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On the Analyticity Properties of the Scattering Amplitude
in Relativistic Quantum Field Theory

by Klaus Hepp

Seminar fiir theoretische Physik, Eidgendssische Technische Hochschule, Ziirich *)

(11.V.64)

Abstract. The well-known analyticity properties of the 2-particle scattering amplitude are
rigorously derived in the Wightman framework of a local relativistic field theory. No use is made
of the LSZ asymptotic condition and of implicit ‘technical assumptions’.

§ 0. Introduction

Dispersion relations!) have brought a fruitful new approach to the physics of
strongly interacting particles. Since these relations are to a high degree model-
independent, much work has been done in proving the necessary analyticity properties
from a minimal set of mathematically well-defined postulates. The framework of
LSZ15) or BocoLiuBov¢) has usually been the starting point for these quite involved
investigations. ‘

Recently a physically satisfying relativistic scattering theory has been given by
HaaG®) and RUELLE?$), which is based on the general set of axioms of WIGHTMAN 1)
for a local relativistic quantum field theory. On the other hand there has been some
doubt®) as to whether a rigorous proof of dispersion relations is possible or not. The
aim of this investigation is to show that, if one-particle states are created from the
vacuum by WIGHTMAN fields and if certain mass-spectrum conditions are satisfied,
the well-known analyticity properties of the 2-particle scattering amplitude can be
rigorously proved. Therefore no further assumptions on the asymptotic behaviour of
matrix elements of the interacting fields'®) or on the existence and regularity of
GREEN’s functions (see %)) are necessary.

Needless to say our considerations are mainly technical, which is also reflected in
the choice of a theory of only one kind of neutral scalar massive particles in self-
interaction. Although the main idea of the proof is known to many workers in the field,
it seemed desirable to fit this mosaic together, in order to clarify the interplay of
locality, relativistic invariance and mass-spectrum conditions leading to dispersion
relations in relativistic quantum field theory.

I am greatly indebted to many physicists in Ziirich and Paris for stimulating
discussions, especially to Professors R. JosT and A. S. WiGHTMAN and to Drs.
M. FroissarT, J. Lascoux,and R. Stora. I further wish to thank Dr. L. MOTCHANE
for extending to me his kind hospitality at the Institut des Hautes Etudes Scientifiques.

*) Present address: Institute for Advanced Study, Princeton.



640 Klaus Hepp H. P. A,
§ 1. Asymptotic Condition and Reduction Formulae

In this section we shall clarify the relation between the Haag-Ruelle asymptotic
condition and the LSZ reduction formulae for the 2-particle scattering amplitude.
For completeness we start by stating the general assumptions, which characterise
the theory of a neutral scalar field in the axiomatic framework of WIGHTMAN21).

(A) A neutral scalar field A(x) is a tempered operator -valued distribution??). For
all p € G(R*Y) the linear operators A (g f A(x) ¢(x) dx are defined on a common
invariant dense linear manifold D in a Hﬂbert space $. D and A(x) transform co-
variantly under a continuous unitary representation U(a, A) of the inhomogeneous
Lorentz group ¢ Ll:

Ula, A) A(x) U (a, A) = A(Ax +a), Ula,A)DCD. (1.1)

The spectrum of the energy-momentum operator P* is assumed to lie in the foreward
light-cone V', except for a one-dimensional eigenspace spanned by the vacuum state
L, corresponding to the eigenvalue 0. 2 is cyclic with respect to the algebra generated
by {4(p) : ¢ € S(RY)}. Finally the theory is local:

[A(x), A(y)] =0 for (x — )2 <O0. (1.2)

In our investigation A(x) is to be the interpolating field for a relativistic scattering
theory of particles of mass # and spin 0. The most natural way is to postulate that
the one-particle states of the discrete irreducible representation [, 0] of ¢ Li are
generated by the application of A4 (x) to the vacuum, which we express by:

(B)  CAE) AD)Yo = i 4f (e—y)+i [ dolu) AF (v =), (M >m). (L3

Let /f(p) be the Fourier transform of A(x). We consider for fe S(RY) and w, =
I/P% + m? the well-defined operator:

A(f, 1) :fdx A(x) f*(x, 1)

_ / Pﬁw i(po—wplt ,—i(p, )
fx, 8) = (27) 52fdpf w;’)e 0-wnt gl (1.4)
Let Dy, ={p:(p, p) < M?}. Then if follows from( 3) for fe S(Dy,) that A(f,¢) 2 =0
and that A*(f, #) £ is a one-particle state = | € Him, o) With a wave function of
the form:
— —3p [ D 5 ~iwp =D %) Fip) — T 8 i
f(x) = (2n) 2w, H(p) e " , 1(P) = [(w,, p) € S(R3). (1.5)

Under the assumptions (A) and (B) relativistic scattering states can be constructed,
as has been shown by Haac#®) and RUELLE?®) in a much more general version of the
following theorem:

Theorem 1.7: Under the assumptions (A), (B) let P {4™ (f;, t)} be an arbitrary
polynomial in the A(f;, #), A*(f;, t), ﬁ f: € S(Dy,). Then one has strong convergence
in § for £ > + oo (ex = out, in):
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s—lm P {AM(f, 0} 2 = DF . (1.6)

{—> 4+ oo

In particular s—lim J] A*(f,, ) Q = | f,, ... fj:) is an asymptotic m-particle state with

t—>4 00 1=1
wave functions (1.5) fi(p) =f:- (wy, P).
This theorem can be proved by following closely RUELLE!6)1). Yet the use of the
local expressions A(f, #) instead of the quasi-local operators of HAAG and RUELLE has
to be paid for by a more careful study of the asymptotic behaviour of the truncated

vacuum expectation values (TVEV) ¢ H AS(f,, )>T for k > 3. This is contained in
i=1
the following:
Lemma 7.7: Under the assumption (A)
k
L+ [ £]) 2 E2 T A 0> 5 (1.7)
=1
is bounded for all ¢, if fl eS(RY) for 1 i <k k>3

Proof: Using (1.4) the TVEV (1.7) can be written as
[y ... d%, d3p, ... &3P, {A(— 23, %)) ... A(— % %) g X
R P - fuwh P expi (£ (@0t — Py %) - (0t — Pe),  (1.8)

with f; € G(R%). From the asymptotic behaviour of <A (x,) ... 4 (x,)>T for large space-
like separation of the arguments®)3), it follows that for any integer M > O there
exists an integer N = N(M) > O such that

k k-1 3
IT @+ @3 [T IT (1 + (., — )22 A= 2 ) o A= 22,505 T (L9)
i=1 L= §=1
is a bounded distribution in x7, & =%/, — %1, 1 < k 1<i<31I<I<<h—1L
According to??) (vol. I1, p. 57) (1.9) can be represented as Z D,F, (x5, ...%0, 8 - §r1)
g=1
with functions F, e L*® (%), ... 3, §,, ... §_;) and monomials D, in the derivatives
0/0x], 0/0&). After partial integrations one can therefore transform (1.8) into
' R A k-1 3
Zfd4xl... di B (), ... 0% By~ Bia) HH (1 + (£)?)1 x
r=1 I=145=
H ap, ¢ Tont 2% 1.2 p) (1.10)

1=1

with continuous bounded functions f, and with f7 (¥}, p;) € ©(R*). Then we can ma-
jorize (1.8) by:

2 fa‘fx dxkdxk — il ap, fi (a2, p) exilowi-pis] | (L11)

e Xle_q 1=1

From the asymptotic behaviour of the solutions (1.5) of the Klein-Gordon equa-
tion8)2), it follows that (1.11) is bounded for all # when multiplied by (1 + | ¢[)3/2 -2,
k > 3. This proves theorem 1.1 as in 8), 16),

41 H. P. A. 37, 7/8 (1964)
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For a pure scattering theory of one kind of neutral scalar particles (see %) for the

general case) it is reasonable to assume that the asymptotic states are dense in §,
that is:

(C) S=u=L{ fi,I;): m=01,... ;e SR}, (1.12)

where L {...} denotes the closed linear hull of the vectors {] Ty e f;f)} and ‘ex’stands
for ‘in’ or ‘out’ (equivalent due to the TCP theorem). Then the following weak con-
vergence theorem can be proved:

Corollary 1.1: Under the assumptions (A), (B), (C) one has in the sense of weak
convergence in $:

w—Hm [T A*(f, ) @ = | fr, ... [, (1.13)

t—>+4 o0 1=1

w—lim [T A(f.,8) [T 4*(g. ) @ = IT AF) 180s - 8 (1.14)

t— 400 1=1

~

for f; € G(RY), §; € G(Dy,,) With /i(P) = f(, D), &(P) = &,(0,» P)-

The proof of H. AraKk1?) for local rings of observables can be immediately translated
into the Wightman framework?) using lemma 1.1 for the majorization of the higher

TVEV.

LetD = ] Dz be the intersection of the domains of the closures B = B** of all
Be B

quasi-local operators B € (polynomials in the smeared-out fields). Then one can
prove the following version of the LSZ asymptotic condition):
Corollary 7.2: Under (A) and (B) one has

(@) |8, ...87) € Dfornon-overlapping wave-packets g; € D(R? (supp g; O supp &; = ¢

for 7 + 7).
(b) B|g...8%) =s—1lim B[] A*(g,, t) 2eD ¥
t— -+ 0o =1
By (By |- 87) = By By |8y ... g) for B, By, By € $.
out * . out
(c) s—HmA™ (f,8) | gy ...8") =A% (f) | & -.. &™) for f€ S(D,,) (and for fe S(RY)
t—4 co

in the weak topology in £,,

For » = 0, 1 the proof follows immediately from theorem 1.1 and corollary 1.1.
All the reduction formulae necessary for the proof of the analyticity properties of the
2-particle scattering amplitude can be derived using only this information. For# > 1
and B € %8 one uses the SCHWARz inequality:

1B HA*gu Q< IldeA*gw QHIIB*B—*HA*&: Qlf. 115

*) One can choose e.g. Zi(p) = gi(p) & (/p® + m®—p% with &; € D({—¢, +£)), £ >0 sui-
ficiently small, [/2 z %(0) = 1.
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For non-overlapping wave-packets {g;} the first factor decreases stronger than any
power of (14 |#])72 for £ > + oo (see 9)), whilst the second factor increases only
polynomially in |¢], due to the temperedness of the WicHTMAN distributions. This proves
the convergence of (b) and similarly of (c). One can see that on the smooth non-over-
lapping states |g;...2%) the mapping ¢ > A(p) | & ... &%) is a vector-valued
tempered dlstrlbutzon. Finally corollary 1.2 can be extended to the general Haag-
Ruelle scattering theory *).

Under the assumptions (A), (B), (C) the Fock spaces §;, and §,,, are related by
a unitary S-matrix, which is defined in terms of its matrix elements:

Sun (Fv oo T B &) = (P o £ | 80 ) - (1.16)

The tempered distributions

Spn b1 - P = Pmits - — Prnyn) = ’_ﬁﬂeﬂ(p,-) 8(p; — M) gy (P1) -+ @iy (Prusa) D 0

o (1.17)
are Li— and TCP-invariant, symmetric in the {$,, ... pm} and {P,i1 -+ Pminp and
have their supports on the mass shell {$? = m2?, $? > 0,1 <t < m+mn, 2 p;= nf;bj}

i=1 j=m+1
as well as the scattering amplitudes T,,,, defined in (1.16) by S =144 T.

The aim of our investigation is to derive analyticity properties of the 2-particle
scattering amplitude T,,. For that purpose we express Ty, and its ‘imaginary part’
by certain matrix elements of retarded or time-ordered products:

PEW
xl, LR pZ 6 LY B(xp(n___l) - %P(n)) A(%p(l)) e A(xp(n)) . (1.18)
eyh

R and T are well-defined for C*®°-functions 0 with supp (0 — 0,) compact (0,: Heaviside
step function). Let d7%(p) be the O, (R*)-function:

87 () = [2milpo — w,) 2, {eiPo=opls — g~ itbo-epty, (1.19)

which converges to 04(p) 8(p* — m?) for a, b tending independently to oco. In this
notation one can prove the following ‘reduction formula’1%)%):

Theorem 1.2: Under the assumptions (A) and (B) one has in the strong topology
for 2, ¢ < M?2:

T,, (Plr Pos — q1, — gz) =
27 lim  lim 87(py)* O0(qy) [(B — m®) (g5 — m2) {ps | R(pr, — ¢1) | ¢2>], (1.20)

a,b—o0 c,d—>00

independently of the order of lim and lim. If (C) holds in addition, then (1.20) is
true for all p,, ¢;. a,b—00 ¢,d—>00

*) Professor R. Haac has kindly informed me that results similar to those in corollaxy 1.2
have been obtained by him and D. W. ROBINSON.



644 Klaus Hepp H.P. A.

Proof: We choose fl g, € S(Dy) (e S(RY), if (C) holds), fz, 2, € S(R3), and a

C*-function 0 with supp (6 — 6,) compact. Then one proves that for fixed s the limit

lim [ dxdy fi(x ) g0y, 1) O(x — %) <Jo | A(x) AY) | &> (1.21)

t—> — o0

is equal to (g,(p) = &,(w,, p) and using theorem 1.1 or corollary 1.1):

= Lm [drdyfi(x ) 0.1 <fo| A®) AD) | 22> =

=t h]in ( (fl' ) j2! (gli t) ¢Ez) = (A*(flx S) 72: erngz) (122)

This follows from the fact that for supp (6 — 0,) compact there exists an R > 0, such
that the tempered distribution (1 — 6(x — ¥)) < f; | A(x) A(y) | 5> has support in
Ggr ={(x,y) € R8, yo> %y — R}. Therefore (1.21) is equal to (1.22) in the limit
t > — oo, if for fixed s

lim f’lk(s, & @l 5 =10 (1.23)

t— — 0

in the topology of S(Gg). For any monomial B,(y) in the y, and B,(0/0y) in the 0/0y;
one has

B () Bo () &y, ) =
— @)~ [ap &0 [P, (= i 5-) Bal— i 2) Ea(8) (Sgle) ¢07]

2w,
M ] . N
=) f dp N Filoe G () (1.24)
©w=0
with g; , € S(R% and M = M(%,). Therefore:
0
Lvo— 2|7 [ Bay) Ba (5, ) @000 | < (1.25)
u db e~ "oy +i(bo—wp)t g A ML 2
Sl |e | fapemsnsiocont (D) 8 < ek e,
n=0

for all L and #. Fma,lly one has for fixed s and K, L > M and for sufficiently large || :

0 0
sup Bl ) B (5,0 5, ) A G Dby | < (1.26)
< sup c|t\M|x0——s!K+1 (|vo—t]|"+ 1)1t =0,
Vo= 4~ K

for ¢ — —oo. This proves (1.23).
Applying theorem 1.1 or corollary 1.1 again to (1.21) one obtains:

lim lim fdx dyf (%, s) g1(y, 8) O(x — <f2 [ A(x) A(y) |§2>

§s—> +o0 (—>-—00
out

= <f1f2 in [gl gz . (1.27)
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By the same argument one can show that:

lim [ dxdyfi(s, %) gy, ?) 0(c — ) {fa | A() AB) | 82> =0
t— 4+ o0
= (Im — lim ) lm [ dedyf{ns) el 1) 0 — ) | <o | AB) Al) | B2
§—> 400 §——-0 [—> 4+

(1.28)

Collecting these terms one obtains in momentum space:

Chf gy —Chi | 6@y =2n m  lim

a,b—00 ¢,d— 0
x [ dpdqfi (p) gx(a) 6%, (B)* 674 (q) (p* — m?) (¢ — m®) {fa | R, — @) | g - (1.29)
In (1.29) a, b and ¢, d, respectively, tend independently to oo and the order of lim

a,b—c0

and lim is immaterial. The majorizations leading to (1.27) and (1.28) can be carried

¢, d—00
through uniformly in f, € B,, %, € l§1, f,€B,, 8, € 1§2 for bounded sets B,, B;C
S(Dyy), Bs, ézc S(R3). As a consequence of the nuclear theorem?) the limit (1.29)
equally holds for any ¥ € G(R®x D, x D). Since weak and strong sequential limits
are identical in the topology of &’ %), theorem 1.2 is proved.

Remark: One sees that the reduction formula (1.20) can be derived for p?, g2 < M?2
without using the postulate (C) of asymptotic completeness. In such a framework Ty,
is again defined by (1.16) but might lose its physical significance as scattering
amplitude. For the proof of dispersion relations for 7'y, one has then to make assump-
tions on the mass spectrum of the theory (see postulate (D) in section 2). Another
reduction formula will be necessary for the proof of the analyticity properties of Tyy:

Theorem 1.3: Under (A), (B) one has (independently of the order of lim and
lim) for 2, p2 < M2: g bt

¢,d—> 00

Tos (b1 b2 — 91 — 92 _
=2x Hm  Lim &, (p))* 87 (po)* (6] — m?) (b5 — m?) {R(ps, 3) | 01 45" D]

a,b—>00 ¢,d—00
1.30
and for #%, 93, ¢3, ¢2 < M2 (with a, b, ¢, d - oo independently): (1.30)

(b} — m?) (g — m?) {po | A1) A(—qy) | g2
=2m lm 87 (p)* 0u(gs) [(p — m?) (py — m?) (g — m?) (g2 —m?)  (L31)

a,b,c,d—>00
X <R(?51s 22 ‘ R(_ G — g2) > ] -

Préof.' One chooses f;, fz e S(Dy,) with f:-(a)p, Pl = fi(p). Then theorem 1.1 gives
for all ¢: —_—

| Ay = lim A*(fy,s) A*(f5 1) 2. (1.32)

s—>+ 00

Furthermore one has as in theorem 1.2 for fixed s:

A*(fi,8) A*(fp, ) @ = lim [ dxdy fi(x,5) [;(, 1) O(xr —y) A(x) A(y) 2 (1.33)
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for any C*-function 6 with supp (0 — 0,) compact. Since the other terms in (1.30) and
(1.31) can be treated in the same way, theorem 1.3 is proved in the weak and therefore
in the strong topology.

We finally remark that 7', , can be expressed (essentially as in %)) by the VEV of a
4-fold retarded or time-ordered product (1.18) of A (x).

§ 2. Integral Representations

The reduction formulae in section 1 gave a large class of ‘off-shell’ extrapolations
for the Z-particle scattering amplitude 7T,, and for the 1-particle matrix element

~ ~

$po | 7(P1) 7(— q1) | o> of the currents f(gb) = (p? — m?) A(p). All these retarded
expressions derived from the 4-point function <A(x;) ... A(x,)>, turned out tobe
equivalent on the mass shell.

In this section we shall construct a class of ‘sharp’ admissible extrapolations, which
are tempered iLl—invariant distributions with the necessary support properties in
x- and p-space, for the proof of the analyticity properties of 7,,. The construction is
based on two lemmas on invariant distributions.

Let u > 0 and V% ={p:po > V/p?+ u}. Let 60’(T7i X R4"; L1) be the subspace
of L]-invariant tempered distributions T e &' (R*"*7) with supp T C V' x Rt~
Let [u?, o) be the interval u? < ¢ < oo, let O, be the proper real rotation group in
3 dimensions and (05’( [13, ooy X RA"; 0,) be the subspace of tempered distributions

T( 93, 4y, --- 95, q,) withsupp T C [, co) x R%", which are O -invariantingy,...q,.
Then one has:

Lemma 2.7: & (T7"_‘,_ X Rin; L1) and &'([u?, ooy x R47;0,) are (topologically)
isomorphic. :

Proof: For any peV, let L(p) be the pure Lorentz transformation into the
standard rest-frame of p corresponding to the A(p) € S L (2, C) (o;: Pauli matrices):

ap) = 2/ e.8) Vep) +20)] 7 LY/ @2) + 5 0a—pO}. (21
Then for any p > u > 0 and g € (V% x R*7) the function

(M @) (¢, pr .. p0) = [dp O, p) — ) @lp, L2 (B) 1, ... LD £,)  (2.2)

lies in S({u?, 0oy X R4") (see e.g. 7). One can further prove that the linear mapping

M:S(VE x Rn) — S({u2, 00y x R4n) (2.3)

is onto and continuous. The homomorphism M defines then an isomorphism M’
between &'(V* x Ri*; L) and &'([u?, ooy x R4"; 0,) by

(T,@> =<M' T, Mg} (2.4)

In this sense T € o@’(?ﬁ_ x R*; L1) is given by its ‘value’ 7€ & ([pe2, £y X R4#; 0,) in
the standard rest-frame of p:

T(p, b1 -+ b)) = T((5. 8), L(p) Pro - L(p) Pn) Oo(p) , (2.5)
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a formal notation, which will be convenient in the sequel.
Let S'(R®; 0,) be the subspace of tempered distributions F(q,, q,), which are
O,-invariant in q,, ¢,. Let D be the closed convex set

{(a,b,c)e R%:a,c >0,ac>b%}.

Then the following lemma holds:

Lemma 2.2: The spaces &'(R®; 0,) and é’(D) are (topologically) isomorphic.
Proof: Let dR be the invariant Haar measure of O, normalized to f dR =1.
Then the mapping 0+

Nyt p#,) - [ dR (R %, R1y) (2.6)

is a continuous projection from S(R%) onto the subspace G(R®; 0,) of the O, -inyariant
testing functions (¢(¥, y) = ¢(S~1 %, S~1y) for all Se€ 0,). As in 8) one can see that
the mapping

Ny: y(a, b, c) > p(x%, xy,y% (2.7)

gives a topological isomorphism between S(RS; 0,) and &(D). For N, is evidently
one-to-one, linear and continuous. Furthermore to every ¢ € G(RS; 0,) there exists
an in D continuous function y such that (2, ¥, ¥%) = @(«, ¥). By evaluation of the
derivatives of o in special O,-frames for ¢ one can show by complete induction that
pe€ S(D) and that N1 is continuous.Setting N = N;10 N, the isomorphism N’

between &'(R¢; 0,) and OG'(D) is given by duality:
<TJ¢>:<NJ T,N(P)- (2‘8)

If T(x, y) is a O, -invariant tempered continuous function, then there exists in D a

tempered continuous function T with f“(x2, xy, y2) = T(x,y). For p € S(R®) and
@ = N ¢ € &(D) one has

(T,py=2a2 [ T(x2% xy, ¥2) (%2, x y, y?) da? dx y dy? (2.9)

and therefore N' T =272 T € é’(D). In the sense of (2.8) we shall sometimes use the
functional notation (2.9) in section 3.
Let I: R™2 > RS be the mapping into the L [-invariants:

I: (py1, Pas p3) € R*2 — ((Pp P1), -+ (Ps Iba)) e RS, (2.10)

Let G C R® be the closed convex I-image of 17‘1 X R8. Then by combining lemma2.1
and 2.2 and using the nuclear theorem of L. ScCHWARTZ?) one obtains:
Lemma 2.3: The spaces (5’(V’j~ x R8; L1) and &'(G) are (topologically) isomorphic.
In trying to generalize lemma 2.3 to more than 3 four-vectors one encounters the

difficulty that the image of T7{‘{_ X R4, n > 3, in the space of the Ll-invariants isan

algebraic variety V C Rm (m =(nm+1) (n+ 2)/2+ (ﬂil)) with singularities, on

whichno reasonable spaces of testing functions have yet been defined. For L] -invariant
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continuous functions 7(p,, ... p,) with supp T C V’_@ X R4, however, there exists a

continuous function T on V with Ty, s Dy == T((gbo, Do)y --- (Pn Pa), @ frequently-
used result in relativistic scattering theory.

Lemma 2.1 justifies the study of Lorentz invariant distributions in special
Lorentz frames, if certain support properties are satisfied. Furthermore the construc-

tion of a sharp extrapolatlon for Ty, or for <p, | j(pl) ( ¢1) | 5> 1in the Breit- or centre-
of-mass system can be ¢ L +-1nvar1antly extended into an arbitrary Lorentz frame.
This we shall 111ustrate by constructing and discussing the sharp 2-fold retarded com-

mutator (R o(P1: Pa) Ro(— 41, — 92)>0-
Let £, be the projection on the vacuum and E, the projector on the 1-particle

space iy, 0 Lhen in order to derive analyticity properties of the 2-particle scattering
amplitude we have to make some assumptions on the mass spectrum of the theory.
For convenience we postulate for the spectral measure E(4) = f 4 AE(p) corresponding
to Ufa, 1) = [ &9 dE(p)1):

(D) (1 — Ey— Ey) E(A) =0 for A0 {p, > J4m?+p*}=¢,

(D) follows from (C) for an asymptotic complete theory of one kind of [, 0]-particles.
More general mass-spectra are treated in the literature 1). '

The 2-fold commutator <[A(#,) /I(pz)] d o [/I (— q1) A(— q5)1> has support in
{p + py€ V™) and is of the form:

O(py + pa— g1 — 92) Oo(p1 + 12)
v (61 + £2% L(py + $2) 2 ), @

as a consequence of translation invariance and of Lemma 2.1. The tempered distri-
bution 7,4 (s, &g, ks) is O,-invariant in k,, k, and has its support in {s > m2, | &} | >
| m? + k? — 1/, ]/s_, 7 = 1, 2}. Since the partial Fourier transform 7y, (s, &,, &;) vanishes
for (&,, &) < 0 or (&5, &) < 0, 74 (s, ke, k3) can be extended?)??) to a rotation-sym-
metric tempered solution 7, (s, K,, Kj;) of the 6-dimensional wave equation in K,, K,
(K; = (B}, Ry, B, B)).

With the same methods as for a simple 6-dimensional wave-equation (see e.g.20))
it can be shown that the Cauchy problem has a unique solution in terms of the Cauchy
data on the surface {£) = &2 = 0}. This gives a 2-fold JosT-LEEMANN-DysoN (JLD)
representation2)%)22) for 7.,(s, &y, £5), which is (because of the symmetry of supp )
of the form:

L(p1 + 22)

ToolS, Koy kg) = [ duty duag dic docl e(RD) (k) O((R)2 — (ky — 15)? — x3)
X O((Rg)2 — (ks — )2 — ) [Py, + Ky Dyy + kS D, + Ky ko Dyy]  (2.12)

3
The integral (2.12) is to be understood in the sense that for ¢ (k,, k3) € S(RS)

[y dky plles, ko) o(k) 2(k) 8((R)? — (g — 119)? — 22) S((KY? — (ky — ) — 2)

3

is a testing function in the variables Uy, Uy, %2, 2. The D, =D;; (u,, ug, %2, %3, )

(being derivatives of the initial values of 7., 74, K *cm,, KO T k0, 9 %%)) are
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tempered distributions, in u,, 4, O, -invariant, which have for fixed s > m? their
support in

2 S

G(s) = {ui < 4> % > Mmax {O, m — (i - ug)llz}, 1, =1, 2}. (2.13)

4 j

In the standard construction?) of a sharp retarded commutator <ﬁ(p1, P9) E& ﬁ(_ 7,
— ¢5)>, one studies the integral

T(s, ko, Bey) = [ duy dug docs dicy g [Dyy + ky Doy + kg Py + By Ky Dyp)],  (2.14)
with the kernel y defined by:

_ ( i )2 ((R9)2 — (Foy — ta5)® +3y) V2 ((R3)% — (ke — t25)2 + 50) Na
2= 2] (G- k- u) - ) ((R9)* — (feg — 143)" — 23) (w3 +xBo) V2 (5 +xFo) Vo

(2.15)

(2.14) converges in the weak sense, for x2), »3, > 0 and sufficiently large integers
N,, Ny > 0, uniformly for all (&, &5) € D(s):

D(s) = {(B) + (k; —u)2+ o7, i =23 Y (uy, uy, %2, %) €G(s)},  (2.16)

(s, kg, B5) is O,-invariant and holomorphic in (k,, £3) € D(s) and a tempered measure
in s > m2 ). D(s) contains for all s >> m? the direct product of the foreward and
backward tubes (T, U T_) X (T, 0T). ©(s, &y, ky) fulfills due to the temperedness of
the @, ; the growth conditionin (T, U T_) X (T, U T_) (see ")29)), which guarantees the
existence of the boundary values:

T.(, ko, kg) = Hm (s, ks, ks) (2.17)

aa Imkz,ImkseV:,E——:-O

as O, -invariant tempered distributions. From (2.14) one proves the following support
properties of the partial Fourier transform z,, (s, &,, &;):

aa
Trr = Tra = Tar — Taa = Too>

T,(5, &, &3) = 0 for (£, &) <0 or (&,&) <0 (2.18)

aa

and 7,, (s, &, &) = 0,if &2 or &) < Ofor (r, 7); — &l or & < 0for (a, 7); & or — & < 0

for (7, a); &5 or &3 > 0 for (a, a).
Therefore the 7 L}-invariant tempered distribution

<éo(P1: p2) E()L }so(" G — 92)0 =12 0(P1 + P2 — 1 — Ga) Oo(p1 + P2)

X7, ((br+ 2% Ligs+p0) D52, Lipy +p0) B52)  (219)

is a sharp 2-fold retarded commutator, which can be used for the off-shell extrapola-

~

tion of <y | 7(p1) 7(— ) | 4> = <Pa |7(2) Ed fi— 41) | g in (131).
T,,(S, ks, k5) 1s unique up to O,-invariant tempered distributions 6@,(s, &y, %),
¢ = 2, 3, which are polynomials in %;, 7 = 2, 3, and which result e.g. from a different
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choice of the subtractions in (2.15). In the reduction formula (1.31) this ambiguity does
not contribute to

(pF — m2) (p2 — m?) (g% — m?) (g2 — m2) Oy(py + B2)

x Tyt 807 Ly + ) D5P, Ly + p) B3,

By (2.18) the latter distribution differs from any sharp retarded commutator

Ty + 2% Ly +p0) P52, Lipy+ ) D57 6, (s + 1)

constructed as above from

~ ~ ~ ~

[7(py1) 1(p2)] E(')J"[j(— 71) 1(— 92)1>0

only by trivial terms of similar structure. For the discussion of the analyticity
properties of the sharp off-shell extrapolations one has therefore only to study 7,,,
where the support of the spectral distributions in (2.14) is due to (D) determined by
the mass 2 m of the lowest 2-particle state.

Sometimes it is convenient to treat the ‘pole term’ in <}.é0 (p1, Pa) E& f?o (— q1,—92)>0
separately. Since E, is of the form:

ex

B, =[P |at (p) Q) (@, (p) 2| (2.20

~

<ﬁ0(p1, Ps) E1 Ro(— g1, — ¢s)>, leads to a product of vertex functions

[ @p 0a(p) (b — m?) <O | Rolpn, p2) | 2> <b | Rol— 1 — g5) | 0.

Then the continuum contribution

<1~30(P1’ Po) Es éo(_ 91, — go)o (E2=1— Ey— E))

starts from s > 4 m2.

Executing the same standard construction for the other cases in the Breit- or
centre-of-mass system, one obtains

Theorem 2.7: Sharp retarded commutators (RC) can be defined in the form *):

$ps I 1}0(?1’ — 1) l @) =1 0(p1 + P2 — 91— q2) Oo(P2) 5(752 — m?) Oy(gs) 5(93 — m?)

x 1 Lips + ) 2252, Ligs + ) D50, (2.21a)

(Rolby B2) | g1 5% = 1 0(py + b — g1 — 4a) Oo(gs) 8(g° — m?) Oo(gs) S(g% — m?)
x v Ll + 0 252, Ll + a) 252, (2:21b)

*) The space-part of ¢ € R* is denoted here by g.
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<f~€o(151: P2) £ éo(“‘ q1, — 92) )0 = 12 0(p1 + pa — @1 — Ga) Oo(f1 + £o)
X 6((P1+zb2)2'— m?) g, (L(py + ps) Pl;”z) 14,(L(p1 + 12 q‘;%), (2.21¢)

4

<f~€o(P1x Ps) Es I~€(— G1, — G2)00 = 12 0(py + P — @1 — Ga) Op(pr + P2)
X Tfr((lbl + $2)%, L(py + P2 %ﬁz: L(py + p2) qlng) . (2.214)

Here 7,,(4, w), 75,(Ry, ky), Ta,(ks), T4,(ks) and 12,(s, &y, kg) are O,-invariant tempered
distributions, boundary values from T, or T, x I, of weakly convergent integral
representations of the type (2.14), which are derived from the JLD-representations
of the corresponding commutator matrix-elements.

Although the ‘sharp’ RC (2.21) are not of the class considered in section 1, it is
easy to see that theorem 1.2 and 1.3 also hold for them, the difference between a
‘sharp’ and a ‘smooth’ RC being a tempered distribution, which does not contribute
in (1.20), (1.30), (1.31), by an argument like (1.23).

We conclude this section with a remark on a doubt expressed recently as to the
validity of the proof of dispersion relations®). It follows directly from the temperedness
of the @;; in (2.14) that for a sufficiently large M > O the integral

[e.0]

fﬁds’ To (57, Ry, Bg) (2.22)

(s"—s)M+1

4 m?

converges uniformly for all complex s ¢ [4 m2, co) and all (k,, k3) mapped by (3.9) into
the compact set (3.10), with M independent of s and . For, it is seenby a tedious, but
straightforward majorization that for any choice of N,, Ny > 0 and »2, x2, > 0 in
(2.15) the function:

(2.23)

i \E (A9 — (Ry— 1y)2+ wB0) Vs ((A9)2 — (Feg — 125) + ) Vs
)

27 (R = (e —11)* — ) (Y= (hey— 1,7 = 3)

XN, N, = (
3

is for all (k,, £4) € (3.10) a multiplier € O,, in a small neighbourhood of the support of
the tempered distributions @;;. Since in the (formal) integral:

oo

/' ds’ Toy (s, kg Bg) ds’ dx3 dwnd
o (8" —s)M+1 _ﬁ_/ (8" —s)M+1 (u%—i—xgo)Nz (22 + #20) Vs X
< [ auyduy gy, @y + KO+ B Oyt BEGY, (229

one has u3, u7 < s/4 in supp @;;, only the polynomial growth in s of the inner integral
will be affected by changing the powers N,, N, > 0. Since the &;; yy. y, increase
only polynomially in %2, »2, the left-hand side of (2.24) will converge uniformly for

sufficiently large Ny, Ny > 0 and M = M(N,, N,) > 0.

§ 3. Analyticity on the Mass Shell

In this section the off-shell extrapolations of the 2-particle scattering amplitude
T4, by sharp retarded commutators will be used to derive analyticity properties of Ty
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on the mass shell. The investigation is scarcely original and will be centered around
the question as to how the classical results of dispersion theory?) can be rigorously
proved from the general postulates (A), (B), and (D) without making additional
‘technical assumptions’. |

The behaviour of T, in the momentum transfer = (p; — ¢;)?> can be easily obtained
by the well-known argument of LEHMANN18). Combining the results of theorems 1.3
and 2.1 one gets for Ty, the distribution identity (for 2, p2 < 4 m?):

Tos(pr, Por — 1, — 92) = 271 0(py + P2 — ¢1 — ¢a) Oo(q1) 5(9’3 — m?) O(q2) 5(9’2 — m?)
x lim - Tim 6, (py)* 67 (Po)*

a,b—o00 c¢,d—>00

X[ —m) B — w7 (Ll + 0 522, Ll + 09 25%)]. )

The distribution

(6} — m) (83 — m) 7, (Llgs + 00 25722, Ligy + g0 252

can be replaced (neglecting an O,-invariant distribution, which is a polynomial in
L(g, + ¢5) ((p1 — $2)/2) by a retarded commutator

Tér (L(91 + ¢») Pl;pz , L(gy + ¢o) q;;qg)

of the currents, defined by an integral representation ty,(k,, ks) = lim  7,(k,, ky):
Imk,eV,—0
’ . 1 dhu du® D (u, 22, Ry) ((u— ko) 2+ %3N
T2(k2l kS) - ( 27 )f ((u—kz)z—xz) (%2_}_%(2))1\7 . (3.2)

~

Now, the support of the JLD-spectral distribution @' of the commutator (2,[7(#,)
]'N(pz)] | ¢, ¢i") is such that 7,(k,, k) (and therefore 73, (k,, k3)) is for fixed k, analytic
in k, in a neighbourhood of the mass shell {£) = 0, k2 = E2}13). Thus in the limit
a,b o0, ¢c,d > oo (3.1) is just the product of 6y(p;) 8(p2 — m2) Oy(ps) S(p% — m?)
with (p3 — m2) (p3 — m2) 7,,, which is a real-analytic function in the critical variables
essentially given by (3.2).

T,(ky, ks) is for real k,, By a tempered O, -invariant distribution and thus by
lemma 2.2 a distribution in the invariants &3, k3, k, ks, k3. The well-defined restriction
to the mass shell is then a tempered distribution in s = (p; + ps)2 = 4 m? + 4 k2 and
t=(p1— q)? =2 (ky ky — K3).

For k3 + 0 (to be understood in the weak sense, i.e. integrated over a testing
function y(k;) with sufficiently small support) the only dependence of the O_-invariant
distribution 7,(k,, ks) on k, ks can be brought into the kernel of (3.2) by taking the
mean over the rotation group around k,. In this way it can be shown!?) that on the

mass shell 7,(k,, k) is, for fixed s > 4 m2, holomorphic in # in the small Lehmann
ellipse: '

36 mt

Ex(s) = {|t]+ |t +s—4me| < [(s—4m+ (s—4m2)]1’?}. (3.3)
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The same holds for the reduced 2-particle scattering amplitude, which is defined by
lim [((E)2 — k2 + K22 — 4 (K)? (m? + KD)] 7o, (ko, ks):

Theorem 3.1: Under the assumptions (A), (B), (D) the 2-particle scattering
amplitude is of the form:

Tos(p1: P2r — q1» — q2) = 0(p1 + o — q1 — @) Op(p1) 6(?? — m?) 0y(ps) 5@2 — m?)
X 0o(q1) 5(93 — m?) 0,(q2) 6(q — m2) Top((py + 12)% (P1 — ¥ - (3.4)

The reduced scattering amplitude T'p,(s, £) is a tempered distribution in the physical
domain {(s,#):s >4 m? 2m?— s/2 <t <0}, which has for fixed s > 4m? an
analytic continuation in ¢ € E,(s).

Next we discuss the behaviour of T,(s, #) for fixed momentum transfer ¢ in the
centre-of-mass energy s, following closely the classical idea of BocoLiusov?). By
theorem 1.2 and 2.1 one can use the following sharp off-shell extrapolation for T',,:

Toolpr, P2 — G — 92) = 275 8(p1 + P2 — 1 — ¢a) Oo(P2) 6(152 — m?) 0o(q2) 6(92 —m?)
x lim  lim &7, (p)* 674(qs) ’

a,b—>00 ¢,d—>00

x [ = mY @} — m) v, (Llga + 20 252, Lig+ £ P50)]. 39)

7,,(4, w) is defined as the limit, Im w € V,_ — 0, of

n(A,w)E(i)f du it { g (1,2, D)ty 9} @F— (@—uP+RN 54

27 (@ — (0 —u)2—22%) (2 + 2N
The distribution [(w? — m? — 42)2 — 4 (0 A)?] 7,, (4, ) is, up to a polynomial in e,

identical with the boundary value of a 7;(4, @), defined as in (3.6) with spectral
distributions ¢;(u, »2, A) corresponding to the commutator of the currents:

o | D) 7= )] | @) = 0(py + o — g1 — 92) Bo(ps) O(p2 — m2) Oglgs) 8(gs — m?)

X To(Llbe + g 2512, Lipy + @) 252 3.7

where
To(4, 0) = [ du di? g(w,) O(wp — (@ — )2 — #2) { @, + Wy @, }. (3.8)

7,(4, w) is, for fixed 4, holomorphic in the domain D,(4) = {w : 0} + (© — 1)2 + 2
V (4,2 €G1(A)} withGy (A)={(u,52): u2 <m24 A%, >max {0,2m— |/m2+ A2—u2}}.

D,(4) contains T, y¥_andrealw with |w,| < |/4 m? + @* — [/m? + A2, except for
‘pole terms’ singular at | @, | = [/m?® + @?* — /m? + A% The domain of holomorphy
D,(4) is well known®), and one can see that no conclusive analyticity properties of
Ty9(s, t) can be proved using only the information contained in (3.5).

Following the argument of BoGgoLIuBovV et al.4) we shall therefore construct an
analytic continuation of ((w? — m2 — A2)2 — 4 (w A)?) 7,(4, w) by a Cauchy integral
representation for ‘virtual masses’. The commutator (3.7) will appear in the integrand,
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and we shall use for (3.7) the far-reaching information contained in the reduction
formula (1.31) with a sharp retarded commutator (2.19).

(82 — m2) (pF — m?) (% — m?) (g2 — m?) Rylpy, po) E& Ro(— g1 — 20

is the boundary value of an analytic function 7’(s, ks, k4), Which is, due to its O,-
invariance, a holomorphic function ¢’ 1) in the invariants £, &S, k?,, k, k;, kg. These
variables are for s > 0 biholomorphically related to the Lorentz invariants:

s 2
T R
) 2 I 2
Z32932(V78+kg) R zﬁqgg(l/.zi _kg) R, (3.9)

25 =1t = (ky — kg)2 — (ky — ky)?.

The analysis of the domain of analyticity [} D(s) N D(m?) of 7" =7'(s, 2, ... 25)
s=4m?
shows 4), 13), 1), that 7’ is for s = m2, s > 4 m? holomorphic in z,, ... z; from:

|zg—m? | <0, —8m?+e< Rez; <0 ,]Imz5|<%, ’(3.1{))
with 6 = d(e) > O for all e > 0 and 3 m? < 0% < mi

The physical values of p2, p2, 42, g5, ¢ are for — 8 m® < ¢ < 0 contained in (3.10).
The same applies to

(65 — m?) (5 — m?) (g} — m?) (g} — m?) (Rol— qu. 1) B Rolbs, — ga)o.

which is given by 7' (u, 2y, ... 25), where u =s + ¢ — (p2 + p5 + ¢; + ¢5). Using this
one sees thatin the reduction formula (1.31) the limit lim  87(p,)* lim  6}%(g,) leads

a,b—00 ¢, d—0
to the product of the d-distributions 6,(ps) (P2 — m2) O4(gs) 6(gz — m?) with the
functions 7', which are again regular in the critical variables.
In order to insert the reduction formula (1.31) in (3.7), we compute the invariants
(3.9) in the variables A = L(gy + p5) (P2 — ¢2)/2 and @ = L (py + q5) (P1 + ¢4)/2 of
the Breit-system:

PLi=? 20 A — A% t= 442 s, u=m2t+ A2 + 0?4 20, ]/m2+ Az, (3.11)
Combining (1.31), (2.19) and (3.11) one obtains the important identity:
r"m(A, w) =27 {T'(s, pf, m2, qi, m?, 1) — 1'(u, pf, m2, qf m2, 1)} (3.12)

forreal A, w sat1sfy1ng A2 < 2m? w4+ oA — A2 < m? + 6. It follows from the
regularity properties of T’ in (3.10) that 7,,(4A, w) is a measure in w, and real-analytic
in w2, @ A, A2 in the above domain.

For sufficiently large M and for real w? @ A4, A% with 4% << 2m — ¢, w? +
20 A — A2 < m? + d(e), the m -integral of the measure %;O(w(;, w?, o 4, 4?%) over the
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testing function (w, — wy) ~M+D exists for all Im wy &= 0 and & > 0. Using (3. 12) and
changing variables one obtains:

+o0
M| f dwg T1glwg, @ @ A, A?)

2mi (g — wo) M +1
-0

™(wy, 02, 0 A, A%) =

=miM!fds(2Vm2+A_2)M E'(S,w2+2w4~42,m2w2—2wdHAZ,m2,_4A2)
24 {(s — w2 —m?— A2 - 2@, Vﬁz—fﬁ)—mw

+ (— 1) (s —w?—m?— A% 4 2 o, ]/;2 + 42)_(M+1) } (3.13)

According to section 2 the right-hand side of (3.13) converges for sufficiently large M
also for complex values of w?, w A. Therefore 7™ (w,, w2, @ 4, A2?) is for 0 < A2 < 2m?
a C*-function in A2, which is for fixed A2 holomorphic in w,, ®?, @ 4 in a domain,
which contains the points:

| Im ? | <2]/1;2—§-AE|Imw0|
|w? + 20 A — A2 72| <§(A) for —3m? < (2 < m?. (3.14)

In order to relate v¥(wy, w2, @ A, A?) to an analytic continuation [(w? — m2 — A2)2—
4 (0 A)?] 1,(4, w) of the 2-particle scattering amplitude, we prove:
Lemma 3.1: Let fY(w; 4, u, »?) be defined as

o AR
A (o Au"gzz—fdﬂ e 315

+aQN (wf— (— R u)2—52)

for
ZED(RY), X =supp y C{A%2< 2m? —¢,¢> 0},

w,)eJG (A),we D (4),%>0.
X X
Then one has for integer M > M(N) > 0:

(O)M fN(a); A, u, %7 | ot =l — ~ fixed

0w,

e(wg) 3((wg)2— (w— R u)2—5?) y(R-1A)
- / f iR i , (3.16)

for all Im w, % 0, w? < 0 and sufficiently small real w A.
For the proof one remarks that, for (u, »?) € |J G,(4) and we n Dy(4), f¥ (o;
X

A, u,x?) is O —invariant in 4, u and holomorphic in w with f} (col, A, u,x?) =
flwy; A, u, xz) for 0} = 0}, W,y = wy,, W, A = w, A. Therefore f% is a holomorphic

function f¥ 5 (g, w2, @ A; A, u, »2) in the variables w,, ®?, @ A in the image n D,(4)
of the saturated domain n D,(4)19). For fixed w® < O0and real w 4 sufflclently small,

f » canbe seen to be holomorphlc in the complex w,-plane, except possibly for singulari-
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ties on the real axis. After having replaced (w2 — (@ — u)2 — %2)~! in the definition
(3.15) of f by the following expression (under the R-integration equivalent):

—ut—s+ 2(w A) (ud) (4 4)

T 2 A) @A) @ A) - tml—o'— (@ 4) A - wapas T4+ 0

— 2
0% —u?— %)% — 4 (w3 — w?) u?

for A% = 0 (3.17)

one obtains (3.16) for N = 0 by CaucHY’s theorem. The general case follows from the
fact that for sufficiently large M > M(N) one has:

4
0w,

( ; )M f?(wo, s, @ A;u, 2 A) = (

0w,

)M Plwe w2 © A;u, 2, 4).  (3.18)
We apply Lemma 3.1 to
fdA 1'1’(4, w) x(4) =fdd ‘E;(A, w2, w 4, wy) x(4)

= [du dx? dA {pi(u, 22, A) + w, py(u, 22 A)} [V (wy, %, © A;u, %2, ) (3.19)

and obtain for a sufficiently large M:

(52)" [7 (4,07 @ 4, w9 1() 48 =

== M! du d;ﬁdd/dw iR _E@0) ((@g)®~ (@— R~ u)®— %) y(R71 A) {g; +wy po}
B {wg— W) M+1

=fdA% il /d : Frolog: o 98, 4% (3.20)

(o — wg) M +1

In (3.20) the R-integration can be omitted, as the ¢,(u, 22, 4) are O,-invariant, and
the interchange of the wo- and (u, »2)-integration is justified by FuBINI’s theorem??).
Since 7;(4, ») and [(w? — m? — A%)? — 4(w A4)?] 7,(4, w) only differ by a polyno-
mial in w, one finally obtains for sufficiently large M the distribution identity:

( 0 )M [(w2 — m? — 42)2 - 4(0) 4)2] Tl(A’ C{)) ’ w?=wl - o? fixed

0w,

- MT fd 0 o LZ?Oi)wo(;JMiIAZ) = (wy, 0 @ 4, 47), (3.21)
for A2 < 2m? — g, w? < 0, sufficiently small real @ 4, Im wy+ 0 and ¢ > 0. Since
the left-hand side is analytic in D;(4) and the right-hand side in the set D,(A) defined
by (3.14), (3.21) holds identically in D,;(4) 0 Dy(A). This shows that the M-fold w,-
integral of 7" is an analytic continuation of [(w? — m2 — A2%)2 — 4(w A)?] 7,(4, w)
except for an O, -invariant distribution P(4, w), which as a distribution in the in-
variants w,, w2, @ 4, A?is a polynomial of M'™ degree in w,,.
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For all fixed real 4 the physical values of wg, w? @ A (corresponding to real
4-vectors w) lie on the boundary of T.(4) and also on the boundary of the domains
Di(4) = Dy(4) 0 {Im w, S 0} for 0 < A2 < 2m?, as well as on the boundary of
D4(4) 0" T (A)Y). The boundary value of t™(wy, — 7 &, w?, @ 4, A?%) for real w,, w?

w A, A2 with 42 < 2m2,w? + 2w A — A2 < m2 + §(A) is for ¢ | 0 the tempered
distribution in w,:

lim ™(w, +ie w2 @ 4, 4%) = 1(

0 )M_.
&lo

o T, (0, w2, W 4, 42)
@

P/' r"rmwo,w WA, A)’ (3.22)

wo)M+1

and the same limit distribution is obtained taking a sequence from I _(4) 0 D (4)
converging to wy, w? w A, A2 This shows that 7 is for these points an analytic
continuation of the M™ wy-derivative (for w? = w2 — w? fixed) of the off-shell
extrapolation [(w? — m?* — 4%)?2 — 4(w 4)?] 7,,(4, w) of the 2-particle scattering
amplitude.

The mass-shell is characterized by w? = m? + A2, @ A = 0. It follows from (3.22)
that 7™(wy, w2, @ 4, A?) is, for physical points with A2 <{2m2 —¢, &> 0, w? +
2w A — A? < m? + (e), regular in w? and @ 4 in a neighbourhood of the mass shell.
Therefore the limit of §7,(p,)* 67(q,) v™ again exists as the product of T with

Oo(p1) O(pT — m?) O4(qy) S(g3 — m?). o

From (3.21) and (3.4) 7¥(w,, m? + A2, 0, A?) is up to a factor (2 [/m?+ ARM
identical with (0/0s)M T,u(s, £). Therefore (0/0s)™ Tyy(s, ?) is for — 8m2 < <0
infinitely often differentiable in ¢ and for fixed ¢ a boundary distribution of an analytic
function for Im s + 0, which fulfills the integral representation (3.13). Integrating M

times with respect to s one obtains the same result for T',,(s, £), except for a polynomial
M-1

2. ¢,(t) s* in s with coefficient distributions in ¢. But T,,(s, t) is for fixed s > 4 m?
u=0
holomorphicinie E,(s) and the M-fold s-integral of t™ is again C* in ¢ for 0 > ¢ > —8m2.
Therefore the c,(f) must also be C*-functions in ¢ for 0 >> ¢ > — 8 m?2, and we obtain
the

Theorem 3.2: Under (A), (B), (D) the reduced 2-particle scattering amplitude
T'y4(s, t) 1s the boundary value from Im s > 0 of a holomorphic function in s for
Im s + 0, which is C* in ¢ and fulfills in s an M-fold subtracted dispersion relation.
Furthermore Im T,,(s, f) is a measure in s and for fixed s holomorphic in ¢ in the
‘large Lehmann ellipse’

Ey(s) = {t: 18]+ [t4s—4m?| < (s—4md) (z [1+ (—36%]1’2—1)}. (3.23)

To prove the last statement we remark that, for physical points, Im T,,(s, £) is
essentially given by the measure

T'(s, m2, m2, m2, m2, t) — v'(u(s, £), m2, m?, m?, m2, ) .

42 H. P. A. 37, 7/8 (1964)
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Then the analyticity properties of Im Ty4(s, #) follow by studying the domain of
analyticity D’(s) of ©'(s, 2y, ... 25) (see 13) 1) 8)).

The theorems 3.1 and 3.2 contain the necessary analyticity properties for the
proof of MANDELSTAM and LEHMANN) that T,,(s, £) is the boundary value of a func-
tion simultaneously holomorphic in s and &.
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