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Coarse-graining in Liouville Space and Master Equation

by Gerard Emch

Institute of Theoretical Physics, University of Geneva

(4. IV. 64)

Resume: On propose une définition précise de l'espace de Liouville dans lequel on peut
plonger les états microscopiques d'un système quantique irréductible. Dans cet espace, l'opération
de «coarse-graining» peut être décrite par un projecteur. On présente alors une déduction non
perturbative des équations maîtresses généralisées. Ces équations décrivent l'évolution des termes
intervenant dans une description macroscopique classique du système considéré.

1. Introduction

It seems natural to present statistical mechanics in the following terms : a physical
system 27 is investigated by means of a collection of measurements; the quantities
accessible to these effective measurements form a set M, the elements of which we

will call macroscopic observables. If one describes E with M only, it may happen that
the evolution of the system presents some peculiar facts (for instance, irreversibility)
which are contradictory with the laws of mechanics. A phenomenological study of
these facts leads to thermodynamics. The aim of statistical mechanics is to restore

the wonderful unity of mechanics by considering M as being only a part (which is in
general very small) of the whole set of all the measurements which could, in principle,
be performed on the system E. We shall denote this new set by M and call its elements
microscopic observables. One then supposes that the evolution of E, when described by
means of M, is governed by the usual (classical or quantum) mechanical laws. For

instance, if we consider a gas E, M could be the measurements of p, V, T and of all
the quantities related to them; M is much larger and comprises in particular the
positions of the individual particles of the gas ; there is no essential reason to forbid
the measurement of such quantities ; practical reasons however make these measurements

so difficult to realise that one is well founded, in general, to exclude them from
M. The difficult problemx) of how to determine in a natural way M from an a priori
given M will not be touched in this note.

Every macroscopic observable A of M is characterised by the discrete set of all its
possible values A (A). Vet pfA) denotes the probability that the value AfA) would be

realised if the measurement of A would be performed. The set of all the pfA) for all the

A of M characterises than completely the macroscopic state of the system. The first
problem is now to embed this macroscopic situation in a microscopic description.

At this point, let us introduce some restrictions on M and on M in order to be able
to give for the theory a mathematical frame which is precise, simple, sufficiently
realistic and efficient. We will suppose that :
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(i) the macroscopic observables form a classical set. By this assertion we mean that
we will restrict our considerations to situations (27, M) for which the dispersion
obtained when a macromeasurement is carried out is not affected by the
simultaneous measurement of any other macroscopic observable. In other words, we
will suppose that the operational measuring process for macroobservables is the
one we are familiar with in classical physics.

(ii) the microscopic 'observables' form a quantum system; for simplicity, we shaU

further assume that M does not exhibit superselection rules.

We do not claim to have here the most general situation that one could imagine.
We even do not claim that any more involved situation will never appear in practical
problems. We however think that these assumptions are not too crude for the usual
experimental needs ; in fact, they correspond to the usual frame of quantum statistical
mechanics. We hope then that they are quite sufficient to allow a clarification of the

way how irreversibility enters in physics.
Let then § be the Hilbert space attached to the microscopic description, M being

the set of all (essentially) self-adjoint operators on §>. We have supposed that M is

contained in M, that all the A commute among themselves and have only discrete

spectra; thus, M induces in § a partition in mutually orthogonal subspaces, such that
every macroscopic observable can be written as :

Ä-£AfA)EA. (1.1)
A

(We will denote by the same symbol EA the subspaces and the corresponding
projectors.)

Each (microscopic) state ofE can be represented by a bounded self-adjoint positive
operator IF of unit trace ; following the usual terminology, we shall caU such operators :

density operators; the expectation value of any observable A is then given, for the
state IF, by:

<A>w TrWA; (1.2)

in particular, for macroscopic observables, one has :

<4>w-Zp(â)A{A), (1.3)
A

where :

pfA)~TrWEA. (1.3')

The pfA)'s define the 'macroscopic state' or better the 'macroscopic content' of the
considered microscopic state.

If two (microscopic) states IF and IF' satisfy the condition:

Tr IF EA Tr IF' EA (1.4)

for every EA, they lead to the same expectation value for every macroscopic observable ;

the converse is also true. We shall then call such states macroscopically equivalent; this
is an equivalence relation and each equivalence class is characterised by the set of
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the corresponding pfA) 's. Let us now introduce the supplementary condition that all
the EA are finite-dimensional. We agree that this assumption seems at first sight to be
of rather technical nature. However the reader will convince himself that it is very
difficult to find an objection against it on the basis only of physical phenomenological
arguments without inferring to a non-operational idealization. We emphasize that we
do not fix any upper bound to the dimension of these subspaces. We can now associate
with each EA a density operator WA, defined as:

Wa & P ¦*>

which describes an uniform probability distribution inside the subspace EA. Each class

of macroscopically equivalent states contains a density operator IF (representative of
that class) of the form :

W=£p(A)WA; (1.6)
A

we shall call macroscopic states these particular density operators W. Conversely, with
any microscopic observable A, one may introduce an unique macroscopic observable

A defined as:

Ä=2JAfA)EA, (1.7)
A

where :

A (A) Tr A WA. (1.7')

Again, two microscopic observables which lead to the same A (A) for every WA are
macroscopically equivalent in that sense that they lead to the same expectation values
for every macroscopic state. In order to follow the familiar terminology we shall refer
to the operation which transforms a microscopic observable A into its macroscopic

equivalent A as the coarse-graining operation. One remarks that this operation, applied
on states, gives exactly the transition from a microscopic state IF to the corresponding

macroscopic state IF.
We will now examine the problem of the evolution. Let us introduce explicitely the

assumption announced in the beginning, i. e. that the time evolution of E is governed
by a one-parameter symmetry2) group of the microscopic description. From Wigner's
theorem one has:
either A -> A* U~' A U< (1.8 H)

or W -^Wt=UtW U~*, (1.8 S)

respectively in Heisenberg and in Schrödinger picture. This assumption has an
immediate consequence which we would like to mention here. Let us first remark that
the number Tr IF2 can serve to measure the 'degree of mixture' of the state IF. We
want to relate this quantity with the negentropy (or information) contained in the
state IF. Stueckelberg and collaborators3) already emphasized that the definition
of this concept is by far not unique. Among all the possibilities, we propose the following

special choice :

S -kin Tr IF2 (with k > 0) (1.9)
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This expression is a positive, continuous, monotonie decreasing function of Tr IF2;
it reaches its minimum (zero) when IF is a pure state (i.e. when IF2 IF). Moreover
S, as defined by (1.9), is an extensive quantity. Nothing seems then to prevent us to
call (— 5) the microscopic negentropy (or information) on E contained in the state IF.
Professor Stueckelberg drew the author's attention to the fact that if all the above
properties, but the extensivity of S, were required, then among all the possible
definitions, the following choice could be very convenient :

S' Tr (IF - IF2) 1 - Tr IF2 (1.9')

In particular, all the statements on the entropy made in this paper would remain true
with the modified definition (1.9'), including those on the macroscopic entropy to be
introduced below.

The assumption that the time evolution of IF' is governed by (1.8 S) leads directly
to the conservation of the microscopic entropy 5. This result can be regarded as the
quantum analog of the classical Liouville theorem. In this context, it is important to
remark that Tr IF2 (and thus 5 itself) is not a constant within an equivalence class of
states. For any given equivalence class, the maximal value of S is precisely obtained

with the macroscopic state IF, characteristic of the class considered. (A quite simple
proof of this statement will be given at the end of section 2.) We propose thus the
introduction of a new quantity :

S~=-MnTr(IF)2. (1.10)

This expression is characteristic of a class of macroscopically equivalent states.

Through TF, S is directly related to the pfA)'s (see definition 1.6) which express the
whole macroscopic knowledge (see relation 1.3) obtained from any of the microstates

IF of a same equivalence class. We will thus call (— S) the macroscopic negentropy (or
macroscopic information) on E when the system is in any of the microstates W that
belong to the equivalence class of IF. We mention that S is a positive, continuous,
monotonie decreasing function of Tr (IF)2. There is however a profound difference

between S and S : for S, one can infer from (1.8 S) that S is a constant of the evolution ;

this conclusion is no more true in general for S. The reason is that the equation which
governs the time evolution of:

(WT =ZPl(A) Wa (l.ii)
A

where :

p'fA) Tr IF' EA (1.12)

is quite different from the relation (1.8 S) ; this equation shall be derived in section 3.

It is perhaps worthwhile to indicate at this point that the typical form of the coarse-
graining operation (as emphasized in section 2) allows an immediate proof of the
following statement : if IF0 is a macrostate at time t 0, then for any time t 4= 0

(i. e. either t > 0 or t < 0) one has :

S ft) > SfO) (1.13)
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This is in complete agreement with the results obtained by Stueckelberg et al.3).

Incidentally this does not imply without further analysis any kind of monotonie

increase of S with time. This is due to the very peculiar role of the 'present'. Later on
the fact that IF0 is assumed to be a macrostate shall be refered to as the 'fundamental
a priori assumption of statistical mechanics' (see below in this section).

Let us now consider the time evolution pf the expectation values :

XX =XX TrIF',4. (1.14)

For macroscopic observables (1.14) reduces to:

dx=j>X(zl)X7IZ (1-15)
A

where p'fA) is defined by (1.12). The probability of finding the value AfA) if one

performs the measurement of the observable A at time t is precisely p'fA). These

expressions contain therefore all the knowledge needed in order to be able to make
experimentally verifiable predictions. Up to now we did not submit IF0 to any
restriction. This is however too general for physical purpose, since IF0 can only be

prepared by means of macroscopic observables. The most general state resulting from
a maximal macroscopic preparation is of the form :

W° Z'EAW° Eä (1.16)
A

where IF0 is the density operator corresponding to the state of the system before the

macroscopic preparation. We note that TF° and IF0 are macroscopically equivalent
and that in general neither IF0 nor IF0 are macrostates ; this fact is well known in the
theory of the measuring process (for a modern presentation of the orthodox point of
view, see for instance ref. 4). The observer, who has at his disposal the macromeasure-
ments only, can not descriminate two microscopic states belonging to the same class of
macroscopic equivalence; however p'fA) will depend in general on the choice of the

microscopic state IF0 inside its equivalence class (see our Equation (3.13)). One way
to get out with this difficulty would be to say that one has to perform a certain average
on the results ; this is however very imprecise. On the other hand, since one is dealing
with a probability problem, one has to be aware of the fact that the problem is not
defined as long as one has no 'a priori probabilities'. In our case, this definition
amounts to a choice between all the possible initial microscopic states which are

compatible with the results of measurements at time t 0. The most natural choice
is to take, as initial state, that state which corresponds to the most chaotic microscopic

situation compatible with the macroscopic knowledge at time t 0 (i.e. to
attribute a uniform probability inside each subspace EA). This special state is precisely
the macroscopic state IF0 characteristic of the equivalence class of the initial states.
We will call this supplementary condition the fundamental a priori assumption of
statistical mechanics. It is, in fact, a reformulation of the customary 'initial random
phase assumption', which is now adapted to our presentation where the coarse-
graining is introduced from the beginning as an essential ingredient of the theory. We
also can indicate that this later assumption is itself related with Boltzmann's hypoth-
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esis; however we want to emphasize that we do not make any kind of repeated
random phase assumption.

With our assumption p'fA) reduces to:

x^i)=2>xn^(zx, (LX
A'

with :

P'fA, zl') Tr WA, U-' EA Ul. (1.18)

For the experimental predictions it is then sufficient to know P'fA, A') for each pair
fA,A'). In a previous publication5), we have given an evolution equation for that
quantity, in analogy with van Hove's treatment6) of the problem, but modified in the
light of Swenson's paper7). Our presentation had the advantages to be both
coarsegrained and non-perturbative. However a difficulty, already present in van Hove's
works, remained in that paper: one did not succeed in deriving an equation for
P'fA, A') itself, but only for an object PE,'fA,A') which is often refered as the
'spectral resolution' of P'fA, A'). In the meantime a very nice paper by Zwanzig8)
appeared. One finds there an integro-differential master equation for the 'relevant part'
of the density operator. The approach is non-perturbative, too. However the quantity
investigated in that paper is a fine-grained operator.

The present note has two aims. First a physical aim, i.e. to present a slight
generalization of Zwanzig's paper, including coarse-graining. The second aim is of
mathematical nature : by a rigorous treatment of the problem, one can throw off all
doubts concerning questions such as: convergence in infinite dimensional space,
existence of solutions, etc. ; in particular, the use of tetradics notation is avoided by a

sharpened definition of the Liouville space in which the Liouville operator acts as an
hermitian operator on a Hilbert space. No reference to any (fine-grained) basis in §
is used.

2. Coarse-graining and Liouville Space

Let §> be the (finite or infinite) Hilbert space of the microscopic description, and
B(§>) the set of all bounded linear applications of §> to itself. As we already mentioned,
every microscopic state can be uniquely represented by a density operator, i.e. a

bounded, self-adjoint, positive operator IF of unit trace, defined on §. Conversely to
each such operator corresponds a state. Let us then consider the set :

C {W\WeB($) ; Tr IF 1, IF* IF; IF > 0} (2.1)

One can easily verify that C is a convex set, the extremal points of which are the pure
states, i.e. the density operators satisfying the supplementary condition IF2 IF.
One can furthermore define a functional 0 on C X C to the real interval [0, 1] :

0fWx,W2)=TvWxW2, (2.2)

0 is symmetric and bilinear in the sense of convex sets. Moreover, it is positive definite,
i.e. that 0(W, IF) 0 would imply IF 0.

This is a very interesting structure and Fano was, to the author's knowledge, one
of the firsts to suggest to use it systematically for a representation of quantum
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mechanics (for a recent pedagogical presentation of this point of view, see Fano's
lecture notes9) and references quoted therein).

Since functional analysis is by far best known in the context of Hilbert spaces or
Banach algebrae than in that of convex sets, it is technically very tempting to try to
embed C in one of these more complete mathematical structures. This is achieved if
one considers the set :

£ {A\AeB($) ; Tr A* A < 00} (2.3)

equipped with the sesquilinear form :

fAx,A2) TvA*A2. (2.4)

This form satisfies all the axioms of a scalar product on a complex Hilbert space ; in
particular it generates a (positive definite) norm :

\\A\\Ü= +(ïrA*AA*. (2.5)

(This norm has not to be confused with the norm \\A \\^ of A considered as an operator
on §.) If one adds to this structure the multiplication law inherited from the
multiplication of operators in §>, £ becomes even a Hilbert algebra10). This will be used
later on. It is this object (i.e. £ with its complete mathematical structure defined
above!) that we will call, for shortness, the Liouville space attached to the Hilbert
space <rj. C is then a convex set in £ ; moreover it is complete in £, i. e. that if A belongs
to £, then Tr TF A 0 for all TF in C implies A 0.

Let us first remark that the linear application 33 of £ onto itself, defined for every
A in £, as:

93 A U A U-1, (2.6)

where U is a unitary operator in §, is also unitary.
The time evolution can then be described by a one parameter group of unitary

operators in £. We will assume that the expectation value of any observable is a

continuous function of time. Remembering the definition of the scalar product on £,
one sees that this means mathematically that we assume weak continuity for 93'

(In fact, since 93' is unitary, this is equivalent to strong continuity.) Weak continuity
itself is enough for Stone's theorem. 93' admits then an infinitesimal generator L.
Following the terminology adopted for instance by Prigogine and Balescu n) or by
Zwanzig8) we will call this operator the quantum Liouville operator. One can write
for any TF' in the domain of L :

^TF'= -iLW (2.7)
dt '

Coming back to the description in space 9), one has:

Z. W' -i fH IF' - TF' 77) (2.8)

which is the usual von Neumann equation.
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L and 77 are very closely related. In particular, if the hamiltonian 77 is a bounded
operator in §, then the same is true for the Liouville operator L in £ ; one has in fact :

IZIk< 2||77|.e. (2.9)

We will further assume, as in our previous paper5), that 77, and consequently L, are
bounded operators. This circumstance will be discussed in the conclusion. This
supplementary condition will be technically very useful and it will prove quite
sufficient for a mathematically meaningful interpretation of the operations we shall
performe in the next section; in particular, 93' can now be written:

gy e~iU Y- f-i L)n (2.10)
*—j n\
n

and 93' is not only strongly continuous but even uniformly continuous. Conversely
for the uniform continuity of 93' (which will be used extensively later on) it is necessary
that L is bounded (see for instance Reference 12, corollary to th. 11.4.1).

We want now to point out that the coarse-graining operation takes in £ a very
remarkable form. Let us consider the application X) of fl into itself, defined for every
A in fl, as:

D A Z (Tr A WA) EA JT (Tr A EA) WA (2.11)
A A

where {EA} is a partition of § in mutually orthogonal subspaces of finite dimension,
and WA is defined for each EA as EA/Tr EA ; from the physical point of view (see

section 1) we remember that this operation applied on observables or on states reduces
to our coarse-graining. Considered now as an operator on fl, X is linear, idempotent and

self-adjoint. We see then that X is a projector in fl. We shall call X) the coarse-graining
projector. This property of the coarse-graining will be of central importance for the
development of the next section. As a first application of this remarkable property
let us consider the following inequality :

\W\% >||XTF|||, (2.12)

which is obviously valid for any state TF, since X is a projector. We remember that
(because of definition 2.11) :

X TF W (2.13)

which is the macroscopic state (see definitions 1.3 and 1.6) characteristic of the
equivalence class containing TF. Since S (defined by 1.9 or 1.9') is a monotonie decreasing
function of:

Tr TF2 |iIF|]^, (2.14)

the above considerations prove the following assertion, announced in the introduction :

'For any given equivalence class of states, the maximal value of the entropy is

precisely obtained with the macroscopic state characteristic of the class under
consideration'. The inequality (1.13) has the same source: it is a consequence of the
following sequence:

||X) IF'f < IITF'II2 ||93' IF°||2 |TF°||2 |X TF°f (2.15)
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3. The Coarse-grained Master Equation

As we pointed out in the introduction (see definition 1.11), the state:

(WT Z'P'(A) Wa 2> W' • (3-1)
A

contains all the useful informations for prediction on the expectation values at time t
of the macroscopic observables when the initial state IF0 is given. At this point of the
derivation, it is not necessary to impose any restriction to the initial state IF0. We will
introduce our assumption IF0 IF0 X IF0 only after equation (3.13).

We want an evolution equation for the state X TF' and the aim of this section is to
satisfy this need. We shall obtain a coarse-grained master equation, i.e. an integro-
differential equation entirely in terms of X IF' without any reference to the state IF'
itself. Our derivation shall run parallel with that of Zwanzig8); in fact when all the
EA axe one-dimensional projectors (fine-grained situation) we find Zwanzig's equation

as a particular case. Let us now transpose Zwanzig's arguments to our case.

Using the notation of section 2, let L be the Liouville operator, Rfz; —iL) the
résolvant of (— i L), 93' the one-parameter unitary group describing the time evolution
of the system in space fl. We already remarked that if the hamiltonian 77 is assumed
to be bounded, L is also bounded and 93' is uniformly continuous; one can then write
(see th. 11.4.1 of reference 12):

R(z;-iL) [e-*'Wdt (3.2)
o

and the representation is valid at least for \z\~> |L|y. Rfz;—iL) appears then
for such values of z as the Laplace transform of 93'. Since z is outside the spectrum of L,
one has:

fz + iL) Rfz;-iL) 7, (3.3)

or:
z Rfz; -iL) - I -iL Rfz; -i L) (3.4)

By left multiplication with X and (7 — X) one receives respectively:

X (z R(z; -iL) - I) -«' X> Z. R(z; -iL), (3.5.1)

z fl - X) Rfz: -i L) - (7 - X) -* (7 - X) L Rfz; -iL). (3.6.1)

Let us introduce the trivial equation 7 (7 — X) + X and the fact that X L X 0

(due to the relation between L and 77) :

X fz Rfz; -iL) - I) -i X I (7 - X) Rfz; -iL), (3.5.2)

fz + i (I - X) L (I - X)) (7 - X) Rfz; -iL) }

(3.6.2)
(7- X) - i L'S Rfz; -iL) j

The left-hand side of equation (3.5.2) is the Laplace transform of the time derivative
of X 93', the operator of interest. In order to write the right-hand side of this equation
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in a more convenient form, we shall extract (7 — X) Rfz; —i L) from equation
(3.6.2) and use this in equation (3.5.2). Let us first write:

£<*-»>= (/-X)£(/-X), (3.7)

we have :

|L(/-s,|a<|L|s<|*|. (3.8)

This relation insures the existence of :

(z A- i (7 - X) L (7 - X))-1 Rfz; -i E1-^) (3.9)

We shall use later that the representation of this operator as the Laplace transform
of the unitary uniformly continuous one-parameter group (see reference 12, theorem
11.4.1 and its corollary) :

%_%]re-^I~^LI-I-%)t (3.10)

is valid because of condition (3.8).
Putting then together equations (3.5.2) and (3.6.2), one receives:

X fz Rfz; -i L) - I) -i X L Rfz; -i ZX®>) (7 - X)

-XI Rfz; -i X"21') L X 7?fz; -i L)
(3.11)

Taking the inverse Laplace transform of the two sides of the equation (3.11), one
obtains :

t

~ X33< -* X L %_%) (7 - X) - fdt' X L »{',_„, L X 93'-'', (3.12)
o

the last term of this expression looks like the ordinary convolution product in the
Laplace transformation theory for complex-valued functions. The mathematical
justification of the extension of this formula to our case can be found as a consequence
of lemma (13.3.6) of reference 12. Applying the operator equation (3.12) to any state
IF0, one finds :

d~ (X IF') - i X L %_%) (7 - X) TF° - / dt' X L %_ „, L (X «*'-'>) (3.13)

0

The first term of the right-hand side of equation (3.13) vanishes if one requires the
initial state TF° to satisfy our fundamental a priori assumption (see section 1), i.e. if
TF° is a macrostate :

X TF° TF° implies (7 - X) IF0 0 (3.14)

With this supplementary condition (of physical nature), one is then left with an
integro-differential evolution equation involving (X IF') only, and where any
reference to IF' itself is avoided. This was precisely the aim of this section. We find
Zwanzig's result8) as a particular case if we impose to every E A to be one-dimensional.
Our coarse-graining operator X reduces then to Zwanzig's D and our equation (3.13)

overlaps Zwanzig's equation (30). We find then the fine-grained equation as a particular

case of our coarse-grained equation.
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One can even pursue a little further and show how our equation (3.13) generates
an equation which can be considered as the non-perturbative coarse-grained
generalization of Pauli's master equation. Let us consider:

P'fA) Tr EA IF' (TX W*) (3.15)

From equation (3.13), one derives immediately:
t

At t'W - fdt'Z(EA,Kff) TX) p'-AA') (3.16)
" A'0

where :

K(t') L%_%)L. (3.17)

From the fact that L is an hermitian operator in fl, related to 77 as indicated in
section 2, it follows that:

Z (X. Kft) E/V) =0 Z (Zj Kft) EA.) (3.18)
A A'

We have then derived here the coarse-grained analog of Zwanzig's equation (42).
It is also interesting to compare this result with the 'double normalization' used by
Stueckelberg et al.3) as an essential ingredient of their proof.

Let us now consider the integrand of equation (3.16) and let us denote by NA the
dimension of the projector EA :

Z(EA,Kft')Ed,)~ p'-'\A')v,

ZfEA,Kft')EA,)^p'-''fA'
NA, (Eâ,K(t')EA)^p'-'fA). (3.19)NAA'JpA

Using there the second of equations (3.18), one can write:

(77, Kft') EA) -27 (EA Kft') EA.) (3.20)
A' + A

Inserting this in equation (3.16), one obtains the desired equation:

Tt P'W - fdt'ZfEA.Kft') X) k\ P'^'fA) - i- p'-'fA)] (3.21)
J A'4= A 1 A A J

which again generalizes to the coarse-grained situation, the fine-grained equation
obtained by Zwanzig (see his equation (46)). The kernel Kft) is defined by the relation
(3.17), i.e. explicitely:

Kft) Le-m-®)L(i-%)t L_ (3_22)

Similar ideas have already been exploited by G. Ludwig16). Our proof was given
explicitely in order to emphasize the mathematical cares which are to be taken. The
Laplace-transforms which were carried out are made rigourous (and not only formal)
by the explicit assumption that L is a bounded operator in fl. We want also to mention
that Ludwig's final equation is the Laplace-transform of an alternative form of our
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equation (3.11). However this step would be only formal as long as the existence of the
inverse of

7 + X L Rfz; -iL[,-%)) LX]
is not proved. Finally his results can be slightly simplified if one uses - as we did -
the fact that X L X 0.

4. Conclusions

Generalized coarse-grained master equations were derived with a mathematical
method inspired from that of Zwanzig8). These equations (equations (3.13) or (3.21))
describe the time evolution of the quantities which are of interest for a macro-observer.
This approach is non-perturbative and the resulting equations can thus be regarded as

exact.
The assumptions under which this derivation was possible are presented in

sections 1 and 2. They are essentially:
a) The macroscopic observables form a classical system, whereas the microscopic

description obeys the laws of ordinary quantum mechanics.
b) The macrocells EA, which are the common maximal eigen subspaces of the

macroscopic observables, are finite-dimensional; however the Hilbert space of the
microscopic description is allowed to be infinite-dimensional. The reasons for this
choice are explained in section 1.

c) The initial states satisfy an a priori probability assumption which is a generalization

of the 'initial random phase assumption'. It could be remarked that equation
(3.13) is also valid without this assumption. No kind of 'repeated random phase
assumption' was needed at any place of our derivation, even for equation (3.21).

d) The hamiltonian of the system is bounded. We admit that this restriction was
imposed mainly for technical reasons; strictly speaking our derivation is no more
correct when this assumption is not satisfied. Were this assumption really not tenable
for a given microscopic description, we have however still two possibilities at least to
avoid a radical change of the method ; one can either impose some further restriction
on the admissible states or, in a more orthodox way, we can use the well-known
formalism of the energy shells. Let us recall the main features of this formalism in
connection with our problem. Let:

77 fx dEx (4.1)
o

be the spectral resolution of the hamiltonian. Let us now consider a partition {Ia} of
the spectrum S pfH) in finite intervals. For each of these intervals, let us construct
the projector (possibly infinite-dimensional) :

Ea =fdEx A.2)
la

to which we will refer as the energy shell corresponding to the interval Ia. Since the
time-evolution operator leaves every energy shell invariant, we can split the evolution
problem and treat each energy shell separately. Our assumption fd) is always satisfied
in each shell and we can simply repeat our derivation for each shell separately. The
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last point we want to mention in connection with this splitting of the problem is that
we have to be careful to define the macroscopic observables in such a way that the
macrocells become subspaces of the energy shells.

As a general remark, we want once more to emphasize that our derivation was
made mathematically possible by an appropriate sharpened definition of the Liouville
space as an Hilbert algebra in which the states form a convex complete set.

In his recent paper8), Zwanzig was able to show the equivalence of his equation
with all known master equations13)14)15) except that of van Hove. We can then infer
that the present method is a non-perturbative approach to the coarse-grained analog
of all these equations. In an earlier paper, we did the same kind of approach for van
Hove's equation; we can then consider the problem of the non-perturbative deduction
of generalized coarse-grained master equations as completely solved.

Finally, for such questions as: the definition of the interaction as the difference
between the (microscopic) hamiltonian 77 and the coarse-grained operator describing
the (macroscopic) energy 77, the role of van Hove's diagonal condition, etc., we refer
to our previous paper5) ; its conclusions are easily transposed to the present derivation
and remain valid.
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