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Axiomatique Quantique

par C. Piron*)
Universités de Genève et Lausanne

(26 II 64)

Abstract. We develop here an axiomatic scheme for studying the structure of the set of
observables corresponding to yes-no experiments. The usual formalism of Quantum theory as

Hilbert-space theory as well as the phase-space formulation of classical mechanics appear now
as particular cases of our scheme. The mathematical structure proposed here is that of a weakly
semi-modular orthocomplemented atomic lattice.

1. Introduction

En théorie quantique, une observable est représentée par un opérateur linéaire
(en général auto-adjoint) agissant dans un espace d'HiLBERT. Mais on sait d'autre
part que l'existence de règles de supersélection implique l'existence d'opérateurs
linéaires auto-adjoints qui ne correspondent à aucune observable. Dans ce travail
nous caractériserons intrinsèquement la structure de l'ensemble des observables d'un
système physique. Nous pourrons alors justifier l'emploi de l'espace d'HiLBERT et des

opérateurs linéaires avec les particularités rattachées aux règles de supersélection.
Nous suivrons une méthode axiomatique dont le point de départ est dû à G. Birkhoff

et J. von Neumann1). Mais ce ne sont pas les différences «logiques» entre la
théorie classique et la théorie quantique qui nous préoccupent, notre but étant de

développer un formalisme général valable dans les deux cas. C'est pourquoi, après
avoir introduit les grandeurs qui nous intéressent et discuté leur rapport avec la
logique, nous examinerons en détail le cas classique et le cas quantique habituel
(entre autres le cas de l'oscillateur). C'est ainsi que nous serons conduits à formuler
nos axiomes. Pour terminer, nous définirons la notion d'état physique comme
«probabilité généralisée» selon une idée due à Mackey2), ce qui nous permettra d'interpréter

certaines difficultés de la théorie habituelle (par exemple les divergences qui
apparaissent lors de l'existence de règles de supersélection continues). Nous renverrons
à un appendice les démonstrations mathématiques pour ne pas rompre l'enchaînement
des raisonnements physiques.

2. La «logique» des propositions

Etant donné une famille de systèmes physiques, considérons parmi toutes les

mesures possibles celles pour lesquelles la mesure du système se traduit par oui ou non.
Nous appellerons propositions les observables correspondantes et nous les noterons

*) Ce travail fait l'objet d'une thèse présentée à l'Université de Lausanne.
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par des lettres a,b, c, P, Q, R, Comme, en fait, toute mesure peut être
remplacée par une suite de mesures du type oui-non, l'étude des observables se ramène
à l'étude de la structure de l'ensemble des propositions. Nous dirons qu'une proposition
est vraie pour un système donné (c'est-à-dire préparé d'une manière déterminée),
si la réponse oui est certaine. Pour que cette définition ait un sens aussi bien «avant»
que «après» la mesure (et même en l'absence de mesure), il doit être possible si a est
vraie de mesurer a sans perturber le système. C'est ce que nous admettrons.

Si a et b sont deux propositions, il peut se présenter le cas suivant :

«b est vraie chaque fois que a est vraie».

Nous noterons cette relation: a < b et a b signifiera a < b et b < a.

Nous allons dès à présent postuler un certain nombre d'axiomes. La signification
logique et physique que nous en donnerons rend très plausible leur validité.

Axiome O: La relation < est une relation d'ordre, c'est-à-dire:

01 a < a Afa 02 a < b et b < c =s> a < c

Il est clair que Ot et 02 découlent logiquement des définitions. En appliquant deux
fois 02, on déduit :

a b et b c => a c

ce qui montre que l'égalité que nous avons définie est bien une relation d'équivalence
et nous conduit à identifier les propositions «égales». Ainsi à une proposition
correspond toute une classe d'instruments de mesures du type oui-non.

Axiome T: Il existe un plus grand minorant (une borne inférieure) pour toute
famille non nulle de propositions. En d'autres termes, étant donné des a{ i e /, il existe
une proposition notée Oa; telle que:

Tx x < «jVi' e / <=>¦ x < naif.

Cet axiome exprime le «et» de la logique. En effet, la mesure de tous les at considérée

comme une seule mesure, avec la réponse oui si toutes les réponses sont oui et la
réponse non dans tous les autres cas, définit un élément de la classe correspondant à

la proposition n^, On vérifie immédiatement que 7\ est satisfait et que si n«. est

vraie, cette mesure ne perturbe pas le système. L'axiome T implique l'existence d'une
proposition cj> telle que :

(f> < a AJ-a

C'est la proposition absurde qui ne peut être vraie sans que toutes les propositions
soient vraies, ce qui de fait est impossible.

Axiome C: Il est donné une orthocomplémentation, c'est-à-dire qu'à chaque
proposition a correspond une proposition notée a' de manière que :

Ci (*')' < « Va C2 a' O a < <f> M-a C3 a' < b' => b < a

C'est donc une involution; car Cl appliqué à a' s'écrit:

((«')')' < «'
d'où en vertu de C3

a < fa')'
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Nousjpouvons alors écrire les axiomes C{ d'une manière plus symétrique mais
équivalente :

fa')' a a' O a <f>, a' < b' <=> b < a

Physiquement cette correspondance s'obtient en échangeant le rôle du oui et du non
dans l'emploi de l'appareil de mesure. Ceci n'a de sens que pour un appareil qui lors
d'une mesure, ne perturbe pas le système si l'une des réponses oui ou non est certaine.
Obtenue ainsi, cette correspondance est bien une involution, ce qui justifie l'axiome G\.

C2 exprime en logique le tiers exclu ; ici il signifie que « l'aiguille » de l'instrument de

mesure ne peut occuper simultanément les deux positions possibles.
Enfin C3 est connu en logique sous le nom de loi de Morgan. Sa justification

physique résulte de l'idée intuitive que a < b signifie «probabilité de la réponse oui

pour la mesure de a plus petite que probabilité de la réponse oui pour la mesure de 6».

Les trois séries d'axiomes 0, T et C définissent sur l'ensemble des propositions une
structure de treillis complet orthocomplémenté, car pour toute famille de propositions,
il existe non seulement une borne inférieure, mais aussi une borne supérieure. En effet,
posons :

y«.-(9*7-
C'est la borne supérieure de la famille des a{ car :

Œf < x Vie J <=> x' < a'f Vi e /
<=> x' < n«'. -«=»¦ ua, < xi l J '

On appelle complément de x une proposition y telle que :

xfïy (f> et x u y I,
où I est la proposition maximale : a <, I Va. I est vraie dès qu'une seule proposition
est vraie. Intuitivement, / vraie signifie: le système existe. On dit qu'un treillis est
complémenté si pour tout élément il existe au moins un complément. Ainsi un treillis
orthocomplémenté est toujours complémenté car a' est un complément de a.

Certains auteurs ont voulu voir dans les axiomes précédents les règles d'une
nouvelle logique. En fait, ces axiomes ne sont que des règles de calcul et la logique
habituelle s'applique sans avoir besoin d'être modifiée. Nous en donnerons comme
preuve les deux remarques suivantes :

1. a < b est bien le correspondant de la relation d'induction logique A => B, mais
a < b ne peut être considérée comme une proposition (ce n'est pas une mesure du
type oui-non) ; on ne peut donc pas donner un sens à l'expression a < fb < c) qui
serait l'analogue de la relation A =*¦ (B => C) pourtant bien définie en logique.

2. Si dans un cas bien déterminé a n'est pas vraie, c'est-à-dire si la réponse oui
n'est pas certaine, on ne peut rien en déduire sur a', la réponse non pouvant être
certaine ou incertaine. Cette possibilité ne contredit pas le principe du tiers exclu
(et n'impose donc pas une logique à trois valeurs)13). On trouve un cas analogue en

mathématiques, et c'est là notre remarque. Si à un stade déterminé du développement
d'une théorie, la relation A n'est pas un théorème (c'est-à-dire si la démonstration de A
n'a pas été faite et si le mathématicien avoue ne pas la connaître), cela n'implique rien



442 C. Piron H. P. A.

sur la relation non-^4 qui peut bien être déjà démontrée, mais qui ne le sera peut-être
jamais3).

Nous interrompons cet exposé des «règles» du calcul des propositions pour
considérer le cas classique et le cas quantique habituel, comme nous l'avons annoncé dans
l'introduction.

3. L'espace de phase et le treillis des propositions d'un système classique

En physique classique et plus particulièrement en mécanique, on représente l'état
d'un système, à un instant donné, par un point d'un certain espace : l'espace de phase.
Une mesure est alors définie comme une fonction sur cet espace ; à chaque état, c'est-
à-dire à chaque point de l'espace de phase correspond le résultat de la mesure, c'est-à-
dire la valeur de la fonction. Il s'en suit que les propositions sont les fonctions à deux
valeurs 1 ou 0 (oui ou non). Une telle fonction est entièrement caractérisée parson
support, c'est-à-dire par l'ensemble des points qui prennent la valeur 1. Il y a donc
correspondance biunivoque entre les propositions et les sous-espaces de l'espace de

phase. La relation d'ordre que nous avons introduite au paragraphe précédent se

traduit ici par la relation d'inclusion de la théorie des ensembles ; en effet, dire que
a < b c'est dire que les fonctions correspondantes fa et fb sont telles que :

fb est égale à 1 chaque fois que /0 égale 1, ce qui signifie que le support de/a est
contenu dans le support de fb.

Les trois axiomes précédents sont des conséquences de la théorie des ensembles.
Ainsi la borne inférieure correspond à l'intersection et l'orthocomplément au sous-
ensemble complémentaire. Notons aussi les relations algébriques qui relient les

fonctions correspondantes :

a<b *=> /„</», fanb fafb, /«' !-/«¦
Le treillis des propositions d'un système classique (c'est-à-dire le treillis des sous-

ensembles d'un ensemble) possède d'autres propriétés caractéristiques.
C'est un treillis distributif :

a n fb u c) fa n b) u fa O c) \/-a, b, c

Cette relation entraîne sa duale :

a u fb n c) faub) n fatjc) Va, b, c

ce qui pour nous est immédiat en appliquant l'axiome C, mais qu'on peut aussi
démontrer directement.

Enfin, c'est un treillis atomique :

Pour tout a il existe un «atome» P tel que:

P < a,

et on appelle atome ou point un élément P d'un treillis qui est différent de ^ et tel que :

<f><x<,P^>x cf> ou x P

Ce sont ici les points de l'espace de phase.
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G. Birkhoff et J. von Neumann ont critiqué le point de vue (exposé ici) que tout
sous-ensemble de l'espace de phase correspond à une proposition. Il leur paraît (nous
traduisons) artificiel de considérer comme proposition une affirmation telle que: La
vitesse angulaire de la terre autour du soleil est un nombre rationnel (en radian par
seconde), et il leur semble mieux, au moins en statistique, de considérer que ce sont
les classes de sous-ensembles mesurables modulo un sous-ensemble de mesure nulle,
qui correspondent aux propositions. De telles considérations les conduisent à
abandonner l'axiome d'atomicité. Ainsi dans l'idée de ces auteurs, une mesure comportant
toujours une certaine incertitude, seules les propositions qui peuvent être définies
dans le cadre d'une théorie statistique sont physiquement valables. Mais si, sans nous
restreindre à une théorie particulière, nous considérons toutes les propositions d'un
système classique, il nous faut admettre l'existence d'atomes, c'est-à-dire de mesures
précises des grandeurs telles que la position ou la quantité de mouvement, bien que
cette existence ne soit pas définie en acte mais en puissance (non in actu sed in
potentia). C'est du moins ce que suggère le fait qu'il est toujours possible pratiquement

d'améliorer le résultat d'une mesure.
Un treillis abstrait satisfaisant aux axiomes O.T.C., aux propriétés de distributi-

vité et d'atomicité est appelé un treillis de Boole complet (continu selon J. von
Neumann) et atomique. Or un tel treillis peut toujours être considéré comme le treillis des
sous-ensembles de l'ensemble de ses atomes. On a ainsi une caractérisation du treillis
des propositions d'un système classique.

4. Le cas quantique habituel:
position du problème, exemple de l'oscillateur linéaire

En théorie quantique les observables sont représentées par des opérateurs linéaires.
C'est pourquoi les propositions correspondent aux projecteurs, opérateurs
autoadjoints à deux valeurs propres 0 et 1, satisfaisant aux relations:

P =pt p2
a a a

Un projecteur peut encore être défini par l'ensemble de ses vecteurs propres de valeur
propre 1. Un tel ensemble est toujours un sous-espace vectoriel fermé et chaque sous-
espace vectoriel fermé définit un et un seul projecteur. Si a est une proposition, nous
noterons Pa le projecteur et Va le sous-espace correspondant.

La relation a < b signifiant «a vraie entraîne b vraie» est équivalente à l'inclusion:

vacvb.
Elle se traduit donc en termes de projecteurs par l'une des deux relations équivalentes :

P*Pb Pa, PbPa Pa,

formellement identiques au cas classique.
La borne inférieure d'une famille de Pa. existe toujours, c'est le projecteur

correspondant au sous-espace vectoriel fermé intersection des Va{.
Enfin si Pa, I — Pa l'axiome C est immédiat. Vérifions par exemple C3:

a'<V * (/ - Pa) fI-Pb) I-Ptt,
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d'où en développant:

I-Pa-Pb + PttPb=I-Pa,
c'est-à-dire:

PaPb Pb-

Contrairement au cas classique, un tel treillis n'est pas distributif. Mais si nous
nous bornons au cas particulier d'un espace d'HiLBERT de dimension finie, le treillis de
ses sous-espaces vectoriels (fermés) est modulaire, c'est-à-dire que:

x < z => xu fy o z) fxuy) ^ z.

Démonstration: Dans un treillis quelconque, on a toujours:

x u (y n z) < fx u y) n z pour x < z

Il nous suffit donc de montrer que tout vecteur de V{xuy)nz est contenu dans VXKJ{yriz,.
Si a e V^XUy)rts alors aeVz et a e Vxuy. Mais tout vecteur de Vxuy est somme d'un
vecteur de Vx et d'un vecteur de Vy car Vxvy est de dimension finie. On peut donc
écrire a b + c où b e Vx et c e Vy. Or par hypothèse Vx C Vz donc beVzet il en
résulte que a — b appartient aussi à Vz. Ainsi ce Vynz et a est bien somme d'un
vecteur de Vx et d'un vecteur de Vynz. (C. q. f. d.)

Cette démonstration permet d'imaginer un contre-exemple dans le cas de dimension
infinie. En effet le sous-espace engendré par les vecteurs de Vx et Vy n'étant pas
nécessairement fermé si Vx et Vy sont tous deux de dimension infinie, il faudra le

compléter par des vecteurs limites pour obtenir VxVy. Soit d un tel vecteur limite et

supposons Vx et Vy disjoints. Posons Vz égal au sous-espace (automatiquement fermé)
engendré par les vecteurs de Vx et ce vecteur d. Dans ces conditions Vynz est nul,
x u (y n z) x, mais (x uy) D z z, d'où le contre-exemple.

En résumé, le treillis des propositions d'un système quantique de type fini, c'est-à-
dire d'un système quantique dont l'espace d'HiLBERT correspondant est de dimension
finie, est un treillis complet orthocomplémenté et modulaire. De plus, il est certainement

atomique bien que chaque projecteur ne corresponde pas nécessairement à une
proposition.

Ces propriétés caractérisent de tels systèmes, mais pour énoncer ce résultat, nous
avons besoin de quelques définitions. Soit X} une famille de treillis, on appelle produit
direct des t,- le treillis t dont les éléments sont les familles {#,}¦ (où x-t e t;) et la relation
d'ordre, la relation définie par:

ixi} < {Vi} ^ xi < Vi Vi
Si chaque r, possède un plus petit élément cp', il existe pour chaque t,unplongement
dans t:

l<f>j si j 4= i
xi -*¦ {Vj} avec Vj

\Xf si j i

ce qui permet de définir r comme l'union directe des sous-treillis t;. Ainsi, par exemple,
le treillis des propositions d'un système classique est un treillis de Boole complet et

atomique qui n'est autre que l'union directe de treillis contenant chacun deux élé-
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ments. Enfin on dit que t est irréductible s'il n'est d'aucune manière l'union directe
de deux sous-treillis contenant chacun plus d'un élément.

Notre résultat s'énonce alors ainsi: Tout treillis complet orthocomplémenté,
modulaire et atomique est l'union directe de sous-treillis irréductibles qui sont des

geometries projectives de dimension finie (Théorème V de l'appendice). Or toute
géométrie projective irréductible, à l'exception de la droite et du plan non-arguésien,
peut être représentée par les sous-espaces d'un espace vectoriel. Dans ce cas, le sous-

espace correspondant à Forthocomplément est défini à l'aide d'une relation d'ortho-
gonalité donnée par une forme hermitienne définie (voir théorème XXI de l'appendice).
On remarquera que les geometries projectives sous-treillis de l'union directe s'identifient

aux sous-espaces cohérents définis par les règles de supersélection et qu'ainsi le
cas classique apparaît comme cas particulier où les sous-espaces cohérents sont tous de

dimension un. Nous avons ainsi complètement caractérisé le treillis des propositions
d'un système quantique du type fini.

Pour retrouver les cas de type infini, on pourrait à priori envisager trois sortes de

généralisations :

1. Les treillis complets, modulaires atomiques mais non orthocomplémentables
dont un exemple est le treillis des sous-espaces vectoriels (fermés ou non fermés) d'un
espace vectoriel de dimension infinie.

2. Les treillis complets, modulaires orthocomplémentés mais non atomiques dont
un exemple est le treillis des projecteurs d'un facteur IL

3. Les treillis complets, orthocomplémentés, atomiques mais non modulaires, dont un
exemple est le treillis des sous-espaces vectoriels fermés d'un espace d'HiLBERT infini.

Le premier cas n'a jamais été considéré sérieusement car l'interprétation physique
de l'orthocomplémentation paraît bien fondée. En proposant l'exemple des geometries
continues, J. von Neumann envisage le deuxième cas. (Il n'y a d'ailleurs pas d'autre
exemple de ce cas comme le montre Kaplansky4).) On ne peut exclure à priori cette
possibilité, car étant admis que tout projecteur n'est pas nécessairement une
proposition, il se pourrait que le treillis des propositions soit modulaire. Mais alors tout
sous-treillis serait lui aussi modulaire. Or, nous pouvons construire un exemple qui
contredit cette conclusion. En effet, les projecteurs spectraux correspondant à des

intervalles bornés du spectre des observables telles que la quantité de mouvement p ou
la position q sont certainement des propositions admissibles, et il en est de même des

projecteurs obtenus à partir de ceux-ci par intersection et orthocomplémentation.
Mais nous démontrons dans l'appendice (1er paragraphe) qu'un treillis complet
engendré par intersection et orthocomplémentation à partir de projecteurs correspondant

à des intervalles bornés disjoints et recouvrant entièrement les spectres dep etq
n'est jamais modulaire.

Ceci nous amène à envisager le troisième cas, car l'hypothèse d'atomicité ne se

prête pas à un raisonnement analogue au précédent, les sous-treillis d'un treillis
atomique n'étant pas nécessairement atomiques. On peut donc espérer satisfaire à

cette condition en définissant de nouvelles propositions. Considérons par exemple le

cas de l'oscillateur linéaire. En plus des propositions définies dans l'exemple précédent
à partir des observables p et q, nous disposons des projecteurs spectraux de l'énergie,
l'atomicité ne fait plus de difficultés car le spectre de l'énergie est discret.
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5. Notion de compatibilité et système de propositions généralisé

Reprenons l'exposé des règles du calcul des propositions, en introduisant une
nouvelle notion, la compatibilité. Dans le formalisme quantique habituel, on dit que
deux propositions sont compatibles si leurs projecteurs commutent, et on montre que
cette relation exprime essentiellement la possibilité de mesurer avec précision chaque
couple de leurs valeurs propres. Mais pour être plus précis, on devrait dire, deux
propositions sont compatibles si tout état du système peut être considéré vis-à-vis de ces
deux propositions comme un mélange d'états du type sans dispersion, c'est-à-dire pour
lesquels la mesure de ces mêmes propositions donnerait un résultat certain. En d'autres
termes, le système se comporte pour des mesures compatibles comme un système
classique8). Nous sommes ainsi conduits à une troisième définition qui a l'avantage
de ne pas faire appel à la notion d'état mais seulement à la notion de propositions.
Nous dirons que deux propositions a et b sont compatibles si le sous-treillis engendré

par intersection et orthocomplémentation est isomorphe à un treillis de Boole
(contenant donc 2, 4, 8 ou 10 éléments). Dans un treillis orthocomplémenté, cette
condition impose en général un grand nombre de relations. En particulier, si a < b,

les relations :

au fa' nb) b et bn fb' ua) a

sont les relations nécessaires et suffisantes pour que l'ensemble des huit propositions

cf>, a, a'nb, b, b', aub', a', I,
soit un sous-treillis, non seulement orthocomplémenté, mais aussi distributif. Une
seule de ces relations n'est pas suffisante comme le montre l'exemple suivant :

au fa' nb) au c' b

mais
b n (b' u a) b n c x

Nous pouvons maintenant énoncer un nouvel axiome :

Axiome P: Deux propositions a et b telles que a < b sont toujours compatibles.
Nous appellerons, système de propositions généralisé, un ensemble de propositions

satisfaisant aux axiomes O, T, C et P. Dans l'appendice (paragraphe 2) nous démontrons

pour de tels systèmes, les propriétés suivantes :

1. a et b sont compatibles s'ils satisfont à la relation:

a u fa' n b) b u fb' n a)
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relation que nous noterons a <-> b et que nous lirons (par abus de langage) «a est

compatible avec b».

2. Si a est compatible avec chacune des bit alors a est compatible avec U b{ et
D b, et on a (Théorèmes Vili et IX) :

an fu bf) ^Ufanbf), aufObf)=nfau b{)

3. Un ensemble de propositions deux à deux compatibles engendre par intersection
et orthocomplémentation un treillis de Boole (c'est une conséquence directe des

propriétés précédentes).
4. a <-> b n'est pas la seule relation qui entraîne la compatibilité, il en existe beaucoup

d'autres (Théorème VII). Parmi celles-ci, la relation:

fa n b) u fa' nb)ufan b') u fa' n b') I,
est susceptible d'une interprétation physique simple. Etant donné deux propositions
quelconques a et b, considérons la proposition :

x fanb) u fa' nb)u fan b') u fa' O b')

On voit facilement que x est compatible avec a et b et que an x et bn x sont
compatibles entre elles. Si donc, pour un système donné, x est vraie, mesurer a et b revient
à mesurer a n x et b O x et l'une de ces mesures ne «perturbe» pas l'autre. Nous avons
ainsi interprété x et du même coup la relation x I. Ces quatre propriétés justifient,
à priori, l'axiome P. Mais il existe une autre raison qui nous semble plus fondamentale.
L'axiome P est en effet la condition nécessaire et suffisante pour que l'application:

x -> xr fa u x') n b

soit une orthocomplémentation relativement au sous-treillis des x telles que:

a < x < b

Ainsi, dans un système de propositions généralisé, les notions d'orthocomplémentation
et de compatibilité peuvent être définies en quelque sorte indépendamment du couple
a, b jouant le rôle de cß et 7" (Théorèmes VI, XI et XII9)).

6. Les systèmes de propositions et leurs représentations
par les sous-espaces fermés d'espaces Hilbertiens

Les systèmes quantiques du type fini que nous avons définis au paragraphe 4 sont
des systèmes de propositions généralisés, car dans un treillis orthocomplémenté la
modularité entraîne l'axiome P. Mais la réciproque n'est pas vraie, même pour les

systèmes ne contenant qu'un nombre fini de propositions (appendice figure 1). D'autre
part un système généralisé de propositions toutes compatibles n'est pas toujours
atomique et ne correspond donc pas nécessairement à un système classique du type de

ceux décrits au paragraphe 3. C'est pourquoi nous imposerons encore un axiome; ce

sera le dernier!
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Axiome A

X Pour toute proposition a 4= <f> il existe un point P tel que:

P < a.

En d'autres termes, le système est atomique.
A 2 Si Q est un point alors

a < x < au Q =*• x a ou # «u(Z
En d'autres termes si a n Q cf> alors a U Q est un point pour a jouant le rôle de <f>.

Nous appellerons simplement système de propositions, un système de propositions
généralisé satisfaisant à l'axiome A en plus des axiomes 0, T, C, P. Nous avons ainsi
atteint le but que nous nous proposions. Car, non seulement, tout système quantique
du type fini est un système de propositions (toute géométrie projective satisfait à A2),
mais encore, tout système de propositions dont la proposition maximale / est union
finie de points, est un système quantique du type fini (Appendice Théorème XVI).
Enfin un système de propositions toutes compatibles deux à deux est toujours un
treillis de Boole atomique et complet, c'est-à-dire un système classique.

Ajoutons une remarque. Considérons un système de propositions et donnons nous
deux propositions a et b telles que a < b. A toute proposition x compatible avec « et è

faisons correspondre la proposition :

y fa u x) n b a u fx n b)

L'ensemble de ces y qui n'est autre que l'ensemble des z telles que

a < z < b

est lui-même un système de propositions (Appendice Théorème XIII) aetb jouant le
rôle de cf> et I. L'interprétation physique est simple. Si, pour un système physique
donné, a' et b sont toutes deux vraies, la mesure de y s'identifie à la mesure de x.

L'orthocomplément relatif de y est alors le correspondant de l'orthocomplément de x
(que le lecteur vérifie et le correspondant d'un point (contenu dans b mais pas dans a)

est bien un point relativement à a. (C'est ce qui justifie l'axiome A2.)
Donnons maintenant les résultats obtenus au paragraphe III de l'appendice.

v 1. Tout système de propositions peut être plongé dans une géométrie projective.
Ce plongement respecte l'ordre et l'intersection et sa restriction aux points est bi-
univoque. La géométrie projective est complètement déterminée par la donnée du
système (Théorème XVIII).

2. Tout système de propositions est union directe de systèmes de propositions
irréductibles (Théorème XIX). Deux propositions appartenant à deux sous-systèmes
irréductibles différents sont toujours compatibles. Un système de propositions est
irréductible si, et si seulement, seules <f> et I sont compatibles avec toutes les propositions

du système (Théorème XX). Enfin la géométrie projective définie par le
système de propositions est elle-même union directe des geometries projectives
irréductibles définies par les sous-systèmes irréductibles correspondants.

3. La géométrie projective définie pour un système de propositions irréductible et
de dimension plus grande que 3 étant réalisée par les sous-espaces vectoriels d'un
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espace vectoriel, les sous-espaces images de propositions sont caractérisés par une
forme hermitienne définie (voir Théorème XXI). En particulier, si cet espace vectoriel
est construit sur le 'corps des réels, des complexes ou des quaternions, cette forme
hermitienne définit un espace d'HiLBERT dont les sous-espaces fermés correspondent
aux propositions (Théorème XXII).

En résumé, nous pouvons en général réaliser un système de propositions donné en
considérant une famille d'espaces Hilbertiens H{. Chaque proposition est alors définie

par une famille {xt} de sous-espaces fermés x(< H{. Le système ainsi obtenu est
l'union directe des systèmes correspondant à chacun des H,.

7. Conclusions

Nous avons développé pour le calcul des propositions un formalisme très général
valable aussi bien en physique classique qu'en physique quantique. C'est ainsi qu'il
englobe non seulement la mécanique de Newton de n particules mais aussi la théorie
phénoménologique du fluide, l'électromagnétisme et la gravitation (au sens classique).
Le théorème de plongement d'un système de propositions dans une géométrie
projective (Théorème XVIII) est un résultat important car il justifie l'emploi de l'espace
d'HiLBERT en théorie quantique. Les possibilités d'extension du formalisme habituel
se trouvent de ce fait limitées essentiellement au choix d'un corps autre que les

complexes. Mais, le point de vue que nous avons adopté dans ce travail, et qui consiste à

interpréter le formalisme quantique comme la généralisation naturelle du formalisme
classique, devrait être appliqué systématiquement aux notions d'états, d'observables
et d'équations du mouvement. C'est là un domaine de recherche qui pourrait à notre
avis, conduire à des résultats intéressants. En guise d'illustration et d'exemple, nous
allons pour terminer examiner brièvement la notion d'état.

Considérons un système physique, nous dirons que son état est déterminé si nous
connaissons pour chaque proposition du système, la probabilité d'obtenir la réponse
oui lors d'une mesure. C'est pourquoi nous définirons un état comme une injection du
système de propositions t dans la droite réelle telle que':

1. wfa) > 0 V«er
2. w(cf>) 0

3. wfl) 1

4. wfa) wfb) 1 => wfa n b) 1

5. a <-> b =>¦ wfa) A- wfb) wfa u b) + wfa n b)

Le lecteur reconnaîtra dans la condition 5 la généralisation de la loi d'additivité des

probabilités et remarquera que c'est l'interprétation dean b que nous avons donnée au
paragraphe 2 qui impose la condition 4. Il est facile de démontrer les propriétés
suivantes :

Pour tout état w,
a < b => wfa) < wfb)

(de b a U fa' n b) on déduit en appliquant 5 : wfb) wfa) A- wfa nb).)
29 H. P. A. 37, 4/5 (1964)
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Si w1 et w2 sont deux états et Xv X2 deux nombres positifs tels que:

A-\ A- A2 1

alors wfx) Xx wxfx) + X2 w2fx) définit un nouvel état.
Enfin les conditions 4 et 5 sont équivalentes aux suivantes:

4'. wfa) wfb) wfa u b) => wfa nb) wfa u b)

5'. a <—> b et a n b cj> => wfa ub) wfa) + wfb)

et suggèrent plusieurs définitions:
Nous dirons que w est un état non-borné s'il satisfait aux conditions 1, 2, 4', 5'

avec wfl) oo. (Une onde plane est-elle un exemple d'état non-borné
Nous dirons que w est un état continu si la condition 5' est encore valable pour une

famille dénombrable de propositions, c'est-à-dire si:

5". «j <->¦ a} et «X aj — <f> =*¦ w (W at) =^wfa^ où «',/=1,2,3,
i

C'est à A. M. Gleason10) que nous devons une justification de ces définitions. En
effet, considérant un système de propositions irréductible réalisé par les projecteurs
Pa d'un espace d'HiLBERT separable (réel ou complexe mais de dimension > 3), il
démontre le résultat suivant :

Pour tout état continu w il existe une «matrice densité» q telle que:

wfa)=trfgPa) Af-a

On ne connaît pas la généralisation de ce théorème au cas d'un espace d'HiLBERT
non-séparable. Mais on peut facilement démontrer le résultat suivant:

Pour tout système de propositions réalisé par les projecteurs d'un espace d'HiLBERT
de dimension > 3 et construit sur le corps des réels, des complexes ou des quaternions,
il existe un et un seul état tel que :

wfP) 1

où P est un point donné.
Pour un système de propositions défini par une famille continue d'espaces d'HiLBERT

Hf fi variant de 0 à 2 yr et les X étant séparables), un état continu quelconque
sera donné par une famille de matrices densités g, et une densité de probabilité mfi)
définie sur le segment [0, 2ri\. La valeur moyenne d'une observable donnée par une
famille d'opérateurs auto-adjoints A{ sera:

A=JtrfQiAf
o

mfi) di

Cette formule ne résulte pas du formalisme habituel. Il est en effet impossible de

plonger les Hf dans un seul et même espace d'HiLBERT de manière à pouvoir
représenter par une matrice densité aussi bien les états de la forme mfi) ô fi — i0) que
ceux de la forme mfi) — 1/2 n car ces deux densités ne sont pas équivalentes.
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APPENDICE

I. Le cas modulaire

Définition: On dit qu'un treillis est O-continu si, pour toute suite

< ai_1 < at < ai+1 <
on a la relation

b n (y X y (b n «.) Af-b

(d'où la définition duale pour u-continu en considérant des suites décroissantes).
Nous avons les théorèmes suivants5):
Théorème I: Une géométrie projective est un treillis complet, complémenté,

modulaire, atomique et n-continu. (Ce théorème peut servir de définition.)
Théorème II: Toute géométrie projective est union directe de geometries projectives

irréductibles.
Théorème III: Une géométrie projective irréductible de dimension infinie n'est

jamais U-continue. (La dimension d'une géométrie projective est infinie si l'élément
maximal n'est d'aucune manière union finie de points.)

C'est là une conséquence du rôle dissymétrique que jouent U et O dans la définition
d'une géométrie projective (Théorème I).

Théorème IV: Tout treillis complet orthocomplémenté et modulaire est une
géométrie continue de J. von Neumann, c'est-à-dire un treillis complet, complémenté,
modulaire, O-continu et U-continu. C'est là un résultat de Kaplanski.

Nous pouvons maintenant démontrer le théorème énoncé dans la première partie
au §4.

Théorème V : Tout treillis complet orthocomplémenté, modulaire et atomique est
union directe de geometries projectives de dimension finie.

Démonstration: D'après IV, un treillis satisfaisant aux hypothèses est une géométrie

continue. Or, il est atomique, c'est donc une géométrie projective (I) qui est union
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directe de geometries projectives irréductibles (II). Or, tout sous-treillis complet d'un
treillis complet U-continu est lui-même U-continu, et l'on conclut en appliquant III.

C. q. f. d.
Mais ce théorème IV permet encore de démontrer une autre proposition du § 4

de la première partie :

Proposition: Le treillis complet engendré par intersection et orthocomplémentation
à partir d'une famille de projecteurs PApi et PAqj correspondant à des intervalles

bornés disjoints et recouvrant entièrement les spectres de p et q n'est jamais modulaire.
Démonstration: Raisonnons par l'absurde, supposons-le modulaire et appliquons

le théorème IV. Le treillis devra donc être O-continu. Or, si

+ »

Pn= 2j Api '
-n

on a une suite croissante de projecteurs:

¦¦¦<Pn-l<Pn<Pn+l< ¦¦¦¦
Mais

car
U Pn I (identité)

et

u(Pàqinpn) o,

car l'ensemble des vecteurs propres communs à PAqj et Pn est vide. En d'autres termes,
une fonction propre de PAqj étant à support compact, n'est jamais la transformée de
Fourier d'une fonction elle-même à support compact et différente de zéro. C. q. f. d.

II. Le cas faiblement modulaire
Si a < b, on appelle segment [a, b] le sous-treillis des x tels que

a < x < b

Un treillis orthocomplémenté est dit canoniquement relativement orthocomplémenté

(en abrégé CROC) si, pour tout segment [a, b] l'application

[a, b] 3 x -> xr (a u x') n b e [a, b]

est une orthocomplémentation relativement au sous-treillis [a, b]. On sait que tout
treillis modulaire et orthocomplémenté est CROC. Mais il existe des treillis CROC non
modulaires (comme celui de la figure 1) et aussi des treillis orthocomplémentés non
CROC (comme celui de la figure 2).

La condition nécessaire et suffisante pour qu'un treillis orthocomplémenté soit
CROC est donnée par le théorème suivant :

Théorème VI: Un treillis orthocomplémenté est CROC si et seulement si

a < b => fau b') n b a
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Fig. 1 Fig. 2

On dit alors que le treillis est faiblement modulaire.
Démonstration: Nécessité: Si a < b, a est l'orthocomplément relatif de b pour

[a, b] c'est-à-dire:

br= (aub')nb a

Suffisance: Si a < x < b, on a, dans tout treillis:

au fx' Ob) < faux') nb

et la condition s'écrit

[a u fx' nb)u ffa u x') n b)'] n fa u x') n b a u fx' H b)

au fx' nb) u ffa u x') nb)' au fx' Ob) u fa' n x) u b'

fa' n faux'))' u ((* U V) O b)' x u x' I.
fa u x') n b a u fx' n b)

1. fxr)r =[au fxr)'] nb=[au ffa' n x) u b')] O b

a u [ffa' n x) u b') n b] a u fa' O x) fa u a') n x x

2. xr n x fa u x') n b n x fa u x') n x a

3. % < x2 => fa u x2) n b < fa u Xj) n b

c. q. f. d.

Rappelons que, dans la première partie, au § 5, nous avions introduit la notation
a <-» b pour la relation

au fa' nb) bu fb' n a)

Mais

d'où

Ainsi :
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La condition du théorème précédent est alors équivalente à

a < b => a' <-> b'

En effet, pour a < b, a' <-> ô' s'écrit

«'u(«n 6') 6' u fb O a')
mais

d'où
a n b' < a O a'

a' 6' u fb o a')

ou encore a bn fb' u a); enfin cette condition est encore équivalente à

a < b =*- a <—> è et a' <—> 6' (a < 6 <=> b' < a'!)

qui est la condition nécessaire et suffisante pour que le sous-treillis orthocomplémenté
engendré par a et b si a < b soit aussi distributif, c'est-à-dire que a et b soient
compatibles. Dans un treillis orthocomplémenté on a toujours

a < b => a <—s- è',
car

au fa' nb') aub' et ô' u « n &) &' U a

Nous avons ainsi démontré que

a <-> ô' => a <-> 6

est une condition suffisante pour qu'un treillis orthocomplémenté soit CROC. Mais
c'est aussi une condition nécessaire commeTl résulte du théorème suivant:

Théorème VII: Dans un treillis CROC, les conditions suivantes sont équivalentes
entre elles:

1. a<r>b.
2. a <-*> 6'.
3. fa n b') U b > a (ou son dual).
4. Une quelconque des 24 relations de distributivité non triviales qu'on peut

écrire entre a, b, a', b' (c'est-à-dire une relation de la forme

x n fy u z) fx n y) u fx n z),
ou de la forme duale).

5. fa n b) U fa n b') u fa' nb)u fa' nb') I (ou son dual).
Démonstration: Si 1. =*¦ 2., alors a<rrb' entraîne a <—> fb')' b, c'est-à-dire 2. => 1.

Mais de l'équivalence de 1. et 2., il s'ensuit que, sur les 24 relations de distributivité,
il suffit de considérer les deux cas particuliers :

b u faOb') fb u a) n fb ub') b u a b' V O fa u a') fb' nd)u fb' O a')

Il vient aussi 1. => a' <-> V, c'est-à-dire l'équivalence d'une quelconque des relations
avec sa duale. C'est pourquoi nous allons tout d'abord démontrer:

1. => 3. => fanb')ub aub=> fa O b') u fa' n b') b' => 2.,

la démonstration de 1. <==> 5. étant alors presque immédiate.
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La relation fa n b') U b fb n «') u <î entraîne fa n b') U b > a, mais fanb')ub <
a u b, done fanb')ub > a entraîne fanb') ub au b. Le treillis étant CROC, de

anb' < b' nous tirons (théorème VI)

fa n b') u [fa' ub)n b'] b',
et il en résulte

fanb') ub aub => (aOb')ufa'n b') b'

Enfin, fa n b') U fa' D b') b' entraîne tout d'abord

a' n b') u a > b' d'où fa! n b') u a b' u a

et de même

fa n V) u a' > b' d'où fa n b') u a' V u a'.
Or, selon un raisonnement analogue, le treillis étant CROC :

anb' < a =s- fanb') u [fa' u b) n a] a
d'où il résulte que

fa n b') u a' b' ua' => fa O b') u fb n a) a

=> (a n 6) u &' > « =*¦ (« O b) u ô' a U b',
c'est-à-dire, en résumé :

fa n b') u fa' n b') 6' => fa n b) u b' fa' O b') u a

ou encore a <—> J'.
Ensuite, 1. => 5. car, d'après ce qui précède, la condition 1. entraîne

[a n b') u fa' n b') b' et fanb)u fa' nb) b

c'est-à-dire 5.

Pour terminer, il reste à démontrer 5. => 1. ou, ce qui revient au même, 5. => 4.

Or, dans un treillis quelconque :

fa n b') u fa' n b') < b' < fau b') O fa' u b')

d'où, en appliquant le théorème VI :

[ffan b') u fa' n b')) u ffa' nb)ufan b))] n [fau b') n («'u b')] fan b') u fa' n b')

et ainsi 5. =*¦

fa u b') n fa' u b') fa n b') u fa' n b') => fa n b') u fa' n b') b',
c. q. f. d.

Théorème VIII: Dans un treillis CROC (et complet), si «;<-?& pour tout iej
où J est un ensemble fini (ou infini) d'indices, on a les relations de distributivité:

bol\Jaf\ \Jfbnaf)
et

MpK-) fl(6u«X
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Démonstration: En vertu du théorème VII, nous avons

fa{nb) ub' > af Vie J
d'où il résulte

bn\\}fbnaf)ub'i>bnnjaf\.
Mais

[jfbnafXb
J

et le treillis étant supposé CROC :

VJ{bna{)ub'}nb \J(bnat),
ce qui démontre

[}fbnai)> bnnja,\.
Or, on a évidemment :

\Jfbnaf)<bnl[)aiy
d'où la première des relations. La deuxième se démontre par dualité, en remarquant
que

«,- <—> b <=> a'f <-> b'

c. q. f. d.

Théorème IX: Dans un treillis CROC (et complet si a{<-*b pour tout iej où J
est un ensemble fini (ou infini) d'indices, alors :

(J «;<->• b et P) a,- <-> è

/ 7

Démonstration: Nous avons, en appliquant les théorèmes VII et VIII:

[(LK)n6ju&' [U(«*n&)]u&' U[Knè)uè'] > IK-.
d'où la conclusion, la relation

n ai>.<-*b

j
s'obtenant par dualité. C. q. f. d.

Nous dirons qu'une famille d'éléments compatibles entre eux est maximale
compatible s'il n'existe aucun autre élément du treillis compatible avec eux.

Il existe toujours une famille maximale compatible contenant une famille donnée
d'éléments compatibles entre eux, car l'ensemble des familles d'éléments compatibles
entre eux est de caractère fini11).

Il résulte immédiatement des trois théorèmes précédents la propriété suivante:
Théorème X: Toute famille maximale compatible d'un treillis complet et CROC

est un treillis de Boole complet.
Théorème XI: Dans un treillis CROC, tout segment est lui-même CROC. De plus,

deux éléments d'un même segment sont compatibles pour l'orthocomplémentation
canonique relative à ce segment si et seulement s'ils sont compatibles pour
l'orthocomplémentation du treillis total.
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Démonstration: En vertu du théorème VI, tout est démontré si nous pouvons
prouver la relation suivante :

(x n yr) u y fxny') uy
où x et y sont deux éléments quelconques du segment [a, b] et

yr= fa u y')o b

Or, nous avons

fx n yr) u y [xn fa u y') n b] u y [x n fa u y')] u y •

Mais, le treillis étant CROC, a <%=>«<—>• x, de même a < y =>#<-> y donc aussi

(théorème VII) a <—>y'. Il en résulte, en appliquant le théorème VIII:

au fxny') faux) n fa u y') x n fa u y'),
d'où

fx n yr) u y [a u fx n y')} u y fxny') uy
c. q. f. d.

Etant donné un treillis CROC t, considérons l'un de ses segments [a, b]. C'est un
sous-treillis rab canoniquement orthocomplémenté selon l'application:

c -^cab= fauc') nb

mais, d'après le théorème précédent, rab est lui-même CROC, c'est-à-dire qu'un
segment [x, y] de ra b est canoniquement orthocomplémenté selon l'application

z-^zxy fxu zab) ny

Mais [x, y] peut aussi être considéré comme un segment de t et ainsi orthocomplémenté

selon l'application
z -> zr fxu z') ny

Le théorème suivant exprime l'identité de ces deux dernières applications et
justifie le terme «canonique» pour la définition de l'orthocomplémentation relative:

Théorème XII: Si, dans un treillis CROC,

a<,x<z<,y<,b,
et

zab= fauz')nb
alors

fxuzab) ny fxuz') ny

Démonstration: En effet, on peut écrire:

fx u zab) ny (% u ((« u z') nb)) ny [fx uz')nb]ny (xu z') n y

car x <—> b et x <-> (a U z'), c. q. f. d.
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III. Les systèmes de propositions

Un système de propositions est, par définition, un treillis complet, orthocomplémenté,

atomique et faiblement modulaire satisfaisant à la loi de couverture, c'est-à-
dire que, pour tout point P

a^x<auP=>x a ou x au P ¦

Théorème XIII: Tout segment [a, b] d'un système de propositions est lui-même
un système de propositions.

Démonstration: [a, b] est un treillis complet, orthocomplémenté (théorème VI) et
atomique car, si

x e [a, b], fxn a') u a x d'où, si x 4= a, x O a' A= cf>,

et il existe un point P < x n a', ce qui entraîne P u a < x et la loi de couverture
montre que P u « est un point de [a, b]. De plus, [a, b] est faiblement modulaire, car
[a, b] est CROC en vertu du théorème XI.

Enfin, [a, b] satisfait aussi à la loi de couverture. En effet, tout élément y e [a, b]
est de la forme a u x où x y n a' et, en conséquence : a n x cf>, ce qui montre que
tout point de [a, b] est de la forme a U P où P est un point. On doit donc vérifier:

y<z<yufauP)=>z y ou z yu(«U?),
ce qui est immédiat en remarquant que y u fa U P) y U P, c. q. f. d.

Théorème XIV: Toute proposition est union de points compatibles entre eux.
Démonstration: Soit / l'ensemble des indices des points P( < a. Soit X Ç_ J nn

sous-ensemble des indices de points compatibles entre eux. L'ensemble des X est de
caractère fini *) ; il existe donc un X maximal que nous noterons Y. Il faut montrer que

[J Pf a
Y

Or,

u pt < «.
Y

ce qui permet d'appliquer la condition de faible modularité :

(y znypx-
«n/yp,y-<»,

car, si ce n'était pas le cas, il existerait un point :

an^PfJ,

P<a et P<l\JPfY,

\an

Mais:

P<
ce qui impliquerait :

*) Voir la remarque qui précède le théorème X.
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c'est-à-dire

or,
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P<U-P/. P < Pf VieY, P-tr^Pf VieY,
Y

P*Pf VieY,

(yxcx-*'
d'où contradiction. C. q. f. d.

Théorème XV: Pour un système de propositions, si

a=bu(\jp),

459

car

où les Pf sont n points, il existe au plus n points Q{ compatibles entre eux et compatibles

avec b tels que :

Qf<a et Qfnb cf>.

Démonstration: Nous allons procéder par récurrence. Le théorème est vrai pour
n 1 ; en effet, supposons les Q{ compatibles entre eux et compatibles avec b tels que

Qf<buP et QfOb^cß.
On a alors

b<buQi<buP,
et, de la loi de couverture, on déduit :

buQi=buP Vi,
ou encore:

b' n (b u Qi) b' n fb u P),
mais b' <-> b et b' <—> Q{ (théorème VII) et, en vertu du théorème VIII:

Qi'
Supposons maintenant le théorème vrai pour n — 1. On peut poser

/n-l

b' n fb u Qf) b' n Q(

M U Z n Qx </> ¦

On en déduit, en appliquant la loi de couverture:

bu \jpi uQ1^fbuQ1)u(\JPij bu(\jPi

Mais, pour Qf 4= Qt on a:

d'où il résulte que les Ç,- 4= ft sont au plus en nombre n — 1. C. q. f. d.
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Théorème XVI: Tout système de propositions dont l'élément maximal I est union
finie de points est modulaire.

Démonstration: D'après le théorème XIV, toute proposition est union d'un certain
nombre de points compatibles entre eux. Mais si I est union finie de points, le théorème
XV montre que pour chaque proposition x c'est un nombre fini vfx) qui ne dépend que
de x. (On applique XV deux fois.)

Montrons tout d'abord que vfx) est une valuation, en d'autres termes que:

vfa) + vfb) vfa u b) A- vfa n b) Va et b

Nous procéderons par étapes :

1. D'après le théorème XV, on a immédiatement:

v fa u b) < vfa) 4- vfb)

2. Pour a n b cf> et a <—>• b, si P < a et Q < b, en remarquant que

a <rr b => fa n b) u fa n b') a ^ a < b'

on trouve: P < a < b' < Q' ou encore P<^rQetPoQ cf>ce qui prouve pour ce cas:

vfa) A- vfb) v faub)

3. Si on a seulement x n y cf>, nous pouvons écrire:

x u y x u [fx u y) o x'] y u [fx u y) o y'],
ce qui permet d'appliquer 2. :

vfx) A- v ffx u y) o x') v fxuy), vfy) + v f(xuy) o y') v fxuy) ¦

Posons

v fx u y) vfx) A- vfy) — e

où s > 0 en vertu de 1. il vient:

v ffx u y) O x') v fxuy) — vfx) vfy) — e

v X uy) Oy') v fxuy) — vfy) vfx) — s

Mais, d'après le théorème VIII :

[(*uy)u*']u [fxuy)oyA= fxuy)o fx'u y') (*uyX fxoy)' fxuy)

d'où, toujours d'après 1.,

v fxuy) < v ffx u y) o x') a- v ffx u y) o y')

ce qui, joint aux résultats précédents, nous permet d'écrire:

vfx) A- vfy) — s < v(x) A- vfy) — 2e

d'où la solution unique e 0, ce qui prouve

v fx u y) vfx) A- vfy)

pour x O y cf>.
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4. Enfin, dans le cas général, si nous posons x O y q, nous avons, en appliquant 3. :

vfx) v fxOq') A- vfq),

vfy) v fy n q') A- vfq),

v fx u y) v (fx uy)n q') + vfq),
mais

fxuy)Oq' fxO q') u (y O q')
et

fx O q') n(ynq') (xny)nq' (f)

d'où, toujours d'après 3. :

v ((a; u y) O q') v fx n q') A- v fy O q')

Cette relation, jointe aux trois précédentes, achève cette partie de la
démonstration :

vfx) A- vfy) v fx u y) + vfq)

Enfin, si x < y mais x 4= y, on a :

y (y o x') u x et y n x' 4= ^,
d'où

vfy) vfx) A- vfy n x') > vfx)

Nous pouvons maintenant démontrer la relation de modularité: si a < c, on a:

vfaufbn c)) vfa) + v fb O c) — v fa O b)

v fbOc) A- v faub) — vfb) v fa U b) — v fb u c) A- v fc) v (fa U b) O c)

or, dans tout treillis:
a u fb O c) < fa U b) O c

d'où
a U fb O c) fa U b) O c

c. q. f. d.

Compte tenu des résultats précédents, ce dernier théorème peut s'énoncer ainsi :

Dans un système de propositions, tout segment de la forme

a, a u I (J P

où les P,- sont des points en nombre fini, est une géométrie projective.
C'est pourquoi toute une série de théorèmes sur les geometries projectives de

dimension finie reste valable pour les systèmes de propositions. Ainsi se trouve
justifiée la notion de droite comme union de deux points distincts, la notion de plan
comme union de trois points distincts non sur une même droite, etc... Ces considérations

conduisent au théorème suivant :
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Théorème XVII: Dans un système de propositions, on peut définir, comme en

géométrie projective, la notion de droite et de plan. On a alors les deux propriétés
suivantes :

1. Deux points définissent une droite et une seule.
2. Si P, Q, R sont trois points distincts et non sur une droite, ils définissent un

triangle. Deux autres points S et P situés respectivement sur P u Q et Q u R
définissent une droite S u T qui coupe P u P en un point

U=fSuT)OfPuR)
différent de P et P.

Démonstration: C'est un résultat de la géométrie projective5) que nous pouvons
démontrer directement:
Si

vfa) vfb) 2 et v fa u b) 3

nous avons:
v fa Ob) vfa) + vfb) — vfa U b) 1,

d'où aOb est un point. Ainsi deux droites d'un même plan se coupent toujours.
C. q. f. d.

Théorème XVIII: Etant donné un système de propositions t, il existe toujours
une géométrie projective Gp et une application a telles que:

1. a est une injection canonique de t dans Gp.
2. La restriction de a aux points de t est une bijection sur les points de Gp.

3. a < b «> <x(«) < a(6),

4,'a(nz) naK)>
5. a (a u P) a(fl) u « fP)-
Démonstration: Soit E l'ensemble des points du système de propositions t et soit

afa) la partie de E formée des points contenus dans la proposition a. Par abus de

langage, ccfd) sera une droite de E si d est une droite de t.
Les conclusions du théorème XVII s'étendent aux points et aux droites de E, et la

théorie de la géométrie projective nous permet de définir GP comme l'ensemble des

parties de E satisfaisant à la propriété suivante5) :

«x e Gp contient, en même temps que deux points distincts, la droite qu'ils
définissent».

Ainsi, a(a) e Gp et 1. et 2. sont satisfaits, 3. et 4. se démontrent en observant que
l'ensemble des points contenus dans l'intersection est identique à l'ensemble des points
contenus dans chacun des éléments de l'intersection.

Finalement, 5. résulte du fait que tout point Q < a u P mais différent de P est

sur une droite contenant P et un point de a, c'est-à-dire que aO (P <jQ) est différent
de cf>, ce que nous allons démontrer. Etant donnée la loi de couverture, il nous suffit
de prouver l'existence d'un point R tel que :

«'U(PUÇ)'= fPuQYuR.
Or

aufPuQ) auP,
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d'où l'existence d'un R tel que: [a' O (P u Q)'] u R a' ce qui montre que
[a' OfPu Q)'] ufPuQYuR^a'ufPu Q)'- C q. f. d.

Nous avons rappelé au premier paragraphe que toute géométrie projective est
union directe de geometries projectives irréductibles; le théorème précédent suggère
un résultat analogue pour les systèmes de propositions :

Théorème XIX: Tout système de propositions est union directe de systèmes de

propositions irréductibles.
Pour démontrer ce théorème, nous aurons besoin des lemmes suivants :

Lemme I: On dit que les points P et Q sont perspectifs s'ils sont confondus ou si

PuQ contient un troisième point. Pour un système de propositions, «P et Q sont
perspectifs» est une relation d'équivalence que nous noterons P ~ Q.

Démonstration: En effet, c'est bien une relation transitive: si P, Q, R sont trois
points distincts non sur une même droite et si P ~ Q et Q ~ R alors en vertu du
théorème XVII il existe un troisième point sur le côté du triangle P Q R.

C. q. f. d.

Lemme II: Soit {Pa} la classe d'équivalence contenant Pa et définie par le lemme I.
Soit Ia l'union des points de la classe {P„}. Tout point P < Ia est un point de la classe

{Pa} et si Pa < Ia et Pb < Ib, alors P0 <-? P„.
Démonstration: Soient Pa et Pb deux points quelconques distincts; (P„ u Pb) n Pb

est un point compatible avec Pb, égal à Pa si et seulement si Pa <-> Pb. En particulier,
si Pa et Pb appartiennent à deux classes différentes, Pa<rr Pb car, sinon, PauPb
contiendrait un troisième point (P0 u Pb) n P'b, il en résulte Pa < P'b d'où nous
tirons

I.< I'h et Iaolb< l'bnlb <f>.

Un point P ne peut donc être contenu dans Ia que s'il appartient à {P„}- C.q.f.d.
Lemme III: Si y n z c/>, y <—> z, x <->y et x <—>y u z, alors x <—> z.

Démonstration: De y O z cf>, on déduit y' fy O z) uy' mais z <—>y d'où:

y' (y n z) u y' z u y'.
Ainsi

fyuz)ny' (yuz)n(zuy') z,

mais x-c-^-y \jz et x<—s-y' donc:

x<r> fyu z) ny' z

C. q. f. d.

Lemme IV : Si P est un point tel que P < [] xa on xa < Ia alors P est contenu
dans un xa et un seul. a

Démonstration: D'après le lemme II, P est contenu dans un Ib et un seul et
P <r-r xa pour a 4= b. Mais P <-> \J xa et

xbO (U xa)<Itni\J X=ç7
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enfin, xb*-> \J xa. Nous pouvons donc appliquer le lemme III, d'où P<-*xb. Ainsi
a + b

P <-> xa V a et

Pn(UXa] U fP^Xa) Pnx,b

d'où P < xb. C. q. f. d.
Démonstration du théorème XIX: Il faut établir la relation x (J xa où xa < IaV a

a

et montrer que cette représentation est unique. Cette représentation est définie par

*=U (*nZZ
a

En effet, (J fx O Ia) < x est évident, mais nous avons aussi x < [J fx O /0) car x
a a

est union de points et si P < x alors, d'après le lemme IV, P < Ia pour un certain a,
donc P < x n Ia.

D'autre part, cette représentation est unique, c'est-à-dire que si x (J xa où
a

xa < Ia, alors xa xn Ia. En effet, xa <, xn Ia car:

*n Z /U Vl ^ Z > U (*»n Z) xa,

mais nous avons aussi :

x o Ia< xa

car si P < x O Ia, alors P < x et P < Ia, ce qui entraîne, en vertu du lemme IV,
P contenu dans un xb qui ne peut être que xa.

Ainsi, le système de propositions est union directe des segments [<f>, Ia] qui sont
aussi des systèmes de propositions (Théorème XIII). Enfin, [cf>, Ia] est irréductible,
car s'il était union directe de deux sous-treillis contenant plus d'un élément, ces
sous-treillis seraient atomiques ; soient alors Px et P2 un point de chacun d'eux, alors

Pj u P2 ne contiendrait pas de troisième point, ce qui est impossible, car Pt et P2 sont
perspectifs. C. q. f. d.

Ainsi, un système de propositions est irréductible si et seulement si toute droite
contient au moins trois points. C'est la condition de Fano12). Mais il existe d'autres
conditions équivalentes, comme le montre le théorème suivant :

Théorème XX: Un système de propositions est irréductible si et seulement si seuls
cf> et I sont compatibles avec toutes les propositions du système.

Démonstration: Soit a une proposition différente de cf> ou de I. Le treillis étant
atomique, il existe deux points P et Q tels que P < a et Q < a'.

Si le treillis est irréductible, il existe un troisième point R contenu dans P u Q-

Montrons que R n'est pas compatible avec a:

aOR < aO(PuQ) -= P,

mais an R P est impossible car R 4= P donc a n R cf>, de même a' n R cj> d'où

(an P) u («'n R) =X
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Par contre, si le treillis est réductible, toute union d'une partie des Ia est compatible

avec toutes les propositions du système. C. q. f. d.

Etant donné un système de propositions irréductible, il lui correspond uni-
voquement d'après le théorème XVIII une géométrie projective irréductible. Si la
dimension est strictement plus grande que 3, cette géométrie projective peut toujours
être réalisée par les sous-espaces d'un espace vectoriel (à gauche) V sur un corps K
(M. L. Dubreil-Jacutin, L. Lesieur, R. Croisot5)). Avant de généraliser un résultat
de Birkhoff et von Neumann1), donnons quelques définitions:

Nous dirons que l'application * est un antiautomorphisme involutif sur le corps
Ksi:

(a + ß)* a* + ß*

(aß)* ß*a*

(a*)* a Ya,ßeK.
Nous appellerons forme sesquilinéaire une application/de VxV dans K telle que:

f(x + Xy,z) ffx, z)+X ffy, z)

ffx,y + Xz) ffx, y) + ffx, z) X*

pour tout x, y, z e V et X e K. Une telle forme sera dite hermitienne définie si, de plus :

f*fy, x) ffx, y)

et

ffx, x) 0 => x 0

Théorème XXI: Tout système de propositions irréductible et de dimension
strictement plus grande que 3 peut être réalisé par la donnée d'un espace vectoriel
(à gauche) V sur un corps K, d'un antiautomorphisme involutif * et d'une forme /
hermitienne définie; un sous-espace vectoriel correspond à une proposition si et
seulement si ce sous-espace peut être défini comme l'ensemble de tous les vecteurs x
satisfaisant à

ffx, yò o,

pour une certaine famille de y{ e V.
Démonstration: Birkhoff et von Neumann1) ont montré que toute orthocomplémentation

sur le treillis des sous-espaces vectoriels d'un espace vectoriel de dimension

finie au moins égale à 3 peut être engendrée par une forme hermitienne définie *).
De plus si / et g sont deux formes qui conduisent à la même orthocomplémentation,
R. Baer6) démontre l'existence dans le corps K d'un élément y 4= 0 tel que:

ffx, y) gfx, y) y, V x et y

*) Il n'existe donc pas d'orthocomplémentation si le corps n'admet pas d'anti-automorphisme
involutif.

30 H. P. A. 37, 4/5 (1964)
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Il en résulte:

gfx, y)yX* ffx, y) X* ffx, Xy) gfx, Xy)y gfx, y)X+y

où + désigne F antiautomorphisme correspondant à la forme g. Mais, la forme étant
définie, pour x 4= 0

gfx, x) a 4= 0 et g(a_1 x, x) 1

d'où la relation y X* X+ y.
Soit V0 un sous-espace vectoriel de V et de dimension égale à 3. L'orthocomplé-

mentation du système de propositions induit sur V0 une orthocomplémentation.
Donnons-nous, une fois pour toutes, une forme /0 engendrant cette orthocomplémentation.

Si nous considérons alors un autre sous-espace vectoriel Vx, et si Vx
contient V0 l'orthocomplémentation définie sur V0 n'est autre que la restriction à V0
de celle définie sur V1 (théorème XII) et pour toute forme gx fx, y) engendrant
l'orthocomplémentation de Vlt il existe y tel que:

fofx, V) gofx, y) y

où g0fx, y) est la restriction de g1 sur V0. Mais, de plus, X+ y y X*, ce qui permet de

définir sur Vx la forme gxfx, y) y qui est l'unique forme hermitienne définie dont la
restriction à V0 est identique kf0(x,y).

Nous pouvons alors construire une forme hermitienne définie / sur l'espace V
tout entier: il suffit de poser:

ffx, y) =fv0,x,y(x,y),

ohfVa,x est la forme définie comme précédemment mais pour Vx égale au sous-espace
vectoriel engendré par V0, x et y. Si P est un point, on vérifie facilement que l'image
de P' est le sous-espace vectoriel des vecteurs tels que :

/(*. y) o,

où y est un vecteur du rayon image de P. La démonstration s'achève en remarquant
que toute proposition peut être écrite sous Li forme

P<.a'
C. q. f. d.

Dans la suite, xc désignera un système de propositions réalisé (selon le théorème
précédent) par un espace vectoriel sur l'un des trois corps suivants : les réels, les
complexes ou les quaternions, l'antiautomorphisme involutif étant la conjugaison
habituelle (qui se réduit à l'identité pour les réels). La forme hermitienne correspondante
est une norme et détermine sur l'espace vectoriel une structure topologique pré-
hilbertienne. En fait, on peut, dans ce cas, démontrer un résultat plus précis:

Théorème XXII: Tout système de propositions rc est isomorphe aux sous-espaces
vectoriels fermés d'un certain espace de Hilbert.

Démonstration: L'image d'une proposition est un sous-espace vectoriel fermé. En
effet, l'image de l'orthocomplément d'un point est fermé et l'image d'une proposition
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est l'intersection d'images d'orthocompléments de points. Montrons tout d'abord que
tout sous-espace vectoriel fermé F est l'image d'une proposition. Considérons, parmi
les points dont l'image est dans V un ensemble maximal M de points compatibles
entre eux. Soit W l'image de l'union w des points de M.

1. W C V: si x e W, x est sur l'image d'un point Q qui ne peut pas être compatible
avec tous les points de M; il existe donc Pxe M tel que Px <—> Q mais Q est sur
une droite contenant Px et un point Qx < (J P (théorème XVIII, 5.). On a donc

PAP,
PeM

I 19 I 19 i I 19
\ x I | y-y | + I xx 17

où yx est la composante orthogonale de x selon le rayon image de Px. Ainsi, W est

engendré topologiquement par l'ensemble M des rayons de V.
2. V Ç_W: nous raisonnerons par l'absurde; soit y eV et supposons yfiW. Si R

est un point dont l'image contient y, il existe alors S <—> w tel que S u w Äyf
(théorème XV), mais S est sur une droite contenant R et un point de w dont l'image
est dans W Ç_V, donc l'image de S est dans V, mais S <r> P V PeM d'où la
contradiction.

Pour achever la démonstration du théorème, il faut encore montrer qu'un tel
espace préhilbertien est complet. Il suffit pour cela de montrer qu'il est identique à

son dual, ce qui est évident7), car nous avons le théorème de décomposition.
En effet, si P est un point et a une proposition telle que P <|; a et P <|; a', alors P

est sur la droite union des points

Q (a u P) O a'
et

R fa' u P) O a

car
(fa' uP)Oa)u (fa u P) O a') («' u P) n (a u P) > P

C. q. f. d.
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le système non modulaire que nous avons construit à l'aide de certains projecteurs spectraux
de p et q au paragraphe 4. Le lecteur qui désirerait une discussion plus complète (ayant lu notre
réf. 8) peut se rapporter pour un autre exemple au chapitre I (§ 2) du livre de P. A. M. Dirac :

The Principles of Quantum Mechanics (Oxford). Dans cet exemple on considère un faisceau de
lumière traversant un cristal de tourmaline. Si le faisceau incident ne contient qu'un seul

photon, à la sortie du cristal on observera, soit un photon entier d'énergie égale au photon
incident, soit pas de photon du tout. Ainsi ce cristal constitue un appareil de mesure du type
oui-non ; notons a0 la proposition correspondante. De même notons ax la proposition correspondant

à ce même cristal, mais dont l'axe optique a tourné d'un angle a. La proposition
orthocomplément de a0, définie par l'échange du oui et du non, correspond au cristal tourné de ji/2.
Nous voulons montrer que pour a. A- n n\Z (où n est entier), a0 et aa constituent une paire de

propositions incompatibles. Il suffit de vérifier:
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x (a0 n aa) y (anß n aa) u («o ° aa+JI/2 U (««/2 n «a+„/2) * l ¦

Or aa O aß cf> pour (a — ß) 4= nn car par définition aa (~) aß est vraie si et si seulement ax et ap
sont toutes deux vraies. Or il n'existe pas de photon pouvant avec certitude traverser chacun
des deux cristaux si leurs axes optiques forment un angle différent de zéro. Ainsi x <j>. En
résumé le système de propositions correspondant aux polarisations possibles d'un photon est
du type suivant :
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