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Darstellung der Gravitationsenergie

von Willy Scherrer

(18. II. 63)

Zusammenfassung: Diese Arbeit enthilt eine Begriindung und Erlduterung fiir die 5. Be-
hauptung in meinem «Bericht iiber eine einheitliche Feldtheorie»!): Die totale Energie des
von einer ruhenden Masse m erzeugten Gravitationsfeldes wird gegeben durch die Einsteinsche
Formel

E = mc2,

Das ausschlaggebende Argument fiir die Begriindung liefert der absolut invariante und lokal
exakte Erhaltungssatz der linearen Feldtheorie in Verbindung mit einer absolut invarianten
Definition des «Fiihrungsfeldes» (Vakuums).

§ 1 Einleitung

Die vorliegende Arbeit bildet eine Ergdnzung meiner in den Jahren 1954 bis
1958 publizierten einheitlichen Feldtheorie?). Ich habe dieser Theorie den Namen
«lineare Feldtheorie» gegeben, weil sie sich primdr auf lineare Differentialformen
griindet. Die Ausgestaltung der Theorie fithrte zwangsldufig zum Ergebnis, dass
neben die Gruppe aller Koordinatentransformationen (die Koordinatengruppe)
die Gruppe aller linearen Transformationen der linearen Differentialformen (die
Formengruppe) gestellt werden muss. Um insbesondere einen Kriimmungsbegriff
zu gewinnen, der simultan gegeniiber beiden Gruppen invariant ist, erwies es sich
als notwendig, einen konstanten asymmetrischen Formentensor zweiter Stufe ein-
zufiihren. Identifiziert man dessen symmetrischen Bestandteil a;, = a,; mit der
Lorentz-Matrix, so wird dadurch eine Riemann-Einstein-Metrik induziert. Der zu-
gehorige antisymmetrische Bestandteil a;, = — a@,; induziert eine antisymmetri-
sche bilineare Differentialform und ist wohl zum mindesten notwendig, um eine
natiirliche Bestimmung der 16gliedrigen Linearformenbasis zu gewéhrleisten.

Die einfachsten Totalinvarianten, das heisst also Funktionen, die simultan
gegeniiber beiden Gruppen invariant sind, erhdlt man nun, wenn man die ersten
Ableitungen der 16 Elemente der eben erwihnten Linearformenbasis mit den

1) Zeitschrift fiir Physik 174, 351/352 (1963).
?) Zeitschrift fiir Physik 138, 16 (1954); 139, 44 (1954); 140, 160 (1955); 140, 164 (1955);
141, 374 (1955); 144, 373 (1956); 152, 319 (1958).
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16 Elementen des konstanten asymmetrischen Formentensors in geeigneter Weise
verbindet. Es sind ihrer 6, und ich habe sie mit
w, W, W; W, (1.1)

1

1 2 3

“ 3

bezeichnet. Die drei ersten nenne ich «symmetrische Invarianten», weil bei ihrem
Aufbau nur die symmetrischen Komponenten a;, des Formentensors beteiligt sind.
Die drei restlichen (iiberstrichenen) nenne ich «antisymmetrische Invarianteny,
weil bei ihrem Aufbau auch die antisymmetrischen Komponenten a;, des Formen-
tensors wesentlich beteiligt sind.

Ein natiirlicher Ansatz, um eine geeignete Wirkungsfunktion zu finden, ist nun -
offenbar gegeben durch

MgA—}Z'AT/If%—ZAM (1.2)

0 1=A4 1 (2 = 3

wobei die 7 Kombinationszahlen /1 Konstanten darstellen. Insbesondere spiélt {)l

die Rolle der kosmologischen Konstanten. Fiir deren Einfithrung sprechen zwei
Griinde:

1. Sie ist entsprechend den urspriinglichen Einsteinschen Uberlegungen physi-
kalisch erwiinscht, weil durch sie das prekidre Problem der Grenzbedingungen im
Unendlichen gegenstandslos wird.

2. Sie ist auch begrifflich erwiinscht, weil W fiir 4 = 0 eine homogene Funktion

der Feldgrossen vom Grade — 2 darstellt und daher f B dx kein sinnvolles Extre-
mum liefert, obschon die resultierenden Feldgleichungen brauchbar sind und zum
Beispiel die Schwarzschildsche Lésung ergeben.

Ein unzweifelhafter Entscheid zugunsten der kosmologischen Konstanten
kidme natiirlich erst dann zustande, falls ein Prozess berechnet werden konnte, bei
dem ihr Einfluss experimentell verifizierbar wire. '

Das wichtigste Ergebnis meiner letzten Arbeit ist enthalten in folgendem Satz:

Setzt man /1 él = /31 = 0, so ergeben sich die Einsteinschen Gravitationsglei-

chungen fiir das ‘Vakuum genau dann und nur dann, wenn man die /1 entsprechend
dem Verhiltnis

A:A:A=1:2:—4
il 2 3

wahit.
Macht man also fiir den symmetrischen Anteil der Wirkungsfunktion den An-
satz
W=A4+W+2W —4W, (1.3)
3

0 0 1 2

so erhdlt damit die Frage nach der Gravitationsenergie im Rahmen unserer Theorie
einen eindeutig bestimmten Sinn.

Der Zweck der vorliegenden Arbeit ist nun der Nachweis, dass die totale Energie
des von einer ruhenden Masse m erzeugten Gravitationsfeldes im Grenzfall A = 0
den Wert E == m c? besitzt.



Vol. 37, 1964 Darstellung der Gravitationsenergie : 319
§ 2 Das Fithrungsfeld

Der suggestive Begriff des «Fiithrungsfeldes» ist von H. WEYL geprigt worden.
Es ist aber nicht méglich, denselben im Rahmen der Einsteinschen Gravitations-
theorie in einer den Bediirfnissen wirklich angemessenen Weise zu fassen. Grund:
Die Aussage, die Komponenten I'"?, des Fithrungsfeldes seien in einem Punkte Null,
hat keinen invarianten Charakter. Im Rahmen der linearen Feldtheorie dagegen ist
es moglich, ein Fithrungsfeld invariant zu definieren. Jedoch bevor ich diese Defi-
nition angebe, will ich noch eine leichte Modifikation der bis anhin gebrachten
Bezeichnungen vornehmen, die den Zweck hat, die Koordinaten- und Formenzeiger
besser aufeinander abzustimmen. Sie besteht in folgenden Festsetzungen:

1. Unsere primiren Linearformen schreibe ich von jetzt an in der Gestalt

gh=gh, 2" (2.1)

und das zugeordnete metrische Feld muss daher lauten

GQG’ =5 aﬂ.,u glzg g'u:a (22)
oder — entsprechend der friither erliuterten Normierung —

G =a,g", ", (2.3)
In Worten: In den bis anhin gebrauchten Formentensoren vertausche ich die Rollen
der ko- und kontravarianten Zeiger, und fiir die kontravarianten Koordinatenzeiger

iibernehme ich die traditionelle Hochstellung.
Konsequenterweise bezeichnen wir nun mit

I gx* 1 (2.4)

die transponierte der Inversen der primédren Basismatrix

1enll (2.5}
und es gelten die Zeilenrelalionen
8% 8" = 0y (26)
respektive die Spaltenrelationen
g8, = 0F . (2.7)

2. Fiir die Feldstarken benutze ich von jetzt an die Definition

g™ g™
, 1 (% 9% .
P =3 (5 - 5. 28)

Anders ausgedriickt: Von den alten zu den neuen Feldstirken findet folgender
Ubergang statt:

Faw = — fi;m, . (2.9)
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Gestiitzt auf diese Festsetzungen ist es nun leicht, alle bis anhin gefundenen
Relationen in die neue Bezeichnung iiberzufiihren.
Damit komme ich zu der in Aussicht gestellten

Definition: Ein » Fiihrungsfeld» ist ein Feld mit verschwindenden Feldstirken
Fuw=0. (2.10)

Diese Definition ist invariant, weil (2.8) einen Tensor darstellt. Aus (2.10) folgt in
bekannter Weise, dass die g*, Gradienten sind,

oph
g, =3 (2.11)
und (2.1) geht iiber in
gl = e, (2.12)

Fithren wir also neue Koordinaten ein geméiss

xt = ph (a0, x1, 42, x3) ,
so geht (2.12) iiber in
g = =gt %,
mit

An Stelle von (2.2) hat daher die Relation
Ggo’ = agcr (2.13)
zu treten, und wir gelangen zu der

Folgerung: Ein Fithrungsfeld bestimmi eindeutig eine Lorentz-Welt (2.14)

Nun zur Nutzanwendung. Wihrend der ganzen Entwicklung der Theorie hat
mich die Frage beunruhigt, wie die fiir die nullte Naherung geeigneten Basismatri-
zen zu wahlen seien. Bei der Energieberechnung hat sich nun gezeigt, dass diejenigen
Matrizen den Vorzug verdienen, die wir jetzt gemiss Definition (2.10) als Basis-
matrizen von Fiihrungsfeldern bezeichnen koénnen. Zur Vereinfachung der Aus-
drucksweise treffe ich daher folgende

Definition: Eine « Trigheitsmatrix» || t*, || ist die Basismatrix eines
Fiihrungsfeldes. (2.15)

Sie ist daher charakterisiert durch die Relationen

1 Ot"{’v ()t}"#
75 — o ) =0 =16

und es empfiehlt sich, die zu ihr gehérigen Dreiindizessymbole zu notieren :

o’ ot’
h =t = i, (2.17)

MY dxnt oxv
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Eine beliebige Basismatrix g*, kann nun immer auf zwei verschiedene Arten auf
eine vorgegebene Trigheitsmatrix zuriickgefithrt werden:

A, v 44, «

1. gha=h,t",, (2.18y)
Lo pho

2. gt =ht",. (2.18)

Im ersten Falle wird also die Ergdnzung durch den Koordinatentensor 4, geliefert,
im zweiten Falle durch den Formentensor %% .

Ein entscheidender technischer Vorteil des Verfahrens besteht darin, dass man
die Trigheitsmatrix zum voraus entsprechend der gewiinschten Symmetrie frei
wihlen kann.

§ 3 Statisch-kugelsymmetrischer Ansatz
Seien y*(A = 0, . . ., 8) cartesische Koordinaten in einer durch ein vorgegebenes
Fiihrungsfeld bestimmten Lorentz-Welt. Vermittels
YO = 0
1 — 7 sin® cosy ,
4 L (3.1)
y2 = rsiné sinyp ,

y3 = ¢ cos v

fiihren wir Polarkoordinaten ein und beniitzen fiir dieselben je nach Bedarf auch
die Zeichen

sl=r, 2=9, B3=y. (3.2)
Aus den Differentialen
iy = th, Gk (3.3)

entnehmen wir dann die zugehérige Trigheitsmatrix || ¢
bar in die eingliedrige Matrix

2 “ . Dieselbe zerfillt offen-

[l =11 1]] (8-41)
und die dreigliedrige Matrix
sing cosyp , 7 cosdcosy, — rsindsiny
| £,]| = || sindsiny, 7cosdsiny, rsind cosy (3.42)
cosd — rsind, 0

Fiir die Transponierte der Inversen || ¢;# || findet man entsprechend

el =1tl (3.51)
und
| sin@ cosp,  rlcosdcosy, — (rsind)lsiny
|| £:|| = || sindsiny,  rLcosdsiny, ( sin®) -1 cosy (35

| cos? — r~lgind, 0
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Fir die zu (3.4) gehorigen von Null verschiedenen Dreizeigersymbole ergeben
sich die Werte

T = —=F I ,

’ ’ . _ (3.61)
T"yy = — sind (r sind £, + cosd 7y)
Ty =Y ¢>1)),

X - (3.62)
Ty = cotgd ”, (1> 2).

Die zur Schwarzschildschen Losung fithrende Basismatrix erhdlt man nun ver-
mittels
g":ﬂ = £ s (2.18y)
wenn man die Ergdnzungsmatrix /} diagonal wihlt,
A
h;,u = 0 (l # /;L) P (371)

und tiberdies iiber deren Diagonalglieder in folgender Weise verfiigt:
ko =), ki =h(r), b =h}=1. (3.72)
Fiir die Determinante der Basismatrix ergibt‘ sich daher der Wert
g=1fhr2sind. (3.8)
Fiir die Elemente g;# der Transponierten der Inversen erhdlt man die Werte
g =1 gr =k g glt =00 =480 (3.9)

Fiir die nichtverschwindenden Feldstidrken schliesslich ergeben sich die Werte

(3.10)

fi,’u = ti’,z (¢>1),

wobei der Strich die Ableitung nach » bedeutet.
Da reine Formentensoren invariant sind gegeniiber beliebigen Koordinaten-
transformationen, empfiehlt es sich, die obigen Feldstidrken vermittels

[ g g ® (3.11)

in solche Tensoren iiberzufithren. Die Ergebnisse lauten:

fig = 2fh_f ti:l ’

f= SRyt (Rfest) (3.12)
. [ F 1—h\,

’i‘(zkf+ r}z)ti"
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§ 4 Die Feldgleichungen

Da nach (3.12) keine der von Null verschiedenen Feldstarken drei verschiedene
Zeiger aufweist, haben die invariant geschriebenen Feldgleichungen genau dieselbe
Gestalt, wie im Falle diagonaler Basismatrizen. Wir konnen sie daher — nach Vor-

‘nahme des oben beschriebenen Bezeichnungswechsels — aus der vorausgehenden
Arbeit iibernehmens3).

Es empfiehlt sich, ihnen unter Verwendung der Hilfsgrosse

H=4ad,[, + A+ 4a*(, |, + 1515 (4.1)
0

folgende Gestalt zu geben:

Wi=datd,f, +8a 22+ 4a0, [} +8a [ f,h—H=0, (Afest) (421)
0

0
T(/)Vf; =4 a” aa (f'u - fug) — 84" f,ujll (fz o fﬂﬁ) - Sa#f,{;‘ uz‘ (;L #ﬂ) (4'22)

Fiihren wir nun die Abkiirzungen

P=-_. 0= ’ (4.3)

ein, so gehen die Gleichungen (3.12) iiber in
fio = %’P s fe= —;" Qu', fi= % (P +20) 4. (4.4)
Zur engdiiltigen Auswertung der Feldgleichungen bediirfen wir noch der Opera-

toren

w 0
0, = gz i (4.5)

Fiir unser spezielles Problem benétigen wir jedoch nur die 9; fir + = 1,2, 3
angewendet auf Funktionen ¢(r) und auf die ¢, fiir # = 1, 2, 3. Die dies leistenden
Formeln lauten

0, D(r) = h1d 1, 9,

7

tet =1t (0 — £ 87 . (4.6)

Die Auswertung liefert vorerst

Ho=—2[h{(P+2Q) +2r (P +20)] —2[P(P+20Q) +30T+4, (47

und hierauf die Feldgleichungen in folgender Gestalt:
I:]ngz4h—1Q’+87—1Q—f—692—/1:0, (4.81)

Wi=201P+Q) +r(P+Q +P2+PQ+02— 4

L 2P Q) — (P4 Q) PP — Q) =0 (fest)

3) A.a. 0.2) (1958), § 5, Gleichungen (6), (61) und (6s).
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und

Wi= -2 (P Q) —r P+ Q) + PP — Q4 =0 (4. (*8)

Da (8s) gleichwertig ist mit der zweiten Komponente von (8:), liegen 3 Gleichungen
zur Bestimmung der 2 Funktionen f(r) und %(») vor. Eliminiert man aus der ersten
Komponente von (8s) den Term A-1(P + Q)! vermittels (83), so erhdlt man die
Gleichung

4Q +r )P +2Q+2r1Q—A=0, (4.82)
und man kann sich auf die Betrachtung der Gleichungen (8:), (8;) und (8s) be-
schrinken. Weiter zeigt dann die Analyse, dass (8s) eine Folge von (8:1) und (8,) ist.
Die Gleichungen (8;) und (8;) sind also notwendig und hinreichend zur Bestimmung
der Losung. Setzt man

A=—24, (4.9)
so erhdlt man aus (8:)
et — 1/1 BB g (4.10)
Aus (8,) ergibt sich dann
f=Ch1.

Mit der Normierung C = 1 folgt also schliesslich

le/laza _%72_ (4.11)

4

Es liegt also genau die mit den Namen ScHWARzSCHILD, WEYL und TREFFTZ ver-
kniipfte Losung vor, und 4 > 0 bedeutet die zugehdrige kosmologische Konstante.

Es ist wohl bemerkenswert, dass sich, ausgehend vom Fiihrungsfeld, die kosmo-
logische Ergdnzung zwanglos ergibt.

§ 5 Die Gravitationsenergie

Die Energietensordichte konnen wir wieder aus der vorausgehenden Arbeit ent-
nehmen4). Ist

W= Wg (5.1)

die einschldgige Wirkungsdichte, so erhalten wir im Sinne unserer neuen Bezeich-
nung

o3 ow
By = o il g (a i + g W) ‘ (5.2)
& &
Der gemischte Energietensor lautet daher
Tyt = aI;V + g W (5.3)
’ %", '

9 A.a. 0. 2) (1958), § 4.
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Am bequemsten zu handhaben ist natiirlich wiederum der koordinateninvariante
« Formenenergietensor »

T =Ty g",. (5.4)

Lassen wir bei Formentensoren immer dann, wenn keine Missverstindnisse zu be-

fiirchten sind, das Komma rechts von jedem Formenzeiger weg, so geht (4) wegen
(8) tiber in

oW
- W (5.5)

¥

| —
Tﬂwg,y

Jetzt fiihren wir fiir W die Wirkungsfunktion (1.3) ein, deren einzelne Kompo-
nenten in neuer Bezeichnung explizite gegeben sind durch

W =a,al a” {, [,%, (5.61)
1
W= Vil faf, £y, (5.62)
2
W = a*f. 1, (5.63)

3

Setzt man nach vollzogener Rechnung alle Feldstdrken mit drei verschiedenen Zei-
gern gleich Null, so erhilt man schliesslich folgende Ausdriicke:

g“il =8a'(f,ifs — Fitd) +8a* (f,—f)) fi + W, (A fest) (5.71)
OT-f{ =8a'f, (h —fi) —8a"fafi (A u (5.72)

mit W=—4a*ff +4af515+ 4. (5.73)
0

Fiir die uns interessierenden Energie-Impulsdichten erhalten wir nun mit Riicksicht
auf unsere spezielle Basis

T =gT =¢Trg"=¢T3 g
oder ZAZO =g T‘i f-1. (5.8)

Wir haben jetzt also nur noch die Terme 7% zu berechnen, indem wir die Feldstirken
(4.4) in die Formeln (5.7) einsetzen. Man erhilt

T) = —4PQ + W,
0
= 0 (1=1283), L (5.9)

W= 4PQ+202+A.

1 H.P. A, 37, 4 (1964)
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Fiir die Energiedichte ergibt sich daher unter Beachtung von (4.9) die Darstellung
T =2 —-27"g. (5.10)

Aus dem Umstande, dass hier zum Unterschied gegeniiber den klassischen Gravi-
tationsgleichungen die kosmologische Konstante den Faktor 2 aufweist, ergibt sich
als absolutes Mass der Energiedichte der Ausdruck

T = (Q2— ) g,

wobei x die Einsteinsche Gravitationskonstante bedeutet. Mit Riicksicht auf (3.8),
(4.3), (4.10) und (4.11) erhalten wir daher folgende Darstellung fiir die Energie-
dichte des von einer ruhenden Masse erzeugten Gravitationsfeldes:

*

T’ =x1[(f — 1)2 — Ar2] f1sind. (5.11)

Im Grenzfall 4 = 0 ergibt sich daraus explizit

ioj():%[—;— (]/1—2“ + 1—3}) —I]Sin-ﬁ. (5.12)
[ e 8

Fiir die Totalenergie

E = / [ [ %0 ara ay
0 0 2a
erhilt man hierauf den Wert
E =374 (5.13)

Gestiitzt auf die klassischen Einsteinschen Formeln

km 8nk

a4 — -2 5 H o= o (514)
folgt nun unmittelbar das Einsteinsche Aquivalenzgesetz
E=me2. (5.15)

Die Verdichtung der Energie um das Zentrum erweist sich iibrigens als ausseror-
dentlich intensiv. Fiir die in der Kugelschale zwischen dem Gravitationsradius 2 a
und dem Radius 7 enthaltene Energie gilt ndmlich in ausreichender Ndherung fiir
r/2a > 1 die Formel

El ~mc? (1 - %) . (5.16)
Da fiir Nukleonen a ~ 10-32 cm ausmacht, erhilt man zum Beispiel fiir » ~ 1016 cm

den Wert ~ m ¢2 (1-10-36).



Vol. 37, 1964 Darstellung der Gravitationsenergie : 327

Korrekterweise sollte man statt » den invarianten Radius

verwenden. Die Rechnung zeigt aber, dass die Ndherung dadurch keine wesentliche
Anderung erfdhrt, das heisst dass im Rahmen dieser Ndaherung gilt

S ~7r.

§ 6 Schlussfolgerungen

1. Was wir vorhin fiir ein Ruhsystem in der Lorentz-Welt gefunden haben,
muss natiirlich in folgender Weise auf ein bewegtes System iibertragen werden:
Die vier nach den Erhaltungssitzen

bIA;“

oxt

=0 (6.1)
zeitunabhingigen, also konstanten Integrale

g == /]] T,0 dxt dx? dad (6.2)

4% = const

bilden einen konstanten kovarianten Formenvektor.

Wegen der festgestellten enormen rdumlichen Konzentration der Energie ergibt
sich nun die phdnomenologische Auffassung ganz ungezwungen: Sofern man neben
dem Feld eine Masse einfithren will, muss der Vektor (2) in jedem Schnitt x0 = const
einem Punkt zugeordnet werden.

2. Es erdffnet sich jetzt vielleicht eine Moglichkeit, ein elektromagnetisches
Viererpotential zu konstruieren, ohne den Rahmen der linearen Feldtheorie erwei-
tern zu miissen. Erfahrungsgemadss ist namlich jede Ladung an Masse gebunden und
muss daher fiirs erste phinomenologisch dargestellt werden. Die formal nahelie-

gendste Bildung dieser Art ist offenbar gegeben durch den kovarianten Koordina-
tenvektor

95,1 = C,u gﬂjz . (6.3)

Bei einem Versuch, diese Moglichkeit zu realisieren, wird man die Aufmerksam-
keit wohl in erster Linie auf eine passende antisymmetrische Erweiterung

W=AW+ AW + AW (6.4)
0 11 2 2 3 3
von (1.3) zu einer Wirkungsfunktion
W=W4+W (6.5)
0 0

richten miissen.
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3. In einer fritheren Arbeit®) habe ich gezeigt, dass man die Schwarzschildsche
Loésung auch erhilt, wenn man eine diagonale Basismatrix zugrunde legt. In neuer
Bezeichnung lautet diese Basis

1(7) 0 0 0

|
] 0 () 0 0
| &% || = ! " o . o (6.6)
i 0 0 0 7sind
Als zugehorige Energiedichte ergibt sich an Stelle von (5.11)
T,0 = wl(fe — A7) flsind 6.7)
Im Grenzfall 4 = 0 folgt daraus explizit
T, = L ]/1—:?7“ sind (6.8)

und fiir die zugehorige Totalenergie erhilt man E = + oo. Da es sich dabei um
eine im Sinne der Invarianz zuldssige Losung handelt, erscheint durch sie der Aus-
senraum des Teilchens zu sehr mit Energie belastet. Diese Losung kann also nur
dadurch ausgeschieden werden, dass man das Fiihrungsfeld als physikalische Defi-
nition des Vakuums akzeptiert.

Nun aber stimmen beide Lésungen im Linienelement {iberein, und es ergibt sich
der Schluss, dass man die Gravitationsenergie nicht aus dem Linienelement allein
bestimmen kann. Die lineare Feldtheorie scheint also nicht nur eine zuldssige, son-
dern auch eine notwendige Ergidnzung der Gravitationsenergie zu sein.

5) Zeitschrift fiir Physik 141 (1955), § 6.
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