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Sur la quantification du système de deux particules*)

par C. Piron**)

Institut de Physique, Université de Genève, Suisse

(25 IX 64)

1. Introduction
Considérons le système quantique composé de deux particules de masse mx et m2

liées par un potentiel:
Vfqx - q2) -j fqx ~ q2)2

L'hamiltonien est donné par:

h=-é;+H2 +v^ - «•> ¦

Un tel problème, résolu de la manière habituelle, ne comporte pas de solutions station-
naires ou s'y ramenant par une transformation de Galilée***). C'est un résultat
général qui découle directement du fait qu'on peut écrire cet hamiltonien sous la
forme :

H H0 + Hj
avec p2

H° AW ' M mi + m2

rr P' * 9 ml m2.Hj ff— +Tg!; m —1—^-,* 2 m 2 mxA-m2
ou ^ „„ m. p„ — p. m,P Pi + py, P- * l l

mxA-m2

mxqx+m2q2
v - mx + m2 ' 1-4*-11-

car H0, formellement identique à l'hamiltonien d'une particule libre, ne possède pas
de vecteurs propres normalisables. Dans cet article nous proposons des règles de

quantification différentes, qui conduisent pour le système précédent, à un modèle
admettant des états stationnaires. Mais nous devons, pour traiter ce modèle, développer
tout d'abord un formalisme valable dans le cas de règles de supersélection continues.

*) Recherches financées par le Fonds National Suisse.

**) A mon maitre E. C. G. Stueckelberg de Breidenbach à l'occasion de son 60e
anniversaire.

***) C'est là un paradoxe. Le second principe de thermodynamique postule l'existence d'un
état d'équilibre pour tout système isolé.
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2. Un formalisme quantique avec règles de supersélection

Etant donné un système physique considérons parmi les observables possibles la
classe de celles qui ne peuvent prendre que deux valeurs. Nous appellerons de telles
observables propositions ou encore expériences du type oui-non. Comme le suggère un
précédent travail1), il est nécessaire pour décrire l'ensemble des propositions de
considérer une famille d'espaces d'Hilbert {§a}- Une proposition particulière est
repiésentée par la donnée pour chaque x d'un projecteur Ex défini sur §œ. Conformément

à l'idée que la mesure d'une observable peut toujours se réduire à la mesure
simultanée d'un certain nombre de propositions, une observable A est alors
représentée par la donnée d'une famille d'opérateurs linéaires auto-adjoints {^4a}et d'une
application / (éventuellement une mesure) des x dans la droite réelle. En général on
peut se ramener, par un choix convenable des Aœ, au cas où l'application ne prend que
la valeur 1. La structure vectorielle des |)a engendre sur l'ensemble produit §
JJ §>a (ensemble des familles {<pœ} de vecteurs cpa e §)a) une structure vectorielle que

a

nous appellerons la structure produit2). L'application p rx de § sur §a est linéaire et
il en est de même de l'opérateur A JJ Aa qui par définition applique cp e § sur

a

{AJp ra <p)} e §. La structure algébrique des Aa définit sur les JJ Aa une structure
a

produit qui n'est autre que la structure d'algèbre des observables. On remarquera que
§ JJ §>a ne peut être identifié, en tant qu'espace vectoriel, à la somme (oul'inté-

a

graie) hilbertienne des jr)a que si l'ensemble des x est fini. Enfin nous définirons l'état
comme une généralisation de la notion habituelle (classique) de probabilité, c'est-à-
dire comme une application w(E) de l'ensemble (éventuellement un sous-ensemble)
des propositions dans l'intervalle réel [0, 1], satisfaisant aux conditions suivantes3):

1. 0 < wfE) < 1 wfl) 1

2. wfE]) wfE2) 0 => wfEx u E2) 0

3. Pour toute famille dénombrable de Et telle que E{ Ej 0 pour i + j, on a:

wfZEi)=£wfEl).
i i

Chaque proposition peut être définie par l'ensemble de ses vecteurs propres, ensemble

qui forme un sous-espace fermé. Par définition, E] u E2 est la proposition correspondant

au sous-espace fermé engendré par les vecteurs propres de Ex et de E2. Si

E] E2 E2E], c'est-à-dire si Ex, E2 sont compatibles (commutent), on remarquera
que Ex u E2 Ex + E2 — Ex E2. Un remarquable théorème mathématique du à

A. M. Gleason4) affirme dans le cas où la famille des §a se réduit à un seule espace
d'Hilbert, que tout état peut être mis sous la forme :

wfE) tr fg E)

où g est la matrice densité de von Neumann, c'est-à-dire un opérateur linéaire
satisfaisant aux conditions:

1. g g*,
2. g2<g,
3. trfg) 1
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C'est pourquoi dans le cas général*), nous représenterons un état w sous la forme:

wfE) ftvfQaEa)pifx)dx,
où {ga} est une famille de matrices densités et pifx) une mesure définie sur les x avec la
condition :

J trfej fifx) dx=l.
Dans un tel formalisme la valeur moyenne A d'une observable {^Z}, / dans l'état
{Qa}, pt est donnée par la formule :

Â= ftTfgxAx)ffx)fifx)dx.

3. Le modèle

Considérons le système de deux particules décrit dans l'introduction. Si ce

système est isolé dans l'espace, les valeurs des coordonnées du centre de gravité Q
sont arbitraires car aucun autre point de l'espace n'est privilégié. Pour être consistant
avec ce point de vue, on est conduit à considérer Q comme faisant partie des règles de

supersélection. C'est pourquoi nous proposons les règles de commutations suivantes:

[P, O] o

[p, O] o

[q, O] o

* [p. qi n i
[P, q] o

[P>p] o.

En revenant, à l'aide des formules du premier paragraphe, aux coordonnées
individuelles, nous trouvons :

i fp,, qA -2 —HI

i[p2,q-] ^r\-Ki
' r n

— mi s rLPi • y 2J —
mx + mî

1P2 > y ij —
TOi + m^

[Pi.P2] [<Zi,tfJ 0.

Ce passage, des coordonnées centrales aux coordonnées individuelles, n'est pas une
transformation canonique, ce qui nous montre que certaines règles du principe de

correspondance doivent être modifiées pour être applicables à ce modèle.
Pour chaque valeur possible du couple P, Q (pour simplifier nous supposerons à

partir de maintenant le problème unidimensionnel) donnons-nous un espace d'Hilbert

*) Il ne peut être question de démontrer que tout état est de cette forme sans postuler quelque
chose sur l'ensemble des a. Mais on peut facilement montrer que tout état pur est de cette forme.
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sous la forme de l'espace des fonctions complexes 99(17) de «carré» sommable. Dans ces
conditions nous obtenons une représentation de nos règles de commutations en posant :

*-<"> *-{t-b)
Q - {Q 1} « - M •

Dans ces formules nous n'avons pas explicité l'indice P, Q correspondant à a, en
d'autres termes l'expression entre crochets définit un opérateur sur §P q pour chaque
valeur de P, Q. L'expression de l'hamiltonien est immédiate nous avons :

h \JL- t - ZZ (_L\* + i2.
\2M 2w\a?/~1~2

Si | n > <pn(q) e §p q est un vecteur propre normalisé de l'hamiltonien interne Ht ;

un état stationnaire, c'est-à-dire un état propre de H*), est donné dans notre
formalisme par une famille de matrices densités { | n > < n | } et une mesure fifP, Q)

ôfP — P0) ß0fQ) où ia0(Ç) est une mesure sur les Q satisfaisant à:

fMQ) dQ i.
Ces états sont en général des mélanges, les états purs étant de la forme pi0(Q)

ôfQ — Q0). Le lecteur remarquera que le cas fi0fQ) — 1 correspond à l'onde plane de

la théorie habituelle et que c'est un état généralisé, en ce sens que seule la relation
wfl) 1 est en défaut.

Pour terminer, discutons l'évolution d'un tel système. Nous résoudrons ce
problème en imposant une représentation du groupe de symétrie des translations dans le

temps5). Dans notre formalisme toute symétrie est donnée par une famille { i7Pç] de

transformations unitaires (ou anti-unitaires) sur les §>p>q, et une permutation de

l'ensemble des P, Qe). Dans le cas particulier considéré, UP:q doit être une représentation

du groupe des translations dans le temps, ce qui nous conduit à poser :

UP,QfT) e-*B*.

De même la permutation cherchée doit, d'une part, être une représentation de ce
même groupe, et d'autre part, satisfaire à l'invariance de Galilée. D'où la relation:

Pfr) PfO)

Qfr) QfO) + ^r.
4. Conclusion

Ainsi nous avons prouvé l'existence d'états stationnaires pour notre modèle de

système de deux particules. Nous pourrions maintenant discuter les équivalences
possibles avec le modèle qu'on obtiendrait par la méthode habituelle. Nous nous
limiterons au cas particulier où la masse d'une des particules est très grande par

*) Un état propre d'une observable A est un état qui, restreint à la famille de propositions
compatibles définissant A, est sans dispersion c'est-à-dire, ne prend que les valeurs 0 ou 1.
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rapport à l'autre. Si dans les relations de commutations proposées nous faisons

mx -> oo tous les commutateurs sont nuls à l'exception de deux :

ZP2.Ç2] =» J

i [pi. gj - a J

Un tel système correspond au cas d'une seule particule de masse m m2 soumise à un
potentiel extérieur Vfq2 — qx). Nous retrouvons les règles de commutations
habituelles :

* [p2, g2] a /
et pour l'évolution nous retrouvons l'équation de Schrödinger. La grande masse
origine du potentiel a une position fixe qui peut être mesurée exactement. C'est sa

quantité de mouvement px qui est en général indéterminée et qui est perturbée lors
d'une mesure de la position q2 de la petite particule selon la relation :

**[pi.ga] -a/.
Mais il y a conservation stricte de la quantité de mouvement totale P. Cette
interprétation nous semble physiquement très satisfaisante et éclaire d'une manière
nouvelle les pseudo-paradoxes qu'on peut formuler sur ces questions7).
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