
Typus II1: Der Bereich des affinen Parameters ist eine Halbgerade, bei passender

Normierung (0, + oo).
Typus I11: Der Bereich des affinen Parameters ist ein (offenes) endliches Intervall,
bei passender Normierung (0, 1).

Die klassische Definition eines vollstindigen Riemannschen Raumes und die
folgenden Sdtze stammen von Hopr und Rinow1)3).

Definition 7: Ein vollstindiger Riemannscher Raum ist eine Riemannsche
Mannigtfaltigkeit, in der alle geoddtischen Linien von Typus I sind.

Um an die Haupteigenschaften eines vollstindigen Riemannschen Raumes zu er-
innern brauchen wir die Distanzfunktion 4 in einer Riemannschen Mannigfaltigkeit.
d(x,v), (%, v) € M x M ist die untere Schranke der Lingen aller stiickweise C* Bogen,
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die x und y verbinden. 4 erfiillt die metrischen Axiome. Nun gelten die Sitze

Satz A : Die folgenden Aussagen sind gleichwertig

1. M ist ein vollstdndiger Riemannscher Raum.
2. M ist ein vollstindiger metrischer Raum mit Distanz 4.
3. Jede beziiglich d beschrinkte Menge in M ist relativ kompakt.

Satz B: In einem vollstandigen Riemannschen Raum lassen sich irgend 2 Punkte
x und y durch einen geoditischen Bogen der Linge d(x, v) verbinden.

Satz C: Ein vollstindiger Riemannscher Raum ist nicht fortsetzbar, das heisst er
kann nicht als echte offene Teilmenge (isometrisch) in eine Riemannsche Mannig-
faltigkeit eingebettet werden.

Es folgt aus Satz A, dass eine kompakte Riemannsche Mannigfaltigkeit ein voll-
standiger Riemannscher Raum ist.

4. Nun lésst sich die Definition 1 offenbar auf beliebige affine zusammenhingende
Mannigfaltigkeiten iibertragen?).

Definition 2: Eine affin zusammenhidngende Mannigfaltigkeit heisst affin voll-
stindig, falls alle geoddtischen Linien vom Typus I sind.

Wie verschieden sich nun dieser erweiterte Begriff zum alten verhélt, wollen wir an
kompakten Mannigfaltigkeiten illustrieren.

1. Bewsprel: M = S* (Kreislinie) mit Koordinate x (mod 1). Affiner Zusammen-
hang I', I'(x + 1) = I'(x). Gleichung der Geoditischen ¥ + ["4? = 0. Setzt man
I' = dF[dx so ergibt sich fiir den affinen Parameter

x

t:cfeF(x')dx’—kto.

0

Nun ist 7 von der Gestalt F(x) =y ¥ + p(x), wobei p (x + 1) = p(x) ist. Fallsy =0
ist, ist die geoditische Linie vom Typus I, (S, I') also vollstdndig. Falls y & 0 ist,
dann ist die geoditische Linie vom Typus II also (S, I") unvollstandig.

Dieses Beispiel, so kindisch es anmuten mag, tritt in hoheren Dimensionen bei
geschlossenen Linien auf Lorentzschen Mannigfaltigkeiten auf.

2. Beisprel: M = S' x S1: Torus in 2 Dimensionen. Koordinaten x (mod 1), y (mod 1).

Metrischer Tensor (Lorentzsche Metrik)

((1) ]11), hix+1)=h(x).

e=2xy+hy:, g=%+hy.

Integrale

Geoddtische Linien

dh

Fb oW =0, §- S WPE=0, ="

2
I) Nullgeoditische: e = 2%y + hy2 =0, x =0, § — 1, b’ y2 = 0.
I.Fall: y=0,y=19,, x=1 Typus L
2. Fall: 2%+ hy=0 und %+ 0, also dy/dx = — 2/h.
2a) h hat keine Nullstellen Typus L.
2b) A hat Nullstellen (verschwindet aber natiirlich nicht 1dent1sch) Typus III.
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3. Fall: x = 8 wobei A(f8) = 0ist. Dann gilt vy — 1/, #'(8) 2 = 0. Wir befinden uns
in einem Spezialfall des 1. Beispiels und haben die Fallunterscheidung
3a) W'(f) =0 Typus I,
3b) A'(f) = 0 Typus II.
Zusammenfassend konnen wir festhalten: Falls & einfache Nullstellen hat, dann treten
Nullinien zu allen 3 Typen auf.

Zur Diskussion der Nicht-Nullgeodédtischen wollen wir voraussetzen, dass # das
Vorzeichen wechselt. Wir setzen weiterhin m = Min A(x) << 0, M = Max A(x) > 0.
Ausserdem ist ohne Einschriankung ¢* = 1 angenommen. Wir mochten zeigen, dass
auch fiir die Nicht-Nullgeodédtischen alle 3 Typen auftreten.

II) Nicht-Nullgeoddtische: Die geodatischen Gleichungen konnen wie folgt geschrieben
werden:

dt 1 . dfy _ i q 1
x  Yp—en' 0 dax (l/qz—ﬁk )

a) Geoddtische vom Typus I. Wir wihlen ¢* > Max(M, — m) und ]/g'2 — h > 0.
Schliesslich sei ¢ > 0. Offenbar ist v iiberall, auch bei %4 = 0, beschrinkt. Daher
varilert ¥ unbeschrankt und ¢ nimmt alle Werte in (— oo, + oo) an.

b) Geoddtische vom Typus II. Wir illustrieren nur den Fall ¢ = + 1. Sei ¢2 = M,
V éiw—rik = 0, ¢ < 0. Sei die Nullstelle £, von % so gewdhlt, dass zwischen ihr und der
ndchsten Nullstelle (bei zunehmendem «x in [, f; + 1]) eine M-Stelle von % liegt.
Sei p, die erste solche M-Stelle: A(y,) — M. Wir betrachten das Intervall {x} =
(B1, 1) Offenbar strebt y sowohl bei §; + 0 als auch bei y; — 0 gegen — oo und ist
im iibrigen beschrankt. Weiter bleibt ¢ bei §; + 0 beschrankt und strebt bei y, — 0
gegen + co. Nach passender Schiebung liegt # in (0, + oc). Die Geodétische Linie ist
also vom Typus II.

c) Geoddtische vom Typus I1I. Wie unter a) wihlen wir ¢ > Max(M, — m) und
Vg® — & h > 0, jedoch ¢ < 0. Sind f, und f, konsekutive Nullstellen von %, dann wird
y in f#; 4+ 0 und f, — O unendlich. Offenbar ist die Variation von x endlich, die
Geoddtische also vom Typus III.

Zusammenfassend konnen wir also feststellen, dass, sofern % nur eine einfache
Nullstelle besitzt, fiir jeden Wert von ¢ alle 3 Typen von geoditischen Linien auf-
treten. In einer Hinsicht freilich verhilt sich unsere Lorentzsche Mannigfaltigkeit
«normal»: Irgend zwei Punkte sind durch eine geoddtische Linie verbindbar (geoddtische
Verbindbarkeit). Wir wollen diese Tatsache fiir die Punkte (0, 0) und (x, v), v = 0(1)
verifizieren. Dabei wird es sich herausstellen, dass das Vorzeichen von ¢ noch beliebig
gewahlt werden kann. Wir setzen ¢ = + 1 und ¢ < g, = [Max(M, — m)]~1. Aus

i —I)QSZCEW

y:xf(8)+g(8:x): f(o):()x g(le)ZO
ist, wobei g(e, x + 1) = g(e, x) gilt. Sowohl f(¢) als auch g(e, x) sind regulir analytisch.
Ausserdem ist (df /de) (0) = 1/,, also verschwindet f nicht identisch. Nun nehmen wir
ohne Einschrankung 0 <<y < 1 an und setzen x = k& + x,, wobei 0 < x; < 1 und
k£=0,1,2.... Es ist dann zu zeigen, dass die Gleichung

y=Fk[fle) + [x1f(e) + gle, x)]

dy_l
dx (

folgt, dass
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bei passender Wahl von % eine Losung e €(0, g,) (wir beschrinken uns auf den Fall
¢ > 0) hat. Das ist aber evident; wir brauchen nur % geniigend gross zu wihlen, dann
nimmt die rechte Seite der letzten Gleichung in jedem noch so kleinen Intervall
[0, &], 0 < & < g, alle Werte in [0, 1] an, da die Steigung von f(g) im Nullpunkt 1/,
betragt.

Im nichsten und letzten Beispiel, das auch schon von J. W. Smite?) in fast
identischem Zusammenhang diskutiert worden ist, wollen wir zeigen, dass auch die
geoddtische Verbindbarkeit fiir toroidale Lorentzsche Mannigfaltigkeiten im allge-
meinen nicht erwartet werden darf.

3. Beispiel: M = S'x S?, Koordinaten x (mod 4 7), ¥ (mod 1).

Metrischer Tensor

sin2Zx  cos2x cos¥ sinx 0 1 cosx — sinx
(cost—sian)_(—Sinx cosx) (1 O) (sinx Cosx)'
Man verifiziert auch in diesem Beispiel das Auftreten von geoditischen Linien der
Typen II und III. Uns interessiert jedoch jetzt die geoddtische Unverbindbarkeit.
Wieder setzen wir
e=(x2— 9y sin2x +2x9ycos2x.
Fiithrt man
§=xcosx —ysiny und #% = xsinx + ¥ cosxy
ein, dann findet man
g=gN.
Nun heisst eine C!-Kurve homogen zeitartig (raumartig) wenn lings ihr ¢ > 0
(e << 0) ist; sie ist eine Nullinie, falls (£(¢), y(¢)) + (0, 0) und ¢ = O fiir alle £. Langs einer
homogenen zeitartigen (raumartigen) Kurve kénnen & und % ihr Vorzeichen nicht
dndern. Lings einer Nullinie verschwindet entweder & oder %, die nichtverschwindende
Komponente aber dndert ihr Vorzeichen wieder nicht. Betrachten wir nun etwa die
2 Streifen 0 < x K wund — 7 < x 0. Firx =0werden § =%, =y, firx=4=

aber £ = — %, n = — y. Eine homogene Kurve, welche x = 0 etwa mit x > 0 iiber-
schreitet, hat mit x = 0 keinen weiteren Punkt gemein, kann x = 7 nie iiberschreiten
und ¥ = — 7 nie iiberschritten haben. Sie bleibt also dauernd im Streifen | x | < 7.

Analoges gilt fiir # < 0. Ist aber fiir ¥ = 0 4 = 0, dann ist die Kurve eine Nullinie,
x verschwindet dauernd und die Kurve bleibt auch im Streifen | x | < z. M ist also
nicht einmal durch homogene Kurven verbindbar, also sicher nicht geodatisch ver-
bindbar.

Es ist klar, dass sich die beiden letzten Beispiele in mannigfacher Art verallge-
meinern liessen. Wiinschenswert wire freilich eine allgemeine Theorie. Elne solche
aber iibersteigt die Kenntnisse der Autoren.

Literatur

1) S. KopavasHi und K. Nomizv, Foundations of Differential Geometry (Interscience, New York—
London 1963).

%) H. HopF, Math. Ann. 96, 225 (1927).

3) H. Hopr und W. Rinow, Commentarii math. Helv. 3, 209 (1931).

%) N. StEENROD, The Topology of Fibre Bundles, Princeton University Press, 1951, p. 204-207.

%) J. W. Smits, Am. J. of Math. 82, 873 (1960).



	Affine Vollständigkeit und kompakte Lorentz'sche Mannigfaltigkeiten

