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Darstellung der Gravitationsenergie

von Willy Scherrer

(18. II. 63)

Zusammenfassung: Diese Arbeit enthält eine Begründung und Erläuterung für die 5.
Behauptung in meinem «Bericht über eine einheitliche Feldtheorie»1): Die totale Energie des
von einer ruhenden Masse m erzeugten Gravitationsfeldes wird gegeben durch die Einsteinsche
Formel

E m c2.

Das ausschlaggebende Argument für die Begründung liefert der absolut invariante und lokal
exakte Erhaltungssatz der linearen Feldtheorie in Verbindung mit einer absolut invarianten
Definition des «Führungsfeldes» (Vakuums).

§ 1 Einleitung
Die vorliegende Arbeit bildet eine Ergänzung meiner in den Jahren 1954 bis

1958 publizierten einheitlichen Feldtheorie2). Ich habe dieser Theorie den Namen
«lineare Feldtheorie» gegeben, weil sie sich primär auf lineare Differentialformen
gründet. Die Ausgestaltung der Theorie führte zwangsläufig zum Ergebnis, dass
neben die Gruppe aller Koordinatentransformationen (die Koordinatengruppe)
die Gruppe aller linearen Transformationen der linearen Differentialformen (die
Formengruppe) gestellt werden muss. Um insbesondere einen Krümmungsbegriff
zu gewinnen, der simultan gegenüber beiden Gruppen invariant ist, erwies es sich
als notwendig, einen konstanten asymmetrischen Formentensor zweiter Stufe
einzuführen. Identifiziert man dessen symmetrischen Bestandteil aXß aßX mit der
Lorentz-Matrix, so wird dadurch eine Riemann-Einstein-Metrik induziert. Der
zugehörige antisymmetrische Bestandteil «^ — — ö~[ induziert eine antisymmetrische

bilineare Differentialform und ist wohl zum mindesten notwendig, um eine
natürliche Bestimmung der 16gliedrigen Linearformenbasis zu gewährleisten.

Die einfachsten Totalinvarianten, das heisst also Funktionen, die simultan
gegenüber beiden Gruppen invariant sind, erhält man nun, wenn man die ersten
Ableitungen der 16 Elemente der eben erwähnten Linearformenbasis mit den

x) Zeitschrift für Physik 174, 351/352 (1963).
2) Zeitschrift für Physik 138, 16 (1954); 139, AA (1954); 140, 160 (1955); 140, 164 (1955);

141, 37'4 (1955); 144, 373 (1956); 152, 319 (1958).
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16 Elementen des konstanten asymmetrischen Formentensors in geeigneter Weise
verbindet. Es sind ihrer 6, und ich habe sie mit

(1.1)w, w, IF ; w, w, w
1 2 3 1 2 3

bezeichnet. Die drei ersten nenne ich «symmetrische Invarianten», weil bei ihrem
Aufbau nur die symmetrischen Komponenten aXß des Formentensors beteiligt sind.
Die drei restlichen (überstrichenen) nenne ich «antisymmetrische Invarianten»,
weil bei ihrem Aufbau auch die antisymmetrischen Komponenten aÄ/J des Formentensors

wesentlich beteiligt sind.
Ein natürlicher Ansatz, um eine geeignete Wirkungsfunktion zu finden, ist nun

offenbar gegeben durch
3 3

IF A + ZÄW + .Z AW > (L2)
0 i A i i i A i i

wobei die 7 Kombinationszahlen A Konstanten darstellen. Insbesondere spielt A
o

die Rolle der kosmologischen Konstanten. Für deren Einführung sprechen zwei
Gründe :

1. Sie ist entsprechend den ursprünglichen Einsteinschen Überlegungen
physikalisch erwünscht, weil durch sie das prekäre Problem der Grenzbedingungen im
Unendlichen gegenstandslos wird.

2. Sie ist auch begrifflich erwünscht, weil IF für /1 0 eine homogene Funktion
o

der Feldgrössen vom Grade — 2 darstellt und daher fïï&dx kein sinnvolles Extremum

liefert, obschon die resultierenden Feldgleichungen brauchbar sind und zum
Beispiel die Schwarzschildsche Lösung ergeben.

Ein unzweifelhafter Entscheid zugunsten der kosmologischen Konstanten
käme natürlich erst dann zustande, falls ein Prozess berechnet werden könnte, bei
dem ihr Einfluss experimentell verifizierbar wäre.

Das wichtigste Ergebnis meiner letzten Arbeit ist enthalten in folgendem Satz :

Setzt man A A A 0, so ergeben sich die Einsteinschen Gravitationsgleichungen

für das -Vakuum genau dann und nur dann, wenn man die A entsprechend
dem Verhältnis

A :A :A 1 : 2 : -412 3

wählt.
Macht man also für den symmetrischen Anteil der Wirkungsfunktion den

Ansatz

W A + W A-2W -4W (1.3)
0 0 1 2 3

so erhält damit die Frage nach der' Gravitationsenergie im Rahmen unserer Theorie
einen eindeutig bestimmten Sinn.

Der Zweck der vorliegenden Arbeit ist nun der Nachweis, dass die totale Energie
des von einer ruhenden Masse m erzeugten Gravitationsfeldes im Grenzfall A 0
den Wert E m c2 besitzt.
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§ 2 Das Führungsfeld

Der suggestive Begriff des «Führungsfeldes» ist von H. Weyl geprägt worden.
Es ist aber nicht möglich, denselben im Rahmen der Einsteinschen Gravitationstheorie

in einer den Bedürfnissen wirklich angemessenen Weise zu fassen. Grund:
Die Aussage, die Komponenten J^; des Führungsfeldes seien in einem Punkte Null,
hat keinen invarianten Charakter. Im Rahmen der linearen Feldtheorie dagegen ist
es möglich, ein Führungsfeld invariant zu definieren. Jedoch bevor ich diese
Definition angebe, will ich noch eine leichte Modifikation der bis anhin gebrachten
Bezeichnungen vornehmen, die den Zweck hat, die Koordinaten- und Formenzeiger
besser aufeinander abzustimmen. Sie besteht in folgenden Festsetzungen:

1. Unsere primären Linearformen schreibe ich von jetzt an in der Gestalt

und das zugeordnete metrische Feld muss daher lauten

Gea ^gA;egZ (2.2)

oder - entsprechend der früher erläuterten Normierung -
G°° axg\g\a. (2.3)

In Worten : In den bis anhin gebrauchten Formentensoren vertausche ich die Rollen
der ko- und kontravarianten Zeiger, und für die kontravarianten Koordinatenzeiger
übernehme ich die traditionelle Hochstellung.

Konsequenterweise bezeichnen wir nun mit

Il SX" Il (2-4)

die transponierte der Inversen der primären Basismatrix

yK
5 ,fl

(2.5)

und es gelten die Zeilenrelationen

respektive die Spaltenrelationen
rW #. (2-6)

gZsZ <5;Z (2-7)

2. Für die Feldstärken benutze ich von jetzt an die Definition

* - i /**':- ògK'A
Apr 2 \ dxp dx" J

(2.8)

Anders ausgedrückt: Von den alten zu den neuen Feldstärken findet folgender
Übergang statt:

U -> - A ¦ (2.9)/ A, /tv ,ßv V /
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Gestützt auf diese Festsetzungen ist es nun leicht, alle bis anhin gefundenen
Relationen in die neue Bezeichnung überzuführen.

Damit komme ich zu der in Aussicht gestellten

Definition: Ein »Führungsfeld» ist ein Feld mit verschwindenden Feldstärken

f\, 0 (2.10)

Diese Definition ist invariant, weil (2.8) einen Tensor darstellt. Aus (2.10) folgt in
bekannter Weise, dass die g\ß Gradienten sind,

„a, _
àp*

(2.11)6 ,f OXß

und (2.1) geht über in
g* px' (2.12)

Führen wir also neue Koordinaten ein gemäss

xK plfx°, X1, X2, Xs)

so geht (2..12) über in

mit
gX> xx

6 ,fi

*>\ ¦

XM

An Stelle von (2.2) hat daher die Relation

Gea a (2.13)

zu treten, und wir gelangen zu der

Folgerung: Ein Führungsfeld bestimmt eindeutig eine Lorentz-Welt (2-14)

Nun zur Nutzanwendung. Während der ganzen Entwicklung der Theorie hat
mich die Frage beunruhigt, wie die für die nullte Näherung geeigneten Basismatrizen

zu wählen seien. Bei der Energieberechnung hat sich nun gezeigt, dass diejenigen
Matrizen den Vorzug verdienen, die wir jetzt gemäss Definition (2.10) als
Basismatrizen von Führungsfeldern bezeichnen können. Zur Vereinfachung der
Ausdrucksweise treffe ich daher folgende

Definition: Eine «Trägheitsmatrix» || Aß || ist die Basismatrix eines

Führungsfeldes. (2-15)

Sie ist daher charakterisiert durch die Relationen

2 \ oxß dx'2

und es empfiehlt sich, die zu ihr gehörigen Dreiindizessymbole zu notieren :

TA. < <E
,1'" dxf dx"

(2.16)

(2.17)
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Eine beliebige Basismatrix gZ kann nun immer auf zwei verschiedene Arten auf
eine vorgegebene Trägheitsmatrix zurückgeführt werden:

1.

2.

y k" A

y — i,*, f-

(2.18i)

(2.18a)

Im ersten Falle wird also die Ergänzung durch den Koordinatentensor /tv* geliefert,
im zweiten Falle durch den Formentensor h\'.

Ein entscheidender technischer Vorteil des Verfahrens besteht darin, dass man
die Trägheitsmatrix zum voraus entsprechend der gewünschten Symmetrie frei
wählen kann.

§ 3 Statisch-kugelsymmetrischer Ansatz

Seien yAfX 0, 3) cartesische Koordinaten in einer durch ein vorgegebenes
Führungsfeld bestimmten Lorentz-Welt. Vermittels

yu xu

y1 r sin')? cosy,
y2 r sin ¦& sin f
yó r cos$

(3.1)

führen wir Polarkoordinaten ein und benützen für dieselben je nach Bedarf auch
die Zeichen

x1 r x2 $ x3 f (3-2)

Aus den Differentialen
dyx t\ dx" (3.3)

entnehmen wir dann die zugehörige Trägheitsmatrix 11 A?tl 11. Dieselbe zerfällt offenbar

in die eingliedrige Matrix
II Zoll -IM II

und die dreigliedrige Matrix
(3.4i

und

sin ¦& cosf, r cos {r cosf — rsin $ sin f
sin $ siny) r cos?? siny, f sin?? cosy

cost?, — r sini?, 0

Für die Transponierte der Inversen || lxf || findet man entsprechend

tA

sin?? cosy r-1 cos«? cosy — fr sin??)-1 siny
sin?? siny, r~x cos?? siny fr sin #)-1 cosy

cost?, — r~x sin??, 0

(3.42

(3.5i

(3.52
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Für die zu (3.4) gehörigen von Null verschiedenen Dreizeigersymbole ergeben
sich die Werte

Z22 -r Z •

t*;38 — sin?? fr sin?? tl-x -1- cos& t\)
Z'i;='-1Z (/>!},
r\2l cotg?? t\ fl > 2)

(3.6!)

(3.6.)

Die zur Schwarzschildschen Lösung führende Basismatrix erhält man nun
vermittels

g\-Kl\' (2-l8i)

wenn man die Ergänzungsmatrix /V* diagonal wählt,

A;*=0 fX^fi), (3.7,)

und überdies über deren Diagonalglieder in folgender Weise verfügt :

*:8 /W - Ä:i *W. h% hi ¦ (3-72)

Für die Determinante der Basismatrix ergibt sich daher der Wert

g /Ar2 sin??. (3.8)

Für die Elemente g^ der Transponierten der Inversen erhält man die Werte

g0;° /-1 ; g,-;1 * - tf ; g»;2 tf ; g,;3 tf ¦ (3.9)

Für die nichtverschwindenden Feldstärken schliesslich ergeben sich die Werte

1

/%i

tit

/z

,r Z (/>1)

2

1 - h
(3.10)

wobei der Strich die Ableitung nach r bedeutet.
Da reine Formentensoren invariant sind gegenüber beliebigen

Koordinatentransformationen, empfiehlt es sich, die obigen Feldstärken vermittels

C Â. q a it.,
ixv, oft, Sp, / ,QO

in solche Tensoren überzuführen. Die Ergebnisse lauten:

(3.11)

/tu

hk

f
2 h f
1 - h

2rh

tA

Z fk fest) (3.12)

(JL. 4- LzAA] y\2hf rh '¦
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§ 4 Die Feldgleichungen

Da nach (3.12) keine der von Null verschiedenen Feldstärken drei verschiedene
Zeiger aufweist, haben die invariant geschriebenen Feldgleichungen genau dieselbe
Gestalt, wie im Falle diagonaler Basismatrizen. Wir können sie daher - nach
Vornahme des oben beschriebenen Bezeichnungswechsels - aus der vorausgehenden
Arbeit übernehmen3).

Es empfiehlt sich, ihnen unter Verwendung der Hilfsgrösse

H - 4 a« da /„ + A A 4 ««(/„ /„ + /J /J) (4.1)
o

folgende Gestalt zu geben :

Wi 4 a* bx f, + 8 rf» fri f& + 4 «« da /J + 8 a« fa fJ - ff 0 (A fest) (4.20
o o

IF^4«"c\(/"-/J)-8«"/J(/, -/$+8 «„/£/„;. (A^/i) (4.23)
o

Führen wir nun die Abkürzungen

ein, so gehen die Gleichungen (3.12) über in

frl \ptf; Uï \Qtf, h i(pA2Q)tiy (4.4)

Zur engdültigen Auswertung der Feldgleichungen bedürfen wir noch der Operatoren

Für unser spezielles Problem benötigen wir jedoch nur die dt für i 1, 2, 3

angewendet auf Funktionen cf)fr) und auf die tk^ für k 1, 2, 3. Die dies leistenden
Formeln lauten

à. 0(r) h-x 0' tA d4 ttf r-i (ôik - tf tf) (4.6)

Die Auswertung liefert vorerst

Ho - 2 [Ä-i (P + 2 Ç)' + 2 f-i (P + 2 Q)] - 2 [P(P + 2 + 3 <?2] + A (4.7)

und hierauf die Feldgleichungen in folgender Gestalt:

W% 4 A-i Ç' + 8 r-i Ç + 6 Q2 - yl 0 (4.8i)
o

IF* 2 [A-i (P + Q)' A- r-i (P + Q) + P2 + P Q + Ç2] - /1

- 2[A-i(P + <?)'- r-i(P + Q) +PfP~Q)]tAA:1 0 («fest)
(4.J '2

A. a. O.2) (1958), § 5, Gleichungen (6), (6i) und (63
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und

W}=-2 [Â-i (P + Q)' - r-i (P + Q) + P (P - Q)] tf t\ 0 (j # A) (4.8,)
o

Da (83) gleichwertig ist mit der zweiten Komponente von (82), liegen 3 Gleichungen
zur Bestimmung der 2 Funktionen ffr) und hfr) vor. Eliminiert man aus der ersten
Komponente von (82) den Term A~i(P + Q)1 vermittels (83), so erhält man die
Gleichung

4(Ç + r-i)P + 2(Ç + 2r-i)<2-/l 0, (4.80

und man kann sich auf die Betrachtung der Gleichungen (81), (82) und (83)
beschränken. Weiter zeigt dann die Analyse, dass (83) eine Folge von (81) und (82) ist.
Die Gleichungen (81) und (8a) sind also notwendig und hinreichend zur Bestimmung
der Lösung. Setzt man

/1 - 2 X (4.9)
so erhält man aus (81)

h~X l/1 - ~ - Ar% ¦ (4-10>

Aus (82) ergibt sich dann
f c h-y

Mit der Normierung C 1 folgt also schliesslich

Es liegt also genau die mit den Namen Schwarzschild, Weyl und Trefftz
verknüpfte Lösung vor, und X > 0 bedeutet die zugehörige kosmologische Konstante.

Es ist wohl bemerkenswert, dass sich, ausgehend vom Führungsfeld, die
kosmologische Ergänzung zwanglos ergibt.

§ 5 Die Gravitationsenergie

Die Energietensordichte können wir wieder aus der vorausgehenden Arbeit
entnehmen4). Ist

2ß=IFg (5.1)

die einschlägige Wirkungsdichte, so erhalten wir im Sinne unserer neuen Bezeichnung

Zf - A?A S (^7 + ti" W) ¦ (S-2)

Der gemischte Energietensor lautet daher

TK V^ + Si" W (5.3)

4) A. a. O. 2) (1958), § 4.
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Am bequemsten zu handhaben ist natürlich wiederum der koordinateninvariante
« Formenenergietensor »

Ti'-1
>¦, TAgA (5.4)

Lassen wir bei Formentensoren immer dann, wenn keine Missverständnisse zu
befürchten sind, das Komma rechts von jedem Formenzeiger weg, so geht (4) wegen
(3) über in

Tß
bW

d", W (5.5)

Jetzt führen wir für TF die Wirkungsfunktion (1.3) ein, deren einzelne Komponenten

in neuer Bezeichnung explizite gegeben sind durch

W s a. efi a* f* f«
i
W^ cc*flfvß,
2

3

(5.60

(5.62)

(5.6a)

Setzt man nach vollzogener Rechnung alle Feldstärken mit drei verschiedenen
Zeigern gleich Null, so erhält man schliesslich folgende Ausdrücke:

mit

Ti 8 a* ff, U - t& f£> + « «a (L - Lì) LÌAW, fX fest) (5.70
o o

T-Ì 8 a" /„ (fx - /$ -8 a" f£ f& fX * p) (5.78)
o

W=-4aUJ„ + 4a«ffßfal + A. (5.7.)

Für die uns interessierenden Energie-Impulsdichten erhalten wir nun mit Rücksicht
auf unsere spezielle Basis

oder

Zxf^gTxf gTl:gA gTlg0f

gm-1-rr ,0 (5.8)

Wir haben jetzt also nur noch die Terme T\ zu berechnen, indem wir die Feldstärken
(4.4) in die Formeln (5.7) einsetzen. Man erhält

7-0
10 — "

0
- 4PÇ + TF,

0

T-0 _ 0 (i 11,2,3)

TF= 4PQ A-2Q2 + A

(5.9)

1 H. P. A. 37, 4 (1064)
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Für die Energiedichte ergibt sich daher unter Beachtung von (4.9) die Darstellung

So;0 2 fQ2 - X) /-ig (5.10)

Aus dem Umstände, dass hier zum Unterschied gegenüber den klassischen
Gravitationsgleichungen die kosmologische Konstante den Faktor 2 aufweist, ergibt sich
als absolutes Mass der Energiedichte der Ausdruck

io:° «-1 fQ2 - *) /-1 g.

wobei x die Einsteinsche Gravitationskonstante bedeutet. Mit Rücksicht auf (3.8),
(4.3), (4.10) und (4.11) erhalten wir daher folgende Darstellung für die Energiedichte

des von einer ruhenden Masse erzeugten Gravitationsfeldes :

Z(-° a-i [(/ - 1)2 - X r2] /-i sin??

Im Grenzfall X 0 ergibt sich daraus explizit

V - Zt 1 +l/i 2a

/j 2 a
+ V

L \ |/

Für die Totalenergie

E f f f Ì0;° dr dd df
0 0 2a

erhält man hierauf den Wert
y-, 8 71 a

-1 sin#

(5.11)

(5.12)

(5.13)

Gestützt auf die klassischen Einsteinschen Formeln

k m Sjik (5.14)

folgt nun unmittelbar das Einsteinsche Äquivalenzgesetz

E m c2 (5.15)

Die Verdichtung der Energie um das Zentrum erweist sich übrigens als ausserordentlich

intensiv. Für die in der Kugelschale zwischen dem Gravitationsradius 2 a

und dem Radius r enthaltene Energie gilt nämlich in ausreichender Näherung für
r/2 a > 1 die Formel

P2;~mC2(l --£-). (5.16)

Da für Nukleonen a <~ 10~52 cm ausmacht, erhält man zum Beispiel für r ~ 10~i6 cm
den Wert ~ m c2 (1-10~36).
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Korrekterweise sollte man statt r den invarianten Radius

Ja |/l
do

2 a

Q

verwenden. Die Rechnung zeigt aber, dass die Näherung dadurch keine wesentliche
Änderung erfährt, das heisst dass im Rahmen dieser Näherung gilt

r

§ 6 Schlussfolgerungen

1. Was wir vorhin für ein Ruhsystem in der Lorentz-Welt gefunden haben,
muss natürlich in folgender Weise auf ein bewegtes System übertragen werden:
Die vier nach den Erhaltungssätzen

0 (6.1)
dx"

zeitunabhängigen, also konstanten Integrale

Z /// £/ dxl dxl dxS (6-2)

- const

bilden einen konstanten kovarianten Formenvektor.
Wegen der festgestellten enormen räumlichen Konzentration der Energie ergibt

sich nun die phänomenologische Auffassung ganz ungezwungen : Sofern man neben
dem Feld eine Masse einführen will, muss der Vektor (2) in jedem Schnitt x° const
einem Punkt zugeordnet werden.

2. Es eröffnet sich jetzt vielleicht eine Möglichkeit, ein elektromagnetisches
Viererpotential zu konstruieren, ohne den Rahmen der linearen Feldtheorie erweitern

zu müssen. Erfahrungsgemäss ist nämlich jede Ladung an Masse gebunden und
muss daher fürs erste phänomenologisch dargestellt werden. Die formal naheliegendste

Bildung dieser Art ist offenbar gegeben durch den kovarianten Koordinatenvektor

<r\A-Z<gV (6-3)

Bei einem Versuch, diese Möglichkeit zu realisieren, wird man die Aufmerksamkeit

wohl in erster Linie auf eine passende antisymmetrische Erweiterung

TF AW + AW A- AW (6.4)
0 11 2 2 3 3

von (1.3) zu einer Wirkungsfunktion

W W + W (6.5)
o o

richten müssen.
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3. In einer früheren Arbeit5) habe ich gezeigt, dass man die Schwarzschildsche
Lösung auch erhält, wenn man eine diagonale Basismatrix zugrunde legt. In neuer
Bezeichnung lautet diese Basis

°K' II

ffr) 0 0 0

0 h fr) 0 0

0 0 r 0

0 0 0 r sin??

(6.6)

Als zugehörige Energiedichte ergibt sich an Stelle von (5.11)

Z0f *:-i(/2 - ;.r2)/-isin??.

Im Grenzfall X 0 folgt daraus explizit

i 1/1 _ IfLginfl,

(6.7)

(6.8)

und für die zugehörige Totalenergie erhält man E + oo. Da es sich dabei um
eine im Sinne der Invarianz zulässige Lösung handelt, erscheint durch sie der Aus-
senraum des Teilchens zu sehr mit Energie belastet. Diese Lösung kann also nur
dadurch ausgeschieden werden, dass man das Führungsfeld als physikalische
Definition des Vakuums akzeptiert.

Nun aber stimmen beide Lösungen im Linienelement überein, und es ergibt sich
der Schluss, dass man die Gravitationsenergie nicht aus dem Linienelement allein
bestimmen kann. Die lineare Feldtheorie scheint also nicht nur eine zulässige,
sondern auch eine notwendige Ergänzung der Gravitationsenergie zu sein.

Zeitschrilt lür Physik 141 (1955), § 6.
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