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On the Clebsch-Gordan Series of Semisimple Lie Algebras

by N. Straumann

Institute for Theoretical Physics, University Ziirich

(3. IX. 64)

Abstract. Starting from a formula of STEINBERG, we derive a simple representation theorem
for the highest weights in the decomposition of a tensor product of irreducible modules into
irreducible constituents which is valid for arbitrary split semisimple Lie algebras (over a field of
characteristic 0). Furthermore we use the formula of STEINBERG to evaluate the multiplicities of
the irreducible modules corresponding to these highest weights for special Lie algebras.

Introduction

In the physical literature, there exist quite a few papers about the Clebsch-Gordan
series of SU4Y). But it seems that it has been overlooked that Steinberg?) has given
a formula for the decomposition of a tensor product of irreducible modules into
irreducible constituents which is valid for arbitrary split semisimple Lie algebras over
a field of characteristic 0. The formula of Steinberg expresses the multiplicities of the
irreducible constituents by a double sum over the Weyl group W. Hence to determine
the multiplicities, one only has to know the root system.

In § 1 we discuss briefly the formula of Steinberg. Starting from this formula, we
prove a general representation theorem for the highest weights in the decomposition
of the tensor product in § 2. With the help of this theorem, we can easily determine the
multiplicities of the irreducible modules corresponding to these highest weights for
special Lie algebras. This is carried out in § 3 for the algebras 4,, G,, and A;.

§ 1. The Formula of Steinberg

Let M,, and M, , be two finite dimensional irreducible modules with the highest
weights A" and A” of a finite dimensional semisimple Lie algebra & over a field of cha-
racteristic 0. Further we assume that £ has a splitting Cartan subalgebra §) (the charac-
teristic roots of every ad(h), h € §, arein the base field). If the base field is algebraically
closed, any finite dimensional Lie algebra is of course split.

The tensor product M,, @ M, is, according to a general theorem, completely
reducible (this is the case for arbitrary finite dimensional Lie algebras over a field of
characteristic 0). Let

My @ My =D m, My (1)
A
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be its decomposition into irreducible modules with the multiplicities m,, then the
formula of Steinberg reads

m{1=2 det (ST)P[S(A"+68)+ T (A" +6) — (A+20)]. (2)

S, TeW
The sum on the right hand side of (2) extends over the Weyl group W. This group is
finite and is generated by the reflections at the simple roots (hence det (ST) = -+ 1).
0 is one half of the sum of all positive roots: d =1/, 3" «. P [M] is the number of

x>0
solutions of ¥7 &k, « = M, where the %, are non-negative integers. From this definition
a>0

follows that P [M] is different from zero only if M is an integral linear function over
the Cartan algebra §*).

It is perhaps useful to see how one can immediately obtain from (2) the usual
Clebsch-Gordan series for the Lie algebra 4;. Let « be the only positive root; 4 = «/2
is the fundamental dominant weight; 8 = «/2. The Weyl group consists simply of [
and S, (S,: reflection at the root «), i.e. W is the cyclic group Z,. We put A’ = m’ 4,
A" =m" A, A=mld; m, m', m" non-negative integers. If we assume that m’ > m”,
then the only terms which contribute to the sum of the right hand side of (2) are
(S, T)=(1,1) and (S, 7) = (1, S). We obtain

w’ +m" —m wm' —m"—m—2
= B[RO ] el om

which means: m, = 1form=m'+m", m' +m" — 2,...m" — m" and m, = 0 in all
other cases.

§ 2. A Representation Theorem for A in (1)

In this paragraph we prove the following
Theorem. The highest weights in (1) necessarily have the form

i
A=A+ A" =3 n o
=1

with non-negative integers #; and the simple system of roots 7 = («, &, ... &;).
Proof: To prove this theorem, we need the following

*) M is an integral linear function over § if M € $* (H* dual space of §) has the property
M(h;) integer for i = 1, 2,...1 (I = rank of £). Here the %, are those elements of the Cartan
algebra which belong to the set of canonical generators. They are defined in the following way:
Let m = (ot;, .. o) be a simple system of roots with the characteristic property that every root

! ;
« = 2 k;o; a; €m, where the % ; are all either non-negative or non-positive integers. To every
i=1

linear function «; € H* we attribute the vector k“i € $ such that o;(h) = (hai, k) for all & e $
(scalar product = Killing form); then %; = 2 kai/(“i' a;). The integral linear functions form a
lattice with the fundamental dominant weights (defined by the property 4;(k;) = d; ;) as a basis.
There is a 1: 1 correspondence between the isomorphism classes of finite dimensional irreducible

modules for £ and the set of dominant integral linear functions of § (4 dominant integral function
if A(h;) > 0).
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Lemma. For S e Wand S+ 1,6 — S §is a non zero sum of distinct positive roots*).
This lemma can be found in 3). For reasons of completeness repeat the short proof:
Since the Weyl group simply permutes the roots, Sé =09 — X', where the

summation is taken over the f = — Sa > 0. If there would be no such f, then

S a > 0 for all «. Then simple roots would be carried over into simple ones (compare

footnote pag. 57), i.e. S =m. According to a well known theorem?), we could

conclude S = I, contrary to hypothesis.

Since also the weights are simply permuted under the Weyl group, especially S A
is a weight if A is the highest weight (dominant integral linear function on §) of an
irreducible module. According to a well known theorem it can be represented as

!
SA=A— 3 k;o; with non-negative integers Z; .
i=1
Hence, using the lemma, we get for S = [

S(/l—l—c3)=/1+(5-—2kjaj—(é~5(3)EA+(5—2xj»aj

where the %; are non-negative integers which do not vanish simultaneously. _
The general argument of P in (3), which we simply denote with Xy 7, is for
(S, T) + (1, 1) therefore of the form

Xgp=4"4+4" —A—ijocj ;
w; non-negative integers, not all = 0.
From this one easily concludes, that a necessary condition for m, + 0 is
PA+A"—A]1 %0, (4)
In order to translate this condition into an explicit form, we put

A= mA,A"=Y'm A, A=) mA,,

Ag; s=1,...0 are the fundamental dominant weight (compare footnote pag. 57).
If we expand the A in terms of the simple roots, the condition 4;(k;) = d,; immediately
shows that the expansion matrix is the inverse Cartan matrix, i.e.

A; =Z(A¥l)ji & ()
where
Def. 2 (“i: oc-)
Ai_;‘ = E ;i)j* = aj(hz‘) ) (6)
hence
A +A4"—-A :2% (Z(A‘l)jsd ms) ,
with

4 1
Amg=m, + m, —m,

*) In the subspace $§ C H* over the rationals with basis o ... o, we introduce the usual
ordering: o = XA, a; > 0if Ay = ... = 243,= 0,44, >0, h <l.a > fif a—f > 0. The simple
roots then can not be written as a sum of positive roots.
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(4) requires that
Z(A_l)jsd m; = "n;,

N

with non-negative ;. From this we get

m,=m, +m, — DA ;n;, (7)
or
A=4"+4"— ZA” i A
and with (5)
A=4"+4" —an o (8)
what we intended to prove.
We remark that not for every A of the form (8) (with /1 dominant) m, has to be
different from zero. Indeed, one easily finds counter examples. On the other hand, the

weight A = A’ + A" always appears with multiplicity one. For practical purposes the
formula (7) is more useful. Of course, the »; are restricted by the condition

ZAan]<m +m )

§ 3. Evaluation of Steinberg’s Formula for Special Lie algebras

To decompose the tensor product (1), we can now, according to the theorem of
§ 2, restrict ourself to dominant weights /A of the form (8). For the calculation of the
multiplicities m,1, we have to know explicitly the X 1, i.e. we have to determine
expressions of the type S (A + 6) (A = highest weight, S € ).

We first derive a generally valid recursion formula which is useful for this purpose.

A reflection S; at a simple root «; is given by

Now, the following equation holds: S; § = d — «;. This is due to the fact that S; & > 0
if o > 0, except for « = «;, where of course S; «; = — «; (compare %)). Hence

Z a— oy =0—a

a >0

o =F oy

From this we get

; (A +9) Zm s S0 —
or with (9)

S;iA+0)=A4+6—(m,+1)a,. (10)
Now we put for S e W

SA+0)—(A+6) = Za
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then we get from (10) the following recursion formula
Zaj (S; S) ®; = (m; + 1) «; +20j (S) o _20}' (S) Aij *; - (11)
] i

We turn now to special Lie algebras.

1. Example: A,

Let o; and «, be the two simple roots for 4,. The Cartan matrix is

2 -1
(4y) = (—1 2)
(7) reads in this case
m,=m +m — (2n, —n,
my = m, + m, — (2n, —n)

74, %y NON-negative integers.

The Weyl group consists of the following six elements: W = {1, S,, S,, 5,S,,
515551, (S1S,)?}. The defining relation (beside S? = S = 1) is Sy = (S,5,)% S;. We also
remark here that the Weyl group for A4, is isomorphic to the symmetric group S, ,%).
With the help of the recursion formula (11), we obtain now for the multiplicities the
following explicit expression

mg= D det (S, T) P[] (n, — 0;(S) — 0] (1)) &;] (13)

S, TeW i

0;(S) and ¢/ (S) can be read off in table 1 (substitute for m; in ¢,(S) respectively , and
my).

Table 1
S ,(S) 05(S)
1 0 0
Sq 14+m, 0
S, 0 1+ m,
515, 14+my 24 m+m,
515555 2+ wmy+ my 24+ my+my
(515,)® 24my+my 1+my

For concrete examples the sum in (13) is carried out immediately. We illustrate this
for the tensor product (1,1) ® (3,0). (For a more general example compare the appen-
dix). The possible n-values in (12) are: n = (ny, #,) = (3,2), (2,1), (2,0), (1,1), (1,0),
(0,0). For n = (3,2) the following terms contribute in (13): (S, T7) = (1,1), (1, Sy),
(S1, 1), (Ss, 1), (S1, S,) and one gets

My =P [30y +20] — P[30y + atg] — P oty + 2 5] —
—PBal+ Pl +og] =3—2—-2—-142=0.
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Still easier one sees that i, 3 = O (corresponding to # = (2,0)), while in all other
cases m, = 1. Thus we get the well known decomposition

1L,1)® (30 =L))o 3.0 (22 @ *1)

or
I®1I0=8@10® 27® 35
2. Example: G,
3 1
From the Dynkin diagram: ( )=————-() one canread off the Cartan matrix

oy oy
2 -1
Ay = (-5 73)

The Weyl group and ¢,(S) ¢ = 1, 2 are given in table 2. For low dimensional represen-
tations only few terms contribute in (13).

Table 2
S 01(S) 03(S)
1 0 0
S; (my+1) 0
Sy 0 my+1
SpS; my+1 3my+myt+4
515,58, 3 my+my+4 3my+my+4
(S5¢5;)2 3 my+my+4 3 (2 my+my+3)
S51(555;)% 4+my+2 my+6 3 (2 my+ my+ 3)
(S,5;)3 4my+2my+6 6 my+4 my+10
S1(S954) 3my+2my+5 6 my+4 my+ 10
{SeSy)* 3my+2my+5 3my+3my+6
8,18:5,)* Wy + Mg+ 2 3my+3 my+6
(Se5,)% = 8, 5, My + my+ 2 my+1

3. Example: Ay

Because the Lie algebra A, is possibly of physical interest, we give here the
explicit expressions for this example. From the Dynkin diagram

N/ L.

Oy 3

1 1 1
M C\ N
J
Oy

one obtains for the Cartan matrix

( 2 ~1 B
A..=(-1 2_1)
" 0 -1 2
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(8) reads here
my = m +m — (2ny — ny)
mzzm;erg— (2 ny — 1y — ny)
my = m, + my — (215 — ny) .

The construction of the Weyl group from the reflections at the simple roots is here
somewhat tedious. Beside S7 = 1,7 = 1, 2, 3, the defining relations of this group are:

S(13) = S(31), S(121) = S(212), S(232) = S(323), where for example
S(231) =S5, S5, 5,.

The different elements of the Weyl group and ¢,(S) 7 = 1, 2, 3 are given in table 3.
For given n = (n,, n,, n5) only those terms contribute of course to m, for which the
inequalities o;(S) + ¢;(T) <#;, j = 1, 2, 3, are fulfilled. This condition restricts the
summation over the Weyl group in many cases to a few terms only.

Table 3
3 01(5) 05(S) a3(S)
1 0 0 0
S my+1 0 0
Sy 0 my+ 1 0
Sy 0 0 mg+1
S(12) my+ my+ 2 my+1 0
5(21) my+1 my + my+ 2 0
S(13) my+1 0 mg+1
S(23) 0 Mg+ Mg+ 2 mg+1
5(32) 0 my+ 1 My + Mg+ 2
S(121) my+my+ 2 wy+my+ 2 0
5(123) my+ my+ mg+ 3 my+mg+ 2 my+1
S(231) my+1 my+ Mg+ mg+ 3 g+ 1
5(132) my+my+ 2 my+ 1 My + Mg+ 2
5(321) my+1 Wy + Mg+ 2 my+ my+ mg+ 3
5(232) 0 My + Mg+ 2 g+ Mg+ 2
S(1231) mqy+my+mg+ 3 my + Mg+ Mg+ 3 mg+1
S(3121) my+my+ 2 my +my+ 2 my + Mg+ Mg+ 3
5(1232) my+ my+ mg+ 3 Wy + Mg+ 2 My + Mg+ 2
5(2321) my+1 My + Mg+ mg + 3 My + Mg+ Mg+ 3
S(2312) my+my+ 2 my+ 2 my+mg+4 g+ mg+ 2
S5(12321) my+ nig+ Mg+ 3 my+ my+mg+ 3 my+ My + Mg+ 3
S5(12312) my+my+mg+ 3 my+ 2 my+mg+4 Mg+ mg+ 2
5(21321) My +my+ 2 my+2 my+mg+4 ey + Mg+ mg+ 3
5(123121) my+ my+ mg+ 3 my+ 2 my+mga+4 my+ My + Mg+ 3

Final Remarks

In the derivation of STEINBERG's formula, an explicit formula of KoNsTaNT?) for
the multiplicities #,, of the weights M in the irreducible module with highest weight
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A is essential (n,, = dimensionality of the weight space if M is a weight, and »n,, = 0
if M is not a weight). This formula too is very useful also for practical purposes.
Because KoNsTANT’s formula has not yet been used in the physical literature, we give
it here |

Ny = D, det (S) P[S (A +6) — (M +9)] .
SeW
With the earlier formulas, we can immediately evaluate the right hand side for special

Lie algebras. For a weight M = A — ' n; «; we obtain
j=1 '

g = 3 det (5) P[Y n; — 0i(5) )]
eWw i
with the same tables for g,(S).

Finally, we would like to remark that the algebraic theory of characters for Lie
algebras®) certainly gives simple formulae (which only contain the root system) for
the following problem: Let £’ be a sub-algebra of £ and let be given an irreducible
module for £. This module is then completely reducible for & (for semisimple ). One
can now ask for the irreducible constituents with respect to . This question will be
discussed in a future paper.
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Appendix

To demonstrate the power of the method which we have presented in this paper,
we show in detail how one can immediately decompose the tensor product (m,, m,) ®
(1,1) of a general irreducible representation (m,, m,) of A, with the eightdimensional
representation (1,1). The possible #-valuesin (12) aren = (n,,7,) = (0,0),(0,1),(1,0), (1,1),
(1,2), (2,1), (2,2), (2,3), (2,4) ... . If both m,, m, > 11t is easy to see from table 1, that
for the above first seven #’s only the following term contribute in (13): (S, 7) =
(1,1), (1, Sy), (1, S,). Furthermore, the corresponding multiplicities are respectively:

m = P[0], Pla,], Ploy], Ploy + 5], Ploy + 2 etp] —
— Ploy], P[2a; + o] — Plag], P[20y + 2 0] — Ploy] — Plog] ,

i.e. my= 1 except for n = (1,1), where m, = 2. But these seven irreducible constit-
uents give the complete decomposition as one can see for instance by comparing the
dimensions. We remember that the dimension of an irreducible module WMo,
with the highest weight A = (u,, u,) is given by

dim S:RA (#1, 1) - (lul + 1) (:u2 i 1) [1 + —‘u;lj_"ﬁg] -
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The special cases where #; and m, are not both larger than one are easily discussed.
For example, in the case #» = (1,1), we get for (m,, my) + (0,0) m, = P [o; + ay] = 2.
If m; =0, my+ 0 one obtains m, = Play + a3] — P [ay] = 1; the same holds for
my = 0, my, = 0, while for m, = m, = 0 we get m, = 0.

Thus we have the following result:

(m, m) @ (L) = (1)@ ) @---@(7),

where

(1) = (m; + 2, my — 1) with m, = 0, except for m, = 0.

(2) = (my — 1, my — 1) with m, = 0, except for m; or my = 0.
(3) = (my — 2, my + 1) with m, = 0, except for m, = 0,1.

(4) = (my + 1, my + 1) with m, = 0.

(5) = (my — 1, my + 2) with m, = 0, except form, = 0.

(6) = (my + 1, my — 2) with m, = 0, except for m, = 0,1.

(7) = (mq, my) with m = 2 for (m,, my) + (0,0) .

my=1form; =0,my = Qorm; + 0, my=0.

m, = 0 for my =my= 0.
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