Zeitschrift: Helvetica Physica Acta

Band: 37 (1964)

Heft: VI

Artikel: Gruppenextensionen in der Quantentheorie
Autor: Kamber, F. / Straumann, N.

DOl: https://doi.org/10.5169/seals-113503

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-113503
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

563

Gruppenextensionen in der Quantentheorie

von F. Kamber und N. Straumann
Institut fiir Theoretische Physik der Universitat Ziirich,

(2. IV. 64)

§ 1. Einleitung

In der Physik spielen verschiedene Invarianzgruppen eine grosse Rolle (Poincaré-
gruppe, Eichgruppe, Isospingruppe, héhere Symmetriegruppen fiir starke Wechsel-
wirkungen wie zum Beispiel S U,). Die verschiedenen Symmetrien werden meistens
ganz getrennt betrachtet, in der stillschweigenden Annahme, dass sie unabhingig
voneinander sind, das heisst die umfassende Gruppe lediglich das direkte Produkt ist.
Durch MicHELY) ist nun aber darauf hingewiesen worden, dass diese Annahme im
allgemeinen nicht zutrifft. So ist beispielsweise die Eichgruppe A (erzeugt durch
Baryonladung, Leptonladung und elektrische Ladung) nicht unabhidngig von P°
(Zusammenhangskomponente der Eins der Poincarégruppe)l). Die umfassende
Symmetriegruppe ist hier eine nichttriviale zentrale Extension von P° mit 4. Mathe-
matisch existieren in diesern Beispiel acht solche Extensionen. Jede fiihrt auf eine
Relation der Form:

(~1)¥ = (—1yr o, (B)

Darin nehmen die ¢ die Werte 0 oder 1 an. j ist der Spin, ¢ die elektrische Ladung,
b die Baryonladung und / die Leptonladung. Die empirische Relation

(—)¥ = (~yP+! (1.2)

legt die physikalisch richtige Extension fest.

In dieser Arbeit diskutieren wir die Extensionen der vollen Poincarégruppe P mit
zusitzlichen Symmetriegruppen, wie sie etwa im Gebiet der starken Wechselwirkun-
gen auftreten. Auch in diesem Fall ist die physikalisch richtige Extension nicht das
direkte Produkt. Dies zeigt schon die folgende einfache Uberlegung. Wire etwa die
richtige Extension von P mit der Isospingruppe S U (C, 2) das direkte Produkt
S U (C, 2) x P, so miisste die antiunitire Darstellung U, der Zeitumkehr vertauschen
mit der Darstellung der Lie-Algebra von S U (C, 2), das heisst [U, I;] = 0. Nun sind
aber T, =1 I, die Isospinoperatoren. Mit diesen wiirde also U, antivertauschen.
Insbesondere wiirde der Eigenwert eines Eigenzustandes von T’ bei Zeitumkehr sein
Vorzeichen wechseln. Da T ein additiver Beitrag zur elektrischen Ladung ist, ist
dies bestimmt unverniinftig. Man wird vielmehr verlangen, dass U, mit T4 vertauscht.
Dies, zusammen mit den Vertauschungsrelationen fiir die 7, legt die Operation von
U, in der Lie-Algebra von S U (C, 2) im wesentlichen fest. Wie aber schon jetzt er-



564 F. Kamber und N. Straumann H.P. A,

sichtlich ist, ist diese Operation nicht trivial. Damit operiert auch U, auf die Dar-
stellungen der Gruppe S U (C, 2) nicht trivial*).

In § 2 bestimmen wir die Wirkung von U, in der Lie-Algebra einer Symmetrie-
gruppe G fiir starke Wechselwirkungen. Dadurch bestimmt ¢ einen involutorischen
Automorphismus dieser Lie-Algebra. In § 3 wird gezeigt, dass sich diese Involution
auf die Gruppe G immer fortsetzen ldasst. Gleichzeitig wird die Wirkung der fortge-
setzten Involution auf das Zentrum von G explizit bestimmt. In § 4 bestimmen wir
die Extensionen der Gruppe « = {1, f} mit G, in § 5 diejenigen der vollen Spiegelungs-
gruppe ¥V mit G und in § 6 diejenigen von P mit G. Jede der mathematisch existieren-
den Extensionen fiihrt auf eine Relation zwischen dem Typ der Zeitumkehr (Eigen-
werte von U} U (0, — 1); U (0, — 1): Drehung um 2 7), dem Spin, der Baryonzahl,
der Hyperladung usw. Empirische Relationen zwischen diesen Gréssen legen dann die
physikalisch richtige Extension fest. Der § 7 fasst die Ergebnisse in tibersichtlicher
Form zusammen. Im Anhang geben wir einige mathematische Zusammenhénge, die
im Text gebraucht werden.

§ 2. Operation der Zeitumkehr auf die Lie-Algebra
einer zusitzlichen Symmetriegruppe

Wir beginnen mit der Diskussion eines Beispiels, an welches sich die nachfolgenden
Uberlegungen natiirlich anschliessen. Wir betrachten eine Symmetriegruppe fiir
starke Wechselwirkungen mit der folgenden Lie-Algebra:

QR Q. (2.1)

Dabei ist R? die Lie-Algebra der Eichgruppe von Baryonladung B und Hyperladung
Y. &' ist die Lie-Algebra der Isospingruppe S U (C, 2).

Sei I, k=1, 2, 3 die iibliche Basis von &', dann ist T, = ¢ I, eine Basis in der
komplexen Erweiterung [£'] von £'. Physikalisch wichtig ist die zugehorige Weylsche

Basis. )
H=-T;, Ei=-Y(4T,+:T,).

Fiir eine Darstellung ¢ von £ durch lineare Operatoren eines Hilbertraumes verlangen
wir folgende Vertauschungsrelationen mit U,, der antiunitidren Darstellung der Zeit-

et 1) (U] =0,
@ [, B=[U,¥]=0,
(3) U o) G Col®),
@ U e(e)] 0.

(1) und (2) bedeuten, dass (, B und Y erhalten bleiben bei Zeitumkehr. (Q ist die
elektrische Ladung.) (3) besagt, dass g(') bei Zeitumkehr in sich transformiert wird
und (4), dass alle Elemente von p(&’) bei doppelter Zeitumkehr invariant bleiben.

*) Diese Bemerkung verdanken wir L. O'RAIFEARTAIGH. Sie gab den Anstoss zur vorliegenden
Arbeit. TFiir wertvolle Diskussionen sind wir ihm zu grossem Dank verpflichtet.
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Die V.-R. von H und E* zusammen mit (1) bis (4) verlangen (vergleiche allge-
meinen Fall) -1
Uie(Es) U" = Az 0(Ey) ,
A=A, |APP=1.
Iy=+1H, IL,=E +E_, I,=:(E_—E)

Fiir die Basis:

von ' gilt dann B
Uo(H) Ut = o(H)

Uo(E, +E) U =1, 0E,) +1—olE),
Uyo (i (B, — EL)) Ut = i (A, o(E,) — A_e(EL) .

Dieses Beispiel zeigt, dass die Zeitumkehr U, auf die Lie-Algebra L' nicht trivial
operiert.

Wir gehen nun zum allgemeinen Fall iiber. Dazu betrachten wir eine beliebige
kompakte Lie-Algebra. Dadurch lassen sich alle physikalisch interessanten Fille
auf einmal erledigen.

Eine kompakte Lie-Algebra ist immer von der Form?)

R™ ist das Zentrum von £ und £’ eine halbeinfache kompakte Lie-Algebra. &' ist
eindeutig bestimmt und gleich der derivierten Algebra [ £, £] von £. R™ interpretieren
wir als Lie-Algebra einer Eichgruppe von Ladungszahlen (vergleiche (2.1)).

Sei g eine Darstellung von L und g ihre Ausdehnung auf die komplexe Erweiterung
[&] von L. f; ... f, bilde eine Basis von R™. Die Operatoren g (¢ f,) £ =1, ... m sind
in allen physikalischen Beispielen Ladungsoperatoren. Wie frither verlangen wir deshalb

(1) (U, 0(i f)] =0,

(2) Uo(2) U Col®),

() [U%0®)]=0.
Nehmen wir ausserdem an, dass die Darstellung p treu und antiselbstadjungiert ist,
so wird durch U,3() Ul = 3(0(@) ; ae (€] 2.3)

ein antilinearer involutorischer Automorphismus (Involution) ¢ von [£] definiert.
Wegen Eigenschaft (1) und (2) zerfillt ¢ nach den Unteralgebren [R™] und [£'].

(1) bedeutet
olf,) =—f k=1,...m.

Die Fixpunkte von ¢ in [{'] bilden, wie man leicht sieht, eine reelle Form von [£],
das heisst eine reelle Lie-Algebra £, deren komplexe Erweiterung mit [L'] iiberein-
stimmt. Die Elemente von g(2") sind nach Konstruktion genau die Elemente von
0([L), die mit U, vertauschen.
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Sei 7 die Involution 7: x + 7y >x — iy (x,ye &) in [£'], welche zur reellen
kompakten Form £’ gehort?), dann vertauschen auf Grund der Bedingung (2) o und 7.

COT=TOGO.

Sei 5

dann zeigt man leicht die folgenden Beziehungen 3)
L=L,@8,,
=2,0i,.
(@ ist dabei als direkte Summe von linearen Riumen zu verstehen.)
Diese Formeln geben einen Zusammenhang von £’ und £".
In [£'] gibt es eine Weylsche Basis®) z;, 7 =1, .../, e,, derart, dass die Elemente
ih;, e, +e_,, 1(e,— e_,) eine R-Basis von £ bilden. p(k;) sind selbstadjungierte
Operatoren, die in allen physikalischen Beispielen mit U, vertauschen. (In unserem

Beispiel war p(#) die 3. Komponente des Isospins; bei S Uy kommt die Hyperladung
Y dazu.)

Wir verlangen deshalb

~ ~

4) Uoh) U =oh), =1, ...1,

J J

das heisst
o(h;) =h; .

Aus den Eigenschaften einer Weylschen Basis kann man nun folgendes zeigen3):
G( "i:cx) = j':l:az Cta

mit -

Asaf=1 A,=7.

Damit haben wir folgendes Resultat:

Theorem 1

In [2'] existiert eine Weylsche Basis #;, 7 =1, .../, e,, e_,, derart, dass
(a) b, e, APe_,

eine R-Basis von £” bilden.
0) iy, eateq, dle—e,)
ist eine R-Basis von £', und die Involution ¢ in £’ ist gegeben durch
(c) c(ih)=—1h;,
O(egte o) =Ayey+ige a,
T (i (e — e ) = —1 (Ay by — Age_y) -

Zusammen mit o(f,) = —f; ist damit die Operation der Zeitumkehr auf die Lie-
Algebra £ explizite bestimmt.
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§ 3. Fortsetzung von ¢ auf die Gruppe G(2)

In § 2 haben wir die Involution bestimmt, die die Zeitumkehr in der Lie-Algebra
einer kompakten Symmetriegruppe G induziert. In diesem Paragraphen setzen wir
diese Involution auf die Gruppe G fort. Es stellt sich heraus, dass eine solche Fort-
setzung immer existiert und eindeutig ist. Weiter bestimmen wir explizit die Wirkung
der fortgesetzten Involution auf das Zentrum von G. Dies ist wichtig fiir das Exten-
sionsproblem in § 4, 5 und § 6.

Die allgemeinste zusammenhingende kompakte Gruppe G, die zur Lie-Algebra
(2.2) gehort, ist eine zentrale Extension einer halbeinfachen zusammenhdngenden
Lie-Gruppe G’ mit Lie-Algebra £’ und einem m-dimensionalen Torus Tm = U; x ... X U
(U,: eindimensionale unitdre Gruppe):

0—-Tm -G—-G —0.

Dies ldsst sich wie folgt einsehen. Die Einskomponente des Zentrums von G ist eine
zusammenhingende abgeschlossene abelsche Liesche Untergruppe von G der Dimen-
sion m, also ein m-dimensionaler Torus T™.

Sei (o G

Dann ist nach (2.2) £’ die Lie-Algebra von G’ und damit G’ halbeinfach. Nach dem
Korollar zu Theorem 2 im Anhang A ist G von der Gestalt

G (T x G')|N,. (3.1)

Darin ist G’ die universelle Uberlegungsgruppe von G’, die nach einem Satz von

WEvL?) kompakt ist. N ist ein diskreter zentraler Normalteiler von T™ %G’ von der
Form

N, = {(p(n). n) | neN'},
@ € Hom (N', T™) .
N’ ist der diskrete Normalteiler von G’ mit
G ~ G'|N’ (3.2)
Wir setzen nun o auf die Gruppe G fort. Zunichst definieren wir auf T
7 (%l ambm) = gmoafr= e @l

(beachte o(f,) = —f,, k=1, ... m).
Die Involution ¢ in der Lie-Algebra £’ definiert einen lokalen Automorphismus von

G’,und dieser lisst sich eindeutig auf die einfach zusammenhédngende Gruppe G fort-

setzen®). Dadurch ist ¢ auf T™ x & fortgesetzt. Diesen Automorphismus bezeichnen
wir mit .
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Notwendig und hinreichend dafiir, dass 5 einen Automorphismus in G definiert, ist

;}(Nw) CN,. (3.3)
Dies beutetet fiir n e N’

;}((p(n), n) = (p(»n'),n’) mit #n'eN’
oder

~ ~

rm) =, x(gm)=gz(m),
das heisst
¥y(NYCN'; yop=@oy auf N’. (3.4)
Umgekehrt folgt aus (3.4) wieder (3.3).
Mit dem folgenden Lemma von H. Hopr®) lasst sich aber (3.4) als richtig nachweisen.

Lemma (Hopr)

Sei T ein Toroid (das heisst abelsche abgeschlossene zusammenhdngende Unter-
gruppe) einer kompakten zusammenhéingenden Gruppe G. Sei weiter a ein Element

von G mit a y = y a fiir alle y € T, dann existiert ein Toroid TmitacTund T C T.
Als einfache Folge ergibt sich das

Korollar

Das Zentrum von G liegt in jedem maximalen Toroid. Wenden wir dies auf die

Gruppe G' an, so folgt insbesondere, dass ihr Zentrum im maximalen Toroid liegt,
das durch die Cartansche Unteralgebra (aufgespannt durch die< h; € &', 7 =1, ... 1)
erzeugt wird. Wegen ¢ (i h;) = —i h; bedeutet aber dies, dass y jedes Element aus

dem Zentrum von G’ in sein Inverses iiberfiihrt. Insbesondere ist dies fiir alle Elemente

von N’ der Fall. Daraus folgt aber (3.4) unmittelbar. '
Damit ist das folgende Theorem bewiesen.

Theorem 2

Die Involution ¢ (von Theorem 1) in der Lie-Algebra £ definiert eindeutig einen
involutorischen Automorphismus y jeder kompakten Lie-Gruppe (mit £ als Lie-
Algebra), der in £ die Involution ¢ induziert.

§ 4. Extensionen von 7t mit G

Sei w die zyklische Gruppe 2. Ordnung {1, ¢} (¢: Zeitumkehr). Da y involutorisch
ist, definiert es einen Homomorphismus (den wir wieder mit y bezeichnen) von 7z in
die Automorphismengruppe von G.

7 — Aut G .

Dieses y induziert einen Homomorphismus y von & nach Aut G/Int G (Int G: Gruppe
der inneren Automorphismen). Damit ist das Extensionsproblem der Gruppe 7 mit G
wohl definiert?). (Eine physikalische Motivierung fiir das Auftreten von Extensio-
nen wird in Anhang B gegeben). In Fig. 1 geben wir das zugehoérige Diagramm.
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0
v
3 (G)
v
0O - G —- E — 4 — 0
¥ v vy

0 - IntG — AutG — AutG/IntG — 0

v

0
Figur 1

Es handelt sich hier um Extensionen mit einer nichtabelschen Gruppe G. Solche
brauchen zu gegebenem ¢ im allgemeinen gar nicht zu existieren. Notwendig und
hinreichend dafiir ist, dass ein gewisser 3-Cozyklus schon ein Corand ist8). Da in un-
serem Fall aber der Homomorphismus von 7 - Aut G/Int G iiber Aut G gegeben
ist, weist man leicht nach, dass das semidirekte Produkt G x 7z eine Extension ist *).
Dieses ist wie folgt definiert. Die unterliegende Menge besteht aus allen geordneten
Paaren (g, ) g € G, a € w. Das Produkt ist definiert durch

(g, o) (¢, &) = (gowg’s ),
wo ot
g = (1(0) (g)
Das Inverse ist
(g,00) 1= (gt a™ ).
Das Assoziativgesetz gilt, da y ein Homomorphismus ist. Weiter priift man leicht
nach, dass das Diagramm von Figur 1 erfiillt ist, mit » = 3.
Die Gruppe der Extensionen von & mit G, die zu y gehéren, ist dann )
Exts (z, G) = H : (7, 3 (G)) , 3(G) = Zentrum von G,

goX

g ist der natiirliche Homomorphismus von Aut G/IntG nach Aut (3(G)). Nach
Theorem 2 fithrt (g 0 ¥) (¢) jedes Element von 3(G) in sein Inverses iiber. In diesem
Fall gilt (Anhang A 3, Theorem 4, Kor. 2):

H; 3 (m, 3(G)) = »3(G)

(53(G) besteht aus allen involutorischen Elementen von 3(G)).
Die Extensionen E kann man explizite angeben.

E=GxanlZ,. (4.1)

7 ist die zyklische Gruppe 4. Ordnung Z,(x) mit dem erzeugenden Element x. Z, be-
steht aus den folgenden Elementen von G x m:

Zz == {(1,1), (g, xZ)}; g € 23((;) . (42)

*) Fiir zwei Gruppen G und G’ soll im folgenden unter G X G’ immer das semidirekte Produkt
verstanden sein. Das direkte Produkt ist der Spezialfall fiir G’ > Aut G trivial.
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In (4.1) bedeutet G x 7 das semidirekte Produkt, wobei natiirlich der Automorphismus
in G, der zu x gehort, gleich y(?) ist.

Setzen wir in (4.2) g =1, so ist E isomorph zum semidirekten Produkt G x z.
Betrachten wir aber von dieser Gruppe Darstellungen durch unitire bzw. antiunitire
Operatoren, so wiirde dies bedeuten, dass U? = 1 ist, was physikalisch im allgemeinen
nicht zutrifft. g in Z, kann also nicht das Einselement sein.

Die Darstellungen fiir E bekommen wir aus genau denjenigen Darstellungen von

for 60 2 i i UU,=1. (4.3)

g “x

U, ist natiirlich mit U, zu identifizieren.

Im folgenden nehmen wir an, dass der Normalteiler N’ in (3.2) das ganze Zentrum

von G’ ist. Dies ist in allen praktischen Beispielen der Fall. Dann ist 3(G) = T™ (ver-
gleiche 3.1), und g € ,3(G) ist von der Form

2e 1
g= (01" =1 (4.4)
Die ¢, kénnen unabhingig die Werte 0 oder 1 annehmen. (4.3) lautet damit
(-1 = U (4.5)

(Die Q, sind die zu den ¢, gehdrigen Operatoren).

Multiplizieren wir die Gleichung (4.5) noch mit U(2 x), der rdumlichen Drehung
um 27, so erhalten wir fir die Eigenwerte in den kohdrenten Unterrdumen die
Gleichung Staigl o
(=) 77 (=1)” = Typ (9
(7: Spin; Typ () = Eigenwert von U(27)oUp).

Empirisch gibt es keinen Hinweis, dass Typ (f) = 1 ist. In diesem Fall haben wir
die Relation o a! .
(—)7 ! = (1), (4.6)
In einem konkreten Fall fiir die Gruppe G legen empirische Relationen die ¢, in (4.6)
und damit die Extension E fest.

Als Beispiel betrachten wir eine kompakte Gruppe G mit der Lie-Algebra (2.1).
Wegen y = 2 ¢, (mod 2) muss G wie folgt gewihlt werden

G=U, x (U, x SUZ,) (4.7)

Z2 = {(1:1)’ (_11 - 1)}

U, ist die eindimensionale unitire Gruppe. Der 1. Faktor in (4.7) ist die Eichgruppe
der Baryonzahl, wihrend der 2. Faktor die Eichgruppe fiir die Hyperladung bedeutet.
Aus (4.6) wird in diesem Fall

WO

(—1)®7T = (-2
Aus der empirischen Relation (1.2) folgt ¢, = 1, g, = 0. Damit
E =[(U x (Uy x SU,IZy)) x 7)/Z, (4.8)

wo das Element g in (4.2) gleich (—1)# im 1. Faktor von (4.8) zu setzen ist. Damit ist
die physikalische Extension eindeutig bestimmt.



Vol. 37, 1964 ~ Gruppenextensionen in der Quantentheorie 571

Ahnlich bekommt man fiir das Sakata-Modell und das Oktett-Modell (vgl. An-
hang C) die folgende Extension

E = [((U; %8Us)[Zq} % @]/Z,
Das Element g ist dasselbe wie in (4.8).

§ 5. Extensionen der vollen Spiegelungsgruppe mit G

Sei V' die volle Spiegelungsgruppe V = (1, s, ¢, s#) (s: rdumliche Spiegelung).
s operiert natiirlich trivial auf G, wihrend ¢ und s ¢ jedes Element des Zentrums von
3(G) in das Inverse iiberfithren. Aus demselben Grund wie in § 4 existieren Exten-
sionen von V' mit G. Diese sind gegeben durch '

Ext (V, G) = H?*(V, 3(G)) .

Diese Gruppe lasst sich berechnen. Man erhilt, da 3(G) = T™ teilbar ist (vergleiche
Korollar 2 zu Theorem 4 im Anhang A 3),

722 (V, 3(G)) = 23(6) @ :3(G),
Ext (V,G) = 23(6) @ 23(G) - (5.1)

Die Extensionen lassen sich explizite konstruieren. Man erhélt in jeder Aquivalenz-
klasse von Extensionen einen Reprisentanten von der Form

das heisst

E=G x VIN (5.2)

In (5.2) ist V wie folgt definiert: V ist die « grosste» Gruppe, die von drei Elementen
%; (1=1, 2, 3) erzeugt wird und fiir die die folgenden Relationen (R) erfiillt sind.

B f=d ae=ai=1,
(R) (b) x?xj=xj 7 5

()  x 2= 12;.

Mit andern Worten: V ist die freie Gruppe, erzeugt durch x; ( = 1, 2, 3) modulo die
definierenden Relationen (R):

V = F()/(R) | (5.3)
Der Normalteiler in (5.2) wird durch die folgenden Elemente erzeugt:
N={11), (&%), & )} ¢&g&ec3). (5.4)
Man kann zeigen, dass V eine zentrale Extension von V mit ZyXZyist
0> Zy(xd) x Zy(#d) =V >V —>0. (5.5)
Der Normalteiler in (5.2) ist deshalb von der Gestalt

N=(2yxZ3), 2 — {(p(n), n)|ne Z,(x2) x Z,(x})}, @eHom (Zyx Zy, 3(G)). (5.6)
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Betrachten wir wieder Darstellungen von E durch unitire bzw. antiunitdre Operatoren
(antiunitdr fiir x, und x,), dann sind die folgenden Identifikationen vorzunehmen

Uv.=U, U,=U, §

X3

=L

st
und wir erhalten
=i, =G, 0= (5.7)

g’

Fiar U,, U, und U,, sind weiter die Relationen (R) erfiillt. Diese drei Operatoren
erfiillen damit die bekannten Darstellungen bis auf einen Faktor der Spiegelungs-
gruppe V *). Der Willkiir fiir die Wahl der Phasenfaktoren, die man in der «Darstel-
lungstheorie» der Spiegelungen hat, entspricht hier die Freiheit, aus einer Aqui-
valenzklasse von Extensionen geeignete Repridsentanten auszuwihlen19).

Aus (5.7) erhalten wir wieder analoge Relationen wie frither

(1% (—1)% = Typ (1),
(—1)Z 4% (—1)2 = Typ (s ).

Empirische Relationen bestimmen in einem konkreten Fall wieder die ¢, und & und
damit die «physikalische» Extension. Wir schreiben die entsprechenden Ausdriicke
nicht auf.

§ 6. Extensionen von P mit G

Wir betrachten jetzt die Extensionen der vollen Poincarégruppe P mit G. P ist ein
semidirektes Produkt P = P° x V von P° (Einskomponente der Poincarégruppe) mit
der Spiegelungsgruppe V. P° operiert trivial auf G (vgl. Anhang B), d. h. der Homo-
morphismus von P in die Automorphismen von G erfiillt das folgende Diagramm

0 - PO -~ P=P'x TV -V — 0.

Aut &

Die Extensionen (die wieder existieren) sind gegeben durch
Ext (P, G) = H¥ P, 3(G)) .
Nach einem Satz von SERRE!!) (vgl. auch Anhang A 2, Theorem 3, Kor. 3) gilt fiir
diese Gruppe ”
HX(P, 3(G)) = HYV, 3(G)) ® 23(G)" . (6.1)

23(G)" sind die V-invarianten Elemente von ,3(G).
Damit (vergleiche (5.1))

Ext (P, G) = ,3(G) ® »3(6) @ »3(G)". (6.2

*) Um kein Missverstindnis aufkommen zu lassen, mochten wir betonen, dass in (5.2) das
semidirekte Produkt zu verstehen ist, wobei der Homomorphismus von ¥ nach Aut G dadurch
definiert ist, dass x,, x,, ¥; genauso operieren wie s, f und s £.
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Explizit sind die Extensionen wie folgt gegeben
E= (G x (P° x V))/N | (6.3)

DY ist die universelle Uberlagerungsgruppe von P°. Der Normalteiler N wird durch
die folgenden Elemente erzeugt.

N ={(1, (0,1),1), (g (0, =1), 1), (gz (0, 1), #3), (g5, (0, 1), 3)}, (6.4)
g€ 23(G)V: g2, 83 €23(G) -

Wihlt man fiir G beispielsweise die Gruppe (4.7) und Typ (f) = Typ (s ) = 1, so er-
halten wir mit den nun geldufigen Uberlegungen die folgende physikalische Extension

WO

E = [Ul x (Uy x SUz)/Z2)] X [150 X I}]/N

mit g = g, = g3 = (—1)8 (B: Baryonzahl).

Damit haben wir die Extensionen von P mit G bestimmdt.

§ 7. Die Gruppe P = P'x V

Die Gruppe P=P"x Vin (6.3) ist eine zentrale Extension der vollen Poincaré-
gruppe P = P V mit Z,x Z,xZ, (dabei entsprechen die erzeugenden Elemente in
Zy X ZyX Zy Tespektive der Drehung um 2 7, dem Quadrat der Zeitumkehr und dem
Quadrat von Raumspiegelung mal Zeitumkehr).

0>ZyXx ZyXx Zy—>P=P'xV >P=P'xV 0. (7.1)

Die beim Extensionsproblem auftretenden Erweiterungen von P° V und P lassen
sich im folgenden Diagramm zusammenfassen

0 0 0

v v v

0 - Zy > Zyx ZyxX Zy - Zyx Zy, — 0
v v v

0 - P > P=P'xV — V —- 0
v v

0 - PP » P=P'xV —

v v

0 0

— 0

O < < <

Fiir die drei senkrechten Extensionen in Figur 3 schreiben wir

E;: 0->K,—~P,—~P,—0.

z
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Die Extensionen von P, mit einer Symmetriegruppe G sind bis auf Aquivalenz ge-
geben durch
G x BJ(K),, (7.2)
WO
(Ki), = {(¢(n),n) |ne K;}; @eHom (K;, 3(G)). (7.3)
Die Gruppe P wurde von WIGNER?'?) als eigentliche quantenmechanische Poincaré-
gruppe eingefithrt. (Die relativistische Invarianz dussert sich bekanntlich darin, dass

man eine gewohnliche Darstellung von po hat.)
Eine ganz analoge Situation tritt bei der Spiegelungsgruppe V auf: Die «Dar-
stellungen bis auf einen Faktor» von V' erhdlt man durch die gew6hnlichen Darstellun-

gen der Gruppe V (vergleiche § 5). Es liegt daher nahe, V als quantenmechanische
Spiegelungsgruppe und P = POx V als volle quantenmechanische Poincarégruppe zu

bezeichnen, letzteres in Abweichung zur Terminologie von WIGNER, der POx TV als
volle quantenmechanische Poincarégruppe bezeichnet hat.

Schlussbemerkungen

Wir haben in dieser Arbeit gezeigt, dass wegen des antilinearen Charakters der
Zeitumkehr die Poincarégruppe P nicht trivial auf eine zusitzliche Symmetriegruppe
G operiert. Vereinigt man daher diese Gruppen zu einer einzigen Gruppe E, in der G
ein Normalteiler ist und E/G = P, so wird man auf nichttriviale Extensionen gefiihrt.
In § 6 (vergleiche auch § 7) haben wir alle mathematisch existierenden Extensionen
explizit bestimmt und gezeigt, wie man die «physikalische Extension» aus empirischen
Relationen zwischen dem Spin, gewissen Ladungszahlen und den Typen von ¢ und s ¢
bekommt. Die Bedeutung dieser Extension besteht darin, dass gleichzeitige Invarianz
beziiglich P und G sich darin dussert, dass eine gewdhnliche Darstellung von E durch
unitdre (bzw. antiunitdre) Operatoren im Hilbertraum existiert. E spielt die analoge

Rolle wie P° fiir die relativistische Invarianz. Denn diese bedeutet, dass man zwar
bloss eine Darstellung bis auf einen Faktor von P° hat, sich diese aber immer zu einer

normalen Darstellung von P9 heben lisst. Mit andern Worten:: E ist das Analogon zur
quantenmechanischen Poincarégruppe.

ANHANG A

Berechnung von H*(G, A) fiir spezielle Gruppen

A 1. Zentrale Extensionen halbeinfacher Lie-Gruppen
durch kompakte abelsche Lie-Gruppen

Theorem 1
Sei 0 — G' 2+ G 5 G" — 0 eine beliebige Extension von G” durch eine abelsche

Gruppe G'. Ist 4 ein G"-Modul, so wird in natiirlicher Weise Hom, (G, 4) ein G"-
Modul durch: (g"-¢) (g') = g"- (¢ (¢"1-g"), 8" €G", g €G', p e Hom, (G, 4).
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Ist dann H¥(G, 4) =0 (i = 1, 2), so gilt:
h* xa
H¥G", A) =~ Homy (G', A)* = Homy 4 (G, 4).

(Dabei ist 4 ein G-Modul durch: G > G” — Aut(4)).

Beweis
a) BZ(G” ;)

M
726", 4) B> 722G, A) = BYG, 4) < CVG, A) D Z\(G, A) = B\(G, A)

+* verschwindet auf Z1(G, 4A) = BY(G, A), da G’ auf 4 trivial operiert. Damit

existiert die Abbildung g, da B?*(G, A) ’:5:_ CYG, A)/ZMG, A).

@ =g o p*(w), we Z:G", A) ist ein G"-invarianter ‘Homomorphismus p: G'=>A4,
das heisst % existiert.
Zunichst ist ¢ ein Homomorphismus: Denn sei p*(w) = dy, p € C! (G, 4); dann
ist o = g 0 p¥(w) = 1*(p) und O(¢s* p) = t*(dy) = ¢*(p* w) = 0, das heisst d ¢ = 0.
Da G' auf 4 trivial operiert, ist ¢ ein Homomorphismus. Sei g’ € G" und g e G mit
p(g) = g" und g’ € G'. Dann ist

0=27*w(g &)=y +gvE) —vkg)

und

O=p*wlg"-¢g. 8 =proke e e =y ¢+ —vke).
Daraus folgt: ¢ p(g) = ple" - ¢)
und da g’ € G':

g"-plg) =9p(g"-g) fir g'edG”,
das heisst ¢ ist G"-invariant.
h verschwindet auf B%G”, A), und damit existiert A*.
Denn sei w = dy: p* 0 = p*(dp) = 0(p* p) und damit ¢ = g 0 p*(w) = *(p* y) = 0.
Die Abbildung 4*: H2(G", A) - Homy g (G’, A) ist somit konstruiert und ist ein
Homomorphismus.
b) Konstruktion einer inversen Abbildung %: Homgye(G', 4) - HYG", 4):
Sei ¢ € Homg (G', 4).
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Wir betrachten das folgende Diagramm mit exakten Zeilen und Spalten:

<— O
<~ O

-4

q

v v

0 0

0 — G; é)G’—>0
v v \E

0 - A — AxG — &G —= 0
Y v v

0 —> 4 E =4xG|G — G — 0
v
0

mit G, = {(p(g"), &')/¢’' € G’ und A X G semidirektes Produkt von G mit 4.

@ Homomorphismus <= G, Untergruppe von 4 X G.
@ G"-invariant <= G, Normalteiler in 4 X G.

— 3 Extension 0 —> 4 —> E, Ly Gt s 0, die in 4 die gegebene Operation von G”
induziert.

Damit ist eine Abbildung %: Homg g (G, A) > H%(G", A) & Ext (G", A) kon-
struiert. Durch Wahl eines geeigneten Faktorsystems in 0 -~ 4 - E, > G" - 0 priift
man leicht nach, dass 2 0 A* = #dy2 und A* 0 k = idHomZ( on (6, 4), das heisst A* ist

: . )
ein Isomorphismus. |]

Bemerkung

Eine Verallgemeinerung dieses Satzes erhidlt man mit Hilfe der Spektralsequenz
von HoCHSCHILD-SERRE 13)14) welche die Cohomologie einer Gruppe /7, eines Normal-
teilers ' C IT und des Quotienten I7/I" miteinander verkniipft.

Der hier angegebene Beweis enthdlt dafiir die explizite Konstruktion der zu
@ € Homy g (G', A) gehorigen Extension

0——>A—>Eq;—>G”—>0,

die in unserem Zusammenhang wichtig ist.

Theorem 2

0> N > G -G - 0 sei die universelle Uberlagerung einer zusammenhingenden
Lie-Gruppe G mit halbeinfacher Lie-Algebra g. N ist ein diskreter (und damit

zentraler) Normalteiler von G, und es gilt: m,(G) = N.

Ist A eine kompakte zusammenhédngende abelsche Lie-Gruppe, auf der G trivial

operiert, so gilt:
h*

H%(G, A) ~ Hom(N, 4) — Hom(m,(G), 4) .
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Korollar

In jeder Aquivalenzklasse von Extensionen von G durch A4 existiert bis auf an-
alytische Aequivalenz genau eine analytische Extension und dieseist von der Form:

¥

P gy
A
v

0 > A4 > AxG > N, = {(¢(n), n)lne N}, @eHom(N, A4)

.<_

v

iy
v
O Q< Q,<« 2 <« o
v
>

v

0 - A —
y
0

S <

Beweis

Der Beweis folgt aus Theorem 1, falls die Bedingungen Hi(G, 4) =0 (: =1, 2)
erfiillt sind.
Diese Bedingungen werden durch die folgenden 3 Lemmata als richtig nachgewiesen.

Lemma 1
Sei G eine einfach-zusammenhingende Lie-Gruppe, 4 = Stx _--- X S! eine kom-
pakte zusammenhdngende abelsche Lie-Gruppe, auf die G trivial operiert.
Dann gilt: HG, A) ~ H%g, R") .

Dabei ist H*(g, R™) die 2. Cohomologiegruppe der Lie-Algebra g von G mit Werten
in R™; die Elemente von H?%(g, R™) entsprechen 1-1-deutig den Aquivalenzklassen
von Extensionen von g durch die abelsche Lie-Algebra R™.

Beweis

Nach 1%), Theorem 4.1 und 5.1 folgt*):
H?(G, SY) ~ H%*g, R).
Aus der Additivitdat von H3(G, o) und H?*(g, o) folgt:
HYG, 4) = § HYG, S = © Hi(g, R) = H¥(g, R") . |

Lemma 2 (Whitehead)
Sei g eine halbeinfache Lie-Algebra iiber einem Korper @ der Charakteristik O,
I sei ein endlich-dimensionaler g-Modul.
Dann gilt: Hi(g, M) =0 (i=1,2).
Beweis: vgl. 16).
*) Man muss zusitzlich zu Th. 4.1 und 5.1 in %) noch zeigen, dass jeder 2-Cozyklus, der lokal

ein Corand ist, bereits ein Corand ist. Dies l4sst sich aber unter Verwendung des einfachen Zu-
sammenhanges von G leicht einsehen.

37 H.P. A. 37, 6 (1964)
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Lemma 3

Sei G eine zusammenhidngende Lie-Gruppe mit halbeinfacher Lie-Algebra, 4 eine
beliebige abelsche Gruppe, auf die G trivial operiert.

Dann ist:
HY(G, A) = Hom(G, 4) = 0.

Beweis

a) Sei K die Kommutatorgruppe von G (N7 in G). Diese ist charakterisiert durch
die folgende universelle Eigenschaft der natiirlichen Abbildung G > G/K (abelsch):

Hom(G, A) ~ Hom(G/K, A), natiirlich in 4,
das heisst die Behauptung von Lemma 3 ist dquivalent zu G/K = 0 oder K = G.
b) Sei G zunichst eine einfach-zusammenhidngende Lie-Gruppe. g sei die Lie-
Algebra und ¢’ die Kommutatoralgebra (Idealin g). Betrachte g % g/g’ = a (abelsche
Lie-Algebra der Dimension 7 > 0).
Da G 1-zusammenhéngend = 3 genau ein analytischer Homomorphismus.

IT
G — R7
mit
dlil =n: g-—>a.

H = ker I ist eine abgeschlossene invariante Lie-Untergruppe von G.

0 O

Aus 17), pag. 125ff., folgt fiir die Einskomponente H von H: H = ¢’ = K,

G': zusammenhidngende invariante Lie-Untergruppe, erzeugt vom Ideal g C g
(17), pag. 109, Th. 1).

Damit: In einer einfach-zusammenhidngenden Lie-Gruppe G ist K eine abge-
schiossene, zusammenhingende Lie-Untergruppe von G.

c) Sei nun g halbeinfach.

Dann folgt: #: g >g/g’ = a =0, da g’ = g fiir g halbeinfach. Der 1-deutig be-
stimmte analytische Homomorphismus /7 ist dann ebenfalls der Nullhomomor-
phismus, das heisst H = ker I/ =G. o

Da G zusammenhingend = G = H =H =G' = K.

d) Ist G eine beliebige zusammenhidngende halbeinfache Lie-Gruppe, so sei

G % G — 0 die universelle Uberlagerung.
Wire KCG= G 2> G — G/K = A + 0 ist ein Homomorphismus ¢: G > A,
@ + 0 entgegen a), c).
Also ist K = G fiir zusammenhingende Lie-Gruppen G mit halbeinfacher Lie-
Algebra g. ||
Beweis von Theorem 2:
Aus Lemma 1,2 folgt H%(G, 4) = 0.
Aus Lemma 3 folgt HY(G, 4) = 0,
und damit nach Theorem 1 die Behauptung.
Das Korollar folgt aus dem Beweis von Theorem 1. ]
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A 2. Extensionen semidirekter Produkte

SeiG eine Gruppe, auf welche eine Gruppe IToperiert. Sei0— G SGexI %» 11— 0

das semidirekte Produkt beziiglich dieser Operation, das heisst G x I7 sei die unwesent-
liche Extension von /I durch G bez. der gegebenen Operation.

Mit Hilfe der HocHscHILD-SERREschen Spektralsequenz fiir 0 > G - G x I] -
IT - 0 folgt fiir einen I7I-Modul A mit HY(G, 4) = 014)18):

0 ~> HIT, A) = HXG x II, 4) ~> H(G, A)" — 0

ist exakt und zerfillt, das heisst H2(G x IT, A) ~ H2(II, A) @ H2(G, A)".

Das folgende Theorem 3 gibt eine solche Zerlegung von H*G x 1, A) fir einen
beliebigen IT-Modul A. Dabei wird H2(G, A)” durch eine andere Gruppe ersetzt, die
sich ebenfalls durch Extensionen interpretieren lisst. Diese Gruppen sollen in einer

besonderen Arbeit!?) beschrieben werden, in der auch der Beweis fiir Theorem 3 an-
gegeben wird.

Theorem 3

Sei G eine Gruppe auf welcher eine Gruppe /7 operiert, 0 > G > Gx Il >II -0
sel das zugehorige semidirekte Produkt, 4 ein //-Modul.

(i) H2(G x II, A) ~ H¥(II, A) @ Hy(G, A)

Dabei entsprechen die Elemente von H%(G, A) 1-1-deutig den Aquivalenzklassen
von Extensionen

04 5>EH G0,

wobei [T auf E operiert und ¢, p II-invariante Homomorphismen sind; «Aquivalenz»
ist zu verstehen beziiglich //-invarianter Homomorphismen 19).
(i) H%(G, A) ist in der folgenden exakten Sequenz enthalten:

0— HYII, Z\(G, 4))— H%(G, A) ra H2(G, A)" — H¥(II, Z\(G, A)) — H% (G, 4)
(da G trivial auf 4 operiert, ist Z(G, A) = HY(G, 4) = Hom(G, 4)).

Korollare
1. HYG, A)" = 0 = HY(II, Hom (G, 4)) ~ H%(G, A) .
B*
2. Hom (G, A) = 0 = H%(G, 4) = H(G, A"

(in Ubereinstimmung mit dem anfinglich zitierten Resultat).
3. Seien G, A wie in Theorem 2 gegeben; eine diskrete Gruppe II operiere auf G,

G und A, derart, dass G L G — 0 [l-invariant ist. Dann gilt fiir das semidirekte
Produkt G x IT mit Operation G x IT - IT - Aut(4):

H2(G x IT, 4) = HXIT, A) @ HA(G, A)" =~ HXII, A) @ Homy (N, A) .

Korollar 1, 2 folgen direkt aus Theorem 3 (ii), Korollar 3 aus Korollar 2 und Theorem 2.



580 F. Kamber und N. Straumann H.P. A.

A3. Direkte Produkte zyklischer Gruppen

Sei Il = Z, die zyklische Gruppe der Ordnung %4 mit erzeugendem Element x.
Sei N :Ese Z(I1) (Z(II): Gruppenring von /[ iiber Z) und T = x — 1€ Z(I).
sell ‘
Fiir einen //-Modul 4 betrachte die Modulhomomorphismen:
N: A= A4, T:-A—-A

a—>Na o — T a.
Dann gilt (vgl. 29), pag. 250):
H2¢(II, A) = ker T/im N, p >0,
HA(IT, A) = legt N1 L, p>0.
Ist speziell A ein trivialer //-Modul, soist N &« = A «, T « = 0, das heisst
H26(]], A) = Alh A = A, p >0,
H22+(J1, A) = ,A = {ae Alha = 0}, p=>0.
Ist A eine injektive, das heisst teilbare Gruppe, so ist 2 A = A und damit
H2([I, A) = 0O, p>0.

Theorem 4

Sei Il = Z,x Z,, A eine injektive abelsche Gruppe mit Operation /1 > Z, > Aut 4.
D ist:
A HYIT, A) ~ HYZ,, A) ® H'(Z,, Hom(Z,, A))
= ker T, imN, ® H'(Z,, A).

Beweis

Da A injektiv und ein trivialer Z-Modul = H?*(Z, A) = 0, und nach Kor. 1 von
Theorem 3 folgt die Behauptung. §

Korollare

1. Z, operiere trivial auf 4, 4 injektive abelsche Gruppe:
H¥Z,,A)=0 und HXZ x Z,, A) = Hom(Z,, A) = ,(,A4) = 4,4,
(,h) =GGT wvon h1>0.

Durch ein Rekursionsverfahren liasst sich hieraus H?2(//, A) fiir endliche abelsche
Gruppen /7 und injektive abelsche Gruppen A mit trivialer //-Operation bestimmen.
2. Sei h = 2; Z, > Aut(A) sei die Operation von Z, auf A.

1 — d,

-1 — —id, .
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Dann gilt: ker 7= ,4,im T =2 A4, ,A = A%, im N =0, ker N = 4 und damit:
H20(Zy, A) = oA, p >0,

U, A= iy, p=0,
und

H2Z, x Z,, A) ~ ,A ® HY(Z,, ;A)
~ 4@ (,A4), fiir injektives 4.
Speziell fiir [ = h = 2, Z,x Z, = V (Vierergruppe) gilt mit obiger Operation

H2(V,A)=,4® ,4
fiir injektives A.

ANHANG B

Bezeichnen wir das allgemeine Element von P = P° x V (volle Poincarégruppe)
durch ((a, A), & 5), (@, A)e P*; E=1,s; n =1, t. Die Elemente der Form ((a, 4),
&, t) sind darstellbar durch ((a, A1), & 1) « ((0,1), 1, #).

Sei ein Quantensystem gegeben durch einen Hilbertraum § und eine von Neu-
mann-Algebra 9 in §. Das System sei invariant beziiglich P = P® x V/, das heisst, die
Elemente ((a, A), &, 1) € P seien dargestellt durch Automorphismen von N, die auf
dem Zentrum 3 von N die Identitit induzieren; das Element ((0, 1), 1, {) =¢€ P
sel dargestellt durch einen Automorphismus @ von N, der in 3 die Transformation
z > z* induziert; @ sei weiter von der Form @4 = U, 0 4 o U, ', AeN, wobei U,
ein antiunitdrer Operator von § sei.

Wie in 1) chap. IIT zeigt man nun, dass die Gruppe U der (unitdren oder anti-
unitdren) Operatoren, die die Automorphismengruppe P von 9 induzieren, eine
Extension von P mit der Abel’schen Gruppe € der unitdren Operatoren in 3 ist:

k
0>C—>UZX P—>0 (B.1)
P

Diese Extension ist nicht zentral: fiir einen beliebigen Mengenschnitt £ von p mit
k(1) = 1, k() = U, erhilt man fiir die Operation von P auf C:

P=P'xV 5 Aut€

v b
vV — n={1,1}
wobei p(t)(c) =c* =c1; Px)(c) = k(x)ck(x),xe P, ceC.

Eine zusdtzliche Symmetriegruppe der Theorie sei nun gegeben durch eine treue
unitdre Darstellung ¢ einer kompakten zusammenhidngenden Lie-Gruppe G. Diese
soll relativ zu (B.1) die folgenden Eigenschaften besitzen:

1° k(x) o(g) k(x) " = 0(g), g€G, x—((a, A),§ 1)eP.
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Fiir den in §§ 2-3 konstruierten Automorphismus y(¢#) von G haben wir nach (2.3):

k() o) 2(t)™ = U, 0(g) Ut = o(x()(®), g€G. (B.2)

Mit dem Homomorphismus y: P >V —>x = {1, ¢} % Aut G lassen sich 1° und
(B.2) zusammenfassen:

k(x) 0(g) k(%) = o(x(%) (¢)), x€ P, g€G. (B.3)
2° €Co(0).

Bemerkung: Die Gleichung 1° bedeutet, dass sich jede Lorentztransformation der
Form x = ((a, A), & 1) € P durch einen unitiren Operator realisieren ldsst, der mit
den Transformationen p(G) vertauscht. Physikalisch bedeutet dies, dass die Gruppe G
Impuls, Energie, Drehimpuls und Paritdt des Systems invariant ldsst.

Die Gleichung 2° bedeutet, dass p(G) alle Supersymmetrien des Systems enthdlt.
Dies ist in allen praktischen Beispielen der Fall.

Man beweist nun leicht:
Lemma: Firi=p10j: € > G gilt:

iplt) () = x(t) ((0)), €.

Die Inklusion # ist mit den Operationen von ¢ auf € und G vertriglich.
Theorem. Es existiert eine Extension

0—>G—>E—>P—0,
gegeben durch

E=GxP, (g2 (hy) =g 700 f(x 1), % 9), f(x,3) = i(k(x) k) k(xy)),

die zur gegebenen Operation y: P - Aut G gehort, derart, dass
o: . ED=ef'Q(G) - U,
definiert durch p(g, x) = o(g) * 2(x) eine Darstellung von E durch unitire bzw. anti-
unitdre Operatoren von § ist.
E ist damit eine Gruppe; sie ist isomorph zu E genau, wenn g(G) 0 U = € gilt.

ANHANG C

Ausgehend von (3.1) diskutieren wir kurz die zur Lie-Algebra £ = R @ A4, ge-
horenden kompakten Gruppen und ihre irreduziblen Darstellungen. Eine Gruppe
dieser Art ist nach (3.1) immer von der Form: U; x SU,,/N,. Beschrinken wir uns
auf den Fall wo ( + 1) eine Primzahl ist, so ist N’ in (3.2) entweder trivial oder das
ganze Zentrum Z,,, von SU,,,. Es existieren also nur die folgenden Moglichkeiten:

1)  G=Ux SUy, (C,1)
2) G, = Uy x SU/(Zy1),; $=0,1,2,...1.
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Der Homomorphismus ¢, ist dabei wie folgt definiert: Sei z, = ¢27%/!*1 das erzeu-
gende Element von Z,,,, dann setzen wir ¢ (z) = e 27is/!+1, 5 =0,1,2, ... L
Fiir s = 1 erhélt man, wie leicht einzusehen ist, die Gruppe U ;.

Die irreduziblen Darstellungen von (2) bekommt man genau aus denjenigen von
(1), fir die (p(z,), %) im Kern ist. Die irreduziblen Darstellungen von (1) anderseits
sind charakterisiert durch / + 1 nicht-negative ganze Zahlen [n; m,, m,, ... m,;] (man
bekommt diese Darstellungen alle aus den Tensorprodukten der irreduziblen Dar-
stellungen von U, mit denjenigen von SU,,). Das Element z, liegt natiirlich im maxi-
malen Torus, der durch die Cartan-Algebra von A, erzeugt wird. Explizit ldsst es
sich wie folgt darstellen:

Zg= "ML mit o= Yk (C.2)

Darin sind die %, diejenigen Elemente in der Cartan-Algebra von 4, die zu den kano-
nischen Erzeugenden gehoren (vgl. 2!)). Die Formel (C. 2) beweist man leicht mit
einer geeigneten Matrixdarstellung von 4, (vgl. 22)). In einer Darstellung [n, m,, m,, ...
m,] geht z, in a * 1 iiber, mit *)

l
a = 62nz./1(h0)/l+1 - 62n1q/l+1 WO g = 2' kmk .
k=1

Damit liefert die irreduzible Darstellung [#, m,, m,. ... m, von U;x SU,,,; genau
dann eine Darstellung von G, falls '

g=s-n(mod!l+1) (C.3)

Dieses Resultat ist nicht neu, wie auch die folgenden Ergebnisse dieses Anhanges
(vgl. 23)).

Die hier gegebenen Herleitungen scheinen uns aber wesentlich einfacher gegen-
iiber denjenigen, die wir in der Literatur gefunden haben 23).

Mit (C. 3) lasst sich jetzt sofort sehen, dass im Falle I = 2 das Oktett-Modell
(s =0) und das Sakata-Modell (s = 1) die einzigen kompakten Gruppen zu £ =
R @ A, sind, fiir die sich eine Hyperladung Y und eine elektrische Ladung @ defi-
nieren lassen, die bei allen Darstellungen ganzzahlige Eigenwerte haben.

Seien nidmlich oy, o, die beiden einfachen Wurzeln in 4, und %, , 4, die zuge-
horigen Elemente in der Cartan-Algebra (fiir die Bezeichnungen vgl. 2)), dann wird
die Lie-Algebra A4, der Isospingruppe aufgespannt durch 4,, e,, e_,. Damit Y
mit 4, kommutiert, muss es notwendig von folgender Form sein:

2

Y=ua.— (halJrZh%)Jch; BeR.

w/

B ist die Baryonladung. Man beachte dazu lediglich, dass fiir 4, sich die «; auf
eins normieren lassen, und die Cartan-Matrix gegeben ist durch

A% (Res) (7))

*) A = Zm,; A; ist das hochste Gewicht in der Darstellung [m,, ... m,] von 4,. Die 4; sind
dabei die fundamentalen dominanten Gewichte mit 4; (2;) = 4,
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Wegen 4, = 1 /2 h; ist der Eigenwert von Y (E.W.Y) in einem Gewichtsraum zum
Gewicht M = A — ky; &y — ky oy (R, ky nicht-negativ ganz) in der Darstellung [#,; A],
my+ 2 My

E.W.Y:a( -

—k2)+cn.

Damit AY fiir verschiedene M ganzzahlig ist und 4Y = 4 1 nicht verboten wird,
muss notwendig @ = 1 sein. Der Fall (1) in (C.1) wird damit ausgeschlossen. Fiir die
Gruppen G, muss man wegen (C.3) fiir s = 0,1,2 respektive ¢ = 0, 2/, /3 setzen. Im
Fall s = 2 sieht man aber leicht, dass Q = T3 + 1/, Y nicht immer ganzzahlige Eigen-
werte hat, wiahrend dies fiir s = 0,1 der Fall ist.

Wir danken Herrn Professor HEITLER herzlich fiir sein aufmunterndes Interesse
an dieser Arbeit sowie fiir viele wertvolle Diskussionen. Die Verfasser danken ferner
dem Schweizerischen Nationalfonds fiir finanzielle Unterstiitzung.
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