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Zur Elektrodynamik

von M. Fierz

Seminar für theoretische Physik, Eidgenössische Technische Hochschule, Zürich

(Herrn Prof. O. Klein zu seinem 70. Geburtstag gewidmet)

(15. V. 64)

1. Warum gibt es keine magnetischen Ladungen

In der klassischen Elektrodynamik kann man neben den elektrischen auch magnetische

Ladungs- und Stromdichten betrachten. Dabei ist es natürlich, die Ladungsträger

als im Räume kontinuierlich ausgebreitete Fluida darzustellen; denn
Punktladungen sind in der klassischen Theorie ein fremdes Element, und sie geben ja auch
zu Singularitäten Anlass.

Wir stellen uns also vor, es seien ein elektrisches und ein magnetisches Fluidum
vorhanden. Der Zustand eines solchen wird durch ein Vierergeschwindigkeits-Feld
gegeben. Diese beiden Felder seien uk und vk :

uk uk vk vk 1 (1.1)

vk ist mit einer skalaren Massendichte fi und einer skalaren elektrischen Ladungsdichte

q verbunden. Ebenso gehören zu uk eine Massendichte v und eine magnetische
Ladungsdichte r.

Ist Fik= — Fki das elektromagnetische Feld und Fik eikemFem die duale
Feldstärke, so lauten die Maxwell'schen Gleichungen :

Fikk=ev<; F%=ruA (1.2)

(Dabei ist a,, Z<7.)
Ferner genügen vk und uk den Bewegungsgleichungen

q vl Flk ffi v' vk)]k; rU[ Flk fv ul uk)^. (1.3)

Aus diesen Gleichungen folgen die Erhaltungssätze für Ladung und Ruhmasse:

(Q v% t> w")|« (™% (v»u)\u 0 • (1-4)

Hieraus folgt weiter, dass q/ju, und r/v längs den zugehörigen StromHnien konstant
sind:

^)'* M*(v)i* °- M
Wir verlangen, dass jx und v > 0 sein sollen.
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Der Energie-Impulstensor, dessen Divergenz verschwindet, ist gegeben durch:

Tkl Fks Fs'-yg"F/ F/ + fivkvl + vukuA (1.6)

Ersetzt man vk durch — vk und zugleich q durch — q, so sind alle Gleichungen
invariant. Darum ist es keine Einschränkung w° und u° > 0 vorauszusetzen. (Man
kann aber auch q und r als positiv annehmen. Dann strömen die negativen Ladungen
«in die Vergangenheit».)

In dieser Theorie gibt es keine Potentiale, da keines der Gleichungssysteme (1.2)
homogen ist. Man kann zwar jede der beiden Gleichungen (2) für sich durch je ein
Potential 0U und Wu integrieren, aber Fiu wird dann:

Fkl </>kll - <f>l/k + gkrglsZlerSqr(W<llr - Vr/«)

und dieser Ausdruck ist in die Bewegungsgleichungen (1.3) einzusetzen. Ein Gewinn
an Einfachheit oder Durchsichtigkeit der Gleichungen ist damit nicht verbunden.
Flk ist eben, in einem gegebenen Zeitmoment, ein beliebiges schiefsymmetrisches
Tensorfeld. Da also Potentiale im üblichen Sinne fehlen, ist es auch nicht mögHch, die
Feldgleichungen dieser Theorie, so wie dies in der Maxwell'schen Theorie sonst mögHch

ist, aus einem Variationsprinzip herzuleiten. Damit ist eng verbunden, dass

gegenüber dieser Theorie die bisher bekannten Methoden, einem klassischen ModeU
ein quantenmechanisches Modell zuzuordnen, versagen.

Es ist sehr auftauend, dass die Quantenelektrodynamik ihren Entwicklungen eine
klassische Feldtheorie zugrunde legt, in der die Existenz von Potentialen wesentlich
benützt wird. Hier setzt man den Strom nicht gleich q vk, wobei vk einer Lorentzschen
Gleichung von der Art (3) genügt, sondern man führt zum Beispiel ein komplexes
Skalarfeld ip ein, das der Klein-Gordonschen Differentialgleichung genügt. In dieser
beschreiben die Potentiale die Wechselwirkung mit dem elektromagnetischen Feld,
und neben der Eichtransformation, welcher man die Potentiale unterwerfen kann,
tritt nun die Umeichnung zweiter Art auf, die auf das Skalarfeld y> wirkt. Damit hat
man sich aber die Möglichkeit, neben den elektrischen noch magnetische Ladungen
einzuführen, von vornherein abgeschnitten.

Nun hat allerdings Dirac (P. R. S. 133, pg. 60 (1931)) schon vor Jahren die Mög-
Hchkeit untersucht, singulare Magnetpole in die Quantentheorie einzuführen. Diese
erweisen sich jedoch bei genauerem Zusehen gar nicht als «Pole», sondern sie sind
Endpunkte eines unendlich dünnen Solenoides, aus welchem ein endlicher Fluss
herausquiUt. In der Tat macht man zur Beschreibung eines solchen «Pols» den folgenden

Ansatz :

A,= " y
* r r — z z,=- fl X

r r — z

B rot A

so hat der Feldfluss längs der positiven z-Achse eine ó-artige Singularität. Nach dem
Stokeschen Satz ist ja

f(B, da) S fA, ds).
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Wenn für/ ein kleiner Kreis mit dem Radius g gewählt wird, dessen Zentrum von der
positiven z-Achse senkrecht getroffen wird, so findet man

lim (p (A, ds) — 4 n fi
e-o J

für aUe z > 0. Darum verschwindet

J(B, do)

für jede geschlossene Fläche.
Die Dynamik eines derartigen Gebildes ist ungemein verwickelt, da es, falls es

bewegt wird, längs seiner ganzen Erstreckung Licht ausstrahlen wird. Dass das ruhende
Gebilde in der Quantenmechanik der Elektronen wie eine Punktladung wirkt, wenn
der Feldfluss /i die Bedingung fefi)/f%c) 1 erfüllt, ist darum physikalisch
irreführend.

In der Quantenelektrodynamik scheint es mir somit unmöglich zu sein, magnetische

Ladungen einzuführen. Denn in dieser Theorie spielen die Potentiale, und darum
auch die Eichgruppe, eine wesentliche Rolle; man denke nur an die sogenannten
Superselection Rules. In dieser Theorie besteht darum keine Symmetrie zwischen
E und B*). Die Theorie hat zudem die Eigenschaft, dass in ihr die Lichtquanten als
Grenzfall neutraler Vektorteilchen mit endlicher Ruhemasse aufgefasst werden
können**). In einer Theorie, in der das Lichtquant eine kleine Masse hat, ist es aber
auch in der klassischen Theorie unmöglich, magnetische Ladungen einzuführen. All
das zeigt, dass die Hypothese magnetischer Ladungen in keiner Weise in die Struktur
dieser Theorie passt und in ihr nicht beschrieben werden kann.

Darum ist es auch unmöglich, anzugeben, welche Eigenschaften solche Gebilde, die
doch quantentheoretisch-relativistisch beschrieben werden mussten, haben soUen.

So sprechen also alle Indizien gegen die Existenz magnetisch geladener Teilchen.

2. Allgemeine Lösung der klassischen Feldgleichungen im radialen Fall.

Wir betrachten den Fall, in welchem keine magnetischen Ladungen vorhanden
sind. Ferner sei fx/q 1, das heisst die elektrische Materie sei «homogen».

(£ und v seien beide radial gerichtet, dann verschwindet 93 aus Symmetriegründen.
Mit

<Sr=E, vr=v, v° yi + v2

lauten die Maxwellschen Gleichungen:

dfr2 E) =r2Q J/TZZZ dr -r2Qvdt. (2.1)

Die Bewegungsgleichung (1.3) wird

E v + -A=d*-. (2.2)
l/l-M2 Òr v ;

£2 1 e u
*) Da —— zerstört auch die Bedingung —^— 1 eine solche Symmetrie.

lh C X JI Tl C

**) Die Auffassung der Ruhemasse null als Grenzfall endlicher Masse scheint mir auch zu
erklären, warum die Wignerschen Darstellungen mit «unendlichem» Spin in der Natur nicht
vorkommen.
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Ich setze nun

u -r—, F r2 E
r2Q

dann kann (2.1) wie folgt geschrieben werden

dr ~L=r dF + dt, (2.3)
(/l + »2 j/l + »2

F und t gelten jetzt als unabhängige Variable.

V

\dt)F-i/Ty-yA- (2-4)

so gilt, gemäss (2.2) und (2.4),

ZZ7 <">

Setzt man _ J_ > _
dp

T F ' dr '

so folgt hieraus _^ _
1 /o 5)

F |/t7

Differenziert man (2.6) nach t und vergleicht mit (2.4), so erhält man

V
0 (2.7)

j/1^2 2 (»03/2

(2.7) kann man integrieren :

)/7 + fr+v2 CfF) (2.8)
Aus (2.5) folgt somit

r F-= (2.9)
C(F)-)/l + v* ¦

Nochmalige Integration von (2.8) liefert:

T
2(C2-1) j C-l + (C + lJA ^2-10'

+ -^=ig-!^±^-| + D(iO,
i/c2-i ö yc-i -Yc+ix j

wobei
2x

1-x*

Wenn man aus (2.9) F als Funktion von r und v ausrechnet und in (2.10) einsetzt, so
erhält man v als Funktion von t und r CfF) und D(F), entsprechend den Anfangswerten

vfr, 0) und çfr, 0).
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