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Gauge Invariance as a Consequence of Galilei-Invariance
for Elementary Particles

by J. M. Jauch

University of Geneva and CERN Geneva, Switzerland

(12. XII. 63)

Abstract: 1f a distinction is made between kinematical and dynamical symmetries of a
quantum mechanical localizable system it is possible to extend the principle of Galilei-invariance
to elementary particles, subject to arbitrary external forces. This principle implies a severe
restriction on the possible types of external forces which can act on a particle. In fact we show
in this paper that for a scalar particle the only forces which are compatible with this principle
are those which derive from a scalar and vectorpotential. The Hamiltonian takes on the usual
gauge-invariant form of a charged particle in interaction with arbitrary electromagnetic forces.

1. Introduction

The non-relativistic Schridinger equation for a single, charged, and spinless
particle is determined by a Hamiltonian operator H of the form

H= (P—AP+7V, (1)

where A is, apart from a numerical factor, the vectorpotential of the external field
and V is the scalar potential. Both of these quantities may, in the most general case,
be functions of the position operator Q and eventually of the time ¢£. The operator
P is the canonically conjugate momentum operator to Q, and the pair satisfies
the usual commutation rules.

This particular form (1) of the Hamiltonian is easy to derive from the classical
Hamiltonian of a charged particle in an arbitrary external field. The classical
equations of motion which result from this Hamiltonian imply that the particle is
subject to the Lorentz force

F=—V+0Qx(VxA). 2)

The velocity dependend part of this force is of a very special kind. For instance it
is linear in the velocity and it is always perpendicular to it.

In classical physics there are many other forces possible and it is not difficult to
set up, with the usual transcription rules, a corresponding quantum mechanical
equation of motion. Yet such forces do not seem to occur for elementary systems.
It is therefore not unreasonable to attribute to the systems which are defined by a
Hamiltonian of the form (1) a more fundamental significance which should be
expressible in a simple and general invariance principle.
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We shall show that this principle is a suitably generalized form of the principle
of Galilei-invariance, and we shall show that it excludes all Hamiltonians except.
those of the form (1).

The Galilei transformations proper at a fixed instant of time are those trans-
formations which change the velocity by an arbitrary constant amount, and which
leave the position unchanged. They correspond to the observables used by an
observer who is in constant relative motion with respect to the original observer.

Such transformations are not symmetry transformations in the usual sense of
the word, since the Hamiltonian operator is not invariant, not even for a free par-
ticle. We shall therefore introduce the distinction between kinematic and dynamic
symmetry transformations. This distinction is only significant for quantum mecha-
nical systems. It will be discussed in the following section 2. In section 3 we postu-
late that Galilei transformations shall be a kinematic symmetry transformation,
and in section 4 we show that this postulate restricts the possible Hamiltonians to
those of the form (1). In section 5 finally we show that these and only these Hamil-
tonians are gauge invariant.

2. Kinematical and Dynamical Symmetries

Let 4; be a set of self adjoint operators representing all the observables of a
system. A permutation A; — A/ of this set is called a kinematic symmetry trans-
formation if there exists a unitary or antiunitary operator U such that

Al =U A; UL, (3)

Examples of such transformations are easily constructed. The one-dimensional
motion of a spinless particle is described by two basic observables, the position
operator () and the momentum operator P and certain functions of them which need
not be further specified. If we carry out the translation of the position Q —Q + a
or of the momentum P — P — b, or both we obtain a kinematic symmetry trans-
formation since

Q I g e emPQ o-1aP ) (4)
P4+ b=¢"0pe0, (5)

It is clear from the above definition that kinematical symmetry transformations
are canonical transformations, but the converse is not true.
For instance, still with the above example, we may consider the transformation

0 =50

) ©)
P'= 1+ (PQ1+01P).

It is canonical, since the relation (Q’, P’) = 7 is true on a dense linear manifold of

the Hilbert space, but it is not a kinematical symmetry transformation. Indeed

the latter leave the spectrum of the operators invariant. But the spectrum of

is the entire real axis while that of Q' is the positive real axis only.
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We see therefore that the distinction between canonical transformations and
kinematical symmetry transformations is closely related to the non-uniqueness of
the canonical commutation rules. This requires some comment since one often finds
with reference to the well-known uniqueness proof of voN NEUMANN*) statements
to the contrary in the literature.

This proof of voN NEUMANN refers to the commutation rules in the bounded
form. If we define the operators U, = ¢, ¥V = &%, then one shows by formal
manipulations that the canonical commutation rules

Q. P] =1, (7)

imply .
Ua '[/7'5 — 81/0!.8 Vﬂ Ua . (8)

One can prove that all irreducible representations of (8) are unitarily equivalent.
This does not imply that all irreducible representations of (7) are equivalent too.
The representation theory of (7) is a much more difficult problem than that of (8).
because () and P are unbounded operators and they can be defined at most on a
dense linear manifold of the Hilbert space. In order to make the representation
problem well-defined one should require that there should exist a dense linear
manifold D on which both Q and P are defined and which is invariant both under
the operation of () and P.

It is easy to show with examples that there exist many inequivalent represen-
tations of (7) which satisfy these conditions. We have given two with the above
example.

One might therefore conclude that one should add a further condition in order
to force uniqueness of the representation. One such condition, motivated by physical
considerations, would be that the operators Q and P are essentially self adjoint
on D. Whether this condition will imply uniqueness is not known.

After this digression we return to the notion of kinematic symmetry transfor-
mations. It is clear that the set of all such transformations forms a group which we
shall call the kinematic symmetry group of the system.

Among all the possible kinematical symmetries we can consider the subgroup
of those transformations which leave the Hamiltonian invariant too. We call such
transformations dynamical symmetry transformations. They constitute a subgroup,
which we shall call the dynamical symmetry group.

A given transformation 4; — A4, determines the operator U up to a numerical
factor of magnitude 1 if the system of observables is an irreducible system. If this
is not the case, then there exist superselection rules and U is only determined up to
an arbitrary supersymmetry**).

3. Galilei-Invariance for an Elementary Localizable System /
We shall begin this section with a brief review of the notions of localizability
as well as homogeneity and isotropy. Localizability expresses the fundamental

*) J. vox NEUMANN, Math. Ann. 104, 570 (1931).
*#%) For this notion see J. M. Jaucu and B. Misra, Helv. Phys. Acta 34, 699 (1961).
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property of a particle of being situated in a (usually Euclidean) configuration space.
In our discussion this space is assumed to be the three-dimensional Euclidean
space E3. Physically ‘being situated’ means that there exists a series of possible
measurements which determine the location of the particle in this space all of
which are compatible with one another. Mathematically this property is expressed
by a spectral measure which associates with every Borel subset 4 of E3 a projection
operator E, such that

EAmAg = E41 EA, (9)
and

E,—I—E,, - (10)

where A’ is the complementary set of A4 within Ej.

The system is called an elementary system if these projection operators are a
complete system of commuting observables*). This means that the abelian algebra
of bounded operators U = {E}" generated by them is maximal abelian: % = A"

It is natural to adopt the spectral representation of this spectral measure by
defining the Hilbert space § = L2(Es3) as the space of all Lebesgue square integrable

functions (&) on Es. The projection operators operate then as follows on such
functions:

(Egp) (%) = 14(x) p(%), (11)

where 1,(#) is the characteristic function of the set 4, defined by

lforxed,
1,(%) = (12)
Oforx¢Ad.

The notions of homogeneity and isotropy of the physical space Es is expressed
by the statement that the spectral measure E is a ‘system of imprimitivities” with
respect to the group of Euclidean motions of E3. This means the following: let
(a, R) denote a general element of this group. It can be considered as the trans-
formation

¥ =Ru«&x-+ 0,

where R is a real orthogonal matrix. The elements of this group satisfy the com-
position law

(1, R) (@2, R2) = (o1 + R o2, R1 Rs) . (13)

Denote by [A4] (e, R) the set of points R & + @ with & € 4, then E is a system of
imprimitivities with respect to this group if there exist unitary operators W (¢, K)
such that

Eigjar =W(a, R)E,W(a, R) . (14)

This equation implies that the operators W (e, R) are a projective representation of

the 6-parameter group of Euclidean motions, that is they satisfy equations of the
form

Widi, R) W(az, Re) = w(ct1 Ry; a2 Rs) W (a1 + Ri1 @2, R1 R») (15)

*) J. M. Jaucs, Helv. Phys. Acta 33, 711 (1960).
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where w (01, R1 02 Rs) is a numerical factor of magnitude 1. It was shown by BARG-
MANN*) that the arbitrary phase factors in the definition of the operators W can be
adjusted so that w = 1. Every projective representation of this group is thus equi-
valent to a vectorrepresentation. We shall therefore omit w in the following.

If one introduces the ‘position operators’ Q, (» = 1, 2, 3) defined by

Qr ) (%) = xr p(4), (16)

then one proves easily that these operators transform under the group W (e, R) in
the following way

Q, =W(e, R) Q- W(e, R), (17)
where

Q, = (RQ)r + or. (18)

The translations proper are obtained by choosing for R the unit matrix /. Thus
we denote by

U, = Wi(e, I)
the operators with the property

Q +a =00 U7 (19)
From this follows for the operators ¥V = ¢# P the commutation rule in WevL’s form
U, Vg=e*8V,0,. (20)

All these well-known things are presented here as a background for the main
point of this section to be discussed now. We wish to extend the group of Euclidean
motions by adding the Galilei transformations proper to be defined in the following.

By postulating the existence of position operators @, which do not depend
explicitly on time we have chosen a particular picture in which the state vectors
satisfy a Schrodinger equation of the form

ip=Huy. (21)

Here H is a self adjoint operator representing the Hamiltonian of the system. We
shall not assume that the Hamiltonian is independent of the time ¢.
For any observable 4, not depending explicitly on time we have

gd; (p. A y) = (w, A yp), (22)

where A is defined by
A=1[H, A]. (23)

In particular, if 4 is one of the position operators Q, we may define the velocity
operator

0, =i[H,0,] (r=1223), (24)

*) V. BARGMANN, Ann. Math. 59, 1 (1952).
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since H and Q, are unbounded operators the operator Q, is only defined on a dense

linear manifold. We assume that @, is essentially self-adjoint on this domain of
definition and we denote with the same symbol its unique self adjoint extension.

The Q, thus defined is an observable. Its measurement can be effected with real
experiments which need not be discussed here in detail.
We shall now define the system as Galilei-invariant if the transformation

Qr—>Qr.

L (25)
Qr —> Qr -+ v

is a kinematic symmetry transformation.
It is clear that this condition implies certain restrictions on the nature of the

operators () and hence also on the operator H which is involved in the definition
of Q,. For instance the spectrum of each Q, is continuous and extends from —oo to
+ oco. From this fact alone it can be inferred that the physical implication of this
principle must be rather incisive. For instance relativistic systems are excluded as
may be seen from the remark that velocity for relativistic systems is limited by the
velocity of light.

" Since the definition of (0, involves the evolution operator H it is clear that the
principle must also lead to certain restrictions on the operator. It is the main
purpose of this paper to determine the effect of these restrictions on the operator H.

This we shall do in the following section.

4. Consequences of Galilei-Invariance

With the Galilei transformations of the last section the group of kinematical
symmetry transformations comprises a nine-parameter group and we denote by
(v, ¢, R) a general element of this group and by W (v, @, R) its unitary projective
representation. The subgroup of unitary operators

G, = W(v,o0,I) (26)

is the representation of the three-parameter subgroup of the Galilei transformations
proper. It satisfies

GoQ,Gat =0, +v, (r=1,273). (27)

Unlike the representation for the Euclidean motions the projective representations
of the group with the elements (v, @, R) has a one-parameter family of inequivalent
classes of representations (cf. note p. 288). Moreover it has been shown in the force-
free case by INONTU and WIGNER, that the class which contains the vectorrepresen-
tation does not permit a reasonable physical interpretation*). We shall therefore

*) E. INONT and E. P. WiIGNER, Nuovo Cim. 9, 705 (1952).
19 H. P. A. 37, 3 (1964)
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assume that the operators I are one of the known projective representations of this
group so that we have

W(vl, oy, Rl) W(vz, s, Rz) = ¢'* W(v, a, R) §
where v, @, R are given by the composition law of the group
v=m+Rvi, a=a1+Reas, R=RiRs.

The phase factor & can, by suitable choice of the phases, be brought into the form
(cf. note p. 288)

ff«“%(lﬂ&z—vzal),
where u is a parameter which characterizes the projective representation. If we

specialize this relation for the two three-parameter subgroups G, = W (v, o, I)
and U, = W (0, @, I) we obtain

U G, =" G, U,. (20')

Comparing this result with Equation (20) we see, by setting v = 3, that these are
again the canonical commutation rules in WevL’s form.

At this point we make use of the fundamental uniqueness theorem concerning
these commutation rules: The irreducible representations of the commutation
rule (15) are all unitarily equivalent (cf. note p. 286).

In order to apply this theorem we need to know that both our representations
(20) and (20)’ are irreducible. This is a consequence of the fact that the position
operators @, form a complete set of commuting operators. To see this we verify
first that every bounded operator X which commutes with both U, and Vg is a
multiplum of the unit operator. Irreducibility follows then from SCHUR's lemma.

Thus let X be a bounded operator which commutes with U, and V. Since the
Vg generate a maximal abelian algebra, X must be some function of the Q;, for
instance X = F(Q,). Because it commutes also with Vg, we find the relation

X=U'XU,=F(Qr+ o) = FQ)) .

Thus the function F isin fact & constant, X is a multiplum of the unit operator, and
the representation is indeed irreducible. A corollary of this result is that the oper-
ators U, also generate a maximal abelian algebra.

The uniqueness theorem, applied to our two irreducible representations (20)
and (20)" gives now the following result: There exists a unitary operator S which
commutes with U, and which satisfies

G, =S"1 erer s (28)
Since S commutes with P it follows from this that

G‘U P?’ G;l - Pf + [LL vr " (29)
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By combining this result with Equation (27), we find that u O, — P, commutes
with G, and must therefore be a function of the Q, alone. Hence we find the impor-
tant relation

Mor:Pr—Ar, (30)

where A, (r = 1, 2, 3) are three functions of Q, which may depend on the time .
From relation (30) we obtain the commutation rules

©[Qr, Q8] =4 Ors .
Thus if we define Ho = Q2 /2 we find

i [Ho, Qs] = Qs .

It follows from this that the operator H — Ho commutes with Q, and, since the Qs
are a complete set of commuting observables, it must be a function V of the Qy,
which may depend on the time ¢.

Thus we have shown that the Hamiltonian H must have the form

- .

2M(P—A)2+V, (1)

where A and V are both functions of Q and possibly of the time ¢.
We have thus succeeded in deriving the special form (1) of the Hamiltonian by
assuming only the principle of Galilei-invariance, stated in the preceding section.

5. Gauge-Invariance

In classical electrodynamics one shows that the electromagnetic field determines
the potentials A and V only up to a gauge transformation

A—->A+ Vg,
31)
o4 (
V——)V——-E——.

We shall now show that to this property of the potential corresponds a certain
invariance property of the system characterized by the Hamiltonian (1).
Let £ be the unitary operator defined by

(Qy) (8) =™ p(a) . (32)

Here ¢(«) is an arbitrary differentiable function of # which may also depend ex-
plicitly on time. Under this transformation the operator P transforms according to

QPO 1=P V¢, (33)

and the Schrédinger equation is changed into a new equation for the state vector
@¢ = 2y, which we may write as

’l:(;bt:G(pt.
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The new operator G is obtained from the old one by the substitution of p; = Q-1 ¢,
into Equation (21), with the result

G=QHQ +i% 0.
The explicit evaluation of this with (32) and (33) gives
G=5—(P—(A+ Vg + V-2 (34)
T 2 u ot

Thus we see that the ‘phase-transformations’ (32) are equivalent with the gauge
transformations (31). This we call the gauge invariance of the theory. The only
interaction which has this property is that given by the Hamiltonian (1). We have
thus established that gauge-invariance is a consequence of the Galilei-invariance
as defined in section 3.

6. Concluding Remarks

The foregoing result establishes a connection between two at first sight entirely
different principles namely Galilei-invariance and gauge-invariance. Which one of
these is more fundamental is perhaps a matter of taste. The only thing that is cer-
tain, according to our result, is that one cannot violate one of them without violating
the other too. This is the essential point of the result.

In spite of some effort, it has not been possible to extend these considerations
to the relativistic case. This is rather strange, since gauge invariance is easily trans-
ferred to relativistic field theories, but of course not Galilei-invariance. Thus we do
not yet know the relativistic analogue of this result.
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