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A Generalization of the Principle of Detailed Balancing in u-Space

by E. C. G. Stueckelberg de Breidenbach

(Universities of Geneva and Lausanne)

(2. IV. 64)

Abstract. The H-theorem in u-space for a mixture of free molecules or particles 4, B, ...
undergoing all sorts of multiple collisions or reactions (creation and annihilation) is generalized to
the case, where detailed balancing (DB) does not hold, and for the 3 statistics (BOLTZMANN,
Bose-EINsSTEIN, and FErMI-Dirac). The equilibrium condition is given in terms of the chemical
potentials u 4, up, ... The transition probabilities between macrocells have to satisfy a weaker
condition than DB,

Introduction

This publication, whose main interest will be of a didactic nature, is the demon-
stration of BOoLTZMANN: H (= 3 7 a)-theorem in a perfect gas, where different kinds of
molecules (or particles) 4, B, ... may collide in arbitrary way and undergo chemical
reactions of any type (including the emissions of photons, @). We look, how the
condition of detailed balancing (D B), which, as BoLTzMANN himself know already?),
is certainly too strong a condition on transition probabilities, may be weakened, so as
to preserve the H-theorem. We have shown in two earlier papers?)?) (referred to as I, IT)
how this condition may be weakened in I" space (on account of the unitarity of the
S-matrix), which is the only phase space, to which a physical reality may be attri-
buted?). However, in lectures on statistical thermodynamics, it is sometimes usefull
to treat the perfect gas in u-space, following BOLTZMANN’s original way. Therefore
we start, in § 1, with the Boltzmann Ansatz for macrocells, generalized to all sorts of
multiple collisions and reactions. We are immediately led (§ 2) to his logarithmic
expression for the entropy, while in I" space (see I and II), the H-theorem may be
demonstrated to hold for any monotonic increasing function, as a measure of infor-
mation. We difference the 3 statistics (BoLtzMANN (Bo), Bose-EinsTEIN (BE), and
FErMI-DirAC (FD)) through the notion of induced (BE) and anti-induced (FD)
transition probabilities, as already PAauL1?) did (basing himself on the ideas of JORDAN,
KrAMERS, OMSTEIN, and BoTHE®)). However, we assume this ‘induction factor’
(0 =+ 1(—1)) for BE(FD), o« = 0 for Bo in PAuLl’s article) 1, for molecules of
type A in this publication) as an arbitrary number. Our generalization of the D B-
condition (the consideration of chemical reactions, anti-particles A, ﬁ, ..., and CPT
covariance) necessitates A, = 4 1 (or = 0) (§ 3) and states the law of conservation of
statistics if 1, + 0 (equation (3.2)). Furthermore, considering the equilibrium case, for
a non degenerate gas, we find the well-known result for the chemical potentials u ,:
(1) Particles® which are identical to their anti-particles @ have zero chemical potential

e = 0.
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(2) Particles A and anti-particles A have numerical equal chemical potentials but of
opposite signs: uy = — uy.
Finally we calculate the chemical constant i, for a monoatomic, spinless gas,
whose experimental value shows that the constant /%, used to define micro-cells, is the
PLANCK’s constant, and establish the law of mass action.

1. The BorrzmanN Collision ‘Ansatz’

We consider a perfect gas composed of C different sorts of molecules A B ... =
12 ... C, between which collisions and chemical reactions may occur according to

W =Fpvp A Z v A =vi At vy B+ o A+ vy B+ (L1)

The v)}.’s (final state) and the »/,/’s (initial state) are positive integers. (v) is a complex
of indices

W) ={ vy V=Yg Yvg.Y, (1.1a)

describing the collision or reaction. (— ») describes the inverse collision or reaction:

(=) ={.. v VS ={V v Vv vg.. ).
For example the reaction (v) = C <- 4 + B, involving 2 initial components 4 and B
combining into C is different from (2v) =2 C < 2 A + 2 B. For each 4, we introduce
a separate p-space: {p;, q;}, 0 k... = 12 ... f4, f, being the number of degrees of freedom
of A. Each u-space is, at first, divided into micro-cells of phase volume 4’4 (h being
Pranck’s constant). We further imntroduce macrocells (of different magnitudes) de-
numbering them by a4, a’ ... or

ayay...d,ay... forA, by bb ... or bby...bjby,... forB etc.

Their volume is: for 4, C, 4/4; for B, C, h’B etc. with

Gy B 15 6y 18 aaas {1.2)
The occupation numbers of a (for 4), b (for B), etc. are
N,>1;, N,>1;, .. (1.3)
and the total number of molecules 4, B, ... is a variable number:
N,=3.N;; Ng=2X,N,; .... (1.4)

For a ‘collision” 4 <- A4, the gain (per unit time) of the cell a” due to a transition
a” < a' is, according to BoLTzMANN, C,» A,r. ,» N, and the loss due to the ‘inverse
collision’ is C, A, »» Ny, where Ay o > 0 is the transition probability. The net
gain is: .

Nppeay=2,CpAp. oy Ny—Cp Ay Ny (L5, A< A)¥)

’

a

*) Nu”(t) = (Ng(t") = Ng()) " =¢)"1 = 5Na”/6t for a period 0f = t” — ' £0 large compared
to the duration of a collision. Thus the ‘Boltzmann Ansatz’ does not provide a 6t > 0, as often
thought.
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For a real collision 2 4 <- 2 A we have for the number (per unit time) of simultaneous
transitions

N r n ’

Ay« ay;  dy<ag: Cp Cor Apror oy Nyt N, .

The corresponding number of inverse collisions is obtained, changing * = ". The total
gain of a given N, due to this process is:

Na”2A<—2A =2 C”C” Aa”a,” a; an Na' Na'
: ) al,%:z Brelel =, (15,2 4 « 2 A)
- C C A r/ a” Nﬂll N ”) Y

"2’ 2 ag

The factor 2 is due to the fact that

>0

v 5 == ,,,,.tr:lq,,”.rt
a4y dg; Gy dg dgdy; a4y i ay @y ; g dq

is symmetric with respect to the 2 final macrocells and the 2 initial macrocells:
Thus, both Au.z..0., and Ay, .., (and their inverse) contribute to (153
2A>24).

Let us now consider the simple chemical reaction (+ ») = C<2 A + B. We have
the transition probabilities

A%y . (>0) and A, (>0).

;a’b”
They contribute to Na” in the form
Npassec)= S Co Cop Al o N — C AS % o Ny Ny (15, A+ B<C)

For the most general collision or reaction (¥) (1.1), we have therefore the ‘Bolizmann
Ansatz’:

Ny = ”A (Cor Cog - Cpp Cr o Gy
By e By 47 B~
Y3 BI
)
Aa”a; ay b7...b, say...a by .b’”...Nazi' Na' Nb1 "Nb"
” BI! 4 T’B 'VA Y .
(1.5;7)
— Cory Gt e oty i AT™ 5005 iy
a’ﬁ b, a a,’ by...b, ; a”ay asz L4 b;lf;)
N N»...NGZ,N o Ny, o)
A
The factor v, arises from the fact, that the A(,, Wl B s, and Aflf £ A d ate b
ayr b sa Lo ey e b

are symmetric in the ' 7 ; indices a;, like the factor 2 in (1.5,2 4 <- 2 4). Now a word
why we have introduced macrocells. If n’ of the initial a; are equal, the number of
collisions is not proportional to NZ: but to

4
Ny —mn
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It Na;, > v;, we may write (Na;)"' and absorb the factor (»'!)—1 in A(V‘a; sl
On the other hand, if #" of the final 4] are equal, the contribution should be pro-
portional to )

' (Cu)” Af’.’).afa;f...a;f...;ai...
But this term arises also #”! times, thus we have also to divide by »”!, which may

again be absorbed in 4" » .o . Thus (1.5; ») is correct, if the Aff’)_’s and

”on
...ahal...al. . a
T 1 i 7k

A(_ "’s are properly redefined.

The total net gain in a” is therefore

Ny =5 X Ne () (1.6)

the factor 1/2 being due to the fact that both (v) and (— ») are summed over all
collisions and reactions (1.1).

2. The H-Theorem

The H (= 3 v a)-theorem of Boltzmann states, that a functional of the occupation
numbers: — 3ta=S=S[...N,..., ... Nj...,...] exists, which for an adiabaticaily
closed system X = X, satisfies

. OS - OS . - -
S5=2, 0N, N, + 2 0N, Ny+ == 2o 8 Npw — 2 8 Np — - > 0, (2.])

if the ‘Boltzmann Ansatz’ (1.5; ») (1.6) is accepted. S is to be interpreted as the
entropy of 2. The

0ST[...]
=" 7 Nk
8o =& [Ny ooy e Ny ooy ] = oN,
are, at a first view, also functionals of all N,’s, N,’s,... . Substituting (1.5; v), (1.6)

into (2.1) we may, on account of the symmetries, replace &1 v{'; by Brtla e gy,

obtaining A
S: - — ‘1— Z 2’ ” (g ” —']— b —|— g ” -+- glf + "')
2 (v) “1""“1"'bvf'3',"' ay %;II by
P O # eeis (1:) " z ¢ 5 e 2y ww
X (Cal L Cbl A“l"'“agbl"';al"'wa"'Ml Nb]}B (2'2)
S C’ ...c', e (TV) 4 ” » g0 PR w, AVNi# eaa
a; b”B A“1-"bvB"'3“1"'“v;l’bl'“N"’l Zva,ﬁ 7\];)1 )’

the sum being taken over all collisions and reactions () and over all final (") and
initial (") macrocells. We may simplify the notation, by introducing the two complexes
of indices in the final and initial states of (»):

"

« ={ay...a b;"'b:é bas gy B =s {a{...b:,é...};

p”
A
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introducing the sums:
Bar = ga’i o e o ga,:n o= gb'l' o e By = ga;_ p kil (23g)
A

and the products:

Co = Ci Cg -G, O > 11 Cp =G> 1, (2.3 C)
Na”:I\ct;Mg"'Na:‘;M;"'>>l; Na’ :Nai...>1, (23N)
(’V) = (11) 1 ’ ’
Aoc”;o;' - A“l"-“abl"';“l"‘bvé'“ > 0,
o ey (2.3 4%)
Acx' s T Aa'l...b:,' v B sl DY v > 0,
B A
(2.2) reduces now to the simple form:
. 1 ‘ v -y
S = "—?Z(v) Za' o B (Ca” Aga”); o’ Na' - Coc' Afx’;gc” Noc")
; (2.4)
= _TZ(v) Zoz’oc” (goc" - ga’) Coc” Co:’ (Ag”;a' Wyt — Aclx'_;v;t” %cx”) ’
with the products:
Ny» 3
My = o =ty ety > 05 My = —mmy >0, (25)
where
na=lcv“>0, nb=mg—">0 (2.6)
a b

are (in the Boltzmann case) the mean occupation number of a wmicrocell inside the
macrocell @ for 4, b for B,.... The 2nd, symmetrised equation (2.4), arises from the
fact, that we may also write the 1st equation, interchanging «” < o' and (v) 2= (— »),
and is the half sum of both these expressions.

Now let us first consider detailed balancing (DB) expressed by Af:); ot A&T;”i»

leading to
: 1 v .
S = -:'__Z(‘D) 20&’&” Ca” Ca' A&II); O.'.’ (galf - gm') (’ﬂan - naf) > 0 . (2.7, DB)
The common factor C, C,- A}).,., being non-negative, (2.7; DB) requires that
£« = &[] be a monotonous increasing function of n, > 0. The n’'s being a product (2.5)
and the g,»'s being a sum (2.3 g) over »; macrocells &’, »; macrocells b” etc., the only
choice is

g, =klogn, >g,=Fklogn,; g,=krklogn,; ... (2.8)

where % is a positive constant (the Boltzmann constant, as we shall see in (4.7)).
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However, the principle of detailed balancing (DB) is, for an arbitrary choice of
macrocells, not valid®). Therefore, we introduce the #non-negative (asymmetric)
Sfunction L(x,y) (for x, y > 0)

y[x
L(x,y)=xfdt10gt=y(10gy—logx)—y+x>0, (2.9)%)

1

which permits to write (2.4) as a sum of 2 terms:
) k -V v
S= 4 2uyZwwy CoCy (AG2 Ling, np) + A, o L(n,, n,.)

; L vy Nl
+ Z— Z(V} 20[”0.’ (Ca-’ A&r;&ﬂ Natf —_— NCC’ AO!.’;;” C (2 O)

a”

+ Cp AP v N, — N, AY. . C.) > 0.
The 1st term is non-negative. The N,’s being arbitrary, there is no way to make the
2nd term non-negative. Therefore it has to be equal to zero. As the N,- and N, are
arbitrary, the condition on the transition probabilities is now (Bo-statistics!):

ZCX.” Call A(vl) PR Zd.” A&T;v()xﬂ Call . (2.11)

This 1s a much weaker condition than DB. It corresponds to the generalization of DB

put forward by us, in I and II for the Boltzmann case (Bo). S = 0, i.e. equilibrium is
only reached, if, for all (»)’s we have n, = n, or logn, = logn,. We introduce now
macrocells a, b, ... with amean energy E, for A, E, for B etc. The transition probabilities
differ from zero, only if we have (approximative) conservation of energy for each
collision or reaction (») (1.1)

Efg+Eg+ -+ En+Es+ =E;+Eg+-+E; +E;+--. (2.12)
Y4 1 1 2 V4 1

Thus, equilibrium is reached, only if

-E - E
lognazﬂéT—“; lognbz%—?i; (2.13)

where the constants u, pp, ... satisfy (cf. 1.1)
Vg g+ Vg g+ =V g Vg g e (2.14)

We shall now demonstrate, that 7" is the absolute temperature and uy the chemical
potential of A. To do this, we consider a variation of external, macroscopic (geometric)
parameters 7' = {r¢},po... = 12 ... w, and suppose the energies: E, = E, [7]. Then
the variation O of internal energy of the gas U = Uy + Uy + -+ is:

OU =0 (X, N,E, [r]+ X, N, Ey [r'] + ) | 215
— (320N, E, + 3, 0N, -E, + ) + 64, |

*) This inequality is due to the late W. PauLl. We made use of it in I and II.
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where
SAM = K 70 = (5, N, 8, E, [r'] + X, N0, B, [r] + =) 87°  (216)%)

is the work due to the w external (incident) forces K(™. Substituting in (2.1) (in the
form 6 S=—-2,g,0 N, — 2%, g,0 N,— ---) (2.8) and the equilibrium value (2.13),
we find

60S=T1(Y,0N,-E, + 3, 0N,- E,+ -+ —py 6 Ny — puy 6 Ny — ) . (2.17)
From (2.15), (2.16), and (2.17) follows
OU=T6S+84" + ¥ u 6N, =6UI[S,r,N, N, ...], (2.18)

which is the definition both of T and the u,’s**).

3. BE and FD Statistics

Bose-EINSTEIN (BE) or FErRMI-DirAC (FD) statistics deviate from the Boltzmann
case (Bo) by induced (A, > 0) or anti-induced (A, < 0) transitions to the macrocell a.

We shall now consider C° as the number of microcells in a, and define, in the formulae
of §§ 1 and 2
Ca - Cg + Z’A Na ’ (31)

A4 being the ‘induction constant’, depending but on the substance 4. (One might
think to introduce a macrocell depending constant A4, But, because the choice of
macrocells is, up to (2.12) (energy-shells), arbitrary, one must have A, = 24). C,» and
C,- depend now on the occupation numbers Ng ..., Ny .... Thus (2.11) can not be

satisfied if A, + 0. To make the 2nd term of S in (2.10) zero, we have to consider all
products occurring on account of (3.1) Ny Ny ... Ny ... Ny ... separately in this 2nd
term of (2.10). The Aighest power in the N,’s requires

FANE o = JATE (3.2)

Then the 2 terms containing A(”) (and the 2 terms containing Af;__”)) cancel out
separately. In order to show that A, = + 1, we have to consider the anti-molecules or
antiparticles A, (charge-)conjugated (C) to A. Then the creation (v) of " pairs A + A
(or anmnihilation (— »)) according to

v: v (A+A)+24«24 (3.3; %)
may occur, if the energy is sufficient. Or, in this case we have (3.2)
Ay Ap)" 45 =23, (3.4; A + 4)

¥) 0o E, [»] = 0 E, [r]]ore.
**) uy is the chemical polential per molecule of particle A (and not per mole).
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which requires A, Ay = + 1,if 1, + 0. On the other hand we have particles @ (photons,
7° mesons) which are self(-charge-)conjugated @ = ®. In this case the annihilation (v)

(or creation (— v)) reaction _
v: YD« A+ A (3.5; %)

may occur, where »” is any positive integer. (3.2) requires in this case lp = A4 47 = + 1.
The @-particles are bosons. If »” is always even, we have A3 = 1; 1, = £+ 1: The
@-particles may be bosons or fermions. In order to infer, from A, Az =+ 1, 4, =
Az = + 1 (bosons) or A4, = A7 = — 1 (fermions) for 4 + A, we have to use the CPT-
theorem, which states: In an anti-universe 4 - A4 (C), where ¢ - — ¢ (T) and where
right becomes left (P), the laws of physics should be identical. Only this requirement
implies A, = A7 = 4+ 1. Now (3.2) is the law of conservation of statistics. For example
C& 4 + B is satisfied by Ao =1, 4, = A5 = —1: Two fermions 4 and B can only
combine into a boson C etc.

The next higher power involves one factor 4,. Then, in order that the A.(;”_”) terms
cancel out again the Aff)_ terms in the 2nd sum in (2.10), we have, the N,’s being
arbitrary, the conditions:

0 (v) _ (=7) 0
Zaz Ca’l' Aa;ag...a;',;bi..‘;b'l...all...b;b_ Za’{ Aa'l...b'l...b;é;ua’.a’é...a%;b’l'.‘. Ca’l' (34)

for all sums over an index ay, by (or a, by ...). This condition is weaker than DB, but
stronger than in the Boltzmann case (2.11). (We shall show, in a subsequent publi-
cation, how, in the case of quantized fields this condition arises from the unitarity of
the S-matrix). The lower powers in the N,’s cancel out, if (3.4) is satisfied.

The considerations of § 2, concerning the equilibrium case, are still valid: How-
ever #, is not any longer the mean occupation number per microcell in a4, but we

have the relation:

N, _ Ny
Py = C, Cl+iqN, ieB)

hich, usi 2.13), lead
which, using ( ), leads to 4+ 1 BE

N, = C? (e®a~hT _ 3 y-1. 2 =10Bo (3.6)
—1FD

The equilibrium condition for the chemical potentials (2.14) shows, on account of
(3.5), that for self-(C)-conjugated particles (photons #° mesons etc.) @ = @ we have

o=0;, D=0, (3.7)

The chemical potential of self-(C)-conjugated particles @ is zero. If A + A, we have,
on account of (2.14) and (3.5) _
Mg =—ug; A=+4. (3.8)

T'he chemical potential pz of anti-molecules A is numerically equal to uy but of opposite
Sign.
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The partial differential equations

0S[...N,... N, ...
0N,

=_ga=_klogna

may be integrated for arbitrary values of 4,4, valid even in the non equilibrium case.
The integration yields

S=28%=—%23,2.C(n; t— AA)_I log 7, + AA_l log (1 —n,2,)) - (3.9)

n, 1s given by (3.5). The Boltzmann case is obtained as the limit 4, - 0.

lim S, = — X, N, (logn, — 1); 7,0t (3.10)
/14-—_> a

The integration constant in (3.9) or (3.10) must be chosen to be zero, because empty
(radrationless) space N, = 0 (or n, = 0) has zero entropy.

4. The BoLTzMANN Approximation

The Boltzmann approximation, at equilibrium, is realized if N, € C?. In this case,
according to (2.13) and (3.5), we have

and n,is the mean occupation number per microcell of volume w4 = h'4. The 3 statistics
BE, FD and Bo give the same result. Multiplying (4.1) with C and summing over
all a’s, we obtain in terms of the sum over states Z, in u-space of 4

Z, [T, 7] = 3, C° e EalrIhT _, k—.mfde g~ Halb.40ir kT (4.2)%)

(With  dwy = dp, ... dp;, dq, ... dg,, and H,[...,r]= Hamiltonian of a single

molecule A), and )
3. N, =N, = eral T NgIkT 7 [T o7, (4.3)

the chemical potential u, as a function of T, of the external parameters v = {r°} and
of Ny. For a perfect non relativistic gas in a volume V, we have

Hy[..]=Eq+ (|B424) + @, [q, 7]+ H{ [p3+1... p3+ia gy e Gaag,]) (4.4)

where

[}5[2 = gik pibr (k- =123), {5:6} = {pi: Q'z'}
are the {ranslational coordinates of the centre of maés, and

{p3+1 L p3+i‘i(1m) 93+1 Az Q3+Q(mt)} 2
are the interior coordinates of the molecule 4.

*) The last equation is valid in the classical approximation:
dwglht = Cu>>1,ie. h> 0.

34 H.P.A. 37, 6 (1964)
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E, is the rest energy of a molecule A of mass A.
ik ' k k
g =gu=8r=8i==L0;

is the Euclidian metric of physical space*). ¢, [q, r"]is the potential energy, depending
on the 7¢’s. For a gas enclosed in a volume V, we have

¢, [g7]=0 for qgeV, @ lg.r]=+oco for gé¢V.
ZA = ‘ZA(tmns) [T V] - ZA(mn [T] (4'5)
is a product over a frans-(-lational) and an int(-erior) part. We have

[T, V] e Ba0kTY 2 A B T2 A3, (4.6)

A (trans)

For the partial p, pressure of 4, we have, according to

6A™ = (— 24 b4) OV
n (2.16), and an account of (4.3)

L 2ElV) _ p 7 ot 0z, (T, V)0V

— P =

(4.7)
Olog Z4 [T, V]

= N, AT SEL

—N,ETV-1.

Thus % is the Boltzmann constant. Computing u, in terms of T and p, we find for
monoatomic gas without spin (Z ;,, [T] = 1) (e.g. He?)

(T, p) = Egg + B T (— 5 1ogT + logp, — log (27 A B2 1Y) (4.8)
For a gas with interior degrees of freedom, a term —& T log Z;,, [T] must be added.

If only N, molecules of A are present, we have p, = p and uy = g4 [T, p] (Gzbbs
potential per molecule). The interior energy 1s

d(log Z4 [T, V]
U,[T] =N d((—g(kAT)—l) =N, (EA0 + S RT)=N, (B + oy, T). (49)
The 2nd and 3rd eq. are only valid for a monoatomic gas A. From the Gibbs identity

follows Go[T, b0, Nyl = Nypy [T, 8] = Uy = T S+ £V, (4.10)

ST, s Nyl = Nysy [T, 4]
~ N, ( log T — klog p, + klog (27 4)** (k)" h=9)) 1 (4.11)

=N, (¢, logT — klogp, + s, [1,1]),

*) Euclidian metric is necessary to give a lower (+(§};; T > 0) or upper (wﬁ};e; T < 0) limit
for the cinetic energy.
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where s, [1, 1] is the entropy constant (per molecule) and Cp =3 k[2 the heat capacity

at constant pressure p, (per molecule). Or, posing s\ [T — 0] — 0 for the condensed
state of A, the chemical constant*) of A is

. [lxl -
iy = T g (2. )Y KR 3-9) (4.12)

for a monoatomic, spinless gas. (4.11) may be obtained directly from (3.10), if (2.13)
and (4.3) are used. (We remark, that in this evaluation of S; the N, log N, term
does not occur. This is due to the fact that we have used only occupation numbers
N, in the definition of S (2.1)).

For a mixture of gases, we introduce the concentrations

N,
0<g=5 <1 p—ap; Ziu—1 (4.13)

and use the definition of the Gibbs potential g, (per molecule 4) related to u, by
G=2 Nypy(T,p,¢]

pa [T, b, ] = pu [T, B4 = g4 [T, p] + £ T log ¢ (4.14)

from which the law of mass action follows, using (2.14):

1, & . ,
HA ;, =exp (— (R 1)1 (X vyr gy — 2y 8a) [T, P)) = K™ [T, p] (4.5)
A EA'

where the g, [T, ] may be evaluated in terms of the uy [T, p,] (4.14), using (4.3)
and taking account of the interior degrees of freedom.
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