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The Problem of Measurement in 'Ouantum Mechanics

by J. M. Jauch
University of Geneva and CERN-Geneva

(30. I. 64)

Abstract: This is a new analysis of the measuring process for non-relativistic quantum me-
chanical systems, in order to clarify the well-known difficulties in the interpretation of this
process. The rules of quantum mechanics prescribe two apparently different and unrelated
changes of the state of a system under the measuring process. It is shown that the two ways of
the change of state vectors can be understood without introducing voN NEUMANN’s ‘ultimate
observer’ and without abandoning the linear law of the time evolution of states, Consciousness
or even the macroscopic nature of the measuring device is not an essential requirement for a
measurement. What is required is only a ‘classical’ property already present in certain micro-
systems, For such a classical system the states fall into classes of equivalent states which cannot
be distinguished by any observation on the system. It is shown that the two states obtained in
the measuring process are in the same equivalence class. Thus the problem concerning this
strange duality which has haunted quantum mechanics from the beginning dissolves into a
pseudoproblem.

I. Introduction

During recent years there has been a surge of interest in the fundamental pro-
blems of quantum mechanics. Many of these problems were essentially solved during
the heroic period of the late twenties when quantum mechanics was discovered. The
great success of this theory in its various applications to atomic and nuclear physics
has tended to emphasize its pragmatic aspects, and many young physicists have
not always appreciated the enormous effort which was expended during the early
days in order to obtain a satisfactory interpretation of the formalism.

This interpretation has been largely the work of BoHr and his school and one
often refers to it as the Copenhagen interpretation. It is based primarily on a careful
analysis of the measuring process.

Already in an early paper, HEISENBERG!) has shown that classically familiar
quantities like position and momentum have only a meaning on the atomic level,
insofar as a procedure is known which permits at least in principle the determination
of the values of such quantities. In contradistinction to classical mechanics, the
measuring process enters in an essential way in the interpretation of the mathema-
tical formalism of quantum mechanics. The uncontrollable influence of the measur-
ing device on the measured object leads to limitations of the accuracy of measure-
ments known as the wuncertainty relations.

The subsequent elaboration of this aspect of quantum mechanics by BoHur led
to the general notion of complementarity, which expresses the fundamental limi-
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tation imposed on all quantum measurements, obtained by mutually exclusive
experimental arrangements with equipment which operates on the classical level
of perception?).

The result of this analysis shows that BorN’s probabilistic interpretation3) of
the Schrodinger wave function can be carried through consistently. The subsequent
success of quantum mechanics leaves little doubt that at least the more elementary
(non-relativistic) part of the theory gives a correct description of the physical
phenomena.

Yet, there remain certain features in the theory which have paradoxical charac-
ter and which have been the subject of much controversy4). It is a group of pheno-
mena which are often loosely referred to as ‘the reduction of the wave packets’.
This expresses the fact that there seem to be two entirely different changes for the
state-vector of a physical system, one abrupt and not entirely predictable which
takes place during the measuring process and the other continuous and causal
during all other times.

In the language of the statistical operator these two changes of the state may be
expressed as follows?): let W be the statistical operator, representing the state of
the system, R an observable (self-adjoint operator) with discrete (non-degenerate)
spectrum, ¢, a complete system of eigenvectors of R, P, the projection operator,
the range of which is the ray containing ¢,, and H the total Hamiltonian for the
system. Then the two kinds of changes are expressed by the formulae

W‘%W[:Z(?yl,pp,(pn)})’n: (1)

”n

W — VV{ — g—th W eiHl ) (2)

It is hardly necessary to emphasize the gulf which separates these two processes.
Suffice it to recall here that the second change always produces a statistical operator
W which is unitarily equivalent to W, while the first change in general does not
do this. |

The central question of the problem of measurement is this: how can these two
changes of the state be reconciled ? This question is the subject of the present paper.

An obvious attempt at an explanation is the following: the states behave dif-
ferently because of different situations. In situation (1) the system (S) is in contact
with a measuring instrument (M) and only the combined system S; = (S + M)
bebaves according to a Schridinger equation (2). The difficulty with this explanation
is that, in order to determine the state of the system S ++ M, another observer
(M) 1s needed who registers this state, and during the process when M; observes
S 4+ M, it is the change (1) which determines the outcome. Thus one has not
succeeded in reducing process (1) entirely to process (2), one has only replaced the
‘cut’ between the system and the observer to the position between S + M and M;.

One can, of course, continue this process and instead of considering the system
S1 =S + M one may consider the system Se =S 4+ M -+ M;. The state of this
new system will evolve according to process (2) but again, in order to determine
the state, a third observer M is needed and during the process of observation it is
again the process (1) which determines the result.
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Thus again one has not eliminated process (1), one has only shifted the ‘cut’
between system and observer to still another place, and it is obvious that one
never will, with this method, succeed in eliminating process (1).

The best that one can hope to do, and this was done by voN NEUMANN?), is to
show that the result of the measurement on S is independent of the location of the
‘cut’. This result enables one to restore the objective character of the measuring
process.

The unsatisfactory feature of this explanation is that one needs an ‘ultimate
observer’ Mo which will appear at the end of an infinite regression, and that one
has not succeeded in eliminating process (1) from the theory. This ultimate observer
1s supposed to be endowed with a nonphysical property, called ‘consciousness’ and
one tries to make the entering of the perception into consciousness responsible for
the occurrence of process (1)6). We cite from this last reference the following
passage which expresses the point of view indicated in the text:

«Ce n’est donc pas une interaction mystérieuse entre l'appareil de mesure et
I'objet qui produit dans la mesure 'apparition d’'un nouveau g du systéme. C’est
seulement la conscience d'un Moi qui se sépare de la fonction y(x, y, z) ancienne et
constitue une nouvelle objectivité en vertu de son observation consciente en attri-
buant désormais a I'objet une nouvelle fonction d’onde #g(x).»

We do not share this point of view. It would seem that it would amount to a
tacit admission that a completely objective physical theory is impossible. We would
have to choose between the occurrence of two irreconcilable process laws as ex-
pressed in (1) and (2), and admit the existence of an entity (consciousness) which
stands outside the physical laws. The inadequacy of this ‘explanation’ has been felt
by many physicists and there have been many attempts in the past to replace this
peculiar situation by something better?). They are usually directed towards finding
in the macroscopic nature of the measuring device M the reasons for the occurrence
of mixtures at the end of the measuring process. However, in a recent paper on the
measuring process, WIGNERS) has shown that such attempts are inconsistent with
the linear laws of quantum mechanics as expressed for instance in Equation (2).
But he, too, remains uneasy about this ‘strange dualism’ as expressed in the two
Equations (1) and (2) and he even considers the possibility of abandoning the linear
equation of motion for the state vector?).

The unsatisfactory feature of voN NEUMANN’s infinite regression and the ‘ulti-
mate observer’ is made evident by the simple device of including the ‘ultimate
observer’ with consciousness and all in the measuring apparatus M. In order that
the perception enters a consciousness it is then no longer necessary that an ‘ulti-
mate observer’ outside the system makes the observation which furnishes the
reduction of the wave packet. The contemplation of this example could easily lead
to the conclusion that the laws of quantum mechanics are not applicable for measur-
ing devices with consciousness!0).

We shall in this paper propose an interpretation of the measuring process which
disposes both of von NEUMANN’s ‘ultimate observer’ and the need for abandoning
the linear law of the evolution of states. This interpretation is based on a more
careful analysis of the notion of the ‘state’ of a quantum-mechanical system.

It was emphasized especially by BoHr that measurements are made with
equipment which operate on the classical level of perception. This aspect is lost
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in voN NEUMANN’s analysis of the measuring process, where system and observer
are treated alike. Process (1) is only needed if the instrument of measurement M is
a classical apparatus. In that case the states cannot be distinguished as sharply as
they can be represented mathematically. This fact expresses itself by the appearance
of an equivalence relation between quantum mechanical states. Two states are equi-
valent if the classical observer cannot distinguish them. It makes then sense to refer
to classes of equivalent states as ‘macrostates’.

A macrostate can then be represented by any one member of the class. It will
be shown that the resulting freedom of choice is just what is needed to reconcile the
two different processes (1) and (2). Thus our interpretation of the measuring process
restores unity of the process law by heeding BoHR’s insistence of the ultimately
classical aspect of all measurements.

Our analysis has other implications which we shall not pursue here in detail. It
throws a new light on a number of so-called paradoxes such as SCHRODINGER’S
cat!!) and the paradox of EINSTEIN, PODOLSKI and ROSEN12)13),

In order to give a unified and self-contained presentation, we shall repeat many
well-known things which are not controversial, interspersed with some comments
which we believe are new.

In Section II we introduce the notion of the state of a quantum mechanical
system. Section III is devoted to the question of the interpretation of the state. In
Section IV we introduce the theory of the equivalence classes of states. The follow-
ing Section V contains the well-known formalism of the union and separation of
systems. The only novelty here is a co-ordinate-free definition of the tensor product.
The loss of ‘Anschaulichkeit’ in this procedure is amply compensated by the resul-
tant elegance and simplicity in the discussion of interacting systems. Section VI
finally gives the new interpretation of the measuring process and the resultant re-
conciliation of the two processes (1) and (2).

I1I. The State of a Quantum-Mechanical System

We shall assume that we are dealing with a quantum mechanical system (that
is, a system for which the departure from classical physics is an essential feature)
that we can in principle sufficiently isolate this system from the rest of the world
and that we can make controlled experiments with it. Such systems are for instance
a spin in a paramagnetic substance, an isolated nucleus, a system of electrons, a
photon, or a neutrino. We shall further assume that at every instant the system
is in a definite state. What does this mean?

For the following it is rather important to understand the answer to this ques-
tion, so we shall discuss it rather carefully, perhaps more so than it is usually done
and necessary for most purposes.

There are three aspects of the state of a system which concern us here, its
preparation, its determination and its mathematical description. We shall take
these three aspects in turn.

Every state of a physical system is the result of a preparation of the system.
A preparation is a series of manipulations with physical equipment which affect the
system under consideration. The difficulty with this definition is that it is not
immediately obvious whether certain physical conditions will affect a state or not.
Thus for instance the presence of a static electric field does (in a very good approxi-
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mation) essentially nothing to a magnetic ion. However if the field is oscillating
the state is markedly affected. The state of the photons emitted from a discharge
tube could depend on the intensity of the discharge, but they do not. We are thus
led to the notion of relevant conditions for the preparation of a state. It is an empiri-
cal fact that certain conditions will play no role in the preparation of a state, while
others do, the ones that do are the relevant ones. We shall have to accept this fact
without further analysis and without being able to say, in each given case, what
these conditions are.

We summarize: a state is the result of a series of physical manipulations on the
system which constitute the preparation of the state. Two states are identical if the
relevant conditions in the preparation of the state are identical.

Almost the entire difficulty of this notion is hidden in the word ‘relevant’. What
is relevant and what is irrelevant is part of the physical law and this is empirically
given and so is not known a priori.

We shall not dwell on this aspect any further except to point out that the epoch
at which the state is prepared is usually irrelevant. This is very fortunate for the
possibility of determining the state. A state can be determined by measuring every
observable quantity of the system. In general the determination of an observable is
itself a relevant condition and will therefore modify the state. Thus in order to
determine a state it is necessary to be able to repeat the preparation of the state
under identical relevant conditions. The outcome of such measurements is not
always certain but has instead only a definite probability distribution which can be
determined to any degree of accuracy by repeating the measurements a sufficient
number of times.

We summarize: the determination of a state always requires the preparation of
an ensemble of identical systems under identical relevant conditions. The state is
determined if the probability distribution of every observable quantity is measured
on this ensemblel4),

Turning now to the mathematical description of the state we see that a state is
completely determined if we give a probability function on every observable. Since
an observable can in general assume many different values, it is convenient to
introduce a special class of observables which can assume only two values. It is not
hard to see that the measurement of every observable can be reduced to the mea-
surement of a sufficient number of such special observables. We call such obser-
vables yes-no experiments or propositions and we fix the two values arbitrarily to
be represented by 1 or 0 (true or false).

In the usual form of quantum mechanics such observables are described by
projection operators and the above statement about general observables has its
mathematical counterpart in the spectral theorem of self-adjoint operators.

The probability function which describes a physical state is a more general ob-
ject than the usual (classical) probability function. This latter is always defined on
a Boolean lattice of classes of subsets and it is one of the basic facts of quantum
mechanics that the set of all the questions is not a Boolean lattice, in fact it is not
even a modular latticel5). We stress here that this statement is empirically given
and involves essentially no assumption since the lattice operations have a direct
physical interpretation¢). The probability function retains on every Boolean sub-
lattice of propositions the properties of an ordinary probability.
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A state is thus mathematically given if we are given a real valued function
p(E) on the projection operators representing propositions, with the following
properties

0<pE) <1, pO)=0, p(I)=1. (a)
If EF =0 then p(E + F)=w(E) + w(F). (b)

The first of these is obvious, the second expresses the additivity of the probability
function on mutually exclusive questions. Two questions £ and F are mutually
exclusive if whenever F is true then F is false, and vice versa. The additivity pro-
perty can then be easily inferred for instance from the frequency interpretation
of the probability function.

A remarkable mathematical thematical theoreml?) asserts that a functional
p(E) defined on all the projections E of a (separable) Hilbert space which satisfies
conditions (@) and (4) must be of the form*)

P(E) = Tr(W E) | (3)

where W is a linear operator which satisfies the conditions

)y Wx =W,
i) W2 < W, (4)
i)y TrYW =1

The theorem of GLEASON quoted here is useful to show that the representation of
quantum mechanical states is much less arbitrary than it is customarily assumed
(or at least presented). It shows that if one tries to generalize states, one would
have to do it in the sense of footnote!4) or one would have to assume that the ob-
servable projections do not generate an algebra of type I18). For the elementary
systems of non-relativistic quantum mechanics the applicability of GLEASON’s
theorem is certain.

The operator W is voN NEUMANN's density operator. Every W which satisfies
condition (4) has a discrete spectrum. Its spectral resolution has thus the form

W= 3 2uPn, (5)

where P, is a projection operator with one-dimensional range. (If some eigenvalues
are degenerate we repeat them.) The eigenvalues A, satisfy then

) A= An,
i)' 0<i, <1, (4')
i)’ Z An= 1.

*) Actually the additivity property (b) is required to hold even for an infinite sequence of
projections.
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If W2 = W then W is a projection operator of one-dimensional range. In that case
we call the state pure. In all other cases it is called a mixture. If W is a pure state
then any unit vector ¢ in the range of W may be taken as an alternate represen-
tation of W. Such a ¢ is the Schrodinger wave function corresponding to this state.
Clearly ¢ is only determined up to a numerical factor of magnitude 1. For pure

states (3) becomes BB ==l E 0] (3) |

If @, are the eigenstates of the projections P, we shall later on occasionally refer to
the state given by (5) as the ‘mixture of the states g,’.

Most of these things are well-known and we have mentioned them here merely
in order to have a well-defined frame of reference within which we shall analyze the
delicate problem of measurement in quantum mechanics.

Here we want to add a few remarks which serve to emphasize some points which
will be useful in the following. First we mention that the definition of states which
we have given here is also applicable to classical systems, although it is a little more
general than usual. The difference with respect to quantum systems is only this:
every state is a mixture with the exception of those with a probability measure
concentrated on one single point in phase space, and every proposition is compatible
with every other one. A general state in classical mechanics will therefore be de-
scribed by a general probability measure in phase space. The relevant conditions in
the preparations of the state involve certain a priori probabilities in the distribution
of physical conditions. .

Thus, for instance, if throwing a die is considered the preparation of a state for
the die, the discrete six different configurations are for a normal die under normal
conditions distributed with probability 1/6. The identical relevant conditions are
the physical situations with the same a priors probabilities for the initial conditions. -

After these remarks we discuss now an example which illustrates some of the
relevant conditions which may occur in the preparation of a quantum mechanical
system. We consider two particles of spin 1/2 constrained to move on a straight
line. They interact only upon contact and in such a manner that each particle is
completely reflected so that after collision with the other it reverses its motion.
The interaction is however assumed to be spin-dependent so that the spin states
can change during the impact. It is only the spin degrees of freedom which interest
us. Each particle has exactly two states

Fig. 1
Collision of two spins with initial state u; vs

which we designate with u; and v; for particle 1 und with s and vs for particle 2.
If the interaction conserves total spin we find that triplet and singlet states do
not mix and furthermore the states #; #2 and v1 v» do not change. Thus if we denote
by
E 1
Y1 = l—/Z: (1 v2 -+ v1 u2) ,
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one of the triplet states, and by

= —L (Ml Vo — U1 uz)
Yo Vz
the singlet state and with y; and g/ the corresponding quantities after collision we
have (after suitable adjustment of an over-all phase factor)

yi=2"y1,

1/)6 = ¢ Yo .
It follows from this that, if the initial state is (as indicated in Fig. 1) ¥ = w1 v2,
then the final state after scattering is

V' — cosd uy ve + 7sind vy uz .

what we have described so far is the ordinary theory of triplet and singlet scattering.
But now we look at this experiment in a different way. We consider it as the pre-
paration of a state for particle 1. The relevant conditions which we impose on
particle 1 are the following:

a) prepare particle 1 in state u;;
b) prepare particle 2 in state vs;
c) bring them to collision.

We consider thus an ensemble of particles of type 1, all members of which were
prepared under the conditions a), b) and c¢). Every member of such an ensemble is
in a well-defined state which we can calculate easily and measure in principle. An
elementary calculation, which we need not reproduce here, shows that the state in
question is a mixture, described by the density matrix

cos2d 0
W = :
0 sin2d

We have here thus an explicit example where a pure state (#1 is changed into a
mixture by subjecting the system to a complete set of certain relevant conditions.
Let us now prepare a different state. The new state shall be prepared by impos-
ing as before the conditions a), b) and c), and a fourth one which might be expressed
as:
d) particle 1 must be in coincidence with spin up of particle 2.

This means in the beam of particles 1 we select only those which are associated
with particles in beam 2 with spin up. We can prepare this state by constructing
an automatic shutter for particle 1 which is activated by a spin measuring equip-
ment for particle 2 and traps all those particles of kind 1 which are associated with
spin of particle 2 down.

The conditions a), b), c), and d) define a new ensemble of particles 1 which is
clearly a sub-ensemble of the previous one. In this new ensemble we can again
determine the state by measurement and calculation. There is no reason why this
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state should be the same as in the previous case, since a relevant condition d) has
been added in its preparation. And indeed it is not. The new state is pure and is
given by v1, as one might almost guess without calculation.

We shall encounter exactly the same situation in the measuring process. The
mere observation of a property may not interfere with a state if it is a mixture but
it might if it is used for the preparation of a new state with different relevant
conditions.

II1. Interpretation of States

Until now we have described the preparation, determination and mathematical
description of states. We shall face now the more difficult question of the infer-
pretation of states. We can do this best if we compare the classical with the quantum
system.

We have already remarked that one definition of state is also applicable to
classical systems and we have pointed out that even in the classical case a general
state will be a probability measure in phase space. There is therefore nothing un-
usual about the occurrence of probabilities in the description of states.

Yet there is a profound difference in the interpretation of these probability
functions in the case of quantum mechanics and classical mechanics. This difference
is often somewhat loosely described by the statement that in quantum mechanics
the determination of an observable by measurements inevitably involves an un-
controllable interaction of the measured object with the measuring device and that
this interaction produces a distribution of values of the measured quantities in
accordance with the numerical expectation values calculated for this quantity in
the particular state. It was precisely this analysis which led to the physical inter-
pretation of the uncertainty relation?).

It was, however, pointed out repeatedly by EINSTEIN'?) that there are quantum
mechanical states for which this restriction does not apply. In the quoted paper it
was shown that there exist states which predict only a probability outcome for
certain variables. Yet measurements of such variables can be made without in any
way interfering with the state in question. In Reference 12) this was accomplished
by separating two interacting systems and by carrying out measurements on one,
in order to determine certain quantities in the other. A closer analysis of this
situation reveals that the states which have such properties are precisely the mix-
tures with respect to the spectral projections of the measured quantity. Let us
illustrate this in a particular situation of sufficient generality to show that the
feature is a general one.

Let R be the measured quantity with a spectrum which we assume to be discrete
and non-degenerate. Let @. be the eigenvector of R and P, the projection with
range @,. We consider a general state given by a density operator W. We ask, under
what condition on W does the process (1) leave W unchanged. The condition on W

is thus
Wﬂz W:E(wn,W(pn)Pn.

It follows from this equation that W is of the form
W = Z ?ﬂz P'n E) (6)
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with 0 < p, < 1. The p, are otherwise arbitrary. Since for any such W we have also

((Pn, w q)n) = ((Pn, P (Pn) == Pn ’

we see that this condition is also sufficient. Thus the spectral projections of a
statistical mixture can, if they are measurable, be determined without in any way
interfering with the state of the system.

It is useful to introduce a special terminology to distinguish such properties
from the others which cannot be so determined. Thus Einstein attributes to such
properties in a given state an ‘element of reality’. It makes sense to attribute to
each individual system in such a state one of the alternatives of the statistical
mixture even though the state which resulted from some preparation allows only
the prediction of probabilities. We could, if we wanted to, determine this property
without affecting the state.

This is, of course, exactly the classical situation. In classical systems every state
allows such a realistic interpretation of probabilistically described events.

We shall use a shorter terminology which we find adequate to distinguish the
two types of properties in a given state. We shall use the word ‘event’ to denote a
physical property which can be observed without interfering with the state of a
system. When such an event has been observed we say: the event is a ‘datum’.
Thus in a state of the form (6), every individual system from an ensemble of
identically prepared systems realizes one of the events P,, and this independently
whether a subsequent observation has raised the event to the level of a datum or not.

Suppose now we consider a classical system in a given state, for instance a die
thrown under certain specified conditions. In general the specification is so that the
outcome is a state which allows only probability statements for the observation
of subsequent events. In the example of the die under usual specifications, each side
will occur with probability 1/6. However, we know that classical systems are such
that they permit the addition of further relevant initial conditions until the state is
free from dispersion in its predicted outcome of future measurements. For instance,
we could specify the initial conditions for the die with such precision that the out-
come of the throw is determined by these conditions. In this case the probability
function would have the value 1 for that particular event and zero for the others.

If we examine the same question for quantum systems, we find that it is not
always possible to add further relevant conditionsin order to reduce the dispersion
of a state. For pure states, this is a familiar feature. What is perhaps less well-
known is that this situation may occur even for mixtures. This is a profound differ-
ence between classical and quantum systems alluded to above and this is the origin
of most of the paradoxical features of quantum mechanics.

In order to demonstrate this, we refer to the example of the preceding Section,
which we have discussed for just this reason. If we consider the conditions a), b),
and c) of this example, the conditions preparing the state of the spin 1, we find that
these conditions determine only a statistical mixture of this spin. There is no further
relevant initial condition known, which one could add to this preparation and which
would determine a pure state of the spin 1. We could, of course, always, after the
preparation of the state, add a further condition which selects from the statistical
mixture a pure state (for instance condition d) in the example of Section II). What
we cannot do i1s add such a condition before the preparation of the state.
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It is here where we encounter the essentially irreducible statistical element of
quantum mechanics in its full force. Since we attributed with good reasons to the
alternatives of a statistical mixture an element of reality which permits us to
regard them as ‘events’, we find that different events may occur under identical
relevant conditions. We are making here of course an empirical statement. We can
only state that such conditions are not known to exist.

This finding seems to be in contradiction with the principle of sufficient reason
which says roughly that identical causes produce identical-effects. If one wants to
escape this conclusion without being in conflict with empirical facts, the only
possibility left seems to be to assume the existence of hidden (non-observable)
determining variables, which are correlated with the events of the statistical
mixtures we have been discussing. Unfortunately this way out of the above con-
clusion is barred by the fact, demonstrated first by von NEUMANN, that such hidden
variables are incompatible with the other observable consequences of quantum
mechanics??),

EinsTEIN, PoDOLSKI and ROSEN have summarized this situation with the state-
ment that the description of a state with the wave function is incomplete for in-
dividual systems. The critique of BouR!3) does, strictly speaking, not invalidate
this conclusion, it merely shows that the properties which can be considered as
events are not in contradiction with the uncertainty relations. Indeed for the
determination of such properties which violate the uncertainty relations one would
need for all cases mutually exclusive physical situations which would necessarily
modify the state.

We shall take here the point of view that the ultimate arbitration in this vexing
question will not come from philosophical principles but from experience. Whether
there are relevant conditions which will correlate with undetermined alternatives in
a mixture will and can be decided by experience. All indications are so far that in
some cases there are none and that the description of the state is not always capable
of specifying all the real physical events of the individual system.

We shall accept this verdict, in the same tentative spirit as one must accept
any inductively obtained theory.

We emphasize once more that the difficulty in the interpretation which we are
discussing here appears only for mixtures and only if the projections of the mixture
are measurable quantities. It is therefore of some importance to know under what
conditions we can ascertain when a state is a mixture and when it is pure.

In principle this is always possible if we measure a sufficiently large number of
suitable observables. For instance if all projections were observables there would be
no difficulty in deciding whether a given state is a mixture or not. However, if not
all self-adjoint operators are observables, then the nature of the state can in general
not be decided by measurements alone. It becomes then partly ambiguous.

The general discussion of this point will be deferred to the next Section.

I1V. Equivalent States

We shall now examine the point mentioned at the end of the last Section con-
cerning tha states in a svstem with an incomplete set of observables.
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Let & be the system of observables of a physical system. This is a set of self-
adjoint operators. If 4 € © is an observable then it is operationally meaningful to
require that not only A but also 42 is an observable, since an observation of A
which yielded the value 4, is at the same time an observation of the quantity 42,
giving the value A2. More generally, if %(A) is a Borel function of the real variable
A, then u(A) is also an observable. If 4 has the value a then #(A4) has the value u(a).
From this follows that all the spectral projection operators of 4 are observables too.
Still more generally, if 4; is any set of mutually commuting operators in & then
any self-adjoint operator X affiliated to the von Neumann algebra generated by
Aq is also an observable. The operational justification for this statement is only
slightly more complicated than in the example just discussed.

We shall say two states Wi and Wy are equivalent with respect to the system
of observables & if

Tr AW, =TrAW,

for all 4 € &. For two equivalent states we shall write Wi ~ Wa. One verifies
without difficulty that this relation is indeed an equivalence relation. Physically,
the relation Wi ~ Wz means that the two states Wy and Wy cannot be distinguished
by any measurement whatsoever with observables from the system &.

Since equivalent states cannot be distinguished by any measurement of ob-
servables from & the association of statistical operators with physical states of the
system becomes ambiguous. In order to restore the one-to-one correspondance of
physical states with the mathematical description of states, one must introduce the
class of equivalent states as the appropriate description of the physical states. One
can refer to such classes as macrostates, while each individual member in the class
could be designated as a microstate. Zhe operation of the mixture of states can be
transferred from the microstates to the macrostates. This means if W1 and W3 are
two different microstatesthen W = A1 Wi + e Wawith 41 > 0,42 > 0, &1 +42=1
determines a microstate. The class of states equivalent to W is independent of the
representatives W and Wy in the equivalence classes of 1, and Ws. This statement
may be summarized with the following theorem:

It Wi ~W/,and Wa ~ W, and

W =AW+ i W,

W=nhW,+22W,,
then W ~ W',

For the proof of this theorem we remark that equivalence of two states is
established if we can show the equality of expectation values for observable pro-
jections only. The expectation value for general observables follows then from the
spectral theorem. Thus we need only verify that Wi ~ W, and Wz ~ W, implies
TrEW = Tr EW' for all Ee€ S,. Here S, designates the subset of projections
in &. Since for all Ee G,

TrEW =M TrEWy+ doTr EWe = Tr EW, + 4o Tr E W,
=TrEMLWW, + W) =TrEW

the theorem is verified.
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Due to this theorem it is possible to transfer the operation of mixture to the
equivalence classes. Let us denote by [W] the class of microstates which are all
equivalent to . The statement just proved allows us to define a mixture of macro-
states by the formula

(W] = M[Wi] + Ae[W2] = [A1 W1 + 22 W2]. (7)

A simple corollary of this theorem is the following statement:

If Wi ~ W; then any mixture A1 Wi + A2 Ws is in the equivalence class of
[(W1] = [Wa].

A macrostate [W] is said to be pure if it cannot be represented as a mixture of
two or more other macrostates.

We shall now examine once more the notion of ‘event’ introduced in the previous
Section in order to describe physical properties which can be determined without
interfering in any way with the state. The preliminary discussion of the preceding
Section can now be sharpened if we carry it through in the context of the notion
of equivalent states. Let W be a microstate, [W] the equivalence class to which it
belongs, WEthe microstate after the measurement of the observable projection E,
and [W%] its equivalence class.

The first question arises whether the class [WE] is independent of the represent-
ative W e [W]. If this is the case, we can transfer the change of the state under
measurements to the classes. This property can be expressed in the formula

[(WE] = [W]*. (8)

In order to obtain the necessary and sufficient condition which guarantees this
property, we recall that the measurement of E changes the state I into

WE=EWE +E WE',
where we have introduced the notation E/ = I — E. Let now Wi ~ Wa. We ask

under what conditions does it follow that WIE ~ Wf ? In order that this be true
we must have

Tr F(EWLE + E' Wi E') = Tr F(E W2 E + E' Wy E)

for all F € ;. By using the invariance of the trace under cyclic permutations, we
change this into

ITy(EFE4+E FEYW,=Tyv(EFE+ E' FE)YW:
for all ¥ e ©,. This is true for all equivalent pairs Wy and W if and only if
FE=EFE+EFE €6. (9)

Thus we find that the macrostates are left intact under the measuring process if
and only if FEis an observable for all pairs of observable projections E and F. Only
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if this condition is satisfied, is the meaning of macrostate physically useful. We note
here that for classical systems & is Abelian and hence (9) is always satisfied. We
must ask whether there are macrostates which are left invariant under all measure-
ments with observables in &. The condition for this is that [W]¥ = [W] or, W& ~ W
for all W e [W]. This means, for all F e &, and all £ € S,, we must have

Ty FWE=TrFW = Tr FEW,
A sufficient condition for this to hold is
FE=EFE+E FE =F (10)

for all E, FF € S,. If it is satisfied then every state is left invariant under measure-
ments. Since the invariance under measurements is a property of (idealized) classical
systems, we might call a state which is left invariant under all observations a
classical state. We note that condition (10) is satisfied for classical systems. We have
thus established that for classical systems every state is classical20).

In the discussion of the measuring process in the rest of this paper we shall not
need the notion of equivalence in its most general setting. We shall in fact only need
it for classical systems. For this case we summarize here the main conclusion: for
classical systems the equivalence classes of states are invariant under observation.

V. The Union and Separation of Physical Systems

In this section we shall review the theory of the union and separation of quantum
mechanical systems. Although the formalism which describes these processes is
well known, we shall present it here once more rather concisely in the co-ordinate
free formalism, dwelling particularly on some points which are relevant for the
measuring process and making some comments which are new.

If two independent systems I and IT are united into a single system I 4 II we
represent the states of the combined system in the product space ' ® HMof the
state vector spaces HT and HII of the component systems. Since this is rather im-
portant for the following we shall give a sketch of the reasoning which justifies this
assumption.

If the two systems I and II are sufficiently simple (for instance no superselection
rules) then we can assume that the system of all observables generates the irredu-
cible algebra of all bounded operators. If the systems I and II are combined into a
larger system I + II then (again under the assumption of no superselection rules)
the observables pertaining to I are no longer irreducible but they generate only a
factor §. Similarly, the operators of system II generate a factor, the commutant
&' of &. Under the starting assumption both & and &’ contain minimal projections.
They are therefore of type I. Now according to well-known theorems every such
factor defines a tensor product of two Hilbert spaces $! and $HI, such that the
factor § is isomorphic to the irreducible algebra in $I and §’ is isomorphic to the
irreducible algebra in $M. In this manner one is led to the tensor product for the
combined system I -+ II.
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Another more physical reasoning could be based on a discussion of the entropy
of states. The negative entropy divided by % of a system in state W is Tr W InW.
The entropy being an extensive quantity should behave additively under the
combination of two different systems. This is the case if we define the state of the
combined system by W = W1 ® W1, because one verifies easily that indeed

Tr(W' @ W In (W' @ W) = T/ Wiin W + 77 Wil inwh

where 177! and T denote the trace with respect to the space H and HI respectively.

For the following it is desirable to have a co-ordinate free definition of the tensor
product since none of the results depend on the special choice of the reference
systems. Furthermore, this formulation is in some ways simpler than the co-ordinate
dependent formulation, although it is of course more abstract. In the following we
shall expound very briefly the theory of the tensor product emphasizing especially
those aspects which will be essential for the discussion of the union and separation
of systems. Almost all that we need is contained in Section VI.2 of Reference 9).

The tensor product is defined in the following way: let $I, HI be two Hilbert
spaces, the tensor product ® = §' ® HTis a Hilbert space, together with a bilinear
mapping ¢ of the (topological) product HI x HII into G, such that

1) the set of all vectors @ (f1, f2) (f1€ H, fa€ HHI) span G;
ii) (¢(f,fo), plgr, g2)) = (f1, g1) (fo, go) for all /1, g1e B, fo, g2 HI

For complex Hilbert spaces the tensor product always exists and it is unique in
the following precise sense:

If H' and HI! are two Hilbert spaces and G and &’ two different tensor products
and ¢ and ¢’ the associated bilinear mappings of HI x HU into B, &' respectively,
then there exists a unique isometric operator U with domain & and range &’ and
such that

Uglfi, o) = ¢'(f1, f2) -

The existence of the tensor product is non-trivial. It is known not to exist for
quaternion Hilbert spaces, a major obstacle to a quaternion quantum mechanics?!).
The uniqueness is very important since it shows that the description of the com-
pound system is uniquely determined by that of the component systems (unitary
equivalence does not matter!).

An explicit construction of the tensor product for complex spaces can be given
as follows. Let G be the set of all conjugate linear transformations ¢ from $ into
$H' which satisfy the following properties

P(ge + he) =g+ ¢ b2,
d(Age) =A* g2,

for all g2, he € HI and all complex 4 and

I 4llz= X1l ¢ vl <o
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The last expression is to be evaluated for any complete orthonormal system
{wr} in HIL. It is independent of the choice of that system. The set G of these
transformations form a Hilbert space. Moreover, there exists a bilinear mapping
from ' x $Tinto ® by setting ¢ = ¢ (f1, f2), where

b g2 = (g2, f2) fr-

We denote this particular ¢ with ¢ = /1 ® f2. One finds easily that || ¢ || =
|| /1] || 72 ||- To every ¢ e ® we can associate uniquely another conjugate linear
mapping ¢* from §I into HII by setting

(h, ¢ f2) = (f2. % 1) .
The correspondance ¢ — ¢* satisfies the following rules

$5 = Il =l $1l. @+ ) = & + o (14 = A g%,

If ¢ =f ® fo, so that ¢ ga = (g2, f2) /1, then it follows from the definition of
$* given above that

(g1, ¢ g2) = (g2, #% 1) = (&1, f1) (g2, f2) ,
so that

Pfgi= (. h) o= QFh.

Thus we may write

(h®R)F=FfL&Fh.

If A, is a bounded linear operator in $! and A, a similar operator in HIT we can
construct a bounded linear operator 4; @ A2 in & by setting for every element

p=h®f
A1 @A) 1 @ fe=A1/1 @ A2 ]2

From this formula we conclude easily that for every ¢ € ®

(A1 @ A2) b = A1 ¢ A5

This formalism is especially suited for expressing the effect of the union and
separation of systems on the states. This we shall do now. Let WT be the statistical
operator representing a state of system I, and WII the statistical operator for a state
of system I. Then the statistical operator of the joint system I 4 II is given by
W=Wwlg Wi

The converse problem: given W for the joint system, find WI and WH for the
component systems, is more complicated. Since its solution is essential for under-
standing the measuring process, we shall explain it in some detail. Consider first the
case that W represents a pure state (the only case which will be of importance in
the application we intend to make); ¥ is then a projection of one-dimensional
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range and denote by ¢ a unit vector in the range of W. This ¢ is then the state
vector representing the state of the joint system.

In order to find the states of the component systems, we must appeal to the
physical interpretation. The statistical operators WI and W are defined by the
property that every observable AI referring only to system I and every observable
AT referring only to system II must have expectation values

THAA'WY) =Tr '@ W,
TN AT WY = Tr(I @ AN W .

Here 77! refers to the trace in the space $I and 771! refers to the trace in the space
$HI. More explicitly, we require that for every complete orthonormal system {¢;} in
$H! and a similar system {y;} in HI

D (o, A W) = 3 (pr @us, (A Q1) W pr ® )

¥ 7,8
and

D (s, AT W ) = 3 (@r @ ys, T Q@A) W r @ ) -

s 7,8

The first formula says that if ATis measured on the system I alone one obtains the
same result as if one measures Al ® I on the composite system. Similarly, the
second formula says that the measurement of A on the system II alone gives the
same result as a measurement of / ® AT on the system I - II, These relations
must hold for all operators A and A, in particular for projections. These conditions
determine WI and W uniquely. The result is expressible in the following simple
formulae 22) ’

Wt = ¢ ¢F,
i (ﬁj (11)
W = gF g
The generalization of this result to an arbitrary state W is easy. Let W =
2 An Py be the density operator of a state in I 4 II. Choose in the one-dimensional

range of the projections P, an arbitrary normalized vector ¢,, then the states in
the system I and II are represented by the density operators

W= 3t du dt
W — 37 00§ o

(12)

We shall refer to formulae (11) and (12) as the reduction formulae and we shall
call W1 and W the reduced states of the state W. Only (11) will be used in the
following.

Let us now discuss Equation (11) a little more in detail. Consider first the case
that ¢ = ¢ ® w where ¢ and p are both normalized and ¢ € HI, p € HIL. From the

20 H.P. A. 37, 4 (1964)
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definition of ¢ and ¢* it follows then that

o= (p.@)y=uy
and

by =Wy g=g.

Thus ¢ ¢* ¢ = @ and ¢¥ dy = y. |
On the other hand, let ¢’ be orthogonal to ¢, so that (¢, ¢') = 0, then

¢* ¢ = (¢, @) p =0,

so that ¢ ¢# ¢’ = 0. Similarly, if ¢’ is orthogonal to  then ¢* ¢ » = 0. We see in
this special case that ¢ ¢* = P is a projection in $! with one-dimensional range
and ¢* ¢ = Q is a similar projection in H™. We have thus established: if ¢ = ¢ Qu
then the reduced states are pure. This condition is also necessary, and so we find:

the reduced states WIand W are pure if and only if the pure state ¢ is of the
form ¢ = ¢ ® p.

Let us now consider the case that ¢ is still a pure state, but not of this form.
Then we know from the preceding discussion that neither WI nor WII can be pure.

Let WI = } o, P, with Pr a projection of one-dimensional range and o > 0,
2 or = 1. Define

_ 1 e
Yr = V;rsﬁfpr-

It follows that

. 1 1 i —
Wiy == ¢t b pr= = FWigr = |ar g gr =y

and

1 1
lyr |2 =1 ¥ grll2 = (pr. $ 67 g) = 1.

Thus g, is a normalized eigenstate of W with eigenvalue «,. Furthermore, every
eigenstate is of this form. Thus the operator ¢¥establishes a correspondance be-
tween the eigenstates @, of WI and the eigenstates y, of WL It follows from this
that WI has the form W = 3’ o, Qr with Qr w» = r. Furthermore, one verifies
easily that ¢ = Y [/oar ¢r ® yr. Thus we find: if ¢ is a general state vector in

r
HT ® HU then there exists an orthonormal system {¢,} in $ and an orthonormal
system {y,} in T and a set of positive numbers o, such that

¢=Zl/ot_rq9r®'tpr, W= Yo Pr, W= 3} o0Q:. (13)

We can see that the example discussed at the end of Section II gives an illus-
tration of this general theorem. For the case that cosd > 0, sind > 0, we find that
the correspondence oy = cos2d, oz = sin2d, @1 = w1, Y1 = U2, P2 = V1, P2 = 1 Uz
brings this result in agreement with the general theorem (apart for the notation of
the tensor product, which is more informal and less precise in the example).
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We have now all the formal apparatus assembled that is needed for the detailed
discussion of the measuring process. This we shall do in the next Section.

VI. The Measuring Process

The measuring process is that physical process which permits the determination
of the truth or falsehood of one or several propositions about a physical system?23).
A measuring process always requires an observation on the system. An observation
means an interaction of the system S to be measured with another system M, the
measuring device. The detailed analysis of the measuring process requires thus the
study of two systems in interaction with one another. The measuring device must
respond differently on a macroscopic scale to different states of the system to be
measured. Since quantum systems are usually microscopic in nature, this means
that the measuring system should comprise a metastable amplifying device that can
be triggered by microscopic events. Examples of such systems are superheated
liquids (bubble chamber), supercooled vapours (Wilson chamber), a neutral gas in
a strong electric field (counters or spark chambers), etc.

This is the usual description of the measuring process and what we have to add
are merely some comments in order to ensure that the notions are precise and rele-
vant. The macroscopic nature of the measuring apparatus is of course not a precise
notion. However, it is not the large size, it is the classical aspect of the measuring
apparatus which is essential. It is a well-known fact that large objects usually
behave classically, but there are large systems which exhibit quantum phenomena
and conversely a small system with a suitably restricted set of observables may
very well behave classically. The notion of classical system can be made precise and
it means a system with an Abelian set of observable. The notion has only a meaning
with respect to a specified set of observables. If we look hard enough, every system
has quantum features. The erroneous conclusion that there are no classical systems
is only possible if one forgets that the notion of ‘classical’ has only meaning with
respect to a specified set of observables.

The measuring process reduces the measurable alternatives to those of a classical
state which, because of its classical nature, has an objective reality in the sense of
Section I'V. Itsinvariance under observation guarantees that the measurable alter-
natives have become ‘events’ which can at any time become ‘data’ without in any
way affecting the state.

We see from this that the amplifying device which is the usual ingredient of a
measuring device is only necessary if the measured event is to become a datum for
some observer. To be sure, some last step of this kind is always necessary if the
measurement is to be useful as a piece of information. The point we are making
here is that this last step (changing an event to a datum) is nothing which involves
any specifically quantum mechanical features. It is common to all of classical
physics. It is just as much involved in the observations which reveal the alternatives
of a thrown die. There is therefore no reason to pay any more attention to the
macroscopic observer in the quantum mechanical measuring process as in the
corresponding classical process.

The characteristic features of events are that they can be established without
interferring with the state of the system, as we have explained in detail in SectionIV.
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They have therefore an objective character in the sense that if they are recorded
they will be recorded identically by all observers who have sufficiently sensitive
organs to perceive the event. They become therefore also communicable and they
can thus furnish the raw material of any theoretical picture of nature.

Due to this situation, it is possible to simplify and clarify the analysis of the
measuring process if we divide the measuring apparatus into two subsystems
M = m + A, where m denotes the microscopic part of the measuring device and
A the amplifier. Instead of considering the S + M, we consider the system S + m,
which then is further combined to the system S 4 M in the last stage of the meas-
urement, when the event is raised to the macroscopic level.

We shall now apply to the system S + m the formalism of the preceding Sec-
tion, denoting the system S to be measured as system I and the microscopic part of
the measuring device m as the system II. The measuring device is then completed
by joining to m the amplifier A, which permits the raising of the event happening
in system m to the level of a datum.

The system I may be anything. The system II on the other hand, must have
certain properties which make it suitable as a measuring device. It must interact
with the system I in such a way that certain states of system I after the interaction
with II leave the system II in orthogonal final states which can be amplified by the
amplifier A to macroscopically distinguishable states.

It is possible to recognize two kinds of measurements?4). In a measurement of the
first kind an immediate repetition of the measurement yields the same result as
before with probability 1. In a measurement of the second kind this is not the case
and the interaction with the measuring device leaves the system in a new state
which will not be an eigenstate of the measured quantity. Only the first kind of
measurement can be used for the preparation of a state for which certain observables
have definite and prescribed values. We shall be concerned here exclusively with
measurements of the first kind.

Let us now analyze the measuring process in a model situation which still
contains the essential features of the general situation, but which omits inessential
details.

We take for system I a system with a two-dimensional state vector space. Let
¢+ and @_ be two orthogonal vectors in this space which are eigenstates of the
quantity to be measured. The state vectors of system I are a three-dimensional
space. It contains a state yo which describes the ‘state of readiness’ of the measuring
device and two more states, denoted by w, and y_. Here g, is the final state of II
after it has measured the system I in the initial state g ; likewise y_ is associated
with the state ¢_. Let ¢0 = @+ ® o be the pure initial state vector before I and II
begin to interact. After the interaction, the joint system is in the pure state

¢+:U§6+0:(}9+ &K py,

where U is some unitary operator. Similarly ¢_o = ¢_ ® o is sent by the inter-
action into the state

- =Udo=g- Qyp-.

In these formulae we have expressed precisely (in the framework of this model)
what was contained in the description of a measurement of the first kind.



Vol. 37, 1964 The Problem of Measurement in Quantum Mechanics 313

Let us now consider the general initial state of the form

¢0:d+¢+0+0h¢—0:‘

where « ,are two arbitrary constants subject to the normalization condition
| @+ |2 4 | «— |2 = 1. Since U is a linear operator, we must have for the final state
after the measurement in this case

¢:U¢O=d+99+®1P++05~99—®1P—- . (14)

This is the state of system I + II after the measurement. It is pure, as it must be,
since the initial state was pure. Why does this state furnish us with a measurement
of the alternatives g, ¢_? The reason is that, reduced to the measuring system II,
this state is a mixture, therefore each individual system realizes one of the events of
the mixture and these events can, by virtue of the amplifying device 4, be made
data for an observer. The relevant part of the state ¢ is thus its reduction to the
system II. In order to carry out this reduction we must use formula (11) of Section
V and we find for the reduced density operator of the two systems after a simple
calculation

W =y [2Py 4 |o |2 P, (15)
W = |y 204 + | as |2Q-, (16)

where we have introduced the projection operators P, Q. with one-dimensional
ranges containing ¢,y respectively.

This result shows clearly the reason for the occurrence of process (1) under the
influence of a measurement. It is here merely a mathematical consequence of the
reduction of a pure state (14) to one of its component subspaces.

* The problem poses itself differently in case we combine the measuring device M
with the system S to a larger (classical) system S 4+ M which is now simultaneously
a system and a measuring apparatus. This is done for instance in the discussion by
WIGNERS). In this case there is no question of reducing the state (14) to one of the
component systems. There is therefore no possibility of changing the state into a
statistical mixture in this manner. Yet if S 4+ M is a measuring device, it will record
a mixture. This is implied in the objective character of the measurable alternatives
as 1t was explained in Sections III and IV.

This paradoxical situation is the source of the far reaching suggestion of WIGNER
to renounce the linear laws of quantum mechanics in the description of the measur-
ing process?). We shall show now, again within the limitations of this model situa-
tion, that there is no need to do this if full account is taken of the essentially classical
feature of the measuring device S + M.

Let us introduce the projection operators I/, = P, ® Q. and Il =P_ ® Q-.
Quantum mechanics, in accordance with process (2), tells us that the final state of
the system S 4 M is the pure state (14). However, process (1) applied to S + M
as a measuring instrument tells us that this final state should be

W = | oy 20T, + | o |2 11 . (17)
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Which one of these two descriptions is correct ? LoNDON and BAUER®) would say:
before the datum entered consciousness it is the state (14), after consciousness has
taken cognizance of the datum it is the state (17). This peculiar interpretation is
certainly not in agreement with modern scientific methodology, and in this form
it 1s one of the weakest points of quantum mechanics.

However, we maintain that it is not necessary. The state after the interaction
is neither (14) nor (17), or it is both if one prefers. What this loose and picturesque
language means shall now be made precise.

If S + M is a measuring device, then it is a classical system. In fact, the non-
trivial projection operators which are observable are the two projections /7, and
11_. They commute and therefore every observable commutes with every other one.
The system of observables is Abelian. Therefore according to the theory of Sec-
tion IV the states of the system S -+ M can be placed into equivalence classes.

The meaning of the above paradoxical statement is now simply this. The two
states (14) and (17) are in the same equivalence class. Let us verify this.

The most general observable of S + M has the form 4 = uy IT, 4+ p_I7_. We
must show that for any such observable

(b, A ) =Tr W A,

where ¢ is the state vector (14) and W is the expression (17). A simple calculation
shows that both sides of this equation are equal to py | oy |2 = p—| o |2

Thus, if the system S + M is truly classical, the two states (14) and (17) cannot
be distinguished from one another, and one of the most vexing problems of quantum
mechanics dissolves into a pseudoproblem.

A final question: does this result mean that the two states (14) and (17) can,
under all circumstances, never be distinguished by a measurement? It does not
mean this. It means, this can never be accomplished with measurements from the
Abelian set © which contains the two projections /7, and //_. In order to distin-
guish them it is necessary to have at one’s disposal an observable which is not in
this set. An observation of such a quantity will no doubt reveal that it is-indeed
(14) which is the final state after the interaction, in agreement with the Schrodinger
equation.

This conclusion does not invalidate the statement?’) that the measurement
produces the state (17) [or rather the equivalence class containing (17)] because, as
Bo#Hr has always emphasized, the very possibility of measurement implies a classical
apparatus26). ' ’

VII. Concluding Remarks

The analysis of the measuring process presented in this paper shows that there
is no evidence to question the applicability of quantum mechanics to large systems
or even systems with consciousness. The attribute of an ‘element of reality’ to the
measurable alternatives in a mixture is justified because such quantities can be
observed without in any way interferring with the state of the system. This is
conform to the ‘classical” interpretation of states. Such states can sometimes be
prepared with a maximal set of relevant conditions on the microscopic level and
they furnish the indispensable classical aspect of any measuring process. This
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interpretation permits the omission of voN NEUMANN’s ‘ultimate observer’ and the
ultimate occurrence of process (1) during the measuring process. It also shows that
the physical comprehension of the measuring process does not require a complete
theory of the approximate classical behaviour of large quantum systems.

In order to assert this result in full generality, the analysis carried through in
this paper for a special case should be generalized and refined in several directions.
One should extend it to an observable with more than two values, and one should
also allow the possibility of a degenerate spectrum for the observed quantity. Then
one should take into account that both S and M could be in a mixture before the
measurement begins. Furthermore, one should also include the case of continuous
spectra. Finally, the discussion should then be extended to measurements of the
second kind. Only then could we make these assertions in full generality. We have
not done this here, since a treatment of such generality would require a considerable
mathematical apparatus which would tend to obscure the essential point of our
discussion. But there is no doubt that the conclusions reached here are applicable
for systems of much greater generality than the ones we have discussed.
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