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The Spectral Representation *)

by J. M. Jauch and B. Misra

Institute of Theoretical Physics, University of Geneva, Geneva, Switzerland

(30. V1. 64)

Summary. The spectral representation of a countable family of mutually permutable self-
adjoint operators is established. It is compared with the representation obtained from the Gelfand
isomorphism of an Abelian Banach algebra. The spectral representations as described here can
serve as an adequate substitute for the so called «expansion postulate» of quantum mechanics.

1. Introduction

The purpose of this paper is to justify from the mathematical point of view a tool
that has often been used in the past by theoretical physicists, viz. the spectral
representation of a family of commuting observables. Our analysis will also indicate
the limitations of this tool.

The use of the spectral representation (or the closely connected expansion postu-
late) has been essential in the general formulation of quantum mechanics which
replaced and unified the so called matrix mechanics of HEISENBERG and the wave
mechanics of SCHRODINGER. The crucial step in this process of unification was the
introduction of a transformation theory which allows the rapid transformation from
one representation into any other.

DirAc has developed such a theory in close analogy to the transformation theory
in a finite-dimensional linear vectorspace. The Hilbert space of quantum mechanics is
however infinite-dimensional and it is not possible to extend this formalism from the
finite- to the infinite-dimensional case without a considerable strain on the mathe-
matical notions and a concommittant loss of rigor. DIrAC!) needed for this purpose
the d-function together with the system of bra and ket vectors. These elegant formal
devices greatly facilitated the development of quantum mechanics and its extension
to field theory.

Yet it was clear from the beginning that the d-function is not a proper function in
any sense of the word, but a more general mathematical object which could better be
described as a linear functional on a certain class of test functions?). There is now an
elaborate theory of the d-function and its generalizations available?) and most of the
mathematical mysticism of the early transformation theory can, with sufficient effort,
be given a meaningful interpretation.

*) Dedicated to Professor E. C. G. STUECKELBERG von Breidenbach at the occasion of his
60th birthday.
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Although with this tool the claim of mathematical rigor can be satisfied, the
necessary machinery to implement it, is too cumbersome in most cases, and therefore
a better method seems desirable.

Besides, the d-function is not the only difficulty in DIRAC’s formalism. One needs
an expansion postulate which guarantees that the operators which represent observ-
ables admit a sufficiently wide class of eigenfunctions so that every function in Hilbert
space can be represented as an unique linear combination of such eigenfunctions. This
means that we are dealing with the embedding of a Hilbert space into a Banach space.
The correct development of such a theory requires considerable technical tools and
has been accomplished only for a very limited class of observables?)?).

The above mentioned difficulties were in principle overcome by vON NEUMANN )
who showed in his book that quantum mechanics can be expressed asa mathematical
theory avoiding improper functions and the expansion postulate altogether using
only the notions of Hilbert space and its linear transformations.

The essential change in the formal apparatus concerns the diagonalization
problem of self-adjoint operators. VoN NEUMANN shows that the powerful spectral
theorem not only has a direct and natural physical interpretation but also that it is
sufficiently general to give a completely rigorous mathematical foundation of quantum
mechanics.

Yet the problem is solved only in principle. When one works with realistic prob-
lems in quantum mechanics one always uses something like an expansion postulate.
In fact this seems to be the only practical way of evaluating explicitly the spectral
projections of the self-adjoint operators encountered in quantum mechanics. Thus it
is not surprising that voN NEUMANN’s work has hardly influenced the working habits
of theoretical physicists.

It was pointed out a long time ago by FRIEDRICHS?) that it is neither the spectral
theorem nor the expansion postulate which are directly involved in the practical
calculations and that one can reconcile the exigences of rigor and usefulness by intro-
ducing the notion of the spectral representation of self-adjoint operators. This is a
particular representation of the Hilbert space as a function space, in which the
operators in question appear as multiplication operators. In spite of its usefulness and
its obvious content as a generalization of a well-known theorem there does not seem
to exist in the literature an explicit proof of sufficient generality of this theorem$).

For the case of a single operator with simple spectrum the theorem was proved by
M. SToNE?). We are concerned with its generalization to a finite or countably infinite
set of commuting self-adjoint operators*).

The method which we have employed is a direct generalization of the method of
STONE. For pedagogical reasons we shall not assume this to be known and we shall
introduce from the beginning most of the important concepts needed such as spec-
tral measure, functional calcules, cyclic vectors, abelian and maximal abelian von
Neumann algebras.

*) A similar problem was discussed by A. GALINDO in an unpublished thesis (June 1960). The
method employed there is restricted to bounded operators. On the other hand GaLinDo has
obtained results for non-separable Hilbert spaces.
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The paper consists of two parts. In part I we discuss in detail the spectral repre-
sentation for a single operator with simple spectrum. Although the results of this part
are not new from a mathematical point of view, we have cast them in such a form that
their analogy with the finite-dimensional (trivial) case becomes apparent, and that
they can be readily generalized to the new situation of a finite or infinite sequence of
operators. This we do in part I1. In order not to confuse the main line of the argument,
we have suppressed in pait II a great deal of detail concerning the extension of the
spectral measure on the Cartesian product space. Much of this runs parallel to the
corresponding and well-known problem of numerical measures which can be found in
the appropriate references.

Throughout both parts we find it convenient to work with the abelian von Neu-
mann algebra generated by the complete set of operators. This raises the question
what relation, if any, there may exist between the so-called Gelfand spectral repre-
sentation of abelian Banach algebras and the spectral representations which we
discuss in this paper. This question is examined in the appendix. It will be seen that
the beautiful general results of GELFAND are, from the physical point of view, some-
what disappointing. The important applications of the spectral representations
always refer to a concrete set of observables and not to the canonical representation of
GELFAND. Therefore the spectral representations which we discuss here are perhaps of
more direct interest to physicists than the results of GELFAND.

The result, such as it is for instance expressed in theorem 3 of part IT has nothing
really surprising about it. This result is precisely what every physicist would have
expected, who has used the spectral representation as a daily routine. Yet there is one
point which merits some comment. We shall see that a family of operators determines
a measure class of equivalent measures. If the operators have continuous spectra then
this class may or may not contain Lebesgue mesure. In the first case the measure is
absolutely continuous with respect to Lebesgue measure. These cases may occur
already for one single operator. It would be useful to understand the physical reasons
why apart from the discrete case measures which are not absolutely continuous do not
seem to occur in physical problems.

Part 1
Spectral Representation of Operators with Simple Spectrum

2. An example in finite dimensional space

In order to introduce the essential features of the spectral representation let us
discuss first a simple example which is mathematically trivial and therefore known to
every physicist.

Let 4 be a self-adjoint operator in an n-dimensional vectorspace §, over the
complex numbers (# < oc). Let ¢, be the eigenvectors of this operator and 4, the
corresponding real eigenvalues. They satisfy equations

Ap, =4 @, (r=1,...,n). (1)
The 4, are the # solutions of the secular quation

|A—iI|=0. 2)
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If the roots of this equation are all different then the ¢, are pairwise orthogonal and
they form therefore a complete system. Since (1) is homogeneous in @, we can assume
them normalized, so that they form a coordinate system

@ 9) =0, (5 =10, ). 3)
An arbitrary vector f € §, can then be written as a linear combination of the vectors
/= 2 Xr @r > (4)
=1
where the complex numbers x, are determined by
Xr = ((Pr! f) . (5)
Because of Equation (1) we find that
Af=Y nh g, ©)
r=1

Thus if we call {x,} the coordinates of f in the coordinate system ¢, then we see from
the last formula that the coordinates of A f are the numbers 4, %, .

These simple facts are chosen to illustrate the idea of the spectral representation.
We wish to reformulate the results just sketched so that they are applicable to self-
adjoint operators in Hilbert space (# = o0).

In the general case none of the Equations (1) and (6) can be used since for a
continuous spectrum there exist no eigenfunctions in Hilbert space. We must there-
fore reformulate the essential content of the spectral representation without referring
to the eigenfunctions. This can be done if we observe the following point:

The Equation (5) establishes a bijective, linear correspondence between the
/€%, and the sequences {x,} € /2(n) (denoted by f«-> {x,} in the following).

We define in /2(n) the addition, multiplication with scalars, and scalar product by
the formulae

{.} + = {5+ vt
AMx,} = {Ax) (7)

{x b)) 2 %F 5 5
If f«> {x,} and g <> {y,} then

frege{x}+{}, (8)
Afe>{Ax}, (9)

A fer A, x,} (10)
and (f, g) Zx Yy - (11)

Equation (10) characterizes the spectral representation and it shows that in this
representation the operator 4 has an especially simple form. It is a multiplication
operator.

3 H.P.A. 3R 1 (1965)
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In this form we have already the germ of a general theorem applicable to a much
wider class of operators than those of the starting example. Before we attempt a
formulation of a general theorem let us point out some simple and obvious facts which
will be useful to keep in mind.

An important question which will come up concerns the uniqueness of the spectral
representation. It is obvious already in this simple example that the representation is
not unique for the simple reason that the Equation (1) determines only subspaces and
not individual vectors. Thus if we had chosen for the eigenvectors not the normalized
@, but another set of vectors, say

1 y
Yo=—7=2%q. (xveal,p, >0},
Ve, (R 0 )

then we would have obtained another spectral representation, which satisfies also
Equations (8), (9), and (10), but instead of (11) we would have obtained

o) =X o5ty )

The elements {x,} are thus vectors in a sequence space which we denote by ZZ(n). Two
such spectral representations of the same operator in respective spaces /3(#) and 2(n)
are said to be equivalent. There exists then an unitary transformation U from one
onto the other defined explicitly by the formulae

{Yeln) {y}eln)
U {yr} = {xr} ’ (12)

x, = €7 l/&. y, . (6, real) (13)
0y

It is thus reasonable to expect that a given operator 4 defines only a class of equivalent
spectral representations.

A second remark concerns the notion of the simple spectrum. We have for illus-
trative purpose assumed that every eigenvalue is non-degenerate. We need evidently
a definition of simplicity of the spectrum without referring to the eigenfunction of the
operators. If the spectrum is not simple we can only define a spectral representation
for a sufficiently large (that is complete) set of commuting operators. In that case it is
essential to generalize the theorem to a complete set of commuting operatorsi?).

3. Operators with simple spectrum

A self-adjoint A4 in a finite-dimensional space is said to have simple spectrum if the
system of equations

Ao, =4p (r=1,..,1n<o0) (14)

has exactly one linear independent solution for every eigenvalue.

This definition is well-known and convenient for the finite-dimensional case but it
may become meaningless in the infinite-dimensional Hilbert space. In fact it can be
used if and only if the operator 4 has a pure points spectrum. It is thus indispensable
to adopt a definition which has meaning in a// cases. The procedure for doing this is a
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standard one: First one introduces a new but equivalent definition for the discrete
spectrum which however by a suitable adaptation can directly be transferred to the
continuous spectrum.

Let us consider the vector

n

¢=Y %9 (5 +0). )

. r=1
It follows from the defining Equation (14) that for any polynomial (1) we obtain

n

pA)g =232 p(4) @, . (16)

r=1

Now let x, be an arbitrary set of complex numbers and set

=2 %9,29,.
r=1

If we choose for p(4) a polynomial for which

then we find

pA)g=f. , (17)

We have thus verified that the vector g has the property: For every f € §, there exists
a polynomial p such that p(4) g = /. We call a vector g with this property a cyclic
vector.

It is quite easy to verify that the existence of a cyclic vector is not only a necessary
but also a sufficient condition for the spectrum to be simple.

We have thus obtained the desired equivalent definition of a simple spectrum viz.
the existence of a cyclic vector. This definition has the great advantage of using no
notion which cannot be transferred with only slight modifications to the infinite-
dimensional case.

These modifications are essentially of two kinds. First we need a functional cal-
culus which permits the definition of the functions #(A4) for a much wider class of
functions than the polynomials. Secondly the functions of this class will only generate
a linear manifold which is dense in $.

We shall now introduce the functional calculus in a formal manner.

Definition: A spectral measure on the real line R!is a projection valued set function
E defined on the Borel subsets B of R! with the properties

(a) E(§) =0 (¢ = nul set)
(b) E(RY =1 (18)

(c) E(gfo Aa) =ZO’O E(A)  whenever {4,}

is a sequence of mutually disjoint subsets of S.
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Every spectral measure has associated with it a functional calculus. This means the
following: Every vector ¢ € § defines a measure pu(yp):

ualy) = (p, E(A)y) (forall 4€ ). (19)

Let u(4) (4 € R') be a complex valued function defined almost everywhere (a.e.) and
measurable with respect to the measures u(y). Then it can be shown that there exists
one and only one linear operator %(E) with the following properties: The domain of
definition D of u(E) consists of those and only those y for which

J 1 u@) 2 duly) <oo. (20)
Furthermore, for a ¢ € D and any ¢ € § we define
(p, w(E) y) = [ w(d) du (p, ) , (21)
where p(p, y) denotes the complex valued measure defined by
pa (@y) = (9 EA)y) . (22)

The formula (21) defines an unique vector " = #(E) y and the transformation y - 3’
is easily seen to be linear.

By means of Equations (19), (20), and (21) we have thus established a corre-
spondence between certain complex valued functions #(4) defined on the real line and
operators in Hilbert space. This correspondence is called the functional calculus of the
spectral measure E.

Every self-adjoint operator 4 defines an unique spectral measure and vice versa,
such that the diagonal elements of the operator A permit the representation

+00

AN = [ Ad(LE @) ) (23)

)

-0

for every fin the domain of 4, where E(4) = E {(— oo, 4)} is the projection associated
with the interval (— oo, 4).

This is the spectral theorem. Because of this unique correspondence we shall also
write u(A4) instead of u(E) for the operator defined by Equation (21).

Let us now consider a fixed vector g € §. The set of all the functions #(A4) for which
u(A) g exists, defines a linear manifold {#(.4) g}. We denote the closure of this manifold
by

M(g) = {u(A4) g} (24)

and we say that the vector g is cyclic (with respect to 4) if M(g)= $.

All this is needed for the formulation of the following
Definition: A self-adjoint operator A4 is said to have simple spectrum if there exists a
cyclic vector for 4.

Speaking now informally we may say that the operators with simple spectrum are
characterized as operators with maximal mobility. The identity operator has an infini-
tely degenerate eigenvalue 1. It leaves every vector invariant. The operators with de-
generate spectrum are identity operators with respect to the subspaces belonging to the
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same eigenvalues. Thus a vector in such a subspace can never be moved around by any
function of A. If there are no such subspaces then the operator 4 has maximal
mobility and there exists a cyclic vector. This is the heuristic meaning of the definition.

For the rest of this section we shall describe another equivalent definition of an
operator with simple spectrum. In this definition we shall avoid any explicit reference
to the functional calculus and replace it by purely algebraic considerations. As an
unexpected bonus one obtains a dual aspect of operators which permits to establish
several of the important theorems as pairs of dual theorems.

The central notion in this approach is the commutant. If A is a bounded operator,
we say another bounded operator B commutes with it if AB = BA. The extension of
this definition to the unbounded case needs some care: A bounded operator B com-
mutes with an unbounded operator 4 if BA C A B. This means the operator 4B is an
extension of the operator BA.

Consider now a family & of bounded or unbounded operators. We define the
commutant S’ as the set of all bounded operators which commute with all the operators
in .

The commutant G’ is an algebra and it is weakly closed. Furthermore if & is
invariant under the adjoint operation (for instance if & contains only self-adjoint
operators) then &’ contains with every operator B its adjoint. &’ is thus a von Neu-
mann algebra.

It is clear that (&)’ = &" = Jtis also a von Neumann algebra and we shall call
it the algebra generated by S. It is the smallest von Neumann algebra containing all
the spectral projections of the operators in &. If t C N’ then N is said to be abelian.
N is abelian if and only if every element of & commutes with every other one!2).

If S consists of a single self-adjoint operator 4 then the abelian algebra A = {4}"
generated by A consists of all bounded functions of 411). Since it is abelian we have
always |

AC A (15)

If A = A’ we say A is maximal abelian. It admits then no abelian extensions.

It i1s clear that if 9M; and N, are two von Neumann algebras such that N, C N,
then we have Rt C N;. Thus qualitatively speaking: The larger the algebra, the smaller
1s its commutant.

It comes therefore as no surprise that we have the following

Proposition: An abelian von Neumann algebra admits a cyclic vector if and only
if it is maximal ablian12).

This theorem establishes the bridge between the old and the following equivalent
definition of the simple spectrum

Definition: A self-adjoint operator is said to have simple spectrum if it generates a
maximal abelian von Neumann algebra.

4. The spectral denisity function

An important step in the process of establishing a spectral representation is the
construction of a certain measure, or more precisely a measure class, defined on the
Borel sets of the real line.
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In the following we shall construct this measure for a self-adjoint operator 4 with
simple spectrum. All the measures which we consider will be defined on the Borel sets
of the real line. The spectrum of 4 will be denoted by /. It may be discrete, contin-
uous, or mixed. We denote by A - E(A) the spectral measure defined by the operator
A. In particular for the spectral family we write E; = E((— oo, 4]) for all real 4. It
will occasionally be useful to distinguish classes of equivalent sets with respect to the
spectral measure. Two sets /A, and A, are equivalent if E(A,) = E(A,). It is easily seen
that this is an equivalence relation which therefore defines a class structure on the
o-ring of all Borel sets. We shall denote by {4} the class of all equivalent sets which
contains a particular set /1. The equivalence classes are partially ordered as follows:
We say {4,} C {4,} if and only if E(4,) < E(A,). We say two classes {4} and {/,} are
orthogonal if E(A,) E(A4,) = 0. For any given unit vector ¢ we can define two objects;
a measure on the Borel sets of the real line and a subspace of §. They are defined as
follows:

First we introduce the spectral density function ¢(4) by the formula

o(d) = (g, E; ) - (25)
This function has the following properties

a) o(h) < oldy),

(

(b) oA+ 0) =0a(k), (26)
(©) o(—o0) =0,

(d) o(+o0)=1.

It is thus a non-decreasing, right continuous (but not necessarily continuous) function,
normalized to 0 and 1 at — oo and + oo respectively.
The function ¢(4) defines a measure, by assigning to every Borel set A the measure

old) = [ dold) = (p, E(4) ¢) @7)
g ,
The subspace M (¢) associated with ¢ is aefined by

M(g) = {A g}, (28)

where A denotes the von Neumann algebra generated by the self-adjoint operator 4,
and the right-hand side denotes the closure of the linear manifold of all elements of the
form T ¢ with T € .

There is an intimate relation between the measure ¢ and the subspace M (g). Both
have an identical partial order structure as follows: We say a measure o, is nferior to
another measure g, and we write ¢; o< g, if every set of g,-measure zero is also of
g,-Imeasure zZero.

We say that ¢, is equivalent to o, if both 0, oc 0, and ¢, o< ¢;. Thisis an equivalence
relation and defines thus the classes of equivalent measures. We denote by {o} the
class of equivalent measures which contains a particular measure o.
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The measures ¢, and g, are said to be orthogonal, and we write o; | o, if there exist
two disjoint measurable sets 4 and B such that

AU B = {R} and such that o,(4) = 0s(B) = 0. (29)

The following theorem asserts that the two ordering relations are identical.

Theorem: Let A be a self-adjoint operator with simple spectrum, E; its spectral
family, ¢, and @, two unit vectors in §, o; and o, the measures associated with the
spectral density functions '

01(A) = (1, Ex @1), 02(4) = (@2, Ex 3)
and

M, = M(p,), My= M(p,) .

Then o, o< 0, if and only if M, <. M, and ¢, | 0, if and only if M, | M,.

We shall need.

Lemma 1: The projection P with range M (g) is contained in .

Lemma 2: Every projection P € W determines uniquely a class of equivalent sets
{A} and conversely. The correspondence P« {A} preserves the ordering and ortho-
gonal classes correspond to orthogonal projections.

Lemma 1 is proved on page 5 of reference 1'). We proceed to prove lemma 2.
According to a known theorem %) every operator P in U is a function of 4, so that

+00
P f u(d) dE, (30)

with some Borel function #(4).
Since P is a projection, we must have #2(4) = u(4) a.e., or

1
u(h) = { 0
Let A be the set with the property
|1 for A€4
reld) = |0 for A¢ 4

It follows that A is a Borel set and P = E(A). The equivalence class {1} is uniquely
determined by P, furthermore if P, < P, then {A,} < {4,} and if P;P, =0 then
{4,} 1 {4,}. This proves lemma 2.

Proof of the theorem

Assume o, o< ¢, We wish to show M; << M,. Let ¢, = u + v with u € M, and
v € M3 . Define N = {W v} and denote by Q the projection withrange N. According to
lemma 1 Q € A and since A = WA, Q € A. According to lemma 2 there exists an unique
class of equivalent sets {A1} such that Q = E(A). Since QM, = 0 we have g,(4) =
(pa, E(A) @y) = 0. By assumption it follows that oy(4) = (¢;, E(4) ¢,) == 0. Conse-
quently E(A) ¢; = Q ¢; = Qv = v = 0. Thus ¢, € M,. If P, is the projection onto M,
we have T, = T'Pyp, = PyTp e Myforall T e U,
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It follows that {Wg,} = M, < M,. q.e.d.

Assume conversely that M; << M,. Let 4 be a Borel set such that g,(4) + 0,
that is E(4) ¢ + 0. We wish to prove that o,(A4) = (@,,E(A) @,) = 0. Suppose to the
contrary that o,(4) = 0, or equivalently E(A) ¢, = 0. Since E(4) € A = A" we also
have E(A) Te, =0 for all T € A. Thus E(A) M, = 0. This contradicts E(4) ¢, + 0.
Thus 6,4(A4) # 0. This means 6,(/1) = 0 implies a,(A4) = 0, or ¢; o< a,. q.e.d.

This proves the first half of the theorem. The second half can be proved with
similar techniques. Since we do not need the second half in the following we shall
omit its proof here!3),

From the first half of the theorem alone follows that there exists an unique
measure class {o} generated by a vector ¢ with the property that any other such
measure ¢ is inferior to p: o ocp.

For the measure p the corresponding vector ¢ is cyclic, so that M(p) = 9.

Concerning the nature of the measure p we add a few statements without proof.

Let A, be the family of open sets such that g(4,) = 0. The union 4y = U 4, is then

3

also open and its complement A = A is closed. It is called the spectrum of A. The
discrete part of the spectrum consists of the points of discontinuities of p(4), that is
those points 4, for which o(4; — 0) < p(4,). The remaining part of the spectrum can be
further decomposed into the absolutely continuous part and the singular part.

We may write :

Q:Qd+9a+95'

To this decomposition corresponds a decomposition of the Hilbert space into the
direct sum of three orthogonal subspaces

H=Hs+ Ha+ Ds-

The first two parts occur often in physical problems (for instance in the hydrogen
atom problem). The singular part has so far never occurred in any physical problem.

5. The spectral representation

We have now all the tools on hand to establish the spectral representation for a
self-adjoint operator with simple spectrum. Let us recall what is our objective. We
desire to find a generalization of Equation (10). That is we wish to construct a func-
tion space L] over the reals and establish a norm preserving correspondence (iso-
morphism) between the abstract space § and L3(4) such that the operator 4 is repre-
sented in L} as a multiplication operator.

Our task is accomplished by carrying out the following steps:

(1) Establish the measure class {o}.

(2) Establish the correspondence f <« {u(4)}.

(3) Verify linearity and isometry of this correspondence.

(4) Verify the spectral representation of the operator 4.

We are thus given a self-adjoint operator 4 with simple spectrum operating in a dense
domain of definition D, < §. The operator 4 may be bounded or unbounded. Since
it has simple spectrum there exist cyclic vectors g and by the theorem of the preceding
section these vectors determine an unique measure class {g} on the spectrum of the
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operator. This is the measure class to be established according to point (1) of the
above program.

Let us proceed to point (2). Let 9 = {A ¢} be the dense linear manifold generated
by a cyclic vector g and let f € 9. It is thus of the form f= T g with T € A. Every
T €A can be represented in the form 13) |

400

T f u(d) dE, (31)

— o0

and the norm of T is given by the formula
|| T || = ess. sup {u(2)} . ' (32)

Since the norm of every T e U is finite, every element f determines a.e. an unique
essentially bounded function #(4). Conversely every such function determines a T
through the formula (31). If we denote by @ the set of all functions over A we have
constructed a one-to-one correspondence between the elements of I and those of £
which preserves linearity. This can be extended by continuity to the closure of 3t and
of £; Since € is dense in L7 and M is dense in § we have established the desired
mapping of § onto L7.

Concerning point (3) we observe that the linearity is an immediate consequence
of the definition. The isometry is contained in the formula

+00 :
171 = [ 1wl 2 dod) . 33)

Let us finally verify (4). To this end we observe that the correspondence #(4) - u(4)
of the functional calculus is multiplicative. This means if

w(A) = uy(4) up(d) ,
then
u(A) f=uy(A) uy(4) f

for every fin the domain of
uy (A) ug(A) *)
Let now f be in the domain of 4 and let
f=uld)g.
Thus g is also in the domain of 4 #(A4) and therefore
Af=Au(d)g=W(4)g,

where w(A) = A4 u(4). This result shows that if #(4) represents the vector f € D, then
/ u(4) represents the vector 4 f. We can express this relation in the form

A{u@)} = {Auld)} . (34)

*) This remains true even for unbounded operators cf. reference 17), p. 346.
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With this result we have established the spectral representation of operators with
simple spectrum.

Part I1

Spectral Representation of a Famaly of Commauting Operators

In this part we shall establish the spectral representation of a complete set of
commuting observables which may be a finite or a countably infinite set. The main
tool will be a certain spectral measure defined on the product space of the spectra of
the operators. The subsequent arguments leading to the spectral representation are
nearly the same as in part I. The only departure occurs while implementing the point 4
of the program outlined in the last section.

6. The spectral measure of mutually commuting operators

Let ©={4,} ({=1,2,...) be a complete set of mutually commuting self-adjoint
operators. Each operator A; has associated with it a spectrum /; and a spectral
measure P;. Our method of constructing the spectral measure of & from those of the
operators A4, 1s modelled after that of constructing the product measure from a set of
ordinary (i.e. numerical valued) measures!4).

In order to formulate the principal theorem of this section properly we need a
number of definitions.

If {A,} is a (finite or countably infinite) sequence of sets then the set of all ordered
sequences {4;, A, ..., 4;, ...} where 1, € A, is called the product set of {A,}. It will be
denoted by >§ A;.

A subset of X A, which is of the form X M,;, where M, << A, and M, = A, for all

1

but a finite number of values of ¢ will be called a rectangle of X A;. The sets M, will be

called the sides of the rectangle.
If A, is a topological space with a family 7, of open subsets then a topology can be
introduced in X /1, in the following manner: Consider the collection § of all sets of the

form X U; where U; € 7; and U; = A, for all but a finite set of indices 7.

Then the family 7= of all sets which may be obtained as the union of some sub-
family of § can be taken as the family of open subsets of X A,. The topology defined

by this class of open subsets is called the product topology.

If A, is a locally compact Hausdorff space then the sets belonging to the ¢-ring
generated by the compact subsets of A; will be called the Borel sets of A,;.

In the case of the real line with the usual topology, the class of all its Borel sets
coincides with the o-ring generated by all open sets.

A rectangle }5 M, of }z( A, will be called a Borel rectangle if every side M, is a Borel

set of A,;.
A set function P defined on a class 7 of sets is said to be additive on 7 if for every
pair M and N of disjoint sets in 7 the union M (N of which is also in 7, we have

P(MuN)=PM)+ P(N).



Vol. 38, 1965 The Spectral Representation 43

We shall say P is finitely additive on 7 if for every finite class of mutually disjoint sets
M, (v=1,...,n) with the property that U M, is also in 7
7

P ( CJ Mi) — i‘P(Mi) :

Finally the set function P will be said to be g-additive on 7 if for every infinite sequence

M ; of mutually disjoint sets such that U M, e 7 we have
i=1

P(G M,.): fP(Mi).

i=1 1=1

The construction of the spectral measure on the product space proceedes now as follows
With every Borel rectangle X M, in the product space X A, we can associate a
1 1

projection operator

P (X M) =slim JJP,(M,) =J] P,M,) . (35)
i n—00 1=1 t=1

The limit always exists because the sequence
I P,(M;) (n=1,2,..)
i=1

is monotonically decreasing and converges therefore strongly to a limit projection.
The spectral measure we are looking for is the extension of the set function 7’
defined by Equation (35) to the o-ring of sets generated by the Borel rectangle {( M;.

One must prove by explicit construction that this extension is possible and then one
must show that the extension is unique. The result is condensed in the following.
Theorem: If A, is a countable set of commuting self-adjoint operators with spectra
A; and spectral measures P, then there exists an unique spectral measure P defined
on the o-ring generated by the Borel rectangles of the product space )1( A, and such

that

P(X M) =[] P,(M) =P (XM,

7 i=1 i

for every Borel rectangle X M, in X A..

Outline of the proof: The extension of the projection valued set function P’ can be
accomplished in two phases. In the first phase we use a procedure which is a straight-
forward adaption of the procedure used in the analogous problem for numerical valued
measures*) : The projection valued set function P’ is first shown to be finitely additive
on the Borel rectangles. As a consequence, P’ has an unique extension to a finitely
additive set function P” defined on the ring R generated by the Borel rectangles. It
is then shown that P’ is not only finitely additive but also ¢-additive on R.

At this point we pass to the second phase. With P” we construct a o-additive
numerical valued totally finite measure on R by setting for an arbitrary vector y € .
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palp) = || P"(A) v |2

By a well-known extension theorem*) we can extend this numerical measure uniquely
to a measure u(y) on the o-ring S(R) generated by R and such that

1) = pa(p)
for every 4 € R.

We now define a complex valued set function u, (v, ¢) = (y, P"(4)p) on R which
depends on an arbitrary pair (p and ¢ € ). With the help of the process of polarization
we obtain

Mﬂww)=;rmﬂw+®~#uw~¢%+umw+i@—%ﬂﬂwﬂi@%

Every term on the right-hand side admits an unique extension to S(R). There is thus
one and only one ¢g-additive set function u, (y, ¢) on S(R) such that

1a(y, ) = pay, @)
for every A € R.

One verifies easily that u, (p, @) is a bounded, symmetrical bilinear functional of ¢
and ¢ for every fixed 4 € S(R). Therefore according to a theorem of RiEsz**) there
exists for every fixed A € S(R) a bounded self-adjoint linear operator P(A4) such that

may, @) = (p, P(4) ) .

It is now easy to verify that the operators P(A) are in fact projections satisfying
P(4y) P(4y) = P(4,0 4y)

The projection valued set function thus constructed is the desired measure. Its
reduction to the Borel rectangles coincides with P” and its uniqueness and g-additivity
follow from the corresponding properties of the complex valued measures u , (y,p).
This completes the outline of the proof***),

7. The functional calculus on the spectral measure

Just as in the case of one operator, what interests us is a functional calculus for the
von Neumann algebra generated by the operators A4; of the set .

Just as in the one-dimensional case we need a theorem which we have quoted
before13), which says that the von Neumann algebra generated by a certain spectral
measure consists of all essentially bounded Borel functions of this spectral measure.
But with this theorem the task is not completely finished, because the class of spectral
projections P; of the operators 4, is contained in the class of all projections of the
spectral measure. We need to verify that they both generate the same von Neumann
algebra. With these two hurdles overcome (Lemma 1 and 2 below) we can prove the
following.

*) Reference %), Theorem 13.A, p. 54.
**) Cf. reference 17), pp. 61-62 and p. 202.
*¥%) The complete proof is found in reference 13).
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Theorem 2: Let T be any operator of the von Neumann algebra generated by the
set G of commuting operators 4;. Then there exists an essentially bounded function
u(A) defined on the product space X A; such that

(p, Tw) = [ u(d) duly) forallpc §,

where u(y) denotes the measure defined by the equation

ray) = (v, P(4)y) (36)
- for all sets 4 € S(R).

Lemma 1: Let P be a spectral measure defined on some g-algebra S of subsets of a
given set /A, and let B denote the class of all spectral projections i.e. projections
P(A) with 4 € S. Then for every T € B” there exists an essentially bounded function
u(A) (A € A) such that

(v, Ty) = [ u(d) duly) forallp € §,

where u(y) is the measure defined by the equation

palp) = (p, P(4) ) .

In other words 7 is a bounded function (in the sense of the functional calculus) of the
spectral measure P. :

We shall omit a formal proof of this lemma since it can be obtained by an obvious
adaption of the proof given in reference 13).

Lemma 2: The von Neumann algebra generated by the set P of all projection
operators which are the values of the spectral measure P is identical with the von Neu-
mann algebra generated by the set & of operators.

Proof of Lemma 2: We want to prove P” = S”. Since the spectral projections
of all the operators in G C 9, it is trivial that &” C P”. Thus we prove P’ C &'.
Let P, denote the set of all spectral projections of all operators in &. By definition of
the commutant we have P, = &'. Let T P, and T* = T. We shall show first that
T € P'.

Let 4 be any subset in the o-ring S(R) generated by the class of all Borel rectangles
in X A;. Then we have

(p, PA) T @) = paly, T @) .

But u, (y, T @) is the unique extension of the set function (cf. Theorem 1)
Bx m; (v, T @) = (v, HPi(Mi) T ¢)

defined on the Borel rectangles X M. Since T commutes with every P,(M;) (+ =
1,2, ...) by assumption, we have’
Mx m; Wy, T ¢) = (v, THPi(Mi) @) = (T y, P(M;) ) = Mx m; (Ty @) .
2 % )

We denote, as always, the unique extension of u(7 w, p) to S(R) by u(T p, ¢). It
follows from the previous equality and the uniqueness of the extension, that
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(@, P T @)= ps(p, Te)=ps (Ty, @) =, T PA) ¢)

for arbitrary y and ¢ in § and any A € S(R).
In formulae

T P(A) = P(A) T or TE P’

Since the self-adjoint elements in a von Neumann algebra generate that algebra we
have proved

PP

str C gBlﬂ — ’ qed

consequently

The proof of theorem 2 results immediately from the combination of Lemma 1 and 2.

8. The Spectral representation for a sequence of operators

The ground is now prepared for establishing the spectral representation of a set
S ={4;} ¢t=1,2,...) of self-adjoint operators. The program is again as in the one-
dimensional case contained in the following four steps
(1) Establish a measure class g defined on the o-ring S(R).

(2) Establish a bijective mapping of the abstract Hilbert space onto the space

L2:feou Ay, Ao,y Ay o).

(3) Verify linearity and isometry of this mapping.
(4) Show that if f<>u (4,,...,4; ...) then A4, f«> A, u (4, ..., 2; ...) whenever fis

in the domain D4, of 4, .

The steps (1), (2), and (3) present no difficulty and can be taken over from the
one-dimensional case by replacing the spectral measure E(A) for A by the spectral
measure P constructed in section (6). The cyclic vector g of the algebra G” exists since
S 1s assumed to be a complete set of commuting operators. The measure p is then
defined by o(4) = (g, P(A) g). Thus there is no need to carry through the first steps
again in detail. They are the same as in the one-dimensional case.

The situation is different for step (4). In part I we have shown that the represen-
tation of the operator 4 as multiplication operator follows from the following two facts
(a) The correspondence #(4) <> u(A) established by the functional claculus of A4 is

multiplicative.

(b) The function 4 represents in that correspondence the operator A: 4 «—»A4.

In the present case the correspondence u (4,, 45, ...) «> u (4,, 45, ...) established
by the functional calculus of the spectral measure P is still multiplicative, as one can
easily verify. Let us however examine property (b).

We note that in the one-dimensional case property (b) is in fact trivial, as it
expresses essential nothing more than the spectral resolution of the operator A.

In the general case property (b) would mean the following identity

/Ld([dg)tfﬂidg, (37)

XMy X A,
J 7

where M ; = A; for J + 2 and M; = (— oo, 4,].
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Indeed both sides are equal to (g, 4, g) evaluated once with the definition of the
spectral measure of 4, and once with the functional calculus on X A, under the as-

sumption that A4, is represented by 4,. One can show with examples that (37) is in
general false. It is therefore of interest to know under what additional assumption it
is true. I

Before we formulate this additional assumption we verify that even without
further assumption the correspondence f <« u (4, A5, ...) has the following property:

If ,

feoru Ay s, -..)

then

PAM) f> g, R 1 By Ay 2); G=1,2,..).

Indeed the correspondence f«> u (4, 4, ...) is obtained as follows. For a fixed cyclic
vector let f € M = {4 g}. Then there existsa 7" e A such that f = T g. The operator T
defines a.e. the function # (4,, 45, ...) such that T = u (4, 4,, ...). Smce the corre-
spondence is multiplicative we have

P(M;)f=P;(M;) Tg=T P;(M;) g=

T e (Ay) 8 yar, (A) 1 (Ay, A, )

The additional assumption which is needed for the validity of the identity (37) is
the following:
Assumption: The measure p on S(R) is absolutely continuous with respect to the

product measures py X g X ... X ;X ... where y; are the measures on the Borel sets of
A; defined by

pi(M;) = f o
M
7 J
(M;=A;for | # ¢and M; = A for | =1).
Under this assumption we can invoke the Radon-Nikodym theorem which says
that there exists a measurable function » (4;, 4, ...) such that the left-hand side of (37)

becomes
fz ar(f v (Ay, Ay, - )d(mxmx...)

XMJr

I

xf’li”(aplzy---)d(ﬁhXMzX--') A dg -

XAy X Ay
¥ 7

Here the first equality is obtained from Fubini’s theorem*).
We summarize the result of all that precedes with the following Theorem 3:
Let ©={4,} (¢t =1,2,...) be a complete set of self-adjoint operators and let A,
and P, denote respectively the spectrum and the spectral measure of the operators 4.

*) Cf. reference %), p. 148.
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Then there exists an unique class C of equivalent measures defined on the o-ring
generated by the Borel rectangles of X A,;. For every p € C there exists a one-one

isometric correspondence f ¢ u (A3, Ay, ..., 4; ...) between § and L] with the property
that if
Jeorudyds oo 4;.00),
then
Pi(Mi)fHXMz-(}'i) U(Ayhasooin by, (=1,2,..)

where M; denotes a Borel subset of /; and y,,;(4;) the characteristic function of M.

If the measure p is absolutely continuous with respect to the product measure of the
measures u; on the Borel sets /1, then the correspondence has the additional property
that

A fsdtlhy Ay, ooy D)
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Appendix

The Gelfand spectral representation (GSR)
A1, The Gelfand isomorphism of Abelian Banach algebras's)
Let U be a commutative Banach algebra with identity and M a maximal ideal
of A. It can be proved that every element % of the factor ring A/M is of the form

x=7de (A1)

where A is a complex number and ¢ is the identity of A/M. Thus the correspondence

x > Aisan isomorphism of A/M onto the field of complex numbers. It will be called
the Gelfand-Mazur isomorphism.

The natural homomorphism of 9 onto A/M with kernel M, followed by the
Gelfand-Mazur isomorphism of /M onto the field of complex numbers C will induce
a homomorphism of U onto C. This will be called the natural homomorphism of A
generated by the maximal ideal M.

It 1s now easy to verify the following

Theorem: There exists a one-one correspondance # - M, between the class of all
homomorphisms of 2 onto C and the set of all maximal (non-trivial) ideals in 2, such
that, if the homomorphism /% corresponds to the maximal ideal M, then % is the natural
homomorphism generated by M.

Let x be an element of A. Then x(M) denotes the complex number assigned to x
through the natural homomorphism generated by the maximal ideal M. For any
fixed x € A, we obtain in this way a complex valued function x(M) defined on the set
IN of all maximal ideals of .
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The set of all complex valued functions x(M) over M is an algebra (M) if addition,
scalar multiplication and multiplication of functions are defined as usual:

(1 + xp) (M) = %,(M) + %p(M)
(e %) (M) = & x(M) for complex o (A2)
(%01 %9) (M) = 2, (M) x5(M) .

The correspondence x - x(M) is then a homomorphism of the algebra U into F(IN).
One can prove that x(M) = 0 if and only if x € M. Furthermore if M, and M, are two
distinct maximal ideals of 9 then there exists at least one x € U such that x(M,) +
x(M,).

The sprectrum of an element x € A is defined as the set of all the complex numbers
A such that there exists no vy € U satisfying

y(x—le):(x—le)y:g.

For fixed x € A the set of values assumed by the function x(M) is identical with the
spectrum of x. It is possible to define a topology in 9t such that all functions (M) as x
runs over the algebra become continuous functions on k. It can be shown that in this
topology the set 9 becomes a compact topological space which we shall denote by the
same letter M. It is called the carrier space of the Banach algebra U. The correspond-
ence x > x(M) is now a homomorphism of the algebra U into the algebra C(M) of all
continuous functions on the carrier space.

For an important special case which interests us especially, this homomorphism
becomes an isomorphism. This is always then the case if there exists an involution
% > x* with the properties

(A% 4+ py)* = 2% 2% 4 u* y*

(x*)* =% : (A3)
(wy)* = y*x*
[ || = || |2

Such an algebra is called a commutative C*-algebra. We have the following

Theovem: Let A be a commutative C*-algebra with identity. Then the correspond-
ence x - x(M) is one-one and maps A onto C(IM). Furthermore it satisfies the
conditions:

(@) Ax + py — Ax(M) + py(M) ,
(b) 2y —x(M) y(M), (A4)
() x* - x(M)* (complex conjugation),
@ x| =sup |#() |

MeMm
This is called the Gelfand isomorphism of the C*-algebra 2 onto the *-Banach algebra
C(M).

4 H.P.A. 38 (1965)
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A2. The Gelfand spectral representation

We shall now sketch how the preceding facts can be used for obtaining a spectral
representation for a complete set of bounded commuting and self-adjoint operators.
Let @ ={A4,, 4y, ..., A;, ...} be such a complete set, such that

6’261’:9«[-

Let Ay denote the smallest algebra of bounded operators (with the identity operator)
which is closed under the uniform topology and which contains the set ©. When the
norm on the *-algebra 9, is identified with the operator norm, it can be considered
as a commutative C*-algebra with identity.

Hence by the preceding theorem 9 is isomorphic to the algebra C(I) of all
continuous functions on the carrier space 3t of Ay,.

In order to obtain a spectral representation of the operators in & we need cyclic
vectors. The existence of cyclic vectors for & is guaranteed because U is a maximal
abelian von Neumann algebra*). The following lemma assures the existence of cyclic
vectors for Ay as well:

Lemma: A vector y € § is cyclic for Ay if and only if it is cyclic for A.

Proof: The inclusions S C Ay C A,
imply

AWCA,C S =A".
Therefore

9, = A .

Now it is known that a vector p is cyclic for a *-algebra N containing the identity if
and only if it is separating**) for the commutant R’

Let then p be cyclic for % and denote with Q the projection with range {2 }.
One can show that Q € A’ = A,. Furthermore Qyp =y, or (I — Q)yp=0,1 — Q e W’
and p is separating for A’. This means I — Q = 0, or Q = I. This is precisely the
statement that y is cyclic for 2A,,.

If conversely y is cyclic for ;; it is all the more so for A since A,; C A. This proves
the lemma.

Every cyclic vector y for A defines a linear functional f(7) on A, by setting

)= Ty) . (A6)

In view of the Gelfand isomorphism of A, onto the set C(IN) of all continuous
functions on the carrier space 9t of A this linear functional may be considered as a
functional on C(IM). In fact if the continuous function T(M) corresponds under the
Gelfand isomorphism to the operator T e U, we define

FATM)} = (. Ty).

*) Cf. reference 19),

**) Cf, reference 11), p. 6. A vector ¥ is called a separating vector of an algebra Nif Ty = 0 and
T € Nimplies T = 0.
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The functional f, thus defined on C(IM) has the following properties:

(@) fATUM) + To(M)} = f{T,(M)} + f{To(M)},
(b) fATM)}=Af{T(M)},

(@ [T} =@ Ty | <[ TI|F[wlP,
(@) f{T(M)} =0 ifT(M) >0 forall M.

Thus fis a bounded linear functional on C(9) and according to a well-known theorem*)
of measure theory there exists a measure defined on the Borel sets of 9t such that

FATON} = [ T(M) d u() (A7)
I

for all T(M).

The measure x4 will in general depend on the cyclic vector g, but one can prove
that two measures obtained from two different cyclic vectors are equivalent.

We can now define a correspondence between every f € {2 ¢} and the elements of
the dense linear subset C(9M) of LZ(IM) by the assignment

Ty—>T(M). (A8)

Since

[Ty |P=(Tp.Ty) =@ T*Ty) = f | T(M) |*du,
m

this correspondence is norm preserving. We can therefore extend it in the standard
manner by continuity to an unitary mapping of § onto L2(Jk).

If a vector ¢ € § goes under this mapping to the function x(M) e L2(9) then the
vector A; ¢ goes to the function 4,(M) x(M), where A4,(M) is the function which is
assigned to the operator 4,;(M) by the Gelfand isomorphism. 7

With this prodedure we have obtained a representation of the space § such that
the operators 4, appear as multiplication operators by the functions A;(M). This is
called the Gelfand spectral representation (GSR). '

If we compare the GSR with the spectral representation established in this paper
we observe the following differences:

(1) The GSR can only be established for bounded operators, while we have shown the
existence of a spectral representation even for the unbounded case.

(2) In the GSR the functions are defined in a carrier space 9t with a particular
topology so that the elements T € A, become continuous functions on IN.

(3) The carrier space M depends in a not very transparent way on the set & of
bounded operators. In general different operator sets & define different algebras

Ay. The connection between the carrier space and the topological product space

%( A, is brought to light in the following

*) Cf. reference 17), chapter III.



52 J. M. Jauch and B. Misra H.P. A,

Theorem: The mapping M - {4,(M), ..., A;(M), ...} with M e Mt is a topological

7

homeomorphism of the space 9t onto a subset of the Cartesian product space of the
spectra of the operators 4; € &.

We shall not prove this theorem here as it is a simple corollary of a well-known
theorem6). In general this homeomorphism maps IR onto a proper subset of the
topological space of the A;.

The measure x on the Borel sets of M will induce a measure on the Borel sets of the
image of 9. In case the image of M is the entire product space {( A, it seems likely

that this measure is equivalent to the measure which we have constructed in the main
part of the paper. We have however not verified this.
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