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Coarse-graining in Liouville Space and Master Equation

by Gérard Emch

Institute of Theoretical Physics, University of Geneva

(4. 1V. 64)

Résumé: On propose une définition précise de l'espace de LiouviLLE dans lequel on peut
plonger les états microscopiques d’un systéme quantique irréductible. Dans cet espace, l'opération
de «coarse-graining» peut étre décrite par un projecteur. On présente alors une déduction non
perturbative des équations maitresses généralisées. Ces équations décrivent 'évolution des termes
intervenant dans une description macroscopique classique du systéme considéré,

1. Introduction

It seems natural to present statistical mechanics in the following terms: a physical
system 2 is investigated by means of a collection of measurements; the quantities

accessible to these effective measurements form a set M , the elements of which we

will call macroscopic observables. If one describes 2 with M only, it may happen that
the evolution of the system presents some peculiar facts (for instance, irreversibility)
which are contradictory with the laws of mechanics. A phenomenological study of
these facts leads to thermodynamics. The aim of statistical mechanics i3 to restore

the wonderful unity of mechanics by considering M as being only a part (which is in
general very small) of the whole set of all the measurements which could, i principle,
be performed on the system 2. We shall denote this new set by M and call its elements
microscopic observables. One then supposes that the evolution of 2, when described by
means of M, is governed by the usual (classical or quantum) mechanical laws. For

instance, if we consider a gas X, M could be the measurements of p, V, T and of all
the quantities related to them; M is much larger and comprises in particular the
positions of the individual particles of the gas; there is no essential reason to forbid
the measurement of such quantities; practical reasons however make these measure-
ments so difficult to realise that one is well founded, in general, to exclude them from

M. The difficult problem?) of how to determine in a natural way M from an a priori
given M will not be touched in this note.

Every macroscopic observable A of M is characterised by the discrete set of all its
possible values A(A4). Let p(A4) denotes the probability that the value 4(A4) would be

realised if the measurement of A would be performed. The set of all the p(A4) for all the

A of M characterises than completely the macroscopic state of the system. The first
problem is now to embed this macroscopic situation in a microscopic description.

At this point, let us introduce some restrictions on M and on M in order to be able

to give for the theory a mathematical frame which is precise, simple, sufficiently
realistic and efficient. We will suppose that:
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(1) the macroscopic observables form a classical set. By this assertion we mean that

we will restrict our considerations to situations (X, M ) for which the dispersion
obtained when a macromeasurement is carried out is not affected by the simul-
taneous measurement of any other macroscopic observable. In other words, we
will suppose that the operational measuring process for macroobservables is the
one we are familiar with in classical physics.

(ii) the microscopic ‘observables’ form a quantum system; for simplicity, we shall
further assume that M does not exhibit superselection rules.

We do not claim to have here the most general situation that one could imagine.
We even do not claim that any more involved situation will never appear in practical
problems. We however think that these assumptions are not too crude for the usual
experimental needs; in fact, they correspond to the usual frame of quantum statistical
mechanics. We hope then that t’hey are quite sufficient to allow a clarification of the
way how irreversibility enters in physics.

Let then § be the Hilbert space attached to the microscopic description, M belng

the set of all (essentially) self-adjoint operators on §. We have supposed that M is
contained in M, that all the A commute among themselves and have only discrete

spectra; thus, M induces in $ a partition in mutually orthogonal subspaces, such that
every macroscopic observable can be written as:

A= AN E,. (1.1)

(We will denote by the same symbol E , the subspaces and the corresponding pro-
jectors.)

Each (microscopic) state of X' can be represented by a bounded self-adjoint positive
operator W of unit trace; following the usual terminology, we shall call such operators:
density operators; the expectation value of any observable A4 is then given, for the
state W, by:

A>p=Tr WA ; (1.2)

in particular, for macroscopic observables, one has:
Aoy =) p(A) A(4), (1.3)
4

where:
pA)y=TrWE,. (1:3%)

The p(A)’s define the ‘macroscopic state’ or better the ‘macroscopic content’ of the
considered microscopic state.
If two (microscopic) states W and W’ satisfy the condition:

Tt WE, =Tr W' E, (1.4)

for every E 4, they lead to the same expectation value for every macroscopic observable;
the converse is also true. We shall then call such states macroscopically equivalent; this
is an equivalence relation and each equivalence class is characterised by the set of
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the corresponding p(A4)’s. Let us now introduce the supplementary condition that all
the E , are finite-dimensional. We agree that this assumption seems at first sight to be
of rather technical nature. However the reader will convince himself that 1t is very
difficult to find an objection against it on the basis only of physical phenomenological
arguments without inferring to a non-operational idealization. We emphasize that we
do not fix any upper bound to the dimension of these subspaces. We can now associate
with each E, a density operator W,, defined as:

Ea

Wy= e (1.5)

which describes an uniform probability distribution inside the subspace E 4. Each class

of macroscopically equivalent states contains a density operator W (representative of
that class) of the form:

W =" p(A) Wy (1.6)

we shall call macroscopic states these particular density operators W. Conversely, with
any microscopic observable 4, one may introduce an unique macroscopic observable

A defined as:
A=Y AN E,, (1.7)
A

where:
AA)=TrAW,. (1.7")

Again, two microscopic observables which lead to the same A(A) for every W, are
macroscopically equivalent in that sense that they lead to the same expectation values
for every macroscopic state. In order to follow the familiar terminology we shall refer
to the operation which transforms a microscopic observable 4 into its macroscopic

equivalent A as the coarse-graining operation. One remarks that this operation, applied
on states, gives exactly the transition from a microscopic state W to the corresponding

macroscopic state W.

We will now examine the problem of the evolution. Let us introduce explicitely the
assumption announced in the beginning, i.e. that the time evolution of X' is governed
by a one-parameter symmetry2) group of the microscopic description. From WIGNER's
theorem one has:
either A=» AP = U4 Ut (1.8 H)

or W—Wt=UtW U-t, (1.89)

respectively in HEISENBERG and in SCHRODINGER picture. This assumption has an
immediate consequence which we would like to mention here. Let us first remark that
the number Tr W2 can serve to measure the ‘degree of mixture’ of the state W. We
want to relate this quantity with the negentropy (or information) contained in the
state W. STUECKELBERG and collaborators3) already emphasized that the definition
of this concept is by far not unique. Among all the possibilities, we propose the follow-
ing special choice:

S— kInTr W2 (withk > 0). (1.9)
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This expression is a positive, continuous, monotonic decreasing function of Tr W2;
it reaches its minimum (zero) when W is a pure state (i.e. when W2 = ). Moreover
S, as defined by (1.9), is an extensive quantity. Nothing seems then to prevent us to
call (—S) the microscopic negentropy (or information) on 2’ contained in the state W.
Professor STUECKELBERG drew the author’s attention to the fact that if all the above
properties, but the extensivity of S, were required, then among all the possible
definitions, the following choice could be very convenient:

S =Tr (W — W2 =1—Tr W2, (1.9")

In particular, all the statements on the entropy made in this paper would remain true
with the modified definition (1.9'), including those on the macroscopic entropy to be
introduced below.

The assumption that the time evolution of W*is governed by (1.8 S) leads directly
to the conservation of the microscopic entropy S. This result can be regarded as the
quantum analog of the classical Liouville theorem. In this context, it is important to
remark that Tr W2 (and thus S itself) is #of a constant within an equivalence class of
states. For any given equivalence class, the maximal value of S is precisely obtained

with the macroscopic state ﬁ/, characteristic of the class considered. (A quite simple
proof of this statement will be given at the end of section 2.) We propose thus the
introduction of a new quantity:

S = —kInTr (W)2. (1.10)

This expression is characteristic of a class of macroscopically equivalent states.

Through W, S is directly related to the p(A)’s (see definition 1.6) which express the
whole macroscopic knowledge (see relation 1.3) obtained from any of the microstates

W of a same equivalence class. We will thus call (— §) the macroscopic negentropy (or
macroscopic information) on 2 when the system is in any of the microstates W that

belong to the equivalence class of W. We mention that S is a positive, continuous,
monotonic decreasing function of Tr (W)2. There is however a profound difference
between S and S: for S, one can infer from (1.8 S) that S is a constant of the evolution;

this conclusion is no more true in general for S. The reason is that the equation which
governs the time evolution of:

we~ E;pt(A) w,, (1.11)
where:
pH(A) = Tr W*E, (1.12)

is quite different from the relation (1.8 S); this equation shall be derived in section 3.
It is perhaps worthwhile to indicate at this point that the typical form of the coarse-
graining operation (as emphasized in section 2) allows an immediate proof of the
following statement: if W0 is a macrostate at time ¢ = 0, then for any time ¢ # 0
(i.e. either £ > 0 or ¢ < 0) one has:

S = S(0). (1.13)
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This is in complete agreement with the results obtained by STUECKELBERG et al.3).
Incidentally this does #not imply without further analysis any kind of monotonic

increase of S with time. This is due to the very peculiar role of the ‘present’. Later on
the fact that W°is assumed to be a macrostate shall be refered to as the ‘fundamental
a priori assumption of statistical mechanics’ (see below in this section).

Let us now consider the time evolution of the expectation values:

LAy = APy =Tr Wt 4 . (1.14)
For macroscopic observables (1.14) reduces to:
Ay = X A(A) p(4), (1.15)
a4

where pt(A) is defined by (1.12). The probability of finding the value A(A) if one

performs the measurement of the observable A at time ¢ is precisely p*(4). These
expressions contain therefore all the knowledge needed in order to be able to make
experimentally verifiable predictions. Up to now we did not submit W?° to any
restriction. This is however too general for physical purpose, since W can only be
prepared by means of macroscopic observables. The most general state resulting from
a maximal macroscopic preparation is of the form:

wo=3"E,W°E,, (1.16)
Pa|

where 770 is the density operator corresponding to the state of the system before the
macroscopic preparation. We note that W° and W° are macroscopically equivalent
and that in general neither W°nor W0 are macrostates: this fact is well known in the
theory of the measuring process (for a modern presentation of the orthodox point of
view, see for instance ref. 4). The observer, who has at his disposal the macromeasure-
ments only, can not descriminate two microscopic states belonging to the same class of
macroscopic equivalence; however p?(4) will depend in general on the choice of the
microscopic state 17° inside its equivalence class (see our Equation (3.13)). One way
to get out with this difficulty would be to say that one has to perform a certain average
on the results; this is however very imprecise. On the other hand, since one is dealing
with a probability problem, one has to be aware of the fact that the problem is not
defined as long as one has no ‘a priori probabilities’. In our case, this definition
amounts to a choice between all the possible initial microscopic states which are
compatible with the results of measurements at time ¢ = 0. The most natural choice
is to take, as initial state, that state which corresponds to the most chaotic micro-
scopic situation compatible with the macroscopic knowledge at time £ =0 (i.e. to
attribute a uniform probability inside each subspace E ,). This special state is precisely

the macroscopic state W characteristic of the equivalence class of the initial states.
We will call this supplementary condition the fundamental a priori assumption of
statistical mechanics. It is, in fact, a reformulation of the customary ‘initial random
phase assumption’, which is now adapted to our presentation where the coarse-
graining is introduced from the beginning as an essential ingredient of the theory. We
also can indicate that this later assumption is itself related with BoLTzMANN’s hypoth-
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esis; however we want to emphasize that we do not make any kind of repeated
random phase assumption.

With our assumption p¢(A) reduces to:

p(A) =Z]b°(A’) pPta4,4), (1.17)
with: ’
PAA)=Tr W, U E,U". (1.18)

For the experimental predictions it is then sufficient to know P#(A, A’) for each pair
(4, 4"). In a previous publication), we have given an evolution equation for that
quantity, in analogy with van HovEe’s treatment €) of the problem, but modified in the
light of SWENSON’s paper?). Our presentation had the advantages to be both coarse-
grained and non-perturbative. However a difficulty, already present in vaAN HOVE’s
works, remained in that paper: one did not succeed in deriving an equation for
P4, A") itself, but only for an object PE A, A’) which is often refered as the
‘spectral resolution” of P!/, A'). In the meantime a very nice paper by ZwANzIGS)
appeared. One finds there an integro-differential master equation for the ‘relevant part’
of the density operator. The approach is non-perturbative, too. However the quantity
investigated in that paper is a fine-grained operator.

The present note has two aims. First a physical aim, i.e. to present a slight
generalization of ZwWANZIG’s paper, including coarse-graining. The second aim is of
mathematical nature: by a rigorous treatment of the problem, one can throw off all
doubts concerning questions such as: convergence in infinite dimensional space,
existence of solutions, etc.; in particular, the use of tetradics notation is avoided by a
sharpened definition of the Liouville space in which the Liouville operator acts as an

hermitian operator on a Hilbert space. No reference to any (fine-grained) basis in $
1s used.

2. Coarse-graining and Liouville Space .

Let § be the (finite or infinite) Hilbert space of the microscopic description, and
B($) the set of all bounded linear applications of § to itself. As we already mentioned,
every microscopic state can be uniquely represented by a density operator, i.e. a
bounded, self-adjoint, positive operator W of unit trace, defined on §. Conversely to
each such operator corresponds a state. Let us then consider the set:

C={W|WeB(®); TrtW=1, Ws=Ww; W>0}. (2.1)

One can easily verify that C is a convex set, the extremal points of which are the pure
states, i.e. the density operators satisfying the supplementary condition W2 = W,
One can furthermore define a functional @ on C x C to the real interval [0, 1]:

DWW, Wy =Tt W, W,, (2.2)

@ is symmetric and bilinear in the sense of convex sets. Moreover, it is positive definite,
1.e. that @(W, W) = 0 would imply W = 0.

This is a very interesting structure and FANo was, to the author’s knowledge, one
of the firsts to suggest to use it systematically for a representation of quantum
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mechanics (for a recent pedagogical presentation of this point of view, see FaNO's
lecture notes?®) and references quoted therein). )

Since functional analysis is by far best known in the context of Hilbert spaces or
Banach algebrae than in that of convex sets, it is technically very tempting to try to
embed C in one of these more complete mathematical structures. This is achieved if
one considers the set:

L={A|4eB(H); TrA*A4A <oo} (2.3)
equipped with the sesquilinear form:
(A, Ag)=Tr A 4,. (2.4)

This form satisfies all the axioms of a scalar product on a complex Hilbert space; in
particular it generates a (positive definite) norm:

[Aflg = + (Tr A* A)Y2. (2.5)

(This norm has not to be confused with the norm |4y of 4 considered as an operator
on §.) If one adds to this structure the multiplication law inherited from the multi-
plication of operators in §, £ becomes even a Hilbert algebral?). This will be used
later on. It is this object (i.e. £ with its complete mathematical structure defined
above!) that we will call, for shortness, the Liouville space attached to the Hilbert
space §. C is then a convex set in & ; moreover it is complete in &, 1.e. that if 4 belongs
to £, then Tr W 4 = 0 for all W in C implies 4 = 0.
Let us first remark that the linear application 8B of £ onto itself, defined for every
Ain g, as:
BA=UAU?, (2.6)

where U is a unitary operator in §), is also unitary.

The time evolution can then be described by a one parameter group of unitary
operators in . We will assume that the expectation value of any observable is a
continuous function of time. Remembering the definition of the scalar product on g,
one sees that this means mathematically that we assume weak continuity for B¢
(In fact, since B¢ is unitary, this is equivalent to strong continuity.) Weak continuity
itself is enough for STONE’s theorem. B! admits then an infinitesimal generator L.
Following the terminology adopted for instance by PRIGOGINE and BALESCU ) or by
ZwanNziG®) we will call this operator the quantum Liouville operator. One can write
for any W?in the domain of L:

d .
EW‘:—@LW‘. (2.7)
Coming back to the descripﬁon in space §), one has:
S Wi— —i HW' — W' H), (2.8)

which is the usual von Neumann equation.
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L and H are very closely related. In particular, if the hamiltonian H is a bounded
operator in §), then the same is true for the Liouville operator L in £; one has in fact:

IZle < 2] H]s . (2.9)

We will further assume, as in our previous paper?), that H, and consequently L, are
bounded operators. This circumstance will be discussed in the conclusion. This
supplementary condition will be technically very useful and it will prove quite
sufficient for a mathematically meaningful interpretation of the operations we shall
performe in the next section; in particular, B¢ can now be written:

B ==} (i L) (2.10)

and B! is not only strongly continuous but even uniformly continuous. Conversely
for the uniform continuity of B¢ (which will be used extensively later on) it is necessary
that L is bounded (see for instance Reference 12, corollary to th. 11.4.1).

We want now to point out that the coarse-graining operation takes in £ a very
remarkable form. Let us consider the application D of € into itself, defined for every
Ain g, as:

iDA:Z(TrA w,) EA:Z(TrA E)W;, (2.11)

A A

where {E 4} is a partition of § in mutually orthogonal subspaces of finite dimension,
and W, is defined for each E, as E,/Tr E,; from the physical point of view (see
section 1) we remember that this operation applied on observables or on states reduces
to our coarse-graining. Considered now as an operator on £, Dislinear, idempotent and
self-adjoint. We see then that D is a projector in £. We shall call D the coarse-graining
projector. This property of the coarse-graining will be of central importance for the
development of the next section. As a first application of this remarkable property
let us consider the following inequality:

IW]E = D W, (2.12)

which is obviously valid for any state W, since D is a projector. We remember that
(because of definition 2.11):

DW =W, (2.13)

which is the macroscopic state (see definitions 1.3 and 1.6) characteristic of the equi-
valence class containing W. Since S (defined by 1.9 or 1.9) is a monotonic decreasing
function of:

Tr W2 — | W3, (2.14)

the above considerations prove the following assertion, announced in the introduction:
‘For any given equivalence class of states, the maximal value of the entropy is
precisely obtained with the macroscopic state characteristic of the class under con-
sideration’. The inequality (1.13) has the same source: it is a consequence of the
following sequence:

D W < [WE = | B WOP = IO = |D WO (2.15)
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3. The Coarse-grained Master Equation

As we pointed out in the introduction (see definition 1.11), the state:
(W~ = X pHd) W, = D W, 31)
a

contains all the useful informations for prediction on the expectation values at time ¢
of the macroscopic observables when the initial state W9 is given. At this point of the
derivation, it is not necessary to impose any restriction to the initial state W°. We will

introduce our assumption W° = Wo =D WO only after equation (3.13).

We want an evolution equation for the state © W* and the aim of this section is to
satisfy this need. We shall obtain a coarse-grained master equation, i.e. an integro-
differential equation entirely in terms of © W* without any reference to the state W?
itself. Our derivation shall run parallel with that of Zwanzic®); in fact when all the
E ;4 are one-dimensional projectors (fine-grained situation) we find ZwANzIG’s equa-
tion as a particular case. Let us now transpose ZWANzIG's arguments to our case.

Using the notation of section 2, let L be the Liouville operator, R(z; —¢ L) the
resolvant of (—7¢ L), B¢ the one-parameter unitary group describing the time evolution
of the system in space . We already remarked that if the hamiltonian H is assumed
to be bounded, L is also bounded and B is uniformly continuous; one can then write
(see th. 11.4.1 of reference 12):

.9}

R(z: —i L) ;fe“ Bt s (3.2)

0

and the representation is valid at least for |z| > |L|o. R(2; —# L) appears then
for such values of z as the Laplace transform of Bt. Since z is outside the spectrum of L,
one has:
(z4+2L)R(z; —2 L)=1, (3.3)
or:
2Rz, —tL)—IT=—1LR(z; —1L). (3.4)

By left multiplication with D and (I — D) one receives respectively:
DER(E —tL)—1)=—iDLR(z,—1L), (3.5.1)
2l —-D)R(z;, -1 L)— (I -D)=—1s (I —D) L R(z; —i L). (3.6.1)

Let us introduce the trivial equation I = (I — D) + D and the fact that DL D =0
(due to the relation between L and H):

DRz~ L)y—1=—4DL{I D) Rz —1 L), (3.5.2)
+i(I-DLUI-D)I—-D) R(z; —i L) ]
(3.6.2)

—(I-D)—iLDR(E—iL). |

The left-hand side of equation (3.5.2) is the Laplace transform of the time derivative
of © B, the operator of interest. In order to write the right-hand side of this equation
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in a more convenient form, we shall extract (I — ®) R(z; —¢ L) from equation
(3.6.2) and use this in equation (3.5.2). Let us first write:

LU-9 = (I—-D)LUI-D), (3.7)
we have:
1LY~ < | L < | 2] (3.8)

This relation insures the existence of:
(z4+1(I—D)L(I—D) 1= R(z; —1 L“"SD)) . (3.9)

We shall use later that the representation of this operator as the Laplace transform
of the unitary uniformly continuous one-parameter group (see reference 12, theorem
11.4.1 and its corollary):

B g = gt B (3.10)

1s valid because of condition (3.8).
Putting then together equations (3.5.2) and (3.6.2), one receives:

DERE —4L)~I)=—iD LRz —i LY (I-D)

(3.11)
—DLR(z—i L") LDR@E —iL).
Taking the inverse Laplace transform of the two sides of the equation (3.11), one
obtains:

. i :
OB = —iDLB o ([-D)—[#DLY LDV, (312
0

the last term of this expression looks like the ordinary convolution product in the
Laplace transformation theory for complex-valued functions. The mathematical
justification of the extension of this formula to our case can be found as a consequence
of lemma (13.3.6) of reference 12. Applying the operator equation (3.12) to any state
W?°, one finds:
i

d . ) ’ _y
L DW= —iDLB,_g (I —D) W —fdt DLB, o L(DW). (3.3

0
The first term of the right-hand side of equation (3.13) vanishes if one requires the
initial state W° to satisfy our fundamental a priori assumption (see section 1), i.e. if
W?is a macrostate:

DWO— W implies (I — D) W°=0. (3.14)

With this supplementary condition (of physical nature), one is then left with an
integro-differential evolution equation involving (D W? only, and where any
reference to W* itself is avoided. This was precisely the aim of this section. We find
ZWANZIG's result®) as a particular case if we impose to every E 4 to be one-dimensional.
Our coarse-graining operator D reduces then to Zwaxzic’s D and our equation (3.13)
overlaps ZWANZzIG's equation (30). We find then the fine-grained equation as a partic-
ular case of our coarse-grained equation.
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One can even pursue a little further and show how our equation (3.13) generates
an equation which can be considered as the non-perturbative coarse-grained genera-
lization of PAULI's master equation. Let us consider:

pHA) = Tr E, Wt = (E,, W) . (3.15)

From equation (3.13), one derives immediately:

t
— [t 3 (B4, K@) Wy) p=1147). (3.16)
0 a4

where:
Kit)=LB; L. (3.17)

From the fact that L is an hermitian operator in ¥, related to H as indicated in
section 2, it follows that:

SE, Kt) Ey) =0= ZEA,K (3.18)

4

We have then derived here the coarse-grained analog of ZwANzIG's equation (42).
It is also interesting to compare this result with the ‘double normalization’ used by
STUECKELBERG et al.?) as an essential ingredient of their proof.

Let us now consider the integrand of equation (3.16) and let us denote by N, the
dimension of the projector Eyi

2 (Es Elt) Eq) Ny A

A7

= | YE K() Eg) - #7A)| + (g, K@) Eg) 5 #7(4) . (3.19)

| A7+ 4 4 4
Using there the second of equations (3.18), one can write:

(Es, K = =D (Es, K (3.20)

A'%+=A4

Inserting this in equation (3.16), one obtains the desired equation:

——fthZ (Es, K@) Ey) |37 #704) = - #77@)] . 321
0 el
which again generalizes to the coarse-grained situation, the fine-grained equation
obtained by ZwaANzIG (see his equation (46)). The kernel K(f) is defined by the relation
(3.17), i.e. explicitely:

K(t) = Le tU-DLU-DF [ (3e22)

Similar ideas have already been exploited by G. Lubpwic!6). Our proof was given
explicitely in order to emphasize the mathematical cares which are to be taken. The
Laplace-transforms which were carried out are made rigourous (and not only formal)
by the explicit assumption that L is a bounded operator in £. We want also to mention
that LupwiG’s final equation is the Laplace-transform of an alternative form of our
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equation (3.11). However this step would be only formal as long as the existence of the
inverse of

24+ DL R(z; —i LY L 9]

1s not proved. Finally his results can be slightly simplified if one uses — as we did —
the fact that DL D = 0.

4. Conclusions

Generalized coarse-grained master equations were derived with a mathematical
method inspired from that of ZwanziG?®). These equations (equations (3.13) or (3.21))
describe the time evolution of the quantities which are of interest for a macro-observer.
This approach is non-perturbative and the resulting equations can thus be regarded as
exact.

The assumptions under which this derivation was possible are presented in
sections 1 and 2. They are essentially:

a) The macroscopic observables form a classical system, whereas the microscopic
description obeys the laws of ordinary quantum mechanics.

b) The macrocells £ ,, which are the common maximal eigen subspaces of the
macroscopic observables, are finite-dimensional; however the Hilbert space of the
microscopic description is allowed to be infinite-dimensional. The reasons for this
choice are explained in section 1.

c) The initial states satisfy an a priori probability assumption which is ageneraliza-
tion of the ‘initial random phase assumption’. It could be remarked that equation
(3.13) is also valid without this assumption. No kind of ‘repeated random phase
assumption’ was needed at any place of our derivation, even for equation (3.21).

d) The hamiltonian of the system is bounded. We admit that this restriction was
imposed mainly for technical reasons; strictly speaking our derivation is no more
correct when this assumption is not satisfied. Were this assumption really not tenable
for a given microscopic description, we have however still two possibilities at least to
avoid a radical change of the method; one can either impose some further restriction
on the admissible states or, in a more orthodox way, we can use the well-known
formalism of the energy shells. Let us recall the main features of this formalism in
connection with our problem. Let:

H = [1dE, (4.1)
]

be the spectral resolution of the hamiltonian. Let us now consider a partition {/,} of
the spectrum S p(H) in finite intervals. For each of these intervals, let us construct
the projector (possibly infinite-dimensional):

E = f dE, (4.2)
Iq

to which we will refer as the energy shell corresponding to the interval I,. Since the
time-evolution operator leaves every energy shell invariant, we can split the evolution
problem and treat each energy shell separately. Our assumption () 1s always satisfied
in each shell and we can simply repeat our derivation for each shell separately. The
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last point we want to mention in connection with this splitting of the problem is that
we have to be careful to define the macroscopic observables in such a way that the
macrocells become subspaces of the energy shells.

As a general remark, we want once more to emphasize that our derivation was
made mathematically possible by an appropriate sharpened definition of the Liouville
space as an Hilbert algebra in which the states form a convex complete set.

In his recent paper?®), ZwaNziG was able to show the equivalence of his equation
with all known master equations3)14)1%) except that of vaAx Hove. We can then infer
that the present method is a non-perturbative approach to the coarse-grained analog
of all these equations. In an earlier paper, we did the same kind of approach for vax
Hove’s equation ; we can then consider the problem of the non-perturbative deduction
of generalized coarse-grained master equations as completely solved.

Finally, for such questions as: the definition of the interaction as the difference
between the (microscopic) hamiltonian H and the coarse-grained operator describing

the (macroscopic) energy H, the role of vax Hove’s diagonal condition, etc., we refer
to our previous paper?); its conclusions are easily transposed to the present derivation
and remain valid.
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