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Acoustic Scattering from an Inhomogeneity of the Medium*)

by Philip M. Morse
Massachusetts Institute of Technology, Cambridge, Massachusetts

(27. VIII. 64)

Abstract. The wave equation is written in its dimensionless form, which makes it possible to
compute separately the effects of an inhomogeneity of density or of compressibility in a small
region, on the pressure and velocity of the region where irradiated by an incident plane wave.
Specific formulas are given for these quantities, and for the resulting scattered wave from a sphere
of radius a<^.A, when the compressibility and density inside the sphere differ by factors of any
size from the values outside.

In discussing the scattering of sound waves by a region in the medium, in which
the density and compressibility have different values than in the rest of the medium,
it is usual to mingle the two effects by writing the wave equation as

A2p + oAgxp 0 (1)

where fca/2 n) is the frequency, g the density and x the compressibility of the medium.
If, within region R, g gs and x — xs, different from the constant g and x of the rest
of the medium, then the difference ca2 (gs xs — g x) can be taken to the right-hand
side of the equation and treated as a scattering term.

However, it is more instructive to set up the equation in dimensionless form by
starting from the two basic equations relating fluid velocity with pressure

ffdu/dt) - fl/g) grad p; x fdp/dt) - div u

and writing

Q w

1
0 outside R

A2P + xp=\ 1 r/ i i x i (2)

fx-xs)p+ ^ div [ y - ~ grad p ] inside R.

Now multiplication by g co2 fk2/x) produces

0 outside R
A2p + k2p= { (3)

- ôkp + div [ôp grad p] inside R,

*) This note is in memory of pleasant and informative discussions on wave scattering with
Professor E. C. G. Stueckelberg, in Princeton and in Munich, some 35 years ago.
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where

* x p
Qs

This equation can now be solved so that the effects of change of compressibility are
distinguishable from the effects of change of density.

For example, the integral équation for the scattering of sound from region R, in
unbounded space, is

Pfr) A eik'- + f [k2 òk pfr0) gfr | r0) + de (grad0 p) (grad0 g)] dv0 (4)
R

where g is the usual Green's function [etk]r~r°'/4 n \ r — r0 |]. At large distances from
region R the scattered wave becomes A fe'krjr) Fs (fe,- • ks)

F. ~ f [k2 ÔkPfr0) +kpcks. ufr0)] *-*«¦'• dv0, (5)

R

where ks is the vector with magnitude k in the direction of scattering. Thus at long
wave-lengths the first term in the integral is a spherically symmetric wave produced
by the difference in compressibility of the medium in R, from that outside R, whereas
the second term represents the dipole radiation caused by the fact that a region of
differing density moves at a different rate than does the surrounding medium. In this
form of the solution the two effects are clearly distinguished.

This formulation can be extended to include the scattering effect of turbulence,
when the fluid velocity within R is U + u, u being the velocity of the sound wave and
U the velocity of turbulent motion. The additional term entering on the right-hand
side of (3) is then — 2 A, [d2 (q un Um)/dxn dxm], which adds another term

- fg/2 A) f [k, ¦ Umfr0)] [ks-u (r0)] «-*• ' r° dv0 (6)

to the integral of (5), where Uw is the Fourier transform of U for frequency fmßn).
This represents quadrupole radiation from the turbulent region.

If the differential quantities ôx and òe are small (and U 0) then at long
wavelengths the Born approximation indicates that the monopole and dipole strengths of
the scattered wave are

Sj ~ ÌàJÈ> J ôx dv. Ds ~ <u> J dpdVi (7)

R R

where (py and <u> are the mean acoustic pressure and velocity, caused by the incident
wave, near region R. If the ô's are not small, but region R is a sphere of radius a,
small compared to the wavelength, then separation into spherical harmonic components

demonstrates that the scattering strengths are

^Z^Z7Z^D-<"7ftZfZ- <8>

R

In this case, for an incident plane wave in the z direction, of amplitude A, the pressure
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and radial velocity at the surface of the sphere, the scattered pressure at large
distances and the scattering and absorption cross sections, at long wavelengths, are :

p fa, &) ä A \ 1 + ik a --Z^- cos#| ur fa, ê) ~ (Alo c) \~ ikaA + -AA— Cos#1
1 2es + Q 1 13 k 2qsA-q J

p,(r,»)^A(e"'lr)FM

^>ZM(7")7/Z7/ZH (9)

O, - —-Ji a2 fk a)* -* 1 + - --- — -Vò
e

^ ' Li x- \
3 2gs+e | J

e.=t "-<*'"' - {AA^Afffi
where we have assumed that xs and/or gs may be complex quantities, representing
energy loss.

For a heavy, incompressible sphere fxs <^ x, gs > g) the angle-distribution of the
scattered intensity has the factor (— 1 + 3/2 cos??)2, with some forward scattering,
though with more backward scattering. (This is in contrast to the Born approximation,
which would predict no scattering at # 0.) In this case the radial velocity of the
surface is zero and the pressure there is A fl + 3/2i k a cos &). For a light, compressible
sphere fxs > x, gs <^ g) the scattered intensity has the factor [fxfx) — 3 cos#]2, again
differing from the Born approximation. The pressure at r a is A, the pressure of the
incident wave, and the radial velocity at r a is fA/g c) [i k a fxjx) + 3 cos??] which
can be quite large. The sphere moves back and forth along the z axis with three times
the velocity of the surrounding fluid.

Thus separation of the effects of compressibility from the effects of density, by
treating the wave equation in its dimensionless form, enables one to see more clearly
the separate effects, on the motion and pressure of region R and on the resulting
scattered wave, of the two kinds of inhomogeneities.
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