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Axiomatique Quantique

par G. Piron¥*)

Universités de Genéve et Lausanne

(26 11 64)

Abstract. We develop here an axiomatic scheme for studying the structure of the set of
observables corresponding to yes-no experiments. The usual formalism of Quantum theory as
Hilbert-space theory as well as the phase-space formulation of classical mechanics appear now
as particular cases of our scheme. The mathematical structure proposed here is tha;t of a weakly
semi-modular orthocomplemented atomic lattice.

1. Introduction

En théorie quantique, une observable est représentée par un opérateur linéaire
(en général auto-adjoint) agissant dans un espace d’HILBERT. Mais on sait d’autre
part que l'existence de régles de supersélection implique l'existence d’opérateurs
linéaires auto-adjoints qui ne correspondent 4 aucune observable. Dans ce travail
nous caractériserons intrinséquement la structure de ’ensemble des observables d'un
systéeme physique. Nous pourrons alors justifier I'emploi de I'espace d’HILBERT et des
opérateurs linéaires avec les particularités rattachées aux reégles de supersélection.
Nous suivrons une méthode axiomatique dont le point de départ est di a G, BIRK-
HOFF et J. VON NEUMANN1). Mais ce ne sont pas les différences «logiques» entre la
théorie classique et la théorie quantique qui nous préoccupent, notre but étant de
développer un formalisme général valable dans les deux cas. C’est pourquoi, aprés
avoir introduit les grandeurs qui nous intéressent et discuté leur rapport avec la
logique, nous examinerons en détail le cas classique et le cas quantique habituel
(entre autres le cas de l'oscillateur). C’est ainsi que nous serons conduits a formuler
nos axiomes. Pour terminer, nous définirons la notion d’état physique comme «pro-
babilité généralisée» selon une idée due & MACKEY?2), ce qui nous permettra d’inter-
préter certaines difficultés de la théorie habituelle (par exemple les divergences qui
apparaissent lors de I'existence de régles de supersélection continues). Nous renverrons
a un appendice les démonstrations mathématiques pour ne pas rompre I'enchainement
des raisonnements physiques.

2. La «logique» des propositions

Etant donné une famille de systémes physiques, considérons parmi toutes les
mesures possibles celles pour lesquelles la mesure du systéme se traduit par oui ou non.
Nous appellerons propositions les observables correspondantes et nous les noterons

*) Ce travail fait I'objet d’une thése présentée & 1'Université de Lausanne.
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par des lettres a,b,¢,..., P,Q, R,... Comme, en fait, toute mesure peut étre
remplacée par une suite de mesures du type oui-non, I'étude des observables se raméne
al’étude dela structure de I’ensemble des propositions. Nous dirons qu’une proposition
est vraie pour un systéme donné (c’est-a-dire préparé d’une maniére déterminée),
si la réponse oui est certaine. Pour que cette définition ait un sens aussi bien «avant»
que «aprées» la mesure (et méme en ’absence de mesure), il doit étre possible si a est
vrale de mesurer a sans perturber le systéme. C’est ce que nous admettrons.
Si a et b sont deux propositions, il peut se présenter le cas suivant:

«b est vraie chaque fois que a est vraien.

Nous noterons cette relation: @ < b et a = b signifieraa < b et & < a.

Nous allons dés & présent postuler un certain nombre d’axiomes. La signification
logique et physique que nous en donnerons rend trés plausible leur validité.

Axiome O: La relation < est une relation d’ordre, c’est-a-dire:

O, a<a ¥Ya, Oya<b et b<c¢c = a<ec.

I1 est clair que O, et O, découlent logiquement des définitions. En appliquant deux
fois O,, on déduit:
a—= et b=c¢c, => a=c,

ce qui montre que 1’'égalité que nous avons définie est bien une relation d’équivalence
et nous conduit a identifier les propositions «égales». Ainsi & une proposition cor-
respond toute une classe d'instruments de mesures du type oui-non.

Axiome T: Il existe un plus grand minorant (une borne inférieure) pour toute
famille non nulle de propositions. En d’autres termes, étant donné des a; 7 € J, il existe
une proposition notée Na; telle que:

T, x<a; Ve ] = x < 0a;.

Cet axiome exprime le «et» de la logique. En effet, la mesure de tous les a; considérée
comme une seule mesure, avec la réponse oui si toutes les réponses sont oui et la
réponse non dans tous les autres cas, définit un élément de la classe correspondant a
la proposition na;. On vérifie immédiatement que T, est satisfait et que si Na; est
vraie, cette mesure ne perturbe pas le systéme. L’axiome 7" implique l'existence d'une
proposition ¢ telle que:
¢ < ava.

C’est la proposition absurde qui ne peut étre vraie sans que toutes les propositions
solent vrales, ce qui de fait est impossible.

Axiome C: Il est donné une orthocomplémentation, c’est-a-dire qu’a chaque
proposition a correspond une proposition notée a’ de maniere que:

C, @)Y<awva, Cyana<dva, Caa<?b = b<a.
C’est donc une involution; car C, appliqﬁé a a’ s'écrit:
((al)l)f < ar ,
d’olt en vertu de C,
a< (a")'.



Vol. 37, 1964 Axiomatique Quantique 441

- . ’ 5 - . . .
Nous, pouvons alors écrire les axiomes C; d'une maniére plus symétrique mais équi-
valente:

(@) =a, adDa=¢, a'<b = b<a.

Physiquement cette correspondance s’obtient en échangeant le réle du oui et du non
dans I'emploi de I'appareil de mesure. Ceci n’a de sens que pour un appareil qui lors
d’une mesure, ne perturbe pas le systéme si 'une des réponses oui ou non est certaine.
Obtenue ainsi, cette correspondance est bien une involution, ce qui justifie I'axiome C,.

C, exprime en logique le tiers exclu; ici il signifie que «1'aiguille» de I’ mstrument de
mesure ne peut occuper simultanément les deux positions possibles.

Enfin C; est connu en logique sous le nom de loi de MORGAN. Sa justification
physique résulte de 1'idée intuitive que a < b signifie «probabilité de la réponse oui
pour la mesure de & plus petite que probabilité de la réponse oui pour la mesure de b».

Les trois séries d’axiomes O, T et C définissent sur I’ensemble des propositions une
structure de treillis complet orthocomplémenté, car pour toute famille de propositions,
il existe non seulement une borne inférieure, mais aussi une borne supérieure. En effet,

posons:
e =(Qu) -
C’est la borne supérieure de la famille des a; car:
4; < xN¥IiE] <= x' < a ¥ie]
e x'é?a; = Y&, < x.
On appelle complément de x une proposition vy telle que:
xNy=¢ e 2xuy=1,

ou [ est la proposition maximale: a < I ¥a. I est vraie dés qu’une seule proposition
est vraie. Intuitivement, I vraie signifie: le systéme existe. On dit qu’'un treillis est
complémenté si pour tout élément il existe au moins un complément. Ainsi un treillis
orthocomplémenté est toujours complémenté car a’ est un complément de a.

Certains auteurs ont voulu voir dans les axiomes précédents les régles d’une
nouvelle logique. En fait, ces axiomes ne sont que des régles de calcul et la logique
habituelle s’applique sans avoir besoin d’étre modifiée. Nous en donnerons comme
preuve les deux remarques suivantes:

1. @ < b est bien le correspondant de la relation d’induction logique 4 = B, mais

< b ne peut étre considérée comme une proposition (ce n’est pas une mesure du
type oul-non); on ne peut donc pas donner un sens a 'expression a < (b < ¢) qui
serait ’analogue de la relation 4 = (B = C) pourtant bien définie en logique.

2. S1 dans un cas bien déterminé a n’est pas vraie, c’est-a-dire si la réponse oui
n’est pas certaine, on ne peut rien en déduire sur a’, la réponse non pouvant étre
certaine ou incertaine. Cette possibilité ne contredit pas le principe du tiers exclu
(et n’impose donc pas une logique'a trois valeurs)!3). On trouve un cas analogue en
mathématiques, et c’est la notre remarque. Si 4 un stade déterminé du développement
d’une théorie, la relation 4 n’est pas un théoréme (c’est-a-dire si la démonstration de 4
n’a pas été faite et si le mathématicien avoue ne pas la connaitre), cela n’implique rien
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sur la relation non-4 qui peut bien étre déja démontrée, mais qui ne le sera peut-étre
jamais?).

Nous interrompons cet exposé des «régles» du calcul des propositions pour con-
sidérer le cas classique et le cas quantique habituel, comme nous ’avons annoncé dans
I'introduction.

3. L’espace de phase et le treillis des propositions d’un systéme classique

En physique classique et plus particuliérement en mécanique, on représente I’état
d'un systéme, a un instant donné, par un point d'un certain espace: ’espace de phase.
Une mesure est alors définie comme une fonction sur cet espace; & chaque état, c’est-
a-dire a4 chaque point de l'espace de phase correspond le résultat de la mesure, c’est-a-
dire la valeur de la fonction. Il s’en suit que les propositions sont les fonctions a deux
valeurs 1 ou O (oui ou non). Une telle fonction est entiérement caractérisée par son
support, ¢’est-a-dire par I’ensemble des points qui prennent la valeur 1. I1 y a donc
correspondance biunivoque entre les propositions et les sous-espaces de 'espace de
phase. La relation d’ordre que nous avons introduite au paragraphe précédent se
traduit ici par la relation d’inclusion de la théorie des ensembles; en effet, dire que
a < b c’est dire que les fonctions correspondantes f, et f, sont telles que:

Jp est égale a 1 chaque fois que f, égale 1, ce qui signifie que le support de f, est
contenu dans le support de f,.

Les trois axiomes précédents sont des conséquences de la théorie des ensembles.
Ainsi la borne inférieure correspond a l'intersection et I’orthocomplément au sous-
ensemble complémentaire. Notons aussi les relations algébriques qui relient les
fonctions correspondantes:

aébc}fagfb' fanb=fafb’ fa’=1-—fa'

Le treillis des propositions d'un systéme classique (c’est-a-dire le treillis des sous-
ensembles d'un ensemble) posséde d’autres propriétés caractéristiques.
C’est un treillis distributif:

afN(buc)=(@nbu(@anc) ¥a,b,c.
Cette relation entraine sa duale:
ap(b0c)=(avd)N(avc) ¥ab,c,

ce qui pour nous est immédiat en appliquant I'axiome C, mais qu'on peut aussi
démontrer directement.

Enfin, c’est un treillis atomique:

Pour tout « il existe un «atome» P tel que:

P<a,
et on appelle atome ou point un élément P d’un treillis qui est différent de ¢ et tel que:
p<x<P = x=¢ ou x=0P,

Ce sont ici les points de I'espace de phase.
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G. BIRKHOFF et J. voN NEUMANN ont critiqué le point de vue (exposé ici) que tout
sous-ensemble de l'espace de phase correspond a une proposition. Il leur parait (nous
traduisons) artificiel de considérer comme proposition une affirmation telle que: La
vitesse angulaire de la terre autour du soleil est un nombre rationnel (en radian par
seconde), et il leur semble mieux, au moins en statistique, de considérer que ce sont
les classes de sous-ensembles mesurables modulo un sous-ensemble de mesure nulle,
qui correspondent aux propositions. De telles considérations les conduisent & aban-
donner I'axiome d’atomicité. Ainsi dans I'idée de ces auteurs, une mesure comportant
toujours une certaine incertitude, seules les propositions qui peuvent étre définies
dans le cadre d’une théorie statistique sont physiquement valables. Mais si, sans nous
restreindre & une théorie particuliére, nous considérons toutes les propositions d'un
systeme classique, il nous faut admettre 'existence d’atomes, c’est-a-dire de mesures
précises des grandeurs telles que la position ou la quantité de mouvement, bien que
cette existence ne soit pas définie en acte mais en puissance (non in actu sed in
potentia). C’est du moins ce que suggere le fait qu’il est toujours possible pratique-
ment d’améliorer le résultat d’une mesure.

Un treillis abstrait satisfaisant aux axiomes O.T.C., aux propriétés de distributi-
vité et d’atomicité est appelé un treillis de BooLE complet (continu selon J. voN NEU-
MANN) et atomique. Or un tel treillis peut toujours étre considéré comme le treillis des
sous-ensembles de I'ensemble de ses atomes. On a ainsi une caractérisation du treillis
des propositions d'un systéme classique.

4. Le cas quantique habituel:
position du probléme, exemple de 1’oscillateur linéaire

En théorie quantique les observables sont représentées par des opérateurs linéaires.
C’est pourquoi les propositions correspondent aux projecteurs, opérateurs auto-
adjoints a deux valeurs propres 0 et 1, satisfaisant aux relations:

P, =Pl =Pz

Un projecteur peut encore étre défini par 1’ensemble de ses vecteurs propres de valeur
propre 1. Un tel ensemble est toujours un sous-espace vectoriel fermé et chaque sous-
espace vectoriel fermé définit un et un seul projecteur. Si a est une proposition, nous
noterons P, le projecteur et V, le sous-espace correspondant.

La relation a < b signifiant «a vraie entraine b vraie» est équivalente a I'inclusion:

VaC Vs
Elle se traduit donc en termes de projecteurs par 'une des deux relations équivalentes:
PBe=PF, Bl=F,

formellement identiques au cas classique.

La borne inférieure d’une famille de P,; existe toujours, c’est le projecteur
correspondant au sous-espace vectoriel fermé intersection des V. *

Enfin si P, = I — P, 'axiome C est immédiat. Vérifions par exemple C,:

e e =R =B =T -1,
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d’ol en développant:
I-P—~P+FBP=1I-F,
c’est-a-dire:
P,P,=P,.

Contrairement au cas classique, un tel treillis n’est pas distributif. Mais si nous
nous bornons au cas particulier d'un espace d’"HILBERT de dimension finie, le treillis de
ses sous-espaces vectoriels (fermés) est modulaire, c’est-a-dire que:

x<z = xulyNz)=(xuy Nz.
Démonstration: Dans un treillis quelconque, on a toujours:
xuyNz) < (xuy)Nz pour x < 2.

Il nous suffit donc de montrer que tout vecteur de Vi, ), st contenudans V, -
SiaeV,,yn,alors aeV, et aeV,,,. Mais tout vecteur de V,,, est somme d'un
vecteur de V, et d'un vecteur de V, car V,,, est de dimension finie. On peut donc
écrire a=b+ cou beV, et ceV,. Or par hypothése V, C V,donc be V, et il en
résulte que @ — b appartient aussi a V,. Ainsi ceV,,, et a est bien somme d'un
vecteur de V, et d'un vecteur de V.. (C. q. f. d.)

Cette démonstration permet d’imaginer un contre-exemple dansle cas de dimension
infinie. En effet le sous-espace engendré par les vecteurs de V, et V, n’étant pas
nécessairement fermé si V, et V, sont tous deux de dimension infinie, il faudra le
compléter par des vecteurs limites pour obtenir V,,,. Soit d un tel vecteur limite et
supposons V, et V, disjoints. Posons V, égal au sous-espace (automatiquement fermé)
engendré par les vecteurs de V, et ce vecteur d. Dans ces conditions V., est nul,
xU(yNg)=x, mais (x yy) NDz=z dou le contre-exemple.

En résumé, le treillis des propositions d’un systéme quantique de type fini, c’est-a-
dire d’un systéme quantique dont ’espace d’"HILBERT correspondant est de dimension
finie, est un treillis complet orthocomplémenté et modulaire. De plus, 1l est certaine-
ment atomique bien que chaque projecteur ne corresponde pas nécessairement a une
proposition.

Ces propriétés caractérisent de tels systémes, mais pour énoncer ce résultat, nous
avons besoin de quelques définitions. Soit {‘Ei} une famille de treillis, on appelle produit
direct des 7, le treillis 7 dont les éléments sont les familles {xi} (ol x; € 7;) et la relation
d’ordre, la relation définie par:

{xz} < {yz’} = 5 <Yy V.

Si chaque 7; posséde un plus petit élément ¢, il existe pour chaque 7, un plongement
dans 7:
¢, si jF1

X 81 =1,

x;, — {yj} avec y; =

ce qui permet de définir T comme 'union directe des sous-treillis 7;. Ainsi, par exemple,
le treillis des propositions d'un systéme classique est un treillis de BOOLE complet et
atomique qui n’est autre que l'union directe de treillis contenant chacun deux élé-
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ments. Enfin on dit que 7 est irréductible s’il n’est d’aucune maniére 'union directe
de deux sous-treillis contenant chacun plus d'un élément.

Notre résultat s’énonce alors ainsi: Tout treillis complet orthocomplémenté,
modulaire et atomique est I'union directe de sous-treillis irréductibles qui sont des
géométries projectives de dimension finie (Théoréme V de l’appendice). Or toute
géométrie projective irréductible, & ’exception de la droite et du plan non-arguésien,
peut étre représentée par les sous-espaces d’un espace vectoriel. Dans ce cas, le sous-
espace correspondant a I'orthocomplément est défini a I'aide d'une relation d’ortho-
gonalité donnée par une forme hermitienne définie (voir théoréme XXI de I'appendice).
On remarquera que les géométries projectives sous-treillis de 'union directe s’identi-
fient aux sous-espaces cohérents définis par les régles de supersélection et qu’ainsi le
cas classique apparait comme cas particulier ot les sous-espaces cohérents sont tous de
dimension un. Nous avons ainsi complétement caractérisé le treillis des propositions
d’un systéme quantique du type fini.

Pour retrouver les cas de type infini, on pourrait a priori envisager trois sortes de
généralisations:

1. Les treillis complets, modulaires atomiques mais non orthocomplémentables
dont un exemple est le treillis des sous-espaces vectoriels (fermés ou non fermés) d'un
espace vectoriel de dimension infinie.

2. Les treillis complets, modulaires orthocomplémentés mais non atomiques dont
un exemple est le treillis des projecteurs d'un facteur II.

3. Les treillis complets, orthocomplémentés, atomiques mais non modulaires, dont un
exemple est le treillis des sous-espaces vectoriels fermés d’un espace d’ HILBERT infini.

Le premier cas n’a jamais été considéré sérieusement car l'interprétation physique
de I'orthocomplémentation parait bien fondée. En proposant I'exemple des géométries
continues, J. VON NEUMANN envisage le deuxieme cas. (Il n’y a d’ailleurs pas d’autre
exemple de ce cas comme le montre KApLANSKY¢).) On ne peut exclure a priori cette
possibilité, car étant admis que tout projecteur n’est pas nécessairement une pro-
position, il se pourrait que le treillis des propositions soit modulaire. Mais alors tout
sous-treillis serait lui aussi modulaire. Or, nous pouvons construire un exemple qui
contredit cette conclusion. En effet, les projecteurs spectraux correspondant a des
intervalles bornés du spectre des observables telles que la quantité de mouvement p ou
la position ¢ sont certainement des propositions admissibles, et il en est de méme des
projecteurs_obtenus a partir de ceux-ci par intersection et orthocomplémentation.
Mais nous démontrons dans l'appendice (1€ paragraphe) qu'un treillis complet
engendré par intersection et orthocomplémentation a partir de projecteurs correspon-
dant a des intervalles bornés disjoints et recouvrant entiérement les spectres de p et ¢
n’est jamais modulaire. -

Cecl nous améne a envisager le troisiéme cas, car 'hypothése d’atomicité ne se
préte pas a un raisonnement analogue au précédent, les sous-treillis d'un treillis
atomique n’étant pas nécessairement atomiques. On peut donc espérer satisfaire a
cette condition en définissant de nouvelles propositions. Considérons par exemple le
cas de I'oscillateur linéaire. En plus des propositions définies dans I'exemple précédent
a partir des observables p et ¢, nous disposons des projecteurs spectraux de I'énergie,
l'atomicité ne fait plus de difficultés car le spectre de I'énergie est discret.
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5. Notion de compatibilité et systéme de propositions généralisé

Reprenons I'exposé des régles du calcul des propositions, en introduisant une
nouvelle notion, la compatibilité. Dans le formalisme quantique habituel, on dit que
deux propositions sont compatibles si leurs projecteurs commutent, et on montre que
cette relation exprime essentiellement la possibilité de mesurer avec précision chaque
couple de leurs valeurs propres. Mais pour étre plus précis, on devrait dire, deux pro-
positions sont compatibles si tout état du systéme peut étre considéré vis-a-vis de ces
deux propositions comme un mélange d’états du type sans dispersion, ¢’est-a-dire pour
lesquels la mesure de ces mémes propositions donnerait un résultat certain. En d’autres
termes, le systéme se comporte pour des mesures compatibles comme un systéme
classique®). Nous sommes ainsi conduits a une troisiéme définition qui a I'avantage
de ne pas faire appel 4 la notion d’état mais seulement a la notion de propositions.
Nous dirons que deux propositions @ et b sont compatibles si le sous-treillis engendré
par intersection et orthocomplémentation est isomorphe a un treillis de BOOLE
(contenant donc 2, 4, 8 ou 10 éléments). Dans un treillis orthocomplémenté, cette
condition impose en général un grand nombre de relations. En particulier, si a < b,
les relations:

ay@nd)y=>5b e b0O(dua) =a,

sont les relations nécessaires et suffisantes pour que I'ensemble des huit propositions
¢, a, a'0b, b b, avub, a, I,

soit un sous-treillis, non seulement orthocomplémenté, mais aussi distributif. Une
seule de ces relations n’est pas suffisante comme le montre 1’exemple suivant:

ay(@nb)=avuc" =0b,
mais
bOo('va)=bNc=x.

Nous pouvons maintenant énoncer un nouvel axiome:

Axiome P: Deux propositions a et b telles que a < b sont toujours compatibles.

Nous appellerons, systéme de propositions généralisé, un ensemble de propositions
satisfaisant aux axiomes O, T', C et P. Dans 'appendice (paragraphe 2) nous démon-
trons pour de tels systémes, les propriétés suivantes:

1. a et b sont compatibles s’ils satisfont a la relation:

av@nd)=by(dnNa),
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relation que nous noterons a <> b et que nous lirons (par abus de langage) «a est
compatible avec b».

2. Si a est compatible avec chacune des b;, alors a est compatible avec UV b; et
Nb; et on a (Théorémes VIII et IX): '

“n(gbi):%} (@0 by), “U(?bi) = & (@auby) .

3. Un ensemble de propositions deux & deux compatibles engendre par intersection
et orthocomplémentation un treillis de BOOLE (c’est une conséquence directe des
propriétés précédentes).

4. a <> b n’est pas la seule relation qui entraine la compatibilité, il en existe beau-
coup d’autres (Théoréme VII). Parmi celles-ci, la relation:

@nd)u@nd)u@nt)u@nd)=1I,

est susceptible d’une interprétation physique simple. Etant donné deux propositions
quelconques a et b, considérons la proposition:

x=@nNbu@ndu@nd)u@nd).

On voit facilement que x est compatible avec a et b et que a0 x et b O x sont com-
patibles entre elles. Si donc, pour un systéme donné, x est vraie, mesurer « et b revient
a mesurer a N x et b N x et I'une de ces mesures ne «perturbe» pas 'autre. Nous avons
ainsi interprété x et du méme coup la relation x = I. Ces quatre propriétés justifient,
a priori, I'axiome P. Mais il existe une autre raison qui nous semble plus fondamentale.
L’axiome P est en effet la condition nécessaire et suffisante pour que I'application:

x > x,=(aux)0b,
soit une orthocomplémentation relativement au sous-treillis des x telles que:
a<x<b.

Ainsi, dans un systéme de propositions généralisé, les notions d’orthocomplémentation
et de compatibilité peuvent étre définies en quelque sorte indépendamment du couple
a, b jouant le role de ¢ et I (Théorémes VI, XI et XII?)).

6. Les systémes de propositions et leurs représentations
par les sous-espaces fermés d’espaces Hilbertiens

Les systémes quantiques du type fini que nous avons définis au paragraphe 4 sont
des systémes de propositions généralisés, car dans un treillis orthocomplémenté la
modularité entraine 'axiome P. Mais la réciproque n’est pas vraie, méme pour les
systémes ne contenant qu'un nombre fini de propositions (appendice figure 1). D’autre
part un systéme généralisé de propositions toutes compatibles n’est pas toujours ato-
mique et ne correspond donc pas nécessairement & un systéme classique du type de

ceux décrits au paragraphe 3. C’est pourquoi nous imposerons encore un axiome; ce
sera le dernier!
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Axtome A

A, Pour toute proposition a + ¢ il existe un point P tel que:
P<a.

En d’autres termes, le systéme est atomique.
A, S1Q est un point alors

a<x<ayu@Q = x=a ou x=auQ.

En d’autres termes si a0 Q = ¢ alors a U Q est un point pour a4 jouant le réle de &.

Nous appellerons simplement systéme de propositions, un systéme de propositions
généralisé satisfaisant 4 'axiome A en plus des axiomes O, T, C, P. Nous avons ainsi
atteint le but que nous nous proposions. Car, non seulement, tout systéme quantique
du type fini est un systéme de propositions (toute géométrie projective satisfait a 4,),
mais encore, tout systéme de propositions dont la proposition maximale I est union
finie de points, est un systéme quantique du type fini (Appendice Théoréme XVI).
Enfin un systéme de propositions toutes compatibles deux a deux est toujours un
treillis de BooLE atomique et complet, c’est-a-dire un systéme classique.

Ajoutons une remarque. Considérons un systéme de propositions et donnons nous
deux propositions a et b telles que a < b. A toute proposition ¥ compatible avec a et &
faisons correspondre la proposition:

y=(aux)0b=au(x0d).
L’ensemble de ces y qui n’est autre que 'ensemble des z telles que
a<z<b

est lui-méme un systéme de propositions (Appendice Théoréme XIII) a et b jouant le
role de ¢ et I. L'interprétation physique est simple. Si, pour un systéme physique
donné, a’ et b sont toutes deux vraies, la mesure de y s’identifie & la mesure de x.
L’orthocomplément relatif de v est alors le correspondant de I'orthocomplément de x
(que le lecteur vérifie!) et le correspondant d’un point (contenu dans b mais pas dans a)
est bien un point relativement & a. (C’est ce qui justifie 'axiome A,.)
Donnons maintenant les résultats obtenus au paragraphe 111 de I'appendice.
1. Tout systéme de propositions peut étre plongé dans une géométrie projective.
Ce plongement respecte l'ordre et 'intersection et sa restriction aux points est bi-
univoque. La géométrie projective est complétement déterminée par la donnée du
systéme (Théoréme XVIII).

2. Tout systéme de propositions est union directe de systémes de propositions
* irréductibles (Théoréme XIX). Deux propositions appartenant a deux sous-systémes
irréductibles différents sont toujours compatibles. Un systéme de propositions est
irréductible si, et si seulement, seules ¢ et I sont compatibles avec toutes les propo-
sitions du systéme (Théoréeme XX). Enfin la géométrie projective définie par le sys-
téme de propositions est elle-méme union directe des géométries projectives irré-
ductibles définies par les sous-systémes irréductibles correspondants.

3. La géométrie projective définie pour un systéme de propositions irréductible et
de dimension plus grande que 3 étant réalisée par les sous-espaces vectoriels d'un

»
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espace vectoriel, les sous-espaces images de propositions sont caractérisés par une
forme hermitienne définie (voir Théoréme XXI). En particulier, si cet espace vectoriel
est construit sur le corps des réels, des complexes ou des quaternions, cette forme
hermitienne définit un espace d’HILBERT dont les sous-espaces fermés correspondent
aux propositions (Théoréme XXII).

En résumé, nous pouvons en général réaliser un systéme de propositions donné en
considérant une famille d’espaces Hilbertiens H;. Chaque proposition est alors définie
par une famille {xl} de sous-espaces fermés x;, < H,. Le systéme ainsi obtenu est
I'union directe des systémes correspondant & chacun des H;.

7. Conclusions

Nous avons développé pour le calcul des propositions un formalisme trés général
valable aussi bien en physique classique qu’en physique quantique. C’est ainsi qu’il
englobe non seulement la mécanique de NEwtoNn de # particules mais aussi la théorie
phénoménologique du fluide, 1'électromagnétisme et la gravitation (au sens classique).
Le théoréme de plongement d'un systéme de propositions dans une géométrie pro-
jective (Théoréme X VIII) est un résultat important car il justifie I'emploi de ’espace
d"HILBERT en théorie quantique. Les possibilités d’extension du formalisme habituel
se trouvent de ce fait limitées essentiellement au choix d’un corps autre que les com-
plexes. Mais, le point de vue que nous avons adopté dans ce travail, et qui consiste a
interpréter le formalisme quantique comme la généralisation naturelle du formalisme
classique, devrait étre appliqué systématiquement aux notions d’états, d’observables
et d’équations du mouvement. C'est 12 un domaine de recherche qui pourrait & notre
avis, conduire A des résultats intéressants. En guise d’illustration et d’exemple, nous
allons pour terminer examiner briévement la notion d’état.

Considérons un systéme physique, nous dirons que son état est déterminé si nous
connaissons pour chaque proposition du systéme, la probabilité d’obtenir la réponse
oui lors d'une mesure. C’est pourquoi nous définirons un état comme une injection du
systéme de propositions 7 dans la droite réelle telle que®

1. w(@) >0 “aer,

2. wig) =0,

3. w(l)=1,

4. wa@)=wb) =1 = w@nd)=1,

5. a <> b= w)+wbd =w@aubd) +w@nd).

Le lecteur reconnaitra dans la condition 5 la généralisation de la loi d’additivité des
probabilités et remarquera que c’est I'interprétation de a N b que nous avons donnée au
paragraphe 2 qui impose la condition 4. Il est facile de démontrer les propriétés
suivantes:
Pour tout état w,
a<b = wa < wd),

(de b =av (a’ 0 b) on déduit en appliquant 5: w(b) = w(a) + w(a@ N b).)

29 H. P. A. 37, 4/5 (1964)
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Siw,; et w, sont deux états et A;, 4, deux nombres positifs tels que:
2-1 —|_' 2.2 = 1 »

alors w(x) = A; wy(x) + A wy(x) définit un nouvel état.
Enfin les conditions 4 et 5 sont équivalentes aux suivantes:

4, w)=wb) =waud) = wand) =wlaubd),
5. a <> b et anb=¢ = w@ud) =w)+ wd),

et suggerent plusieurs définitions:

Nous dirons que w est un état non-borné s’il satisfait aux conditions 1, 2, 4/, 5
avec w(I) = co. (Une onde plane est-elle un exemple d’état non-borné ?).

Nous dirons que w est un état continu si la condition 5 est encore valable pour une
famille dénombrable de propositions, c’est-a-dire si:

5" a; <> a; et a,Na;—=¢ = w(&)ai)ZZw(ai), ou ¢,7=123,....
K

C’est 2 A. M. GLEASON1%) que nous devons une justification de ces définitions. En
effet, considérant un systéme de propositions irréductible réalisé par les projecteurs
P, d'un espace d’HILBERT séparable (réel ou complexe mais de dimension > 3), il
démontre le résultat suivant:

Pour tout état continu w il existe une «matrice densité» g telle que:

w(a) =tr (o P) Ma.

On ne connait pas la généralisation de ce théoréme au cas d'un espace d’HILBERT
non-séparable. Mais on peut facilement démontrer le résultat suivant:

Pour tout systéme de propositions réalisé par les projecteurs d'un espace d’HILBERT
de dimension >3 et construit sur le corps des réels, des complexes ou des quaternions,
il existe un et un seul état tel que:

w(P)=1,
ou P est un point donné.
Pour un systéme de propositions défini par une famille continue d’espaces d"HiL-
BERT H, (¢ variant de 0 & 2 i et les H, étant séparables), un état continu quelconque
sera donné par une famille de matrices densités p; et une densité de probabilité m(z)

définie sur le segment [0, 2 7). La valeur moyenne d’une observable donnée par une
famille d’opérateurs auto-adjoints 4, sera:

Z:Jtr (0; A,) m(i) di .

0

Cette formule ne résulte pas du formalisme habituel. Il est en effet impossible de
plonger les H; dans un seul et méme espace d’HILBERT de maniére & pouvoir repré-
senter par une matrice densité aussi bien les états de la forme m(z) = d (v — 7,) que
ceux de la forme m(z) = 1/2 zx car ces deux densités ne sont pas équivalentes.
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APPENDICE

I. Le cas modulaire

Défimition: On dit qu’un treillis est N-continu si, pour toute suite

N

z

1< a;

7

L 81 < eey
on a la relation
bn(Va)=v(d0a) ¥b,
{d’ou la définition duale pour u-continu en considérant des suites décroissantes).

Nous avons les théorémes suivants?):

Théoréme I: Une géométrie projective est un treillis complet, complémenté,
modulaire, atomique et N-continu. (Ce théoréme peut servir de définition.)

Théoréme 11: Toute géométrie projective est union directe de géométries projec-
tives irréductibles.

Théoréme I111: Une géométrie projective irréductible de dimension infinie n’est
jamais U-continue. (La dimension d’une géométrie projective est infinie si I'élément
maximal n’est d’aucune maniére union finie de points.)

C’est 1a une conséquence du réle dissymétrique que jouent U et 0 dans la définition
d’une géométrie projective (Théoréme I).

Théoréeme IV: Tout treillis complet orthocomplémenté et modulaire est une
géomeétrie continue de J. voN NEUMANN, c’est-a-dire un treillis complet, complémenté,
modulaire, N-continu et U-continu. C’est 1a un résultat de KAPLANSKI.

Nous pouvons maintenant démontrer le théoréme énoncé dans la premiére partie
au § 4.

Théoréme V: Tout treillis complet orthocomplémenté, modulaire et atomique est
union directe de géométries projectives de dimension finie.

Démonstration: D’aprés IV, un treillis satisfaisant aux hypotheses est une géomé-
trie continue. Or, il est atomique, c’est donc une géométrie projective (I) qui est union
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directe de géométries projectives.irréductibles (IT). Or, tout sous-treillis complet d'un
treillis complet U-continu est lui-méme U-continu, et I'on conclut en appliquant III.
C.q. f. d.

Mais ce théoréme IV permet encore de démontrer une autre proposition du § 4
de la premiére partie:

Proposition: Le treillis complet engendré par intersection et orthocomplémenta-
tion & partir d'une famille de projecteurs P, et P,,; correspondant & des intervalles
bornés disjoints et recouvrant entiérement les spectres de - et g n'est jamais modulaire.

Démonstration: Raisonnons par I'absurde, supposons-le modulaire et appliquons
le théoréme IV. Le treillis devra donc étre N-continu. Or, si

+n

Pn=ZPAm»

-n

on a une sulte croissante de projecteurs:

..<P,_, <P, <P ,<.
Mais
Py W B =Py,
car
UP,=1 (identité)
et
U (Py,;NP) =0,

car I’ensemble des vecteurs propres communs a P, ; et F, est vide. En d’autres termes,
une fonction propre de P, ; étant a support compact, n’est jamais la transformée de
Fourier d’une fonction elle-méme a support compact et différente de zéro. C. q. f. d.

II. Le cas faiblement modulaire

Sia < b, on appelle segment [a, b] le sous-treillis des x tels que
a<x<b.

Un treillis orthocomplémenté est dit canoniquement relativement orthocomplé-
menté (en abrégé CROC) si, pour tout segment [a, b] 'application

[a,b]3x — x,=(aux)0bea, b

est une orthocomplémentation relativement au sous-treillis [, b]. On sait que tout
treillis modulaire et orthocomplémenté est CROC. Mais il existe des treillis CROC non
modulaires (comme celui de la figure 1) et aussi des treillis orthocomplémentés non
CROC (comme celui de la figure 2).

La condition nécessaire et suffisante pour qu’un treillis orthocomplémenté soit
CROC est donnée par le théoréme suivant:

Théoréme VI: Un treillis orthocomplémenté est CROC si et seulement si

a<b = (apb)Nb=a.
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a b'

Fig. 2

On dit alors que le treillis est faiblement modulaire.
Démonstration: Nécessité: Si a < b, a est 'orthocomplément relatif de & pour
[a, b] c’est-a-dire: '
b,=(aubd)Nb=a.

Suffisance: Sia < x < b, on a, dans tout treillis:
ap (@' 0b) < (aux)Nb,
et la condition s’écrit

[au(@ENbu(@ux)Nb)]0@ux)Nb=au(x"OD).

Mais
a0 (0B U(@ur)NE —au OB U@ ONUY
=@0@ur) u(Eud)0d) =xus'=1,
d’ou ‘
(aux)Nb=ay(x'N0Db).
Ainsi:

L (x),=[au)]0b=[au((@0x)0d)0b
=avul(@nx)ud)nbl=au(@0Nx)=(ava)Nx=1x,
2. xNg=@ux)nb0x=(agux)Nx=a,

3. 3 <x=>@ux)0b< (@aux)0b,
& 4q. £ d,

Rappelons que, dans la premiére partie, au § 5, nous avions introduit la notation
a <> b pour la relation

ay(@nd)=>by (' Na).
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La condition du théoréme précédent est alors équivalente a

a<b=a 0.
En effet, pour a < b, a’ <> b’ s’écrit

au@nd)=0vu®dna),
mais
anb’' <aha =¢,

d’out

a=byuybna),
ou encore @ = b 0 (b" U a); enfin cette condition est encore équivalente a

a<b =a<>b et a b @a<db = b<al),

qui est la condition nécessaire et suffisante pour que le sous-treillis orthocomplémenté
engendré par a et b si a < b soit aussi distributif, c’est-a-dire que a et b soient com-
patibles. Dans un treillis orthocomplémenté on a toujours

a<b = a b,
car
av(@0b)=aubd et du(and)=>bua.

Nous avons ainsi démontré que
a <> b = a< b

est une condition suffisante pour qu'un treillis orthocomplémenté soit CROC. Mais
c’est aussi une condition nécessaire comme ‘il résulte du théoréme suivant:

Théoréme VII: Dans un treillis CROC, les conditions suivantes sont équivalentes
entre elles:

1. a<>b.

2. a0l

3. (@aNd')Ub > a (ouson dual).

4. Une quelconque des 24 relations de distributivité non triviales qu'on peut
écrire entre a, b, a’, b’ (c’est-a-dire une relation de la forme

10Uz =@ENyuEnNz,
ou de la forme duale).
5. (@nbd)u(@and)u(a’Nbd)u(a’Nd’) = I (ouson dual).
Démonstration: Si 1. = 2., alors a <> b’ entraine a <> (b')" = b, c’est-a-dire 2. = 1.
Mais de I’équivalence de 1. et 2., il s’ensuit que, sur les 24 relations de distributivité,
il suffit de considérer les deux cas particuliers:

bu@nd)=0GBua)nbud)=bua, b =bv0(@@ua)=00Na)u((d 0a).

Il vient aussi 1. = a’ <> b’, ¢’est-a-dire I'équivalence d'une quelconque des relations
avec sa duale. C’est pourquoi nous allons tout d’abord démontrer:

lL.>3.>@nb)ub=auvb=(@nNd)u@nd) =08 =2,

la démonstration de 1. <= 5. étant alors presque immédiate.
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Larelation (aNd)Ub = (bNa')Uaentraine (aNd)Ub > a, mais (aNb)Vb <
aUb, donc (aNd)Ub > aentraine (aNd')ub=auvb. Le treillis étant CROC, de
aNb’ < b nous tirons (théoréme VI)

@n¥)ull@ vt Oy =Y,
et il en résulte
(@b Yub=aub = (@and)u@nd)="0".

Enfin, (a0 d') U (@’ 0 b") = b’ entraine tout d’abord
alnbl)ua>bf d)o_l\l (afnbl)ua:blua’

et de méme
(@anbdyua =0b dou (a@and)ua =buvua.

Or, selon un raisonnement analogue, le treillis étant CROC:
anNd' <a = (@nd)ull@udb)Nal=a,
d’ou il résulte que
(@0dyya' =bua = (@0d)udNa)=a
> (@anNbyud >a = @Nbyub =avd,
c’est-a-dire, en résumé:
(@and)u@nd)=d = (@anb)ub =@@00M)va,

ou encore a <> b’
Ensuite, 1. = 5. car, d’aprés ce qui précede, la condition 1. entraine

(@nbdYu@0d)=b" e (a@anNdu(@nd)=>
c’est-a-dire 5.
Pour terminer, il reste & démontrer 5. = 1. ou, ce qui revient au méme, 5. = 4.
Or, dans un treillis quelconque: | '
@Ob) U@ 0Y) < b < (aub)0 (@ ubd),
d’ou, en appliquant le théoréme VI:
[(@nd)u@nb)u(@nb)u@nd)]nf@ub)n(@ub)]=(and)u (@ 0d)
et ainsi 5. =
(aub)0@ud)=@nNd)u(@nNd) = (@nNd)u@nd)=1"0,
' c.q. f. d.

Théoréme VIII: Dans un treillis CROC (et complet), si a; < & pour tout 7€ J
ol J est un ensemble fini (ou infini) d’indices, on a les relations de distributivité:

et (g -yen

bo(Na) =N eoa).

J
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Démonstration: En vertu du théoréme VII, nous avons

(a;,0b)ub > a;, ¥wie],

bn[U (bnai)ub’] > bn([jj a,.).

I

d’ou il résulte

Mais
U®oa)<b

J
et le treillis étant supposé CROC:

[U (bﬂui)ub’] Nh= U (b0a)),
J J
ce qui démontre

Uena) = bn(U ai).
J J
Or, on a évidemment:

U@na) < bn(U ai) ;
J J
d’ou la premiére des relations. La deuxiéme se démontre par dualité, en remarquant
que
a; <> b= a,«>b,
c. q. f. d.

Théoréme 1X: Dans un treillis CROC (et complet ) si a; «» b pour tout 7€ J ou J

est un ensemble fini (ou infini) d’indices, alors:

Uaed et [a,eb.
J J

Démonstration: Nous avons, en appliquant les théorémes VII et VIII:

[(ijai)ﬂb]ub’:[ij(aiﬁb)]ub':U[(a Nd)yd] > Ua

J

d’ou la conclusion, la relation
Na b
J

s’obtenant par dualité. C. q. f. d.

Nous dirons qu'une famille d’éléments compatibles entre eux est maximale
compatible sil n’existe aucun autre élément du treillis compatible avec eux.

I existe toujours une famille maximale compatible contenant une famille donnée
d’éléments compatibles entre eux, car I'ensemble des familles d’éléments compatibles
entre eux est de caractére finill).

Il résulte immédiatement des trois théorémes précédents la propriété suivante:

Théoréme X : Toute famille maximale compatible d’un treillis complet et CROC
est un treillis de BOOLE complet.

Théoréme X 1: Dans un treillis CROC, tout segment est lui-méme CROC. De plus,
deux éléments d'un méme segment sont compatibles pour l'orthocomplémentation
canonique relative a ce segment si et seulement s’ils sont compatibles pour 1'ortho-
complémentation du treillis total.
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Démonstration: En vertu du théoréme VI, tout est démontré si nous pouvons
prouver la relation suivante:

(xOy)uy=@xNy)uy,

ou x et y sont deux éléments quelconques du segment [a, b] et

Y= (auy)0b.
Or, nous avons

Oy)uy=[xN(auy)Nbluy=[x0(auy)]uy.

Mais, le treillis étant CROC, a < ¥ = a +»> x, de méme a < y = a «+>y donc aussi
(théoréme VII) a <> y'. Il en résulte, en appliquant le théoréme VIII:

au(xNy)=(aux)N(avuy)=x0(@vy),
d’on
xoy)uy=[lavE0y)Juy=x0y)uy,
c. q. f. d

Etant donné un treillis CROC 7, considérons I'un de ses segments [a, b]. C’est un
sous-treillis 7,, canoniquement orthocomplémenté selon 1'application:

c—>cC,=(auc)0b,

mais, d’aprés le théoréme précédent, 7,, est lui-méme CROC, c’est-d-dire qu'un
segment [x, y] de 7,, est canoniquement orthocomplémenté selon 1’application

Z%—ny: (xuzab)ny'

Mais [«x, y] peut aussi étre considéré comme un segment de 7 et ainsi orthocomplé-
menté selon I'application

2>z, =(xQ)Ny.

Le théoréme suivant exprime l'identité de ces deux dernieres applications et
justifie le terme «canonique» pour la définition de I'orthocomplémentation relative:
T héoreme X11: Si, dans un treillis CROC,

a<x<z2<y<hb,
et
2,,=(@uz)nb,
alors
XUz, Oy=(xuz)0Oy.

Démonstration: En effet, on peut écrire:
(£U2) 0y = (xU((2UZ) N B) Oy =[(xLZ) VB Ny = (U Z) Oy

car x<>b et x> (aV2'), c. q. f. d.
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III. Les systémes de propositions

Un systéme de propositions est, par définition, un treillis complet, orthocomplé-
mente, atomique et faiblement modulaire satisfaisant a la loi de couverture, c’est-a-
dire que, pour tout point P

a<x<ayP=>x=a ou x=aulP.

Théoreme XIII: Tout segment [a, b] d'un systeme de propositions est lui-méme
un systéme de propositions.

Démonstration: [a, b] est un treillis complet, orthocomplémenté (théoréme VI) et
atomique car, si

x€la,b], (xNa)Yyua=x dou,si x+a xNa *4¢,

et il existe un point P < x N a’, ce qui entraine PUa < x et la loi de couverture
montre que P U a est un point de [a, b]. De plus, [a, b] est faiblement modulaire, car
[a, b] est CROC en vertu du théoréme XI.

Enfin, [a, b] satisfait aussi a la loi de couverture. En effet, tout élément v € [a, b]
est de la forme a U x oll x = y N 4’ et, en conséquence: a N x = ¢, ce qui montre que
tout point de [a, b] est de la forme a U P olt P est un point. On doit donc vérifier:

y<z2<yu(@uP)=z2=y ou z=yulaulP),

ce qui est immédiat en remarquant que yy (au P)=yuU P, c. q. f. d.
Théoréeme XIV: Toute proposition est union de points compatibles entre eux.
Démonstration: Soit J I'ensemble des indices des points P; < a. Soit X C J un
sous-ensemble des indices de points compatibles entre eux. L'ensemble des X est de
caractere fini*); il existe donc un X maximal que nous noterons Y. Il faut montrer que

UPE:a'
Y
Or,
UPiga,
Y

ce qui permet d’appliquer la condition de faible modularité:
a0 (UP)]|u(UFP)=a.
RGN
Mais:
an (U Pz-)’ =g,
Y
car, sl ce n’était pas le cas, il existerait un point:

P<an (U Pi)’,

ce qui impliquerait: ’
P<a e P< (UP-)’,

Y

*) Voir la remarque qui précéde'_le théoréme X.
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c’est-a-dire
(]

P<|JP, P<P ¥ieY, P« P VYiey,
Y

or,
P+P, ¥ieY,

Y)Yy

car

d’ou contradiction. C. q. f. d.
Théoréme XV : Pour un systéme de propositions, si

()

ou les P, sont # points, il existe au plus # points Q; compatibles entre eux et compsa-
tibles avec & tels que:

0;,<a e Q.Nb=4d.

Démonstration: Nous allons procéder par récurrence. Le théoréme est vrai pour
# = 1; en effet, supposons les Q; compatibles entre eux et compatibles avec b tels que

Q;,<buP et Q,nNnb=4¢.

On a alors
b<bu(Q,<buP,

et, de la loi de couverture, on déduit:

buyQi=0uP NMi,
ou encore:

NHbuQ,)=b0(0uyUP),
mais b’ <> b et b’ <> Q; (théoréme VII) et, en vertu du théoreme VIII:

U=t nQ = .
0;

Supposons maintenant le théoréme vrai pour # — 1. On peut poser

(i)

On en déduit, en appliquant la loi de couverture:

bu(nl:JlP,-)}qu B0 Qi) (U p) (

Mais, pour Q; = Q; on a:

Gu)NQ,=0N0Q)U(.NQ)=4¢,

d’out il résulte que les Q, = @, sont au plus en nombre » — 1. C. q. f. d.

r"Q1=<}’£'-

-
N

-
It
A
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Théoréme XV I: Tout systéme de propositions dont I'élément maximal I est union
finie de points est modulaire.

Démonstration: D’aprés le théoréme X1V, toute proposition est union d’un certain
nombre de points compatibles entre eux. Mais si  est union finie de points, le théoréme
XV montre que pour chaque proposition x ¢’est un nombre fini »(x) qui ne dépend que
de x. (On applique XV deux fois.)

Montrons tout d’abord que »(x) est une valuation, en d’autres termes que:

v(a) +v(d) =v(@ub) +v(@Nb) Naethd.

Nous procéderons par étapes:
1. D’aprés le théoréme XV, on a immédiatement:

v(aub) < va) + vb).
2. Pour anb=d¢ et a<>b, si P < aet Q <>, enremarquant que
a<>b=(anb)y@and)=a=a<?,
ontrouve: P < a < b’ < Q' ou encore P«» (Q et PN (Q = ¢ ce qui prouve pour ce cas:
v(a) +v(b) =v(aub).
3. Si on a seulement x Ny = @, nous pouvons écrire:
xuy=x0llruy) NaT=yullruy) 0y],
ce qui permet d’appliquer 2.:
v(@) +v (woy) 0a)=v(xruy), ) +r (Y NY)=vxuy).

Posons
v(xuy) =2 +vy) —¢,

ou ¢ > 0 en vertu de 1. il vient:

v((xuy) Ox) =v (x0y) —v(x) =»() — &,

v(uy) Ny ) =vxuy) —vly) =v(x) —&.
Mais, d’aprés le théoréme VIII:

[(kuy)uxTullruy) Nyl=EFuY O UY)=EuyOENY) =(xuy)

d’ot1, toujours d’apres 1.,

v(xuy) <v((x0Y) O&) +r (xuY) OY)
ce qui, joint aux résultats précédents, nous permet d’écrire:

v(x) +v(y) —e < »(x) +v(y) —2¢

d’ou la solution unique & = 0, ce qui prouve

v(xuy) =vx) +»(y)
pour x Ny = .
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4. Enfin, dans le cas général, si nous posons x N y = ¢, nous avons, en appliquant 3.:
vix) =v (x0¢) +7(q),
v(y) =v(y0g) +(Q),

_ vxuy) =»(xuy)Ng)+29),
mails
Foy)0g=@x0g)ulyNg)
et
xNg)O(yNg)=@xNY)0g =6

d’ou, toujours d’aprés 3.:

v((xuy)0g)=vx0g)+v(y0g).

Cette relation, jointe aux trois précédentes, achéve cette partie de la démon-
stration:
vix) +v(y) =v (x0y) + (9 -

Enfin, si x < y mais x = y, on a:

y=(@yNnxYux et ynxz * ¢,
d’otr
v(y) = v(x) + v(y 0 x') > v(x)

Nous pouvons maintenant démontrer la relation de modularité: si 2 < ¢, on a:
v(@au (b0c))=wva) +»(dNc) —v(@nNd) =
v (b0 +v@ub) —v@) =v(@ubd) —vBuc)+v()=v(audnc),

or, dans tout treillis:
av(bnNe) < (aub)nec,
d’ou
au(bNe)y=(avb)Nc.
c. q. f. d.

Compte tenu des résultats précédents, ce dernier théoréme peut s’énoncer ainsi:
Dans un systéme de propositions, tout segment de la forme

ooy )

ou les P, sont des points en nombre fini, est une géométrie projective.

C’est pourquoi toute une série de théorémes sur les géométries projectives de
dimension finie reste valable pour les systémes de propositions. Ainsi se trouve
justifiée la notion de droite comme union de deux points distincts, la notion de plan
comme union de trois points distincts non sur une méme droite, etc... Ces considé-
rations conduisent au théoréme suivant:
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Théoréme XV II: Dans un systéme de propositions, on peut définir, comme en
géométrie projective, la notion de droite et de plan. On a alors les deux propriétés
suivantes:

1. Deux points définissent une droite et une seule.

2. 51 P, Q, R sont trois points distincts et non sur une droite, ils définissent un
triangle. Deux autres points S et T situés respectivement sur Py Q et Q y R dé-
finissent une droite S ( T qui coupe P y R en un point

U=(SuT)0(PyUR)
différent de P et R.

Démonstration: C’est un résultat de la géométrie projective’) que nous pouvons
démontrer directement:
Si
vig) =»(b) =2 et v(ayb) =3,
Nnous avons:
v(@anb) =) +»0b) —v@ud) =1,

d’'olt aNb est un point. Ainsi deux droites d'un méme plan se coupent toujours.
C.q. 1. d.

Théoréme XVIII: Etant donné un systéme de propositions 7, il existe toujours
une géométrie projective G, et une application o telles que:

1. o est une injection canonique de 7 dans G,.

2. La restriction de « aux points de 7 est une bijection sur les points de G,.

3.a <b<==aa) < afd),

4. o (n “i) = n o (a;),

J J

S.a(ay P)=ala) yx(P).

Démonstration: Soit E I'ensemble des points du systéme de propositions 7 et soit
a(a) la partie de E formée des points contenus dans la proposition a. Par abus de
langage, a(d) sera une droite de E si 4 est une droite de 7.

Les conclusions du théoréme XVII s’étendent aux points et aux droites de E, et la
théorie de la géométrie projective nous permet de définir G, comme l'ensemble des
parties de E satisfaisant a la propriété suivanteb):

«x €G, contient, en méme temps que deux points distincts, la droite qu'ils
définissent».

Ainsi, a(a) € G, et 1. et 2. sont satisfaits, 3. et 4. se démontrent en observant que
I’ensemble des points contenus dans I'intersection est identique a ’ensemble des points
contenus dans chacun des éléments de 'intersection. .

Finalement, 5. résulte du fait que tout point Q < a y P mais différent de P est
sur une droite contenant P et un point de a, c’est-a-dire que a 0 (P y Q) est différent
de ¢, ce que nous allons démontrer. Etant donnée la loi de couverture, il nous suffit
de prouver I'existence d'un point R tel que:

aV(PuQ)=(PUQ)UR.
Or
al(PuQ)=au P,
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d'ou l'existence d'un R tel que: [@' 0 (P yu Q)] u R =4 ce qui montre que
@O (PO TU(PUQ)UR=ayu(PyuQ). C.qfd ,

Nous avons rappelé au premier paragraphe que toute géométrie projective est
union directe de géométries projectives irréductibles; le théoréme précédent suggere
un résultat analogue pour les systémes de propositions:

Théoreme XI1X: Tout systéme de propositions est union directe de systémes de
propositions irréductibles.

Pour démontrer ce théoréme, nous aurons besoin des lemmes suivants:

Lemme I: On dit que les points P et Q sont perspectifs s’ils sont confondus ou si
P Q contient un troisiéme point. Pour un systéme de propositions, «P et Q sont
perspectifs» est une relation d’équivalence que nous noterons P ~ (.

Démonstration: En effet, c’est bien une relation transitive: si P, Q, R sont trois
points distincts non sur une méme droite et si P ~ Q et  ~ R alors en vertu du
théoréme XVII il existe un troisiéme point sur le c6té du triangle P Q R.

C.q.f d

Lemme I1: Soit {Pa} la classe d’équivalence contenant P, et définie par le lemme I.
Soit 7, I'union des points de la classe { P, }. Tout point P < I, est un point de la classe
{P,}etsi P, < I, et P, < I, alors P, <> P,

Démonstration: Soient P, et P, deux points quelconques distincts; (P, u P,) 0 P,
est un point compatible avec P,, égal & P, si et seulement si P, <> P,. En particulier,
si P, et P, appartiennent & deux classes différentes, P, «> P, car, sinon, P,y P,
contiendrait un troisiéme point (P, y P,) N0 P,, il en résulte P, < P, d’olt nous
tirons

IL<Let L L LN =4

Un point P ne peut donc étre contenu dans [, que s’il appartient a {Pa}. C.q.f.d.
Lemme II1: SiyNz=¢, y«>rz x<>yet x<>y 2 alors x <> 2.
Démonstration: De y 0 z = ¢, on déduit y' = (y 0 z) gy’ mais z<>y d’out:

V=@0zuy =z0y".
Ainsi

oz Ny =(uznuy)=z,
mais ¥ <> v 2z et x <> 9" donc:

x> (yuz) Oy =z.
C.q. f d.

Lemme IV : Si P est un point tel que P < |J %, ot %, < [, alors P est contenu
dans un x, et un seul. a

Démonstration: D’aprés le lemme II, P est contenu dans un I, et un seul et
P <> x, pour a + b. Mais P«> | #, et

xbn(U xa) < Ibn(U Ia):¢’

azkb as+b



464 C. Piron H. P. A.

enfin, x, <> |J #,. Nous pouvons donc appliquer le lemme III, d’ott P < x,. Ainsi
azxb
P x, ¥ aet

P— Pr (U xa) =Y Pnx)=Pnx,,
d'ou P < x,. C. q. {. d.
Démonstration du théoréme X IX : 1l faut établir la relation x = |J x, ot x, < I, ¥ a
a

et montrer que cette représentation est unique. Cette représentation est définie par

g=|] L.

a

En effet, |J (x0 1,) < x est évident, mais nous avons aussi ¥ < U (xN 1,)carx
a a

est union de points et si P < x alors, d’apres le lemme IV, P < I, pour un certain a,
donc P < xN 1,

D’autre part, cette représentation est unique, c’est-a-dire que si x = | ) x, ou
) a
a

x, < I, alors x, = xN I,. En effet, x, < xN I, car:

xnIa=(Uxb)nIa/>’U-(xbn‘[a):xaﬁ
b b
mais nous avons aussi:

x0 I, < x

a?

car si P < xN I, alors P < x et P < I,, ce qui entraine, en vertu du lemme IV,
P contenu dans un x, qui ne peut étre que x,.

Ainsi, le systéme de propositions est union directe des segments [¢, 1,] qui sont
aussi des systémes de propositions (Théoreme XIII). Enfin, [¢, I,] est irréductible,
car s’1l était union directe de deux sous-treillis contenant plus d'un élément, ces
sous-treillis seraient atomiques; soient alors P, et P, un point de chacun d’eux, alors
P, y P, ne contiendrait pas de troisiéme point, ce qui est impossible, car P; et P, sont
perspectifs. C. q. {. d.

Ainsi, un systeme de propositions est irréductible si et seulement si toute droite
contient au moins trois points. C’est la condition de FAN02). Mais il existe d’autres
conditions équivalentes, comme le montre le théoréme suivant:

Théoréme XX : Un systéme de propositions est irréductible si et seulement si seuls
¢ et I sont compatibles avec toutes les propositions du systéme.

Démonstration: Soit a une proposition différente de ¢ ou de I. Le treillis étant
atomique, il existe deux points P et () tels que P Caet Q < a'.

Si le treillis est irréductible, il existe un troisiéme point R contenu dans P (.
Montrons que R n’est pas compatible avec a:

aNR<an(PUQ) =P,
mais a N R = P est impossible car R + P doncaM R = ¢, de méme a' O R = ¢ d’olt

@PR)yy@NOR)=4¢.
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Par contre, si le treillis est réductible, toute union d’une partie des I, est compa-
tible avec toutes les propositions du systéme. C. q. {. d.

Etant donné un systéme de propositions irréductible, il lui correspond uni-
voquement d’aprés le théoréeme XVIII une géométrie projective irréductible. Si la
dimension est strictement plus grande que 3, cette géométrie projective peut toujours
étre réalisée par les sous-espaces d’un espace vectoriel (4 gauche) ¥ sur un corps K
(M. L. DUBREIL- JACOTIN, L. LESIEUR, R. CroO1S0T?)). Avant de généraliser un résultat
de BIRKHOFF et vON NEUMANN1!), donnons quelques définitions:

Nous dirons que 'application * est un antiautomorphisme involutif sur le corps
K si:

(@ + B)* =o* + %,

( B)* = B* a*,
(@¥)*=a, Va fekK.

Nous appellerons forme sesquilinéaire une application fde V' x V dans K telle que:

flx+2y, 2 =fx2+ 2y 2,
fxy+Az) =[xy + flx 2 2%,
pour tout x, v, z€ V et 1 € K. Une telle forme sera dite hermitienne définie si, de plus:

*(v, x) = f(x,5)
et

fli ) = 0 e o ==,

Théoréme XXI: Tout systéme de propositions irréductible et de dimension
strictement plus grande que 3 peut étre réalisé par la donnée d’un espace vectoriel
(2 gauche) V' sur un corps K, d’'un antiautomorphisme involutif * et d’'une forme f
hermitienne définie; un sous-espace vectoriel correspond a une proposition si et
seulement si ce sous-espace peut étre défini comme 'ensemble de tous les vecteurs x
satisfaisant a

f(x’y'i) =10,

pour une certaine famille de y, e V.

Démonstration: BIRKHOFF et voN NEUMANN?) ont montré que toute orthocomplé-
mentation sur le treillis des sous-espaces vectoriels d'un espace vectoriel de dimen-
sion finie au moins égale a 3 peut étre engendrée par une forme hermitienne définie *).
De plus si f et g sont deux formes qui conduisent 4 la méme orthocomplémentation,
R. BAER®) démontre I'existence dans le corps K d’un élément y + 0 tel que:

fx,y) =g y)y, ¥xety.

*) Il n’existe donc pas d’orthocomplémentation si le corps n’admet pas d’anti-automorphisme
involutif.

30 H. P. A. 37, 4/5 (1964)
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I1 en résulte:

g, Yy A =flx,y) A* =flx,Ay) = glx, Av)y =gx, y) ATy,

ou * désigne I'antiautomorphisme correspondant a la forme g. Mais, la forme étant
définie, pour x += 0

glx,x) =a + Oet glalu, %) =1,

d’ou la relation y A* = i+ y.

Soit ¥, un sous-espace vectoriel de V' et de dimension égale a 3. L’orthocomplé-
mentation du systéme de propositions induit sur ¥, une orthocomplémentation.

Donnons-nous, une fois pour toutes, une forme f, engendrant cette orthocomplé-
mentation. Si nous considérons alors un autre sous-espace vectoriel V', et si V;
contient V, I'orthocomplémentation définie sur V', n’est autre que la restriction a V,
de celle définie sur V; (théoreme XII) et pour toute forme g, (x,y) engendrant
I'orthocomplémentation de V7, il existe y tel que:

fol%, y) = &lx, ) v,

ou gy(¥, v) est la restriction de g, sur V. Mais, de plus, Aty = y A*, ce qui permet de
définir sur V, la forme g,(¥, ¥) ¥ qui est I'unique forme hermitienne définie dont la
restriction a ¥V, est identique a f,(x, v).

Nous pouvons alors construire une forme hermitienne définie f sur l'espace V
tout entier: il suffit de poser:

f(x, y) ZfVo.x,y (x’ y) )

ol fy, . , est la forme définie comme précédemment mais pour V, égale au sous-espace
vectoriel engendré par V, x et y. Si P est un point, on vérifie facilement que I'image
de P’ est le sous-espace vectoriel des vecteurs tels que:

f(x,y):O,

ou y est un vecteur du rayon image de P. La démonstration s’achéve en remarquant
que toute proposition peut étre écrite sous lo forme
a=[)P.
P=a’
e s ds

Dans la suite, 7, désignera un systéme de propositions réalisé (selon le théoréme
précédent) par un espace vectoriel sur I'un des trois corps suivants: les réels, les com-
plexes ou les quaternions, I’antiautomorphisme involutif étant la conjugaison habi-
tuelle (qui se réduit a I'identité pour les réels). La forme hermitienne correspondante
est une norme et détermine sur l'espace vectoriel une structure topologique pré-
hilbertienne. En fait, on peut, dans ce cas, démontrer un résultat plus précis:

Théoreme XX11: Tout systéme de propositions 7, est isomorphe aux sous-espaces
vectoriels fermés d’un certain espace de HILBERT.

Démonstration: L'image d’une proposition est un sous-espace vectoriel fermé. En
effet, 'image de 'orthocomplément d’'un point est fermé et 'image d’'une proposition
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est I'intersection d’images d’orthocompléments de points. Montrons tout d’abord que
tout sous-espace vectoriel fermé V' estl'image d'une proposition. Considérons, parmi
les points dont 'image est dans 7 un ensemble maximal M de points compatibles
entre eux. Soit W I'image de 'union w des points de M.

1. W C V:sixe W, x est sur 'image d'un point () qui ne peut pas étre compatible
avec tous les points de M ; il existe donc P; € M tel que P; «» Q mais Q est sur

une droite contenant P, et un point Q, < |J P (théoréme XVIII, 5.). On a donc

PP,
PeM

E e L E

ou y, est la composante orthogonale de x selon le rayon image de P,;. Ainsi, W est
engendré topologiquement par 'ensemble M des rayons de V.

2. V'.C W: nous raisonnerons par 1'absurde; soit y € V et supposons y ¢ W. Si R
est un point dont I'image contient y, il existe alors S<»>w tel que Syw = Ry w
(théoréme XV), mais S est sur une droite contenant R et un point de w dont I'image
est dans W C V, donc l'image de S est dans V, mais S«» P ¥+ Pe M d’ou la con-
tradiction.

Pour achever la démonstration du théoréme, il faut encore montrer qu'un tel
espace préhilbertien est complet. Il suffit pour cela de montrer qu’il est identique a
son dual, ce qui est évident?), car nous avons le théoréme de décomposition.

En effet, si P est un point et @ une proposition telle que P g a et P {( a’, alors P
est sur la droite union des points

Q=(auP)Da
et
R=@yP)Na
car
(@uP)na)yu(@auP)Na’)=(@yuP)N(ayP) > P.
C.q. f d.
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le systéme non modulaire que nous avons construit a ’aide de certains projecteurs spectraux
de p et g au paragraphe 4. Le lecteur qui désirerait une discussion plus compléete (ayant lu notre
réf. 8) peut se rapporter pour un autre exemple au chapitre I (§ 2) du livre de P. A. M. Dirac:
The Principles of Quantum Mechanics (Oxford). Dans cet exemple on considére un faisceau de
lumiére traversant un cristal de tourmaline. Si le faisceau incident ne contient qu'un seul
photon, a la sortie du cristal on observera, soit un photon entier d’énergie égale au photon
incident, soit pas de photon du tout. Ainsi ce cristal constitue un appareil de mesure du type
oui-non; notons a, la proposition correspondante. De méme notons a, la proposition correspon-
dant & ce méme cristal, mais dont ’axe optique a tourné d’un angle «. La proposition ortho-
complément de a,, définie par ’échange du oui et du non, correspond au cristal tourné de m/2.
Nous voulons montrer que pour « % % /2 (ol # est entier), a, et a, constituent une paire de
propositions incompatibles. Il suffit de vérifier:

X = (a'ﬂ N aa) U (a:rr,'Z N acx) U (aﬂ N ao’.+:n.'/2 ) (a’n,’z N a’d+nf2) + s

Or ay N ag = ¢ pour (x— f) + n 7 car par définition a, (N ag est vraie si et si seulement a, et ag
sont toutes deux vraies. Or il n’existe pas de photon pouvant avec certitude traverser chacun
des deux cristaux si leurs axes optiques forment un angle différent de zéro. Ainsi ¥ = ¢. En
résumé le systéme de propositions correspondant aux polarisations possibles d’un photon est
du type suivant:
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