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A Generalization of the Principle of Detailed Balancing in /i-Space

by E. C. G. Stueckelberg de Breidenbach
(Universities of Geneva and Lausanne)

(2. IV. 64)

Abstract. The iï-theorem in /<-space for a mixture of free molecules or particles A, B,
undergoing all sorts of multiple collisions or reactions (creation and annihilation) is generalized to
the case, where detailed balancing (DB) does not hold, and for the 3 statistics (Boltzmann,
Bose-Einstein, and Fermi-Dirac). The equilibrium condition is given in terms of the chemical
potentials ßA, fxB, The transition probabilities between macrocells have to satisfy a weaker
condition than DB.

Introduction
This publication, whose main interest will be of a didactic nature, is the

demonstration of Boltzmann : H | t Aj-theorem in a perfect gas, where different kinds of
molecules (or particles) A, B, may collide in arbitrary way and undergo chemical
reactions of any type (including the emissions of photons, 0). We look, how the
condition of detailed balancing fDB), which, as Boltzmann himself know already1),
is certainly too strong a condition on transition probabilities, may be weakened, so as
to preserve the H-theorem. We have shown in two earlier papers2)3) (referred to as I, II)
how this condition may be weakened in F space (on account of the unitarity of the
S-matrix), which is the only phase space, to which a physical reality may be
attributed7). However, in lectures on statistical thermodynamics, it is sometimes usefull
to treat the perfect gas in ^-space, following Boltzmann's original way. Therefore
we start, in § 1, with the Boltzmann Ansatz for macrocells, generalized to all sorts of
multiple collisions and reactions. We are immediately led (§ 2) to his logarithmic
expression for the entropy, while in r space (see I and II), the .ff-theorem may be
demonstrated to hold for any monotonie increasing function, as a measure of
information. We difference the 3 statistics (Boltzmann (Bo), Bose-Einstein (BE), and
Fermi-Dirac (FD)) through the notion of induced (BE) and anti-induced (FD)
transition probabilities, as already Pauli4) did (basing himself on the ideas of Jordan,
Kramers, Omstein, and Bothe5)). However, we assume this 'induction factor'
(oc + 1 (— 1)) for BE(FD), a 0 for Bo in Pauli's article) XA for molecules of
type A in this publication) as an arbitrary number. Our generalization of the DB-
condition (the consideration of chemical reactions, anti-particles A, B, and CPT
covariance) necessitates XA 4- 1 (or 0) (§ 3) and states the law of conservation of
statistics if /\A 4= 0 (equation (3.2)). Furthermore, considering the equilibrium case, for
a non degenerate gas, we find the well-known result for the chemical potentials /xA :

(1) Particles0 which are identical to their anti-particles 0 have zero chemical potential
Hn 0.
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(2) Particles A and anti-particles A have numerical equal chemical potentials but of
opposite signs: juj — fiA.
Finally we calculate the chemical constant iA for a monoatomic, spinless gas,

whose experimental value shows that the constant h, used to define micro-cells, is the
Planck's constant, and establish the law of mass action.

1. The Boltzmann Collision 'Ansatz '

We consider a perfect gas composed of C different sorts of molecules AB
12 C, between which collisions and chemical reactions may occur according to

fv) Za«v"a»A" ^ ZA-v'A-A' ^vAA +v"BB + ...+-v'AA +v'BB + ¦¦- (1.1)

The v'A's (final state) and the v'A-'s (initial state) are positive integers, fv) is a complex
of indices

fv) ={...v"A„...; ...v'A. ...}= {v"Av"B..r, v'Av'B...} (1.1a)

describing the collision or reaction. (— v) describes the inverse collision or reaction:

f-v) r{...v'A,...; v"A„...} {v'A v'B ; v"Av"B...}

For example the reaction fv) C -<- A A- B, involving 2 initial components A and B
combining into C is different from (2 v) =2C-^2AA-2B. For each A, we introduce
a separate /espace : {pit qf}, ik 12 fA,fA being the number of degrees offreedom
of A. Each jM-space is, at first, divided into micro-cells of phase volume /X (h being
Planck's constant). We further introduce macrocells (of different magnitudes) de-

numbering them by a, a! or

«j a2 ax a2 for A, by b, b or bxb2 bxb2 for B etc.

Their volume is: for A, Ca h1^; for B, Cb /X etc. with

Z>1; Z>1; (1.2)

The occupation numbers of a (for A), b (for B), etc. are

Na>i; X>Z (1.3)

and the total number of molecules A, B, is a variable number:

NA £aNa; NB ZbNb; (1.4)

For a 'collision' A -<- A, the gain (per unit time) of the cell a" due to a transition
a" ¦<- a' is, according to Boltzmann, Ca, Aa*. a> Na- and the loss due to the 'inverse
collision' is Ca' Aa-.a»Na», where X"«' > 0 is the transition probability. The net
gain is : • „Na»(A^A}=ZfCa„Aa,,:a,Na,-Ca,Aa,;a„Na„). (1.5, A*-A)*)

*) Na«(t) (Na»(t") - Na>(t')) (t"-t')-x òNa'lòt for a period dt t"-t'§0 large compared
to the duration of a collision. Thus the 'Boltzmann Ansatz' does not provide a òtr> 0, as often
thought.
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For a real collision 2 A ¦<- 2 A we have for the number (per unit time) of simultaneous
transitions

„< N> N>ax-cr- ax; a2<- a2: Ga» Ga» -4^^. „^
The corresponding number of inverse collisions is obtained, changing ' ^±: ". The total
gain of a given X» due to this process is :

"a"(2A*-2A) -^2, X" Z| ^«"4; 44 ^4 ^a!
4X4

- X C - 4
(1.5, 24-«-2-4)

4 4 Äia2' a"4 *" «2'

The factor 2 is due to the fact that

A » - - A * - • A ' < > 0
a^a'^; a, a2 a^a^a, a„ 44»a2al ^

is symmetric with respect to the 2 final macrocells and the 2 initial macrocells:
Thus, both Aa"a».a'a- and X"a"-a'a' (and their inverse) contribute to (1.5;

1 2 ' 1 2 2 1. '122,4 ->2 4).
Let us now consider the simple chemical reaction (±r)sC+i4 + B, We have

the transition probabilities

4&..,(>0) and A[AlbA>0).

They contribute to X'ln the form

AZtf{A+B*-C) 2X <Z X ^Z, Nc. - Cc, AÏT* N, Nb„. (1.5; AA-B^C)

For the most general collision or reaction fv) (1.1), we have therefore the 'Boltzmann
Ansatz' :

Na"(v) *A
¦ K, a,

(Z" ^a".

...A {')
¦ a" ..b",...b"„

-X...CXCX..G7

N„„N,...N,Nh,

The factor j». arises from the fact, that the A

c „ c „ 7.-
AAh'i---h'v'B--- a'i -A N

A(y]" <i1..av'Abx...bl ' ...; a"al.
B

2 ,,C

iV

that the 4(*,>
«1«2 -<AA-, "i

«.,"/!¦¦¦%¦

and AAv)

(1.5; v)

", a„ a'yi'b","1-2 ¦¦••vaiare

symmetric in the j^ indices «!', like the factor 2 in (1.5, 2 A -<- 2 ^). Now a word
why we have introduced macrocells. If «' of the initial a\ are equal, the number of
collisions is not proportional to 7V"< but to

i
Na\ - n'

N,fNa'-l)-^-„-fn'<vA).
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If Na>. >7 we may write fNa\)n' and absorb the factor fn'l)-1 in A{"\ • • •

i i
On the other hand, if n" of the final a", are equal, the contribution should be
proportional to

n" fCaAn" A{v) „ „ „x «,- ' a ¦ a. a ¦ ; a-,

But this term arises also n"\ times, thus we have also to divide by n"\} which may
again be absorbed in A^ „ „ „ > Thus (1.5: v) is correct, if the A^'s and

A. s are properly redefined.

The total net gain in a" is therefore

k- \ Zk- w 0-6)
w

the factor 1/2 being due to the fact that both fv) and (— v) are summed over all
collisions and reactions (1.1).

2. The H- Theorem

The H î> r cc)-theorem of Boltzmann states, that a functional of the occupation
numbers : — ^r a S S [... Na..., Nb... ,...] exists, which for an adiabaticaUy
closed system S 270 satisfies

S Za -ß- Na+Zbr§bk+ - S - Ea" Sa" K" ~ Hb" ëb" fy ~->0, (2.1)

if the 'Boltzmann Ansatz' (1.5; v) (1.6) is accepted. S is to be interpreted as the
entro-ùv of 27. The

e -g T N N X- dS[^-

are, at a first view, also functionals of all Na's, Nb's,... Substituting (1.5; v), (1.6)
into (2.1) we may, on account of the symmetries, replace ga„ v, by ga„ A- ga„ + • • • + ga„„,
obtaining A

S=-y Z(v) 2*x...,a\...bv«... (ëa{ + - + ëa'J + ëb'i + •¦¦)
'B x "A

iW•x (C „ C „ C „ A. ¦ ¦ N ' N <X (Ca» C^Ojj ¦¦¦Aa"1...a;„bl-...]a1...b^...1\ ...l\y
Ca'x ••• Cbj ••¦^4li,;;...;4...a>6j...^i ...Na; Nb«

'B

(2.2)

the sum being taken over all collisions and reactions fv) and over all final (") and
initial (') macrocells. We may simplify the notation, by introducing the two complexes
of indices in the final and initial states of fv) :

" r " " i." i." -tic' -l' ia {ax «„,, bx bv„ ...}; a. {ax... bv, ...};
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introducing the sums :

?a"x + -+ga'r, + ëb'x + - ba oa-.

and the products :

<Z Ca. C,k Ca> Cb. > 1; X Ca{ > I,

fy AL. N.

fw

.fyp.Nbl...^>l; X=^4-.->l

525

(2.3g)

(2.3 C)

(2.3 X

iWJl'l _ A
^¦a*;a ^ax ...av'bx .;ax b

X1,1 __ aAv)71 a ;a ~ X ...&„- 4...a'»^...>0'
(2.3.4W\

(2.2) reduces now to the simple form:

S ~SW ZX ia" (Co- A$ia, fy - Ca. Ai~.% fy)

-T27M 2X* (^ - &<) ca* Ca. (4«;c, »a. - Atf>, v).
(2.4)

with the products :

AL. AV

where

>0; Wa.=

«a=^->0; w,= -^>0 (2.6)

are (in the Boltzmann case) the mean occupation number of a microcell inside the
macrocell a for A, b for B,... The 2nd, symmetrised equation (2.4), arises from the
fact, that we may also write the 1st equation, interchanging a" <^ a' and fv) <± (— i»),

and is the half sum of both these expressions.
Now let us first consider detailed balancing fDB) expressed by A^.a, A^~A\>

leading to
S T 2W 2Za- Zc" Ca, 4M a, fe. - ga.) (v - v) > 0 • (2.7; 7)5)

The common factor C^C^ A$.a-, being non-negative, (2.7; 735) requires that
&a ga [WJ be a monotonous increasingfunction of wa > 0. The wa»'s being a product (2.5)
and the ga»'s being a swm (2.3 g) over i/J macrocells a", v'B macrocells b" etc., the only
choice is

ga klogna-*ga klogna; gb klognb; (2.8)

where k is a positive constant (the Boltzmann constant, as we shall see in (4.7)).
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However, the principle of detailed balancing (7)73) is, for an arbitrary choice of
macrocells, not valid6). Therefore, we introduce the non-negative (asymmetric)
function Lfx,y) (for x, y > 0)

yjx

Lfx,y) x dt log t y (log y — log x) — y + x > 0 (2.9)*)

i
which permits to write (2.4) as a sum of 2 terms :

S | ZZ Z>a. Ca„ X (.47Z Lfna., V) + A% a. Lfna„, «..))

+ ~ ZV, ZX (Q^ 7Va, - iVa,^ C«.

+ Ca.Ay:a.fy-Na,A$;a.Ca.)>0.

(2.10)

The 1st term is non-negative. The fys being arbitrary, there is no way to make the
2nd term non-negative. Therefore it has to be equal to zero. As the fy- and A7a- are
arbitrary, the condition on the transition probabilities is now fBo-statisticsl):

y„c»a{v). y,A{ylc,. (2.11)

This is a much weaker condition than DB. It corresponds to the generalization of DB

put forward by us, in I and II for the Boltzmann case (Bo). 5 0, i.e. equilibrium is

only reached, if, for all fy)'s we have wa« «a- or logna" logna-. We introduce now
macrocells a,b, with a mean energy Ea for A, Eb for B etc. The transition probabilities
differ from zero, only if we have (approximative) conservation of energy for each
collision or reaction fv) (1.1)

(2.12)

(2.13)

(2.14)

We shall now demonstrate, that T is the absolute temperature and (iA the chemical

potential of A. To do this, we consider a variation of external, macroscopic (geometric)
parameters r {rQ}, q a... 12 ca, and suppose the energies: Ea Ea [r]. Then
the variation ö of internal energy of the gas U UA + UB A- •¦¦ is:

ÔU Ô fZaNa Ea [r] + ZbNb Eb [r] A- -) I

(2.15)
fSa ÒNa.Ea+Z„ÒNb-EbA--) + ÒA^,

fy + Ea" + ¦- + Ea-, + Eb.
ax a2 a » o1 + ¦•• X + Ea + -¦ + Ea- + Eb- A-

Thus, equilibrium is reached, only if

log na
l*A-Ea _ ßB-Eb

kT ' 10gM" kT ' •¦•

where the constants /aA /uB, satisfy (cf. 1.1)

vl Ha + v"b/^b + ••¦ v'a Va + v'b Vb + "' •

This inequality is due to the late W. Pauli. We made use of it in I and II.



Vol. 37, 1964 A Generalization of the Principle of Detailed Balancing in/<-Space 527

where

dAm Km ç re (Ia Na 3g £a [r] + Ib Nb oe Eb [r] + 3 r« (2.16)*)

is the work due to the m external (incident) forces K^n]. Substituting in (2.1) (in the
form ô S - Za ga ô Na — Z„ gb Ò Nb (2.8) and the equilibrium value (2.13),
we find

ÔS=T-AZaàNa.Ea+ZbàNb- Eb A---!XAÒNA-nBÒNB-¦¦¦). (2.17)

From (2.15), (2.16), and (2.17) follows

OU=TÔS + Ô A^ A- Za ^ <5 fy Ô U [S, r, NA fy, ...], (2.18)

which is the definition both of T and the ftAs**).

3. BE and FD Statistics

Bose-Einstein (BE) or Fermi-Dirac (FD) statistics deviate from the Boltzmann
case (Bo) by induced fXA > 0) or anti-induced fXA A 0) transitions to the macrocell a.
We shall now consider Ca as the number of microcells in a, and define, in the formulae
of §§ 1 and 2

Ca=ClA- >\A Na (3.1)

XA being the 'induction constant', depending but on the substance A. (One might
think to introduce a macrocell depending constant Xa. But, because the choice of
macrocells is, up to (2.12) (energy-shells), arbitrary, one must have Xa XA). Ca« and
Ca< depend now on the occupation numbers fy ...,fy Thus (2.11) can not be

satisfied if XA =f= 0. To make the 2nd term of S in (2.10) zero, we have to consider all
products occurring on account of (3.1) Na' fy fy fy separately in this 2nd
term of (2.10). The highest power in the fys requires

XJxf-=XJXJ-. (3.2)

Then the 2 terms containing X'. (and the 2 terms containing 4X') cancel out
separately. In order to show that XA Ar 1, we have to consider the anti-molecules or
antiparticles A, (charge-)conjugated fC) to A. Then the creation fv) of v" pairs A + A
(or annihilation f— v)) according to

v. v" fA A- A) A- 2 A «- 2 A (3.3; v)

may occur, if the energy is sufficient. Or, in this case we have (3.2)

fXAXAy"XA XA, (3.4X + J)

») de Ea [r] d Ea [r-lldre.
**) fiA is the chemical potential per molecule of particle A (and not per mole).
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which requires XAXj A- 1, if XA 4 0. On the other hand we have particles 0 (photons,
n° mesons) which are selff-charge-)conjugated 0 0. In this case the annihilation fv)

(or creation f— v)) reaction _
v. v"0<-A + A (3.5; v)

may occur, where v" is any positive integer. (3.2) requires in this case X0 XA XA + 1.

The ^-particles are bosons. If v" is always even, we have X% 1 ; X0 — Ar 1 '• The

0-particles may be bosons or fermions. In order to infer, from XA XA + 1, XA

Xj + 1 (bosons) or XA XA — 1 (fermions) for A A= A, we have to use the CPT-
theorem, which states: In an anti-universe A -A- A fC), where t -> — t (T) and where

right becomes left fP), the laws of physics should be identical. Only this requirement
implies XA XA Ar 1- Now (3.2) is the law of conservation of statistics. For example

C^A + Bis satisfied by Xc 1, XA XB — 1 : Two fermions A and B can only
combine into a boson C etc.

The next higher power involves one factor XA. Then, in order that the A[A' terms
cancel out again the Z-'. terms in the 2nd sum in (2.10), we have, the fys being
arbitrary, the conditions:

y r° X'*Lia"x ax axa y. A-£ta". a.
(-")

^;a1a2
c: (3.4)

for all sums over an index ax, bx (or a'x, bx...). This condition is weaker than DB, but
stronger than in the Boltzmann case (2.11). (We shall show, in a subsequent
publication, how, in the case of quantized fields this condition arises from the unitarity of
the S-matrix). The lower powers in the IVa's cancel out, if (3.4) is satisfied.

The considerations of § 2, concerning the equilibrium case, are still valid : However

na is not any longer the mean occupation number per microcell in a, but we
have the relation :

N" "" (3.5)_ZL_
Cl+lANa

which, using (2.13), leads to

K ci(o{Ea~"A)lkT-h)-1; h
+ 1 BE

0 Bo

- 1 FD

(3.6)

The equilibrium condition for the chemical potentials (2.14) shows, on account of
(3.5), that for self-(C)-conjugated particles (photons ti0 mesons etc.) 0 0 we have

/*<2> 0; 0=0. (3.7)

The chemical potential of self-fC)-conjugated particles 0 is zero. If A 4= A, we have,
on account of (2.14) and (3.5)

liA -liA; A=¥A. (3.8)

The chemical potential /uA of anti-molecules A is numerically equal to fiA but of opposite
sign.
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The partial differential equations

^^^ -g^-klogna

may be integrated for arbitrary values of XA, valid even in the non equilibrium case.
The integration yields

S ZASA -kZAZaCl ((»; x - XA) -1 log na + XA
1 log (1 - na XA)) (3.9)

na is given by (3.5). The Boltzmann case is obtained as the limit XA -> 0.

.um S, - k Za K (log na-l); na -* §-. (3.10)

The integration constant in (3.9) or (3.10) must be chosen to be zero, because empty
fradiationless) space Na 0 (or wa 0) has zero entropy.

4. The Boltzmann Approximation

The Boltzmann approximation, at equilibrium, is realized if X <^ C°a. In this case,
according to (2.13) and (3.5), we have

na ^A~*aV*T a (X.) (i + ^ X)Z|<1, (4.1)

and wa is the mean occupation number per microcell of volume a>A hjA. The 3 statistics
BE, FD and Bo give the same result. Multiplying (4.1) with Ca and summing over
all a's, we obtain in terms of the sum over states ZA in ^-space of A

ZA [ZZ 2X°XJrl/*r^Ä-kfdmA e-HA\P-AÙrVkT( (4^*)

(with dcoA dpx... dpf dqx dqf and HA [...,r] Hamiltonian of a single
molecule A), and

Za Na fy e"A lT,r.,HAVhT ^ [T> r] (4.3)

the chemical potential /iA as a. function of T, of <A<? external parameters r {y-} ««(7

0/ A^. For a perfect non relativistic gas in a volume F, we have

3. [¦••] EM+ f\p\*l2A) +0A [q,r] + H^ [p*Ai...ps+fA q3+x...q3+fA] (4.4)

Where
\P\2 ëik Pi Ph fi k - 1 2 3), {?,"?} #', qt}

are the translational coordinates of the centre of mass, and

{P*+l...p*+/Amq3+1...q3+fAiM)}.

are the interior coordinates of the molecule A.

*) The last equation is valid in the classical approximation :

dcoAlhfA= Câ^>l, i.e. A->0.
34 H. P. A. 37, 6 (1964)
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EA0 is the rest energy of a molecule A of mass A.

ëik ëik ëï ëÎ=±àï
is the Euclidian metric of physical space *). tf>A [ff, r] is the potential energy, depending
on the re's. For a gas enclosed in a volume F, we have

rk [?> r'~l 0 f°r 1 e V< éi [?• r"l + °° f°r ^ ^-

^ V*«, [Z Z • z*m ^ (4-5)

is a product over a trans-f-lational) and an intf-erior) part. We have

Va„s) [T. F] -> <T eaoI»t Vf2nAk T)3'2 /X. (4.6)

For the partial pA pressure of 4, we have, according to

ÒA^ f-ZApA)àV,

in (2.16), and an account of (4.3)

Pa Za fy —lP- k T e"Al*T ÒZa [T> VVdV

NAkT ^-Ip Vl=fykTV~i.
(4.7)

Thus k is the Boltzmann constant. Computing ytA in terms of T and pA we find for
monoatomic gas without spin fZ[in(] [T] 1) (e.g. He1)

H-A [T, pA] EM + k T (- 4 logT + iogpA - log ((2 n Af'2 k^ /X)). (4.8)

For a gas with interior degrees of freedom, a term —kT logZ(int) [T] must be added.

If only NA molecules of A are present, we have pA p and /tA gA [T, p] fGibbs

potential per molecule). The interior energy is

Ua [T] fy yfgff^ - fy (EM A-f\kT) NA (EM + cvA
T). (4.9)

The 2nd and 3rd eq. are only valid for a monoatomic gas A. From the Gibbs identity

follows GA[T,pA,NA]=NAnA[T,pA] UA-TSA + pAV, (4.10)

SA[T,pA,fy]^NAsA[T,pA
5kfy (Z7 log T - k log pA + k log ((2 n Af* fk ef2 *-»)

AX^logr-/elog^+s^[l,l]),

(4.11)

*) Euclidian metric is necessary to give a lower + <5|; T > 0) or upper — ò\; T < 0) limit
for the cinetic energy.
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where sA [1, 1] is the entropy constant (per molecule) and cp 5 k\2 the heat capacity

at constant pressure pA (per molecule). Or, posing sA' [T -A>- 0] 0 for the condensed'^'

state of A, the chemical constant *) of A is

iA ZZZ^Zt iog ((2 „ Af'2 /Z2 A-») (4.12)

for a monoatomic, spinless gas. (4.11) may be obtained directly from (3.10), if (2.13)
and (4.3) are used. (We remark, that in this evaluation of SA the fy log fy term
does not occur. This is due to the fact that we have used only occupation numbers
Na in the definition of S (2.1)).

For a mixture of gases, we introduce the concentrations

0<C^ xk<1; ^=cAP; 2^=1 (4-13)

and use the definition of the Gibbs potential gA (per molecule A) related to fiA by
G EANA fiA [T, p, cA]

Fa VT, P, ca] fkA [T, PA gA [T, p] + kT log cA (4.14)

from which the law of mass action follows, using (2.14):

TX c£_
exp (_ {k T)l {^ _^ ^^ [r> ^ s R{v] [T) ^ (4 5)

nA, %
where the gA [T,p] may be evaluated in terms of the /xA [T,pA] (4.14), using (4.3)
and taking account of the interior degrees of freedom.
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*) The chemical constant iA is defined by the vapor pressure equation

ZfX(c) cp
lim log p[T]=iA —— + -y- log T (4.12*)

where Zo ^s tne enthalpy difference (per molecule) between the gaseous'*' and the condensed1

phase, extrapolated to T->- 0. The heat capacity satisfies A^ [T] ->• 0 (a T3).
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