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Analyticity with Respect to the Coupling Constant in Certain
Two-dimensional Field Theoretic Models

by Bernhard Klaiber

Institute for Theoretical Physics, University of Vienna, Austria

(7.1V.64)

Abstract. SCHROER’s model of a derivative coupling in two dimensions and THIRRING’S model
are analyzed with respect to the dependence on the coupling constant g. It is seen that SCHROER's
model is analytic in the entire g2/2 n-plane, whereas the Thirring model presents singularities at
g = 4 2 min the g-plane. The technique of analytic continuation to arbitrary complex values of
the coupling constant, which involves the ‘partie finie’-technique, is exhibited. The analyticity
around g = 0 entails the absence of infrared divergences. For SCHROER’s model and non-zero
Fermion mass the perturbation series is given explicitly for the two-point function.

1. Introduction

In the last years several field-theoretic models in one-space dimension such as
THIRRING’s and SCHROER’s models?)?) have been solved exactly. These models involve
zero mass fields. Thus they are useful for the study of the infrared structure of fields.
The possibility of creation of an unlimited number of virtual particles entails the
disappearance of one-particle states in these models and the violation of the asymp-
totic condition.

An expansion of these exact solutions in powers of the coupling constant seems
to yield infrared divergences3). However we show in this paper that this is not the
case. Indeed the Wightman functions of SCHROER’s model are distributions which are,
with respect to the coupling constant g2/2 s, analytic in the entire g%/2 m-plane.
Considered as functions of g, the Wightman functions of the Thirring model are
analytic everywhere except at g = 4 2z Since in both models the solution is
analytic at g = 0, a perturbation expansion will lead to finite terms.

The analytic continuation of the Wightman functions into the entire coupling
constant plane requires the concept of the ‘partie finie’ or regularization. For the
reader not acquainted with distribution theory, its properties are, as far as we need
them described in the Appendices.

Chapter 2 presents briefly SCHROER’s derivative coupling and its Wightman
functions. In order to see by what techniques the analytic continuation has to be
performed, we carry it through for the two-point function in Chapter 3.

In Chapter 4 we consider the neighbourhood of g = 0 and write down explicitly
the Taylor series for the two-point function. In chapter 5 it is shown that, if the
fermion mass is put equal to zero the method of chapter 3 and 4 fails, although the
analyticity properties are preserved. The same is true for the Thirring model, which is
discussed in chapter 6.
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2. Derivative Coupling in Two Dimensions (SCHROER’S Model)?)

The equations of motion of the model are:

Oe=0, (@Eyo0,—Myp=gy‘ypo, . (2.1)
The commutation relation for ¢ is taken to be
[¢9(x), g =7 D~(x — ), (2.2)
1 — (=) + ie(x* -5
R L Wt -I-Zy}

= _z%fdp e—ibx [(750 I ?1);1 6(}50 _ Pl) o (}50 _ Ibl);l 6(P0 e 151)] ) (2.3)

The distributions (p° + p1);1, (p° — p1) 1! are explained in Appendix 4. It has been
shown?) that a free field which satisfies (2.2) and (2.3) can actually be constructed.

Guided by analogy with the unquantized case, one can consider as solutlon of (2.1)
the operator

() = polx): eE? (2.4)

where ygy(x) 1s a free spinor field of mass M, and [¢(x), y4(y)] = 0. The two-point
functions turns out to be

Wax —9) =0 () p) [0 = e PN S(x—y; M) (2.5)
—> L [—(x — )2+ ig(x® —y0)] —&/17 S—(x — y; M),

(]

where in the last line, a trivial multiplicative factor has been omitted in the sense of a
wave-function renormalization. The higher Wightman functions are (with the same
renormalization)

WZn.(xl xn Yo yn) - < 0 | W(xl) Q/J(xn) ’lj)(yl) g8 Qp(yn) I 0 >
— IT I~ = ) + i ofa] A [ (y;— )

+ i e(y] — yk]” H[ X — V)2 + ie(a] — )]t

-0 ’ Pol%1) - Polx,) PYo¥1) --- 77)0(3’::) | 0>. (2.6)

3. Analyticity in the Coupling Constant

Since the Wightman functions of SCHROER’s model are free-field functions multi-
plied by Fourier transforms of Riesz’ distribution (see Appendix 4) they can be
continued analytically to be entire functions in the complex g2/2 z-plane. We shall
perform this continuation explicitly for the case of the two-point function. If the
latter is represented in the form (we put A = g%/2 n)

A %
(—a2+7iex® 2S5 (x; M) = (2 n)“”/ dx p(x) S—(x; =), (3.1)
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then the problem is reduced to the analytic continuation of the spectral function
o(%). (See Appendix 2.) In (3.1) a trivial factor has been separated for later convenience.
The spectral function is computed to be 2)

=My x+ M 1 A A+l [x—M\2
o)~ I g L 4 B (e,
A+1
_ 342 (=l -my 8 (l Ao A+3 (x| -M\2
o) = = 2 wlixsn Y220 2 (|x|+M))’
(x <0) (3.2)

where F is the hypergeometric function.

For complex 1 with Re A > 0 the analytic continuation is still given by (3.2)
whereas for Re 4 < 0, we have to apply the regularisation technique described in
Appendix 3. To this end we write the spectral function in the form

o) = EE e ) x>0, 3.3
- Mli,ij <

Formula (A 5.2) of Appendix 5 leads us to the following form of the analytic con-
tinuation in the strip — N < Re A< - N+ 1(N=1,2,3...):

1 7 1
M

N-1 m ™
_ Z e M (;Lm [f(s, ) S~ (x; %)]x=M}

m!

f dx o(x) S—(x; %) = —mi 5 f dx Ej}):ﬁ {f(~ %, 2) S~(x; — x)
M

0

= (x—mﬂ!a’)m 00:7”‘ [f(— %, A) S—(x; — %)],¢=M} )
m =0
with (34)
o L1, 3 S = 37 (7) Alm — b M. 2) 50 (55 30,

g U= ) S0 =y = (= 1 37 () Alom — ks = M. ) S005 — )
(3.5)

The A’s are relatively complicated coefficients which we shall not write down explic-
itly. It is of some (perhaps academic) interest to consider the points A =0, — 2,
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— 4, ... where the spectral function happens to shrink to derivatives of delta-
functions:

A=0:0(x) =0(x— M),
A=—2N (N=1,2,3...):

0(#) = F(, — 2N) 62V (x — M) + (— 1)2¥~2 (s, — 2 N) *V (s + M)

ZN ;

— (=12 3 (= 1) (zlj") A@N — k; M, — 2 N) 8®(x — M)
+ 2;‘_'32 (— 1)k (sz_z) ARN —kb—2;— M, —2N+2)8® (x + M). (3.6)

This means that forA=—2N (N=1,23..)

e 2N
f do(x) S~(x; %) = (— 12 37 (2;") A@N — k; M, — 2 N) S=® (x; + M)
I =0
2N-2
+ ¥ (2"";“2) AN —h—2;— M, — 2N +2) S-®(x; — M) . (3.7)
k=0

However the derivatives of the S—function with respect to the mass satisfy higher
order Klein-Gordon equations:

ok ok
(O~ MY 0 S M) = (O — MY O S (i;— M) =0.  (38)
Therefore in the unphysical points 1 = — 2 N the two-point function of our model
satisfies
(O— M2V LW, (x;A=—2N)=0. (3.9)

For A= — 2N + 1 the hypergeometric function has single poles. This has the
consequence that no point like support results. We shall not give the result here.

4. Perturbation Theory and the Question of Infrared Divergences

Since SCHROER’s model describes the interaction of Fermions with massless
Bosons, it is generally considered to be a model of the infrared structure of realistic
theories such as quantum electrodynamics. Thus one would expect the model to
exhibit infrared divergences. However, since all Wightman functions are analytic with
respect to the coupling constant 4 at A = 0 (and even in the entire A-plane), a Taylor
series expansion must lead to finite results. On the other hand, a naive attempt to
develop the spectral function, say, would lead to a divergence. The correct expansion
involves a distribution-theoretic subtlety which we will localize now. To this end let
us consider the spectral function for % > 0,

-1

o) = B2 fu2). (>0) @
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From appendix 3, formula (A 3.5) we take the expansion
a-1
(e— M) + 1 = 4 _

T Tw = Tasn |Px—M) +m2moﬁ' — A (o — M) logn (x — M), | . (4.2)

If we insert this in (4.1) and also expand the factor[f(x, 4)]/[L"(2 + 1)], we get the
desired expansion of g(x) for » > 0.
The occurrence of the regularization
(e — M) log™ (x — M),

instead of the corresponding ‘ordinary function’ gives to the two-point function a
contribution (see Appendix 4 (4.6))

[ oty Yogm (e — M) 119 (,0) S~(3 ) — 00— %+ M) [ (M,0) (x5 M),
M
which is perfectly free from a divergence at » = M.

5. ScHROER’S Model with Zero Fermion Mass

If in ScHROER’s model the Fermion mass is set equal to zero, the Wightman
functions are still entire functions in the coupling constant 4. However, the analytic
continuation of the two-point function cannot be performed by means of the spectral
function anymore. This is related to the fact that if the surface of the light cone is
included in the support of a Lorentz-invariant distribution, then terms of the type

[1*6(p)

may occur %)) which cannot be represented by a spectral function. We shall show that
such a shrinking really occurs in the model under consideration. For M = 0, the two-
point function is, in Fourier space

3 ; /s 2@ 1 —A-2
[ dxeirs (— 2+ iex?) T S (x;0) = T —pum Y B 00) 08 /52
s
= VB ZB) - (5.1)
ForA=—2N (N =1,2,3...) this becomes, according to Appendix 4,
vt p, OV 6(p) - (5.2)

It is instructive to see how the limit A - O has to be performed in Fourier space. To
this end we need the obvious

Lemma: Let T, be a distribution which is analytic in A at A= 0. Let f be an
ordinary function which has for 4 = 0, a simple pole with residue R. If T, f, exists
and is continuous in A at A = 0 (this implies 7y R = 0) then

. g 0T
}%Tﬂf‘=}£§ T"f’r}__—cﬁ“ z=oR' ()
In our case, T, = Z,(p), Ty =0(p), R =2z iy* p, and, since 6(p) y* p, = 0,
. 2w 0Z .
lim 27594 p, Zy(p) = P | 2miyts,. (5.4)
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On the other hand, formula (A 4.3) of Appendix 4 tells us that

0Z3 (p) 1 " ipx O 24 - 2/2
04 |i-0  (2m)? / G g [~ 8"+ a8 ¥) A-0
1 1 P 3 ;
x—E(ZT)zjdxei’ log (— #% + 7 & x9). (5:5)
In view of (2.3) this means
! 2m1i .
lim == " p,, Z,($) = 27 iy* p,, O(") 5(4?) - (5.6)

6. The Thirring Model

The Wightman functions resulting from the operator solution of the Thirring
model?) are

CO | y(x) py) |0y = 8@ DP9 L0 | yy(x) woly) [0, (6.1)
CO | plxy) - p(x,) pla) - p(y,) |0

—igla—ay> 2 VD= (x;— —isla-a". 32 ) D= (ps—
= J]e igla-ay,, vy, ) D™ (xi-xy) . []e igla-av, v, ) D™ (y;~vy)
1<k 1<k

i _lge ig(ata yit‘ A;k) Prx=%) (0 | Po(x1) - - wolx,) t;’0(3’1) @(yn) ‘ 0>, (6.2)

where y, is a canonical free field, D~ is defined by (2.3), g is the coupling constant and

1 - 1
_ IR 72 B S Pz (©:3)
Since gigla=a) D™-) — const. [— (x — )2 4 1 & (x0 — yO)Jgle—a)t7 (6.4)
the two-point function is analytic in g except in the points g = + 2 z. If we choose
'}»’5 to be diagonal ,y5 . (1 _1)

we can represent ;. y5, in the form

5.6 _ (T1_
yxiyxk - ( 1_1+1) *
In this representation,
6—ig(a~‘&)D*(xi—xk)

g~ 18 (ata) D (x; — )

e—z'g(a—ﬁyii yi )D*(x.i—xk) =

.....

[— (x— )2+ i g (a0 — yO)) e

[— (x— V)2 +de(x— y())]—g(a+5)l4n
= const.

-----
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If the other terms are represented in an analogous way, one sees that also the higher
Wightman functions are analytic in g up to singularities in the points g = 4 2 7.

In particular the analyticity around g = 0 implies that in the Thirring model
infrared divergences do not occur either. However the analytic continuation of the
two-point function can, again, not be performed by means of a spectral function.

7. Appendix
1. Distributions Depending on a Parameter

In the following S” means the space of tempered distributions 7', S the space of
the corresponding test functions ¢, and (7, ¢) the value of the functional T for the
test function ¢. We may consider a set of distributions T, labelled by a parameter A.
If A is complex T, is said to be analytic in 4,, if

lim F2=Th (A 1.1)

exists. This is equivalent to the statement that, at 1 = A, (7}, ¢) is analytic in 4 for
all .

It can be shown that S’ is a complete space. This implies that if the limit (A 1.1)
exists, it defines again a tempered distribution which is called the derivative of T,

with respect to 4:
0T; . La—1T5,
ki =1lim (=" "%
( 04’ (p)zjzo T A, ( A=Ay (P)

0
= -7 (T3 @iy, - _ (A12)

The following statement can easily be proved: Let x be a real parameter. If (T, (x),
@(x)) belong to S(x) and if p(x) is a distribution € S’(x) then the prescription

(%) = (e(), (Z.(%), ¢(x)))
defines a distribution € S’(x¥) which we shall denote by

fdx o(x) T,(x) .

2. Spectral Representations

Consider the two-point function of the free scalar field:

1

D(x; »2) = f d peirs O(p0) O(p% — x2) . (A 2.1)

2m1

Let x > M. The expression
(D (x; %), p(x))

is differentiable infinitely often and its derivatives drop faster than any power for
» - oo. Therefore it can be extended to be a function belonging to S(x). Thus for
every o(x) e S'(x) whose support is contained in » > M a distribution

[dx o(x) D~(x; #?) € S'(x) (A 2.2)
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is defined uniquely. Conversely every distribution € S'(x) whose Fourier transform
has a support contained in p2 > M? can be represented in the form (A 2.2) (see
Reference %)). Note that the point ¥ = 0 (p2 = 0) has to be excluded from the support.

Similar conclusions hold for S—(x;%) = (¢ #0, + %) D=(x; x%) however where-

as in one space dimension lim D~(x; »%) does not exist, lim S—(x; %) is well defined.
x—0 »—0

For a full discussion we refer to Reference $).

3. The Distribution 5’}{_

Let & be a single variable. For Re A > — 1 we can define a distribution {-‘1 by

., p(e) = f a5 & g(f) . (A 3.1)

It is analytic in 4 and can be continued analytically to all values of . For Re A < — 1
the resulting distribution turns out to be a regularisation of the (non-integrable)
function &, i.e. (4.1) still holds for all ¢(&) which vanish in some neighbourhood of
& = 0. The results are 7):

In thestrip— N—-1<<ReA< —-N(N=1,2,3...) we have

® N-1
EK p(K) (0
&, 9) = / dé & {@(E)—Z —i’%!ﬂ : (A 3.2)
. =0
0
In the points A= —-N (N=1,2,3..) 51 has simple poles with residue
(—1)N-1 _ &
T SV-1) (&) . (A 3.3)
The normalized function
K
ra+1)
is an entire function in A and we have
51
. = -1 &, (N=123..). (A 3.4)

T'(A+1) |a=-n

The Taylor series around the point 2 = — 1 reads

§ﬂ+ 0 (§) 1 o 1 1 g-1
= = B m log™ (A 3.
ro+n) — TG+ T TG+2) ﬂé;()'mz(’1+1) Sp WE ey el
where &7" log™ &, has to be defined as follows:
(€3 ogm &, 9) = [ dE & log & [p(8) — 01 — &) p(0)]. (A 3.6)
0
(Note that E_T_l is not the value of E’_H_ for A = — 1 which would not exist.)

36 H.P. A.37, 6 (1964)
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4. Riesz’ Distribution?8)

Let p = (p° p1). For Re A > 0 Riesz’ distribution Z,(p) is defined by

Zyp) = ——— v 000 06) 2 (A41)
2

and for Re 4 < 0 as the analytic continuation of (A 4.1). In the ‘singular’ points
A=—2N(N=0,1,2...) we have

ZW2N= DNCS(P)- (A 4-2)

The Fourier transform is given by
fdp e=ibx Z,(p) = (— 2% + 1 g x9) 2, (A4.3)

Z, is an entire function of A.

We are indebted to the Schweizerischer Nationalfonds zur Férderung der wissen-
schaftlichen Forschung (K.A.W.) whose financial support made this work possible.
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