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Zur Elektrodynamik

von M. Fierz

Seminar fiir theoretische Physik, Eidgenéssische Technische Hochschule, Ziirich

(Herrn Prof. O. KLEIN zu seinem 70. Geburtstag gewidmet)

(15. V. 64)

1. Warum gibt es keine magnetischen Ladungen?

In der klassischen Elektrodynamik kann man neben den elektrischen auch magneti-
sche Ladungs- und Stromdichten betrachten. Dabei ist es natiirlich, die Ladungs-
trager als im Raume kontinuierlich ausgebreitete Fluida darzustellen; denn Punkt-
ladungen sind in der klassischen Theorie ein fremdes Element, und sie geben ja auch
zu Singularitdten Anlass.

Wir stellen uns also vor, es seien ein elektrisches und ein magnetisches Fluidum
vorhanden. Der Zustand eines solchen wird durch ein Vierergeschwindigkeits-Feld
gegeben. Diese beiden Felder seien #* und v*:

wE gy =y, =1, (1.1)

v* ist mit einer skalaren Massendichte 4 und einer skalaren elektrischen Ladungs-
dichte p verbunden. Ebenso gehéren zu #* eine Massendichte » und eine magnetische
Ladungsdichte 7.

Ist F,; = — F,; das elektromagnetische Feld und Fik=gikem F__ die duale Feld-
stdrke, so lauten die Maxwell’schen Gleichungen:
; F'h =gvi; FY =zuf. (1.2)
(Dabei ist a, = T:k )
Ferner geniigen v* und #* den Bewegungsgleichungen

o v, F'F = (uvf v¥) 55 tu,f"‘m(vu‘uk)”. (1.3)
Aus diesen Gleichungen folgen die Erhaltungssitze fiir Ladung und Ruhmasse:

(0v*))u= (o), = (xu), = pu),=0. (1.4)
Hieraus folgt weiter, dass p/u und 7/v lings den zugehorigen Stromlinien konstant
sind:

v"(%) = uk(l) x=0. (1.5)

v

Wir verlangen, dass ¢ und » > 0 sein sollen.
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Der Energie-Impulstensor, dessen Divergenz verschwindet, ist gegeben durch:

T“=F’”Fsl—%g“F,f Fr+uvkol+vukul, (1.6)

Ersetzt man v*¥ durch — v* und zugleich ¢ durch — g, so sind alle Gleichungen
invariant. Darum ist es keine Einschrinkung »° und #° > 0 vorauszusetzen. (Man
kann aber auch g und 7 als positiv annehmen. Dann strémen die negativen Ladungen
«in die Vergangenheit».)

In dieser Theorie gibt es keine Potentiale, da keines der Gleichungssysteme (1.2)
homogen ist. Man kann zwar jede der beiden Gleichungen (2) fiir sich durch je ein
Potential @, und ¥, integrieren, aber F,, wird dann:

Foy=¢x— ¢t/k + By glszgnqr(wq/r = Wejg) s

und dieser Ausdruck ist in die Bewegungsgleichungen (1.3) einzusetzen. Ein Gewinn
an Einfachheit oder Durchsichtigkeit der Gleichungen ist damit nicht verbunden.
F,, ist eben, in einem gegebenen Zeitmoment, ein beliebiges schiefsymmetrisches
Tensorfeld. Da also Potentiale im iiblichen Sinne fehlen, ist es auch nicht méglich, die
Feldgleichungen dieser Theorie, so wie dies in der Maxwell’schen Theorie sonst még-
lich ist, aus einem Variationsprinzip herzuleiten. Damit ist eng verbunden, dass
gegeniiber dieser Theorie die bisher bekannten Methoden, einem klassischen Modell
ein quantenmechanisches Modell zuzuordnen, versagen.

Es ist sehr auffallend, dass die Quantenelektrodynamik ihren Entwicklungen eine
klassische Feldtheorie zugrunde legt, in der die Existenz von Potentialen wesentlich
beniitzt wird. Hier setzt man den Strom nicht gleich g v*, wobei v* einer Lorentzschen
Gleichung von der Art (3) geniigt, sondern man fithrt zum Beispiel ein komplexes
Skalarfeld y ein, das der Klein-Gordonschen Differentialgleichung geniigt. In dieser
beschreiben die Potentiale die Wechselwirkung mit dem elektromagnetischen Feld,
und neben der Eichtransformation, welcher man die Potentiale unterwerfen kann,
tritt nun die Umeichnung zweiter Art auf, die auf das Skalarfeld v wirkt. Damit hat
man sich aber die Moglichkeit, neben den elektrischen noch magnetische Ladungen
einzufithren, von vornherein abgeschnitten.

Nun hat allerdings Dirac (P.R.S. 733, pg. 60 (1931)) schon vor Jahren die M&g-
lichkeit untersucht, singulire Magnetpole in die Quantentheorie einzufithren. Diese
erweisen sich jedoch bei genauerem Zusehen gar nicht als «Pole», sondern sie sind
Endpunkte eines unendlich diinnen Solenoides, aus welchem ein endlicher Fluss

herausquillt. In der Tat macht man zur Beschreibung eines solchen «Pols» den folgen-
den Ansatz:

. B ¥ . -
4, = v r—z' 4, = v r—z’ 4,=0
B =10t A,

so hat der Feldfluss lings der positiven z-Achse eine §-artige Singularitidt. Nach dem

Stokeschen Satz ist ja
f (B, do) — 55 (A, ds) .
t 1
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Wenn fiir f ein kleiner Kreis mit dem Radius p gewihlt wird, dessen Zentrum von der
positiven z-Achse senkrecht getroffen wird, so findet man '

lim ¢ (A, ds) = —4nu

e=0 7

fiir alle z > 0. Darum verschwindet

f (B, do)

fiir jede geschlossene Fliche.

Die Dynamik eines derartigen Gebildes ist ungemein verwickelt, da es, falls es be-
wegt wird, langs seiner ganzen Erstreckung Licht ausstrahlen wird. Dass das ruhende
Gebilde in der Quantenmechanik der Elektronen wie eine Punktladung wirkt, wenn
der Feldfluss u die Bedingung (e u)/(%i¢) = 1 erfiillt, ist darum physikalisch irre-
fithrend.

In der Quantenelektrodynamik scheint es mir somit unmoglich zu sein, magneti-
sche Ladungen einzufiihren. Denn in dieser Theorie spielen die Potentiale, und darum
auch die Eichgruppe, eine wesentliche Rolle; man denke nur an die sogenannten
Superselection Rules. In dieser Theorie besteht darum keine Symmetrie zwischen
E und B¥*). Die Theorie hat zudem die Eigenschaft, dass in ihr die Lichtquanten als
Grenzfall neutraler Vektorteilchen mit endlicher Ruhemasse aufgefasst werden
kénnen **). In einer Theorie, in der das Lichtquant eine kleine Masse hat, ist es aber
auch in der klassischen Theorie unmdéglich, magnetische Ladungen einzufiihren. All
das zeigt, dass die Hypothese magnetischer Ladungen in keiner Weise in die Struktur
dieser Theorie passt und in ihr nicht beschrieben werden kann.

Darum ist es auch unméglich, anzugeben, welche Eigenschaften solche Gebilde, die
doch quantentheoretisch-relativistisch beschrieben werden miissten, haben sollen.

So sprechen also alle Indizien gegen die Existenz magnetisch geladener Teilchen.

2. Allgemeine Losung der klassischen Feldgleichungen im radialen Fall.

Wir betrachten den Fall, in welchem keine magnetischen Ladungen vorhanden
sind. Ferner sei u/p = 1, das heisst die elektrische Materie sei «homogen».
€ und v seien beide radial gerichtet, dann verschwindet B aus Symmetriegriinden.

Mit -
E. =5, g=4, v"ml/l—l—zﬂ

lauten die Maxwellschen Gleichungen:

AP E)=ro)1+ v dr—r2gudt. (2.1)
Die Bewegungsgleichung (1.3) wird
0v
B e g *.’:;1}77 R 2.2
L _]_ l/l__}_vz 01’ ( )
*) Da f:: = L zerstért auch die Bedingung 2F _ 1 eine solche Symmetrie
he 137 ° T '

**) Die Auffassung der Ruhemasse null als Grenzfall endlicher Masse scheint mir auch zu er-
klidren, warum die Wignerschen Darstellungen mit «unendlichem» Spin in der Natur nicht
vorkommen.
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Ich setze nun

d == - oo dF Py dt )
! V1i+e2 T Y1+ 02
F und ¢ gelten jetzt als unabhéngige Variable.
Da (1) ..
otJF Yiger
so gilt, gemdss (2.2) und (2.4),
v F
(—ET)F 7
- Setzt man — oy O
TEFE VT e
so folgt hieraus r 1

Differenziert man (2.6) nach v und vergleicht mit (2.4), so erhilt man

v v

Ve Tzepr =0

(2.7) kann man integrieren:

Vo + )1+ =C(F).
Aus (2.5) folgt somit

. F
C(F) -1+ °
Nochmalige Integration von (2.8) liefert:
. il 4 Cx
T“‘z«ﬁ—l){c—1+4d+nx2

2 JC-1 +)C+1x
t Vo=t B et Vit }*D(F)'
wobel
. 2x
e

Wenn man aus (2.9) F als Funktion von » und v ausrechnet und in (2.10) einsetzt, so
erhilt man v als Funktion von ¢ und  C(F) und D(F), entsprechend den Anfangswer-

ten v(r, 0) und p(r, 0).
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