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Gruppenextensionen in der Quantentheorie

von F. Kamber und N. Straumann
Institut iür Theoretische Physik der Universität Zürich,

(2. IV. 64)

§ 1. Einleitung

In der Physik spielen verschiedene Invarianzgruppen eine grosse Rolle (Poincaré-
grappe, Eichgruppe, Isospingruppe, höhere Symmetriegruppen für starke
Wechselwirkungen wie zum Beispiel S U3). Die verschiedenen Symmetrien werden meistens

ganz getrennt betrachtet, in der stillschweigenden Annahme, dass sie unabhängig
voneinander sind, das heisst die umfassende Gruppe lediglich das direkte Produkt ist.
Durch Michel1) ist nun aber darauf hingewiesen worden, dass diese Annahme im
allgemeinen nicht zutrifft. So ist beispielsweise die Eichgruppe A (erzeugt durch
Baryonladung, Leptonladung und elektrische Ladung) nicht unabhängig von P°
(Zusammenhangskomponente der Eins der Poincarégruppe)1). Die umfassende

Symmetriegruppe ist hier eine nichttriviale zentrale Extension von P° mit A.
Mathematisch existieren in diesem Beispiel acht solche Extensionen. Jede führt auf eine
Relation der Form :

(-1)2' (_l)V + V + e/'. (1.1)

Darin nehmen die s die Werte 0 oder 1 an. j ist der Spin, q die elektrische Ladung,
b die Baryonladung und / die Leptonladung. Die empirische Relation

(_1)8» (_!)» + ' (1.2)

legt die physikalisch richtige Extension fest.
In dieser Arbeit diskutieren wir die Extensionen der vollen Poincarégruppe P mit

zusätzlichen Symmetriegruppen, wie sie etwa im Gebiet der starken Wechselwirkungen

auftreten. Auch in diesem Fall ist die physikalisch richtige Extension nicht das
direkte Produkt. Dies zeigt schon die folgende einfache Überlegung. Wäre etwa die

richtige Extension von P mit der Isospingruppe S U (C, 2) das direkte Produkt
S U (C, 2) x P, so musste die antiunitäre Darstellung Ut der Zeitumkehr vertauschen
mit der Darstellung der Lie-Algebra von S U (C, 2), das heisst [Ut Ik] 0. Nun sind
aber Tk i Ik die Isospinoperatoren. Mit diesen würde also Ut antivertauschen.
Insbesondere würde der Eigenwert eines Eigenzustandes von T3 bei Zeitumkehr sein

Vorzeichen wechseln. Da T3 ein additiver Beitrag zur elektrischen Ladung ist, ist
dies bestimmt unvernünftig. Man wird vielmehr verlangen, dass Ut mit T3 vertauscht.
Dies, zusammen mit den Vertauschungsrelationen für die Tk, legt die Operation von
U, in der Lie-Algebra von S U fC, 2) im wesentlichen fest. Wie aber schon jetzt er-
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sichtlich ist, ist diese Operation nicht trivial. Damit operiert auch Ut auf die
Darstellungen der Gruppe S U (C, 2) nicht trivial*).

In § 2 bestimmen wir die Wirkung von Ut in der Lie-Algebra einer Symmetriegruppe

G für starke Wechselwirkungen. Dadurch bestimmt t einen involutorischen
Automorphismus dieser Lie-Algebra. In § 3 wird gezeigt, dass sich diese Involution
auf die Gruppe G immer fortsetzen lässt. Gleichzeitig wird die Wirkung der
fortgesetzten Involution auf das Zentrum von G explizit bestimmt. In § 4 bestimmen wir
die Extensionen der Gruppe tc {1, t] mit G, in § 5 diejenigen der vollen Spiegelungsgruppe

F mit G und in § 6 diejenigen von P mit G. Jede der mathematisch existierenden

Extensionen führt auf eine Relation zwischen dem Typ der Zeitumkehr (Eigenwerte

von Uf U (0, — 1) ; U (0, — 1) : Drehung um 2 ti), dem Spin, der Baryonzahl,
der Hyperiadung usw. Empirische Relationen zwischen diesen Grössen legen dann die
physikalisch richtige Extension fest. Der § 7 fasst die Ergebnisse in übersichtlicher
Form zusammen. Im Anhang geben wir einige mathematische Zusammenhänge, die
im Text gebraucht werden.

§ 2. Operation der Zeitumkehr auf die Lie-Algebra
einer zusätzlichen Symmetriegruppe

Wir beginnen mit der Diskussion eines Beispiels, an welches sich die nachfolgenden
Überlegungen natürlich anschliessen. Wir betrachten eine Symmetriegruppe für
starke Wechselwirkungen mit der folgenden Lie-Algebra:

£=i?2©£7 (2.1)

Dabei ist R2 die Lie-Algebra der Eichgruppe von Baryonladung B und Hyperiadung
Y. £' ist die Lie-Algebra der Isospingruppe S U fC, 2).

Sei Ik k 1, 2, 3 die übliche Basis von £', dann ist Tk i Ik eine Basis in der
komplexen Erweiterung [£'] von £'. Physikalisch wichtig ist die zugehörige Weylsche
Basis.

H=-T3, E± -1l,(±T1 + iTa).

Für eine Darstellung g von £ durch lineare Operatoren eines Hilbertraumes verlangen
wir folgende Vertauschungsrelationen mit Ut, der antiunitären Darstellung der
Zeitumkehr :

(1) [Ut, g(H)] 0

(2) X, B] [Ut, Y] 0

(3) UtQ(ä')Ut-1 Ç (?(£'),

(4) [U2, ß(fi')] 0 -

(1) und (2) bedeuten, dass Q, B und Y erhalten bleiben bei Zeitumkehr. (Q ist die
elektrische Ladung.) (3) besagt, dass g(fl') bei Zeitumkehr in sich transformiert wird
und (4), dass alle Elemente von g(fl') bei doppelter Zeitumkehr invariant bleiben.

*) Diese Bemerkung verdanken wir L. O'Raifeartaigh. Sie gab den Anstoss zur vorliegenden
Arbeit. Für wertvolle Diskussionen sind wir ihm zu grossem Dank verpflichtet.
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Die V.-R. von H und E± zusammen mit (1) bis (4) verlangen (vergleiche
allgemeinen Fall)

UtgfEAUryX:QfEA:

X- X+, ] ZI 2 1.

72 X + E_, I3 i fE
Für die Basis:

I3 iH,

von £' gilt dann
UtgfH)UA g(H),

utg (X + EAj ur' KefE+) +X-gfEA
Ut g fi (E+ - EA) Ur* _t. (1+ ß(E+) _ x_ 6{EJj j _

Dieses Beispiel zeigt, dass die Zeitumkehr U', auf die Lie-Algebra £' nicht trivial
operiert.

Wir gehen nun zum allgemeinen Fall über. Dazu betrachten wir eine beliebige
kompakte Lie-Algebra. Dadurch lassen sich alle physikalisch interessanten Fälle
auf einmal erledigen.

Eine kompakte Lie-Algebra ist immer von der Form2)

fl jR« © £'. (2.2)

Rm ist das Zentrum von fl und fl' eine halbeinfache kompakte Lie-Algebra. fl' ist
eindeutig bestimmt und gleich der derivierten Algebra [fl, fl] von fl. Rm interpretieren
wir als Lie-Algebra einer Eichgruppe von Ladungszahlen (vergleiche (2.1)).

Sei g eine Darstellung von fl und g ihre Ausdehnung auf die komplexe Erweiterung
[Ä] von fl. fx ...fm bilde eine Basis von Rm. Die Operatoren gfifk) k 1, m sind
in allen physikalischen Beispielen Ladungsoperatoren. Wie früher verlangen wir deshalb

(1) [UtAgdfk)] 0,

(2) ix(£') X1 £ e(£Z

(3) [uf, e(ß')] o.

Nehmen wir ausserdem an, dass die Darstellung g treu und antiselbstadjungiert ist,
so wird durch „ „ „Ut gfa) X gfafa) ); a e [fl] (2.3)

ein antilinearer involutorischer Automorphismus (Involution) a von [fl] definiert.
Wegen Eigenschaft (1) und (2) zerfällt a nach den Unteralgebren [Rm] und [fl'].
(1) bedeutet

o(fkl -fk k=l,...m.
Die Fixpunkte von a in [fl'] bilden, wie man leicht sieht, eine reelle Form von [fl'],
das heisst eine reelle Lie-Algebra fl", deren komplexe Erweiterung mit [£'] übereinstimmt.

Die Elemente von g(2") sind nach Konstruktion genau die Elemente von
{?([£']), die mit Ut vertauschen.
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Sei t die Involution r: x + iy -A> x — i y fx,y e fl') in [£'], welche zur reellen

kompakten Form £' gehört3), dann vertauschen auf Grund der Bedingung (2) a und t.

ct o t t o ff
Sei

fl/±> { x e fl' | o"(#) Az x),
dann zeigt man leicht die folgenden Beziehungen3)

£' £'(+)©£Z),

£" fl'(+) ©»£',_,.

(© ist dabei als direkte Summe von linearen Räumen zu verstehen.)
Diese Formeln geben einen Zusammenhang von fl' und fl".

In [£'] gibt es eine Weylsche Basis3) hjt j 1, I, e±0L derart, dass die Elemente

ihj, eaA- e_a, i fea — e_J eine iï-Basis von £' bilden, gfhf) sind selbstadjungierte
Operatoren, die in allen physikalischen Beispielen mit Ut vertauschen. (In unserem
Beispiel war gfh) die 3. Komponente des Isospins; bei S U3 kommt die Hyperiadung
Y dazu.)

Wir verlangen deshalb

(4) Ut~gfhj)Ut^~gfhj), XZ ---I,
das heisst

afhj) hj.

Aus den Eigenschaften einer Weylschen Basis kann man nun folgendes zeigen3) :

°Z±J =^±ae±«
mit —

A±aV 1 à-a K ¦

Damit haben wir folgendes Resultat :

Theorem 1

In [fl'] existiert eine Weylsche Basis hjt j 1, ...l, ea, e_a, derart, dass

(a) hj, #».., X^e_a

eine Ä-Basis von fl" bilden.

(b) ihj, eXe-a. ifea~e-J
ist eine Ä-Basis von fl', und die Involution a in fl' ist gegeben durch

(e) ct fi hj) — i hj,

<J fea + e-a) =XaeaA- /1a e_a,

ct (*' fea - e_a)) -i fXa ea -\ e_a)

Zusammen mit affk) —fk ist damit die Operation der Zeitumkehr auf die Lie-
Algebra fl explizite bestimmt.
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§ 3. Fortsetzung von a auf die Gruppe G (fi)

In § 2 haben wir die Involution bestimmt, die die Zeitumkehr in der Lie-Algebra
einer kompakten Symmetriegruppe G induziert. In diesem Paragraphen setzen wir
diese Involution auf die Gruppe G fort. Es stellt sich heraus, dass eine solche
Fortsetzung immer existiert und eindeutig ist. Weiter bestimmen wir explizit die Wirkung
der fortgesetzten Involution auf das Zentrum von G. Dies ist wichtig für das Exten-
sionsproblem in § 4, 5 und § 6.

Die allgemeinste zusammenhängende kompakte Gruppe G, die zur Lie-Algebra
(2.2) gehört, ist eine zentrale Extension einer halbeinfachen zusammenhängenden
Lie-Gruppe G' mit Lie-Algebra £' und einem m-dimensionalen Torus Tm Ux x X Ux

(Ux: eindimensionale unitäre Gruppe):

0-^T"<^G^G'->0.

Dies lässt sich wie folgt einsehen. Die Einskomponente des Zentrums von G ist eine

zusammenhängende abgeschlossene abelsche Liesche Untergruppe von G der Dimension

m, also ein w-dimensionaler Torus Tm.

Sei G' G\Tm

Dann ist nach (2.2) fl' die Lie-Algebra von G' und damit G' halbeinfach. Nach dem
Korollar zu Theorem 2 im Anhang A ist G von der Gestalt

G^fT<"xG')\Nv. (3.1)

Darin ist G' die universelle Überlegungsgruppe von G', die nach einem Satz von

Weyl4) kompakt ist. Nv ist ein diskreter zentraler Normalteiler von TmxG' von der
Form

N {fcpfn), n) \ne N'}

cp e Horn fN', Tm)

N' ist der diskrete Normalteiler von G' mit

G' s G'IN' (3.2)

Wir setzen nun a auf die Gruppe G fort. Zunächst definieren wir auf Tm

Z (galh^ amfm) — e~"-lh "-mim

(beachte a(fk) —fk, k 1, m).
Die Involution ct in der Lie-Algebra fl' definiert einen lokalen Automorphismus von

G', und dieser lässt sich eindeutig auf die einfach zusammenhängende Gruppe G'

fortsetzen5). Dadurch ist a auf Tm x G' fortgesetzt. Diesen Automorphismus bezeichnen

wir mit -.
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Notwendig und hinreichend dafür, dass £ einen Automorphismus in G definiert, ist

xfNv)CNv. (3.3)
Dies beutetet für ne N'

xfcpfn), n) fcpfn'), n') mit n' e N'
oder

x(n) n', ìc(cp(n)) cp'2(fn))
das heisst

XfN')QN'; %ocp cpo~x auf ZV'. (3.4)

Umgekehrt folgt aus (3.4) wieder (3.3).
Mit dem folgenden Lemma von H. Hopf6) lässt sich aber (3.4) als richtig nachweisen.

Lemma (Hopf)

Sei T ein Toroid (das heisst abelsche abgeschlossene zusammenhängende
Untergruppe) einer kompakten zusammenhängenden Gruppe G. Sei weiter a ein Element

von G mit a y y a für alle y e T, dann existiert ein Toroid T mit ae T und T CT.
Als einfache Folge ergibt sich das

Korollar
Das Zentrum von G liegt in jedem maximalen Toroid. Wenden wir dies auf die

Gruppe G' an, so folgt insbesondere, dass ihr Zentrum im maximalen Toroid Hegt,
das durch die Cartansche Unteralgebra (aufgespannt durch die i hj e £', j 1, I)

erzeugt wird. Wegen a fi hf) —i hj bedeutet aber dies, dass
~

jedes Element aus

dem Zentrum von G' in sein Inverses überführt. Insbesondere ist dies für alle Elemente
von N' der Fall. Daraus folgt aber (3.4) unmittelbar. •

Damit ist das folgende Theorem bewiesen.

Theorem 2

Die Involution ct (von Theorem 1) in der Lie-Algebra £ definiert eindeutig einen
involutorischen Automorphismus % jeder kompakten Lie-Gruppe (mit fl als Lie-
Algebra), der in fl die Involution a induziert.

§ 4. Extensionen von ti mit G

Sei n die zyklische Gruppe 2. Ordnung {1, t] (t: Zeitumkehr). Da % involutorisch
ist, definiert es einen Homomorphismus (den wir wieder mit % bezeichnen) von n in
die Automorphismengruppe von G.

^: ti —> Aut G

Dieses % induziert einen Homomorphismus " von n nach Aut G/Int G (Int G : Gruppe
der inneren Automorphismen). Damit ist das Extensionsproblem der Gruppe tx mit G

wohl definiert7). (Eine physikalische Motivierung für das Auftreten von Extensionen

wird in Anhang B gegeben). In Fig. 1 geben wir das zugehörige Diagramm.
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0

I
3fG)

I
0 ^ G -> £ -^ Tt -s-0

0 -s- IntG -> Aut G -» AutG/IntG -* 0

I
0

Figur 1

Es handelt sich hier um Extensionen mit einer nichtabelschen Gruppe G. Solche
brauchen zu gegebenem y> im allgemeinen gar nicht zu existieren. Notwendig und
hinreichend dafür ist, dass ein gewisser 3-Cozyklus schon ein Corand ist8). Da in
unserem Fall aber der Homomorphismus von ti -> Aut G/Int G über Aut G gegeben
ist, weist man leicht nach, dass das semidirekte Produkt Gxn eine Extension ist*).
Dieses ist wie folgt definiert. Die unterliegende Menge besteht aus allen geordneten
Paaren fg, a) geG, ole ti. Das Produkt ist definiert durch

1, <x) fg oc') (g oc-g a a,
wo

a-g ='(%(<*)) fg) ¦

Das Inverse ist
M-^oc-g-1,«-1).

Das Assoziativgesetz gilt, da ^ ein Homomorphismus ist. Weiter prüft man leicht
nach, dass das Diagramm von Figur 1 erfüllt ist, mit tp %.

Die Gruppe der Extensionen von ti mit G, die zu % gehören, ist dann 9)

Ext; fn, G) flJo; fn, 3 (G)) 3fG) Zentrum von G,

g ist der natürliche Homomorphismus von AutG/IntG nach Aut (3(G)). Nach
Theorem 2 führt fg o £) (2) jedes Element von 3(G) in sein Inverses über. In diesem
Fall gilt (Anhang A 3, Theorem 4, Kor. 2) :

Ka fo 3(G)) 23(G)

(23(G) besteht aus allen involutorischen Elementen von 3(G)).
Die Extensionen E kann man explizite angeben.

E G x ji/Z2. (4.1)

Tt ist die zyklische Gruppe 4. Ordnung ZJA) mit dem erzeugenden Element x. Z2
besteht aus den folgenden Elementen von G x n :

z2={(i,i), (g,X); g^AZfG). (4.2)

*) Für zwei Gruppen G und G' soll im folgenden unter G X G' immer das semidirekte Produkt
verstanden sein. Das direkte Produkt ist der Spezialfall für G' -> Aut G trivial.
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In (4.1) bedeutet G Xn das semidirekte Produkt, wobei natürlich der Automorphismus
in G, der zu x gehört, gleich %ft) ist.

Setzen wir in (4.2) g 1, so ist E isomorph zum semidirekten Produkt Gxn.
Betrachten wir aber von dieser Gruppe Darstellungen durch unitäre bzw. antiunitäre
Operatoren, so würde dies bedeuten, dass U2 1 ist, was physikalisch im allgemeinen
nicht zutrifft, g in Z2 kann also nicht das Einselement sein.

Die Darstellungen für E bekommen wir aus genau denjenigen Darstellungen von
GxÄfÜrdk

UgUx2 l. (4.3)

Ux ist natürlich mit Ut zu identifizieren.

Im folgenden nehmen wir an, dass der Normalteiler N' in (3.2) das ganze Zentrum

von G' ist. Dies ist in allen praktischen Beispielen der Fall. Dann ist !^fG) Tm

(vergleiche 3.1), und g e 23fG) ist von der Form

g=(-l)fEX qi ~lnft. (4.4)

Die et können unabhängig die Werte 0 oder 1 annehmen. (4.3) lautet damit

f-l)TeiQ'=Ut2 (4.5)

(Die Qt sind die zu den qt gehörigen Operatoren).
Multiplizieren wir die Gleichung (4.5) noch mit U(2n), der räumlichen Drehung

um 2n, so erhalten wir für die Eigenwerte in den kohärenten Unterräumen die

GleiChmg (-i)f*(-D«-UP»
fj: Spin; Typ ft) Eigenwert von Uf2n)oU2).

Empirisch gibt es keinen Hinweis, dass Typ (/) 4= 1 ist. In diesem Fall haben wir
die Relation -y.„,

(-1)' =(-!)'• (4-6)

In einem konkreten Fall für die Gruppe G legen empirische Relationen die et in (4.6)
und damit die Extension E fest.

Als Beispiel betrachten wir eine kompakte Gruppe G mit der Lie-Algebra (2.1).
Wegen y 2 t3 (mod 2) muss G wie folgt gewählt werden

G=Uxx fUxxSU2IZ2) (4.7)

Z2= {(1,1), (-1,-1)}.
Ux ist die eindimensionale unitäre Gruppe. Der 1. Faktor in (4.7) ist die Eichgruppe
der Baryonzahl, während der 2. Faktor die Eichgruppe für die Hyperiadung bedeutet.
Aus (4.6) wird in diesem Fall

(-1)*'' yV (-1)2'.

Aus der empirischen Relation (1.2) folgt eb 1, ey 0. Damit

E [fUx x fUx x SU2jZ2)) x n]jZ2 (4.8)

wo das Element g in (4.2) gleich (—1)B im 1. Faktor von (4.8) zu setzen ist. Damit ist
die physikalische Extension eindeutig bestimmt.

wo
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Ähnlich bekommt man für das Sakata-Modell und das Oktett-Modell (vgl.
Anhang C) die folgende Extension

E=[ffUxxSU3)jZ3) x n]jZ2

Das Element g ist dasselbe wie in (4.8).

§ 5. Extensionen der vollen Spiegelungsgruppe mit G

Sei V die volle Spiegelungsgruppe V (1, s, t, st) fs: räumliche Spiegelung),
s operiert natürlich trivial auf G, während t und s t jedes Element des Zentrums von
3(G) in das Inverse überführen. Aus demselben Grund wie in § 4 existieren Extensionen

von V mit G. Diese sind gegeben durch

Ext (F, G) H2 (V, 3(G))

Diese Gruppe lässt sich berechnen. Man erhält, da 3fG) Tm teilbar ist (vergleiche
Korollar 2 zu Theorem 4 im Anhang A 3),

H2 (F, 3(G)) 23fG) © 23fG),

Ext (F, G) 23(G) © 23(G) (5.1)

Die Extensionen lassen sich explizite konstruieren. Man erhält in jeder Äquivalenzklasse

von Extensionen einen Repräsentanten von der Form

E G x V/N (5.2)

In (5.2) ist V wie folgt definiert: F ist die «grösste» Gruppe, die von drei Elementen
x( fi 1, 2, 3) erzeugt wird und für die die folgenden Relationen (7?) erfüllt sind.

1,

(R)

Mit andern Worten : V ist die freie Gruppe, erzeugt durch xì fi 1, 2, 3) modulo die
definierenden Relationen (7?) :

F Ffx()lfR) (5.3)

Der Normalteiler in (5.2) wird durch die folgenden Elemente erzeugt:

N {(1,1), fg, xl), fg', xl)} g, g' g 23(G) (5.4)

Man kann zeigen, dass V eine zentrale Extension von V mit Z2xZ2 ist

0 -* Z2fxl) x Z2fxt) -^V^V^O. (5.5)

Der Normalteiler in (5.2) ist deshalb von der Gestalt

N= fZ2xZ2)^Jl- {(9,(w)) n)\neZ2(x22) x Z2fx23)}, <peHcm (Z2 x Z2, 3fG)) (5.6)

(a) Av-t — J-j -^2 '—' -^"%

(b) 2 2
Xl Xj xjXi,

(c) %1 %2 ^3 '



572 F. Kamber und N. Straumann H. P. A.

Betrachten wir wieder Darstellungen von E durch unitäre bzw. antiunitäre Operatoren
(antiunitär für x2 und x3), dann sind die folgenden Identifikationen vorzunehmen

uXi us, uH ut, ux ust,
und wir erhalten

[//=!, Uf=Ug, Us]=Ug.. (5.7)

Für Us, Ut und Ust sind weiter die Relationen fR) erfüllt. Diese drei Operatoren
erfüllen damit die bekannten Darstellungen bis auf einen Faktor der Spiegelungsgruppe

V*). Der Willkür für die Wahl der Phasenfaktoren, die man in der
«Darstellungstheorie» der Spiegelungen hat, entspricht hier die Freiheit, aus einer
Äquivalenzklasse von Extensionen geeignete Repräsentanten auszuwählen10).

Aus (5.7) erhalten wir wieder analoge Relationen wie früher

(_1)S™ (_!)»/= Typ (t),

(-l)r^(-l)*'= Typ fst).

Empirische Relationen bestimmen in einem konkreten Fall wieder die sx und e[ und
damit die «physikalische» Extension. Wir schreiben die entsprechenden Ausdrücke
nicht auf.

§ 6. Extensionen von P mit G

Wir betrachten jetzt die Extensionen der vollen Poincarégruppe P mit G. P ist ein
semidirektes Produkt P P° x V von P° (Einskomponente der Poincarégruppe) mit
der Spiegelungsgruppe V. P° operiert trivial auf G (vgl. Anhang B), d. h. der
Homomorphismus von P in die Automorphismen von G erfüllt das folgende Diagramm

0^po_>P=Poxy^V^o,po

Aut G

Die Extensionen (die wieder existieren) sind gegeben durch

Ext fP,G) H2fP, 3fG)).

Nach einem Satz von Serre11) (vgl. auch Anhang A 2, Theorem 3, Kor. 3) gilt für
diese Gruppe

H*fP, 3fG)) H2fV, 3fG)) © 23(G)Z (6.1)

23fG)v sind die F-invarianten Elemente von 23fG).
Damit (vergleiche (5.1))

Ext (P, G) 23fG) © 23(G) © 23fG)v. (6.2)

*) Um kein Missverständnis aufkommen zu lassen, möchten wir betonen, dass in (5.2) das
semidirekte Produkt zu verstehen ist, wobei der Homomorphismus von V nach Aut G dadurch
definiert ist, dass xx, xi: x3 genauso operieren wie s, t und 5 t.
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Explizit sind die Extensionen wie folgt gegeben

E (G x (P° x V))IN (6.3)

P° ist die universelle Überlagerungsgruppe von P°. Der Normalteiler N wird durch
die folgenden Elemente erzeugt.

N {(1, (0, 1), 1), fg, (0, -1), 1), (g2, (0, 1), x2), (g3, (0, 1), x2)} (6.4)

wo
ge*3(G)v, g„g,e»3(G).

Wählt man für G beispielsweise die Gruppe (4.7) und Typ ft) Typ fst) l,so
erhalten wir mit den nun geläufigen Überlegungen die folgende physikalische Extension

E [Ux x f(Ux x SU2)jZ2)] x [P» x V]IN

mit g g2 g3 (-!)ß (ß: Baryonzahl).

Damit haben wir die Extensionen von P mit G bestimmt.

§ 7. Die Gruppe P P"xK

Die Gruppe P P° x F in (6.3) ist eine zentrale Extension der vollen Poincarégruppe

P P°xV mit Z2xZ2xZ2 (dabei entsprechen die erzeugenden Elemente in
Z2xZ2xZ2 respektive der Drehung um 2n, dem Quadrat der Zeitumkehr und dem

Quadrat von Raumspiegelung mal Zeitumkehr).

0^Z2xZ2xZ2->P=P°xF^P=P°xF^0. (7.1)

Die beim Extensionsproblem auftretenden Erweiterungen von P°, V und P lassen
sich im folgenden Diagramm zusammenfassen

0 0 0

l 1 1

Z* ^" Zjo A. ^o^ "2 - > Z2x Z,

{ i t
p° -> P P° x V -> F

1 1 1

po -> P=P»xF -» F

1 1 1

0 0 0

Für die drei senkrechten Extensionen in Figur 3 schreiben wir

Ej. 0 -> X -> P -> P -> 0
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Die Extensionen von Pi mit einer Symmetriegruppe G sind bis auf Äquivalenz
gegeben durch

G x PJfK^ (7.2)

wo

(K,\ {(?(»), n)\nzKi); epe Horn (K„ 3fG))- (7.3)

Die Gruppe P° wurde von Wigner12) als eigentliche quantenmechanische Poincarégruppe

eingeführt. (Die relativistische Invarianz äussert sich bekanntlich darin, dass

man eine gewöhnliche Darstellung von P° hat.)
Eine ganz analoge Situation tritt bei der Spiegelungsgruppe F auf: Die

«Darstellungen bis auf einen Faktor» von F erhält man durch die gewöhnlichen Darstellungen

der Gruppe V (vergleiche § 5). Es liegt daher nahe, F als quantenmechanische

Spiegelungsgruppe und P P° x F als volle quantenmechanische Poincarégruppe zu

bezeichnen, letzteres in Abweichung zur Terminologie von Wigner, der P° x V als

volle quantenmechanische Poincarégruppe bezeichnet hat.

Schlussbemerkungen

Wir haben in dieser Arbeit gezeigt, dass wegen des antilinearen Charakters der
Zeitumkehr die Poincarégruppe P nicht trivial auf eine zusätzliche Symmetriegruppe
G operiert. Vereinigt man daher diese Gruppen zu einer einzigen Gruppe E, in der G

ein Normalteiler ist und EjG P, so wird man auf nichttriviale Extensionen geführt.
In § 6 (vergleiche auch § 7) haben wir alle mathematisch existierenden Extensionen
explizit bestimmt und gezeigt, wie man die «physikalische Extension» aus empirischen
Relationen zwischen dem Spin, gewissen Ladungszahlen und den Typen von t und s t
bekommt. Die Bedeutung dieser Extension besteht darin, dass gleichzeitige Invarianz
bezüglich P und G sich darin äussert, dass eine gewöhnliche Darstellung von E durch
unitäre (bzw. antiunitäre) Operatoren im Hilbertraum existiert. E spielt die analoge

Rolle wie P° für die relativistische Invarianz. Denn diese bedeutet, dass man zwar
bloss eine Darstellung bis auf einen Faktor von P° hat, sich diese aber immer zu einer

normalen Darstellung von P° heben lässt. Mit andern Worten: E ist das Analogon zur
quantenmechanischen Poincarégruppe.

ANHANG A

Berechnung von H2(G, A) für spezielle Gruppen

AI. Zentrale Extensionen halbeinfacher Lie-Gruppen
durch kompakte abelsche Lie-Gruppen

Theorem 1

Sei 0 —>¦ G' —> G —s* G" -> 0 eine beliebige Extension von G" durch eine abelsche

Gruppe G'. Ist A ein G"-Modul, so wird in natürlicher Weise Horn? (G', A) ein G"-
Modul durch: fg".cp) fg') g'-fcp fg'^-g'), g"eG", g' eG', epe Homz(G', A).
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Ist dann 7P(G, A) 0 fi 1, 2), so gilt:

**
772(G", A) s Hom^ (G', Af HomZ(G., (G', A).

(Dabei ist 4 ein G-Modul durch: G X G" -> KntfA)).

Beweis
a) B2fG", A)

n\
Z2fG", A) 4- Z2fG, A) B2(G, A) Z- C\G, A) D ZX(G, 4) BX(G, 4)

,•*
0

ff2(G", yl) Hom(G', Af" C C^G', A)
h*

Y

0

i* verschwindet auf Z1fG, A) ß1(G, 4), da G' auf A trivial operiert. Damit

existiert die Abbildung g, da B2(G, A) â C^fG, A)ß\G, A).
cp g o p*fco), co e Z2fG", A) ist ein G"-invarianter Homomorphismus 93: G' ->4,

das heisst A existiert.
Zunächst ist cp ein Homomorphismus: Denn sei p*fco) òy>, xp e C1 (G, A); dann
ist cp g o p*fco) i*(v) und òfi* tp) i*fòy>) i*fp* a>) 0, das heisst ò cp 0.

Da G' auf 4 trivial operiert, ist cp ein Homomorphismus. Sei g" e G" und ge G mit
/>(g) g" und g' e G'. Dann ist

0 p* mfg, g') ip(g) + g-ipfg') - vfe g')
und

0 p* cofg" ¦ g', g) p* m(g g' g"1, g) v fe" -g') + Vfe) - V fe ?') •

Daraus folgt : g».^) ^.^
und da g' e G' :0 a 1 i\ 1 ag"Mg')=<pfg"-g') für g"eG'7

das heisst cp ist G"-invariant.
h verschwindet auf B2fG", A), und damit existiert h*.

Denn sei co dtp : p* co p*fôy>) afp* f) und damit cp g o p*fco) i*(p* tp) 0.

Die Abbildung h* : H2(G", A) -> Homz((r)(G', .4) ist somit konstruiert und ist ein
H omomorphismus.

b) Konstruktion einer inversen Abbildung k: Homz(G»)(G'X) -> H2fG",A):
Sei cp e Hom2(G")(G', A).
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Wir betrachten das folgende Diagramm mit exakten Zeilen und Spalten :

0 0

1 I
0 - z; rA G'

T i Z'
A - 4 xG —> G

1 1 \p
A -j
1

> E, A x GIG',

1

-> G"
9

0 0 0

mit G'v {fcpfg'), g')/g' e G' und A xG semidirektes Produkt von G mit 4.

cp Homomorphismus <=^ G^, Untergruppe von A x G.

cp G "-invariant -*==> G'q) Normalteiler in AxG.
j q

=> 3 Extension 0 -> A -> X -> G" —> 0, die in 4 die gegebene Operation von G"
induziert.

Damit ist eine Abbildung k: Homz(c., (G', A) ->H2(G",A) x Ext (G", 4)
konstruiert. Durch Wahl eines geeigneten Faktorsystems in 0 -> 4 -> X -*" G" ¦> 0 prüft
man leicht nach, dass k o h* idHi und h* o k id^om{G^ A), das heisst A* ist
ein Isomorphismus. |

Bemerkung

Eine Verallgemeinerung dieses Satzes erhält man mit Hilfe der Spektralsequenz
von Hochschild-Serre13)14), welche die Cohomologie einer Gruppe IT, eines Normalteilers

FC TT und des Quotienten 77/P miteinander verknüpft.
Der hier angegebene Beweis enthält dafür die explizite Konstruktion der zu

cp e Homz((r) (G', A) gehörigen Extension

0^A^Ev^G" ^0,
die in unserem Zusammenhang wichtig ist.

Theorem 2

0->A-^-G->G->0sei die universelle Überlagerung einer zusammenhängenden
Lie-Gruppe G mit halbeinfacher Lie-Algebra g. A^ ist ein diskreter (und damit

zentraler) Normalteiler von G, und es gilt : nx(G) N.
Ist A eine kompakte zusammenhängende abelsche Lie-Gruppe, auf der G trivial

operiert, so gilt :

772(G, A) ~ KomfN, A) Hom(7t1(G), A)
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Korollar
In jeder Äquivalenzklasse von Extensionen von G durch A existiert bis auf

analytische Aequivalenz genau eine analytische Extension und diese ist von der Form :

0 0

1 I
o -> x -Z N -> 0

V"

Y Y Y

0-^4 -> 4xG -> G -> 0 N9= {(cp(n),n)lneN), tp e UomfN, A)

YYY0 -> 4 -^ £ffl _> G -> 0

YYY0 0 0

Beweis

Der Beweis folgt aus Theorem 1, falls die Bedingungen 77'(G, A) 0 fi 1, 2)

erfüllt sind.
Diese Bedingungen werden durch die folgenden 3 Lemmata als richtig nachgewiesen.

Lemma 1

Sei G eine einfach-zusammenhängende Lie-Gruppe, A S1 X • • •, X S1 eine kom-° x j. ' m-mal

pakte zusammenhängende abelsche Lie-Gruppe, auf die G trivial operiert.
Dann gllt :

H2(G, /1) s 772(g, Ä»)

Dabei ist 772(g, Rm) die 2. Cohomologiegruppe der Lie-Algebra g von G mit Werten
in Rm ; die Elemente von 772(g, Rm) entsprechen 1-1-deutig den Äquivalenzklassen
von Extensionen von g durch die abelsche Lie-Algebra Rm.

Beweis

Nach 15), Theorem 4.1 und 5.1 folgt*) :

772(G, S1) S H2fQ, R)

Aus der Additivität von 772(G, o) und 772(g, o) folgt :

mm _
H2(G, A) s © 772(G, S1) s © iï2(g, R) H2(çi, Rm) |i-l i-l

Lemma 2 (Whitehead)
Sei g eine halbeinfache Lie-Algebra über einem Körper 0 der Charakteristik 0,

9J{ sei ein endlich-dimensionaler g-Modul.
DannSilt: T7'(g,9Jl) 0 1,2).

Beweis: vgl. 16).

*) Man muss zusätzlich zu Th. 4.1 und 5.1 in 15) noch zeigen, dass jeder 2-Cozyklus, der lokal
ein Corand ist, bereits ein Corand ist. Dies lässt sich aber unter Verwendung des einfachen
Zusammenhanges von G leicht einsehen.

37 H. P. A. 37, 6 (1964)
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Lemma 3

Sei G eine zusammenhängende Lie-Gruppe mit halbeinfacher Lie-Algebra, A eine

beliebige abelsche Gruppe, auf die G trivial operiert.
Dann ist:

7P(G, A) Hom(G, A) 0.

Beweis

a) Sei K die Kommutatorgruppe von G (A/F in G). Diese ist charakterisiert durch

die folgende universelle Eigenschaft der natürlichen Abbildung G -> G/K (abelsch) :

Hom(G, A) S RomfG/K, A), natürlich in A,
OTT

das heisst die Behauptung von Lemma 3 ist äquivalent zu G/X 0 oder K G.

b) Sei G zunächst eine einfach-zusammenhängende Lie-Gruppe. g sei die Lie-
Algebra und g' die Kommutatoralgebra (Ideal in g). Betrachte g X g/g' a (abelsche
Lie-Algebra der Dimension r > 0).

Da G 1-zusammenhängend => 3 genau ein analytischer Homomorphismus.

rrG^ Rr
mit

dIT n : g ^> a

H ker/7 ist eine abgeschlossene invariante Lie-Untergruppe von G.
o o

Aus 17), pag. 125ff., folgt für die Einskomponente 77" von H: H G' K,
G': zusammenhängende invariante Lie-Untergruppe, erzeugt vom Ideal g' C g

(17),pag. 109, Th. 1).
Damit: In einer einfach-zusammenhängenden Lie-Gruppe G ist K eine

abgeschlossene, zusammenhängende Lie-Untergruppe von G.

c) Sei nun g halbeinfach.
Dann folgt: n: g -> g/g' a 0, da g' g für g halbeinfach. Der 1-deutig

bestimmte analytische Homomorphismus IT ist dann ebenfalls der Nullhomomorphismus,

das heisst H ker TT G. 0
Da G zusammenhängend =*-G 77 77 G' i£.
d) Ist G eine beliebige zusammenhängende halbeinfache Lie-Gruppe, so sei

~ P
G —>¦ G —>¦ 0 die universelle Überlagerung.

~ p
Wäre K CG=> G —>- G —>• G/7£ -4 4= 0 ist ein Homomorphismus cp: G -> .4,

9? 4 0 entgegen a), c).
Also ist K G für zusammenhängende Lie-Gruppen G mit halbeinfacher Lie-

Algebra g. |
Beweis von Theorem 2 :

Aus Lemma 1,2 folgt H2fG, A) 0.

Aus Lemma 3 folgt 7P(G, 4) 0,
und damit nach Theorem 1 die Behauptung.
Das Korollar folgt aus dem Beweis von Theorem 1.1



Vol. 37, 1964 Gruppenextensionen in der Quantentheorie 579

A2. Extensionen semidirekter Produkte

i A~~~~

SeiGeineGruppe,aufwelcheemeGruppe77operiert. SeiO^G—^Gx77—?77—>- 0

das semidirekte Produkt bezüglich dieser Operation, das heisst G x 77 sei die unwesentliche

Extension von 77 durch G bez. der gegebenen Operation.
Mit Hilfe der Hochschild-SERREschen Spektralsequenz für 0-^G->-Gx77->

77 -> 0 folgt für einen 77-Modul A mit EP-fG, A) 014)18) :

0 -* 772(77, A) -^> 772(G x II, A) X- 772(G, A)n -> 0

ist exakt und zerfällt, das heisst 772(Gx77, A) S 772(77, A) © 772(G, A)n.
Das folgende Theorem 3 gibt eine solche Zerlegung von 772(Gx77, A) für einen

beliebigen 77-Modul A. Dabei wird 772(G, A)n durch eine andere Gruppe ersetzt, die
sich ebenfalls durch Extensionen interpretieren lässt. Diese Gruppen sollen in einer
besonderen Arbeit19) beschrieben werden, in der auch der Beweis für Theorem 3

angegeben wird.

Theorem 3

Sei G eine Gruppe auf welcher eine Gruppe 77 operiert, 0->G^Gx77->-77^-0
sei das zugehörige semidirekte Produkt, A ein 77-Modul.

(i) H2(G x 77X) s 772(77, A) © 7727(G, A)

Dabei entsprechen die Elemente von 77fj(G, A) 1-1-deutig den Äquivalenzklassen
von Extensionen

0-^ A -A E X G-> 0,

wobei 77 auf E operiert und i, p 77-invariante Homomorphismen sind; «Äquivalenz»
ist zu verstehen bezüglich 77-invarianter Homomorphismen 19).

(ii) HJjfG, A) ist in der folgenden exakten Sequenz enthalten:

0-> H\n, Z\G, A)) -> H2nfG, A) -> 772(G, Af'-> 772(77, Z\G, A))-+ HsnfG, A)
CC* ß* T

(da G trivial auf A operiert, ist ZAfG, Ä) HAfG, Ä) Hom(G, A)).

Korollare

1. 772(G, Ä)n 0 » H\n, Horn (G, A)) ~ 77^(G, A)

2. Horn (G, A) 0 => H%fG, A) ~ H2fG, A)n

(in Übereinstimmung mit dem anfänglich zitierten Resultat).
3. Seien G, A wie in Theorem 2 gegeben; eine diskrete Gruppe 77 operiere auf G,

~ p
G und A, derart, dass G —> G -> 0 77-invariant ist. Dann gilt für das semidirekte
Produkt G x 77 mit Operation G x 77 -> 77 -> Aut(4) :

772(G x 77X) S 772(77, 4) © 772(G, A)n S Ä2(X 4) © Homz(i7)(A, ^)
KoroUar 1, 2 folgen direkt aus Theorem 3 (ii), Korollar 3 aus Korollar 2 und Theorem 2.
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A3. Direkte Produkte zyklischer Gruppen

Sei IT Zh die zyklische Gruppe der Ordnung h mit erzeugendem Element x.
Sei N =2Js e Z(77) (Z(77) : Gruppenring von 77 über Z) und T x - 1 e ZfTT).

SGlI
Für einen 77-Modul A betrachte die Modulhomomorphismen :

N:A->A, T:A^A
a -t> A7 a oc —> P oc.

Dann gilt (vgl. 20), pag. 250):

H2Pfn,A) ker P/im TV, /> > 0

H2P+1fn, A) ker A/im P /. > 0

Ist speziell 4 ein trivialer 77-Modul, so ist N a. h or., T a 0, das heisst

772*(77, A) A\hA=Ah, p > 0

H2PA*(II,A) hA - {oceAlhoi 0}, p>Q.
Ist 4 eine injektive, das heisst teilbare Gruppe, so ist A A A und damit

772^(77, A) 0 X> 0

Theorem 4

Sei TT Z,x Zh, A eine injektive abelsche Gruppe mit Operation 77 -> Zh -> Aut 4.
Daim lht

Ä2(/7, 4) S 772(ZA, 4) © Äi(ZAl Hom(Z,, .4))

SkerTzJimNz ® TP(Zk, tA)
h h

Beweis

Da A injektiv und ein trivialer ZrModul > 772(Z,X) 0, und nach Kor. 1 von
Theorem 3 folgt die Behauptung. |

Korollare

1. Zh operiere trivial auf A, A injektive abelsche Gruppe:

772(Z„.4) 0 und 772(Z, x Zh, A) Rom(ZhnA) hfA) MA
fl, h) GGT von h, l > 0

Durch ein Rekursionsverfahren lässt sich hieraus 772(77, A) für endliche abelsche

Gruppen 77 und injektive abelsche Gruppen A mit trivialer 77-Operation bestimmen.
2. Sei h 2; Z2 -> Aut(4) sei die Operation von Z2 auf .4.

1 —> trf^j

— 1 -SV —X
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Dann gilt: ker T 2A, im T 2 A, 2A An, im N 0, ker N A und damit:

77XZ2X) X p>0,
H2o + 1(Z2,A)^A2, p>0,

und
772(Z( x Z2, A) s 2A © E\Z2, A)

a/4 © (,4)2 für injektives 4.

Speziell für / A 2, Z2x Z2 V (Vierergruppe) gilt mit obiger Operation

772 (FXX 2.4 © 24
für injektives A.

ANHANG B

Bezeichnen wir das allgemeine Element von P P° x V (volle Poincarégruppe)
durch (fa,A), f, rj), fa, A) e P°; | 1, s; rj 1, t. Die Elemente der Form ((a,A),
|, t) sind darstellbar durch ffa,A), f, 1) • ((0,1), 1, *)•

Sei ein Quantensystem gegeben durch einen Hilbertraum § und eine von
Neumann-Algebra yi in §. Das System sei invariant bezüglich P P° x V, das heisst, die
Elemente ffa, A)A,1) e P seien dargestellt durch Automorphismen von 9Î, die auf
dem Zentrum 3 von 9? die Identität induzieren; das Element ((0, 1), 1, t) te P
sei dargestellt durch einen Automorphismus & von N, der in 3 die Transformation
2 -> z* induziert; (9 sei weiter von der Form 04 Ut o A o Uf1, Ae^l, wobei U,
ein antiunitärer Operator von § sei.

Wie in 1) chap. Ill zeigt man nun, dass die Gruppe U der (unitären oder anti-
unitären) Operatoren, die die Automorphismengruppe P von 9Î induzieren, eine
Extension von P mit der Abel'schen Gruppe (£ der unitären Operatoren in 3 ist:

o^e->llj;-P^o (B.l)
p

Diese Extension ist nicht zentral: für einen beliebigen Mengenschnitt k von p mit
A(l) 1, kft) (7, erhält man für die Operation von P auf C:

P P° x F -Z Aut G

I x
F -> TT {1, Ü}

wobei <pft)(c) c* e-1; tf^c) X) c -X71. * 6 Z ceC.

Eine zusätzliche Symmetriegruppe der Theorie sei nun gegeben durch eine treue
unitäre Darstellung g einer kompakten zusammenhängenden Lie-Gruppe G. Diese
soll relativ zu (B.l) die folgenden Eigenschaften besitzen:

1° kfx)Qfg)kfx)-^-gfg), geG, x=ffa,A)A,l)eP.
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Für den in §§ 2-3 konstruierten Automorphismus %(t) von G haben wir nach (2.3) :

kft) gfg) kft)-1 Ut gfg) X1 Q(x(t)(g)), g eG. (B.2)
%

Mit dem Homomorphismus %: P -> V ->7t {1, t} —*¦ Aut G lassen sich 1° und
(B.2) zusammenfassen:

kfx) gfg) kfx)-1 gfxfx) fg)),xeP, g eG. (B.3)

2° (£Ce(G).

Bemerkung: Die Gleichung 1° bedeutet, dass sich jede Lorentztransformation der
Form x (fa, A), f, 1) e P durch einen unitären Operator realisieren lässt, der mit
den Transformationen gfG) vertauscht. Physikalisch bedeutet dies, dass die Gruppe G

Impuls, Energie, Drehimpuls und Parität des Systems invariant lässt.
Die Gleichung 2° bedeutet, dass gfG) alle Supersymmetrien des Systems enthält.

Dies ist in allen praktischen Beispielen der Fall.
Man beweist nun leicht :

Lemma: Für i X o j: (£ -> G gilt :

*W)(e)) zW(*(e)).ce&

Die Inklusion i ist mit den Operationen von t auf £ und G verträglich.
Theorem: Es existiert eine Extension

0^G-^£XP^0,
gegeben durch

E GxP,fg,x) ¦ fh, y) fg ¦ xfx)fh) -ffx, y), x ¦ y),ffx, y) ifkfx) kfy) kfxyf1),

die zur gegebenen Operation % : P -> Aut G gehört, derart, dass

g:E-^ED=gfG)-U,

definiert durch gfg, x) gfg) • kfx) eine Darstellung von E durch unitäre bzw. anti-
unitäre Operatoren von .§ ist.

E ist damit eine Gruppe; sie ist isomorph zu E genau, wenn gfG) nU= ï gilt.

ANHANG C

Ausgehend von (3.1) diskutieren wir kurz die zur Lie-Algebra ß R © At
gehörenden kompakten Gruppen und ihre irreduziblen Darstellungen. Eine Gruppe
dieser Art ist nach (3.1) immer von der Form: Ux x SUl+xINv. Beschränken wir uns
auf den Fall wo fl + 1) eine Primzahl ist, so ist N' in (3.2) entweder trivial oder das

ganze Zentrum Zl+X von SUl+x. Es existieren also nur die folgenden Möglichkeiten:

(1) G Ux x SUl+1 (C, 1)

(2) Gs=UxxSUl+xl(Zl+A; s 0,1,2, I.



Vol. 37, 1964 Gruppenextensionen in der Quantentheorie 583

Der Homomorphismus cps ist dabei wie folgt definiert: Sei z0 X,/( + 1 das erzeugende

Element von Zl+X, dann setzen wir cps(z0) r2"s', + 1; s 0, 1, 2, /.

Für s 1 erhält man, wie leicht einzusehen ist, die Gruppe Ul+1.
Die irreduziblen Darstellungen von (2) bekommt man genau aus denjenigen von

(1), für die (<X0), z0) im Kern ist. Die irreduziblen Darstellungen von (1) anderseits
sind charakterisiert durch XI nicht-negative ganze Zahlen [n ; mx, m2, mt] (man
bekommt diese Darstellungen alle aus den Tensorprodukten der irreduziblen
Darstellungen von \JX mit denjenigen von SU,+1). Das Element z0 liegt natürlich im
maximalen Torus, der durch die Cartan-Algebra von AL erzeugt wird. Explizit lässt es

sich wie folgt darstellen :

i

Zo=e2niKit + i mit ho=2Jkhk (C.2)
Ä-l

Darin sind die hk diejenigen Elemente in der Cartan-Algebra von A,, die zu den
kanonischen Erzeugenden gehören (vgl. 21)). Die Formel (C. 2) beweist man leicht mit
einer geeigneten Matrixdarstellung von Al (vgl.22)). In einer Darstellung [n; mx, m2,...
mt] geht z0 in a • 1 über, mit *)

a <8»M(»J/J + l eS**f/« + l wo q=2Jkmk.
k-l

Damit liefert die irreduzible Darstellung [n; mx,m2. ...ml] von UxxSUl+x genau
dann eine Darstellung von Gs, falls

q s ¦ n (mod XI) (C-3)

Dieses Resultat ist nicht neu, wie auch die folgenden Ergebnisse dieses Anhanges

(vgl.23))._
Die hier gegebenen Herleitungen scheinen uns aber wesentlich einfacher gegenüber

denjenigen, die wir in der Literatur gefunden haben23).
Mit (C. 3) lässt sich jetzt sofort sehen, dass im Falle 1=2 das Oktett-Modell

(s 0) und das Sakata-Modell (s 1) die einzigen kompakten Gruppen zu £
R © A2 sind, für die sich eine Hyperiadung Y und eine elektrische Ladung Q

definieren lassen, die bei allen Darstellungen ganzzahlige Eigenwerte haben.
Seien nämlich a1( a2 die beiden einfachen Wurzeln in A2 und A hat die

zugehörigen Elemente in der Cartan-Algebra (für die Bezeichnungen vgl. 21)), dann wird
die Lie-Algebra Ax der Isospingruppe aufgespannt durch hai, eXi, e_ai. Damit Y
mit A x kommutiert, muss es notwendig von folgender Form sein :

Y=a.^-fhai + 2hai) + cB;BeR.

B ist die Baryonladung. Man beachte dazu lediglich, dass für A2 sich die a, auf
eins normieren lassen, und die Cartan-Matrix gegeben ist durch

net. 2(af, a,) \ / 2 -1\
« - \ K,=g l-i 2)

*) A Ern.Aj ist das höchste Gewicht in der Darstellung [mx, m;] von Av Die A; sind
dabei die fundamentalen dominanten Gewichte mit j\i (hj) ò^.
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Wegen A 1/2 hi ist der Eigenwert von Y (Ti.IF. Y) in einem Gewichtsraum zum

Gewicht M A — kx a, — k2 a2 fkx, k2 nicht-negativ ganz) in der Darstellung [n; A],
A mx Xx + m2 X2:

t- tit -ir l m. A-2. m. \E.W. Y a(—L- - k2\ A- cn

Damit A Y für verschiedene M ganzzahlig ist und A Y 4- 1 nicht verboten wird,
muss notwendig a 1 sein. Der Fall (1) in (C. 1) wird damit ausgeschlossen. Für die

Gruppen Gs muss man wegen (C.3) für s 0,1,2 respektive c 0, 2/3, 1/3 setzen. Im
Fall s 2 sieht man aber leicht, dass Q T3 A- J/2 Y nicht immer ganzzahlige Eigenwerte

hat, während dies für s 0,1 der Fall ist.

Wir danken Herrn Professor Heitler herzlich für sein aufmunterndes Interesse
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dem Schweizerischen Nationalfonds für finanzielle Unterstützung.
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