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Sur la généralité des équations maitresses quantiques

par Gérard Emch
Institut de Physique Théorique de I’Université, Geneve

(15. XII. 63)

Abstract: The problem of general conditions of validity for a generalized master equation is
investigated. The case of pure quantum mechanics is treated in details as well as the case of a
quantum statistics in which the macroscopic observables form a classical system. It appears
that all the master equations so obtained are identical in form. As the principal result we can
assert that the physical conditions under which it is possible to derive rigorously a generalized
master equation are of a generality comparable with that of the Schrodinger equation.

I. Introduction

Depuis une dizaine d’années, la mécanique statistique des phénomeénes irréver-
sibles jouit d’un regain d’intérét; en particulier, un pas décisif a été accompli lors de
la découverte d’'une voie nouvelle menant, sous des hypothéses physiques trés
raisonnables, vers des équations (les «équations maitresses généralisées») qui sont
une extension de la célebre équation de PAauri. Examinant un certain nombre de
systémes quantiques manifestant des propriétés d’irréversibilité, van HOVE a cons-
taté que ceux-ci présentaient en particulier certaines propriétés communes de 'in-
teraction connues depuis sous le nom de «singularité diagonale». Prenant alors ces
propriétés comme hypothéses de départ, ce qui lui a permis d’éviter I'hypothese
de «chaos moléculaire» répétée, vaN HOVE est parvenu a déduire ses équations
maitresses généralisées. Devant le succés de cette méthode, confirmé encore par des
travaux ultérieurs, ils est tentant de se demander si les conditions suffisantes de
VAN HOVE sont aussi nécessaires, cette question suppose donc une démarche en sens
inverse de celles de vaAN HOVE et de ses successeurs. La solution de ce probléme se
décompose en deux étapes. Tout d’abord, il faut analyser les conditions sous les-
quelles on peut déduire les équations, c’est-a-dire qu’il faut établir le domaine de
validité de ces équations dans le cadre de la mécanique statistique quantique. Cet
article se propose de répondre a ces questions préliminaires en vue de pouvoir aborder
la seconde étape, a savoir I'étude des causes de l'irréversibilité et de leurs consé-
quences sur les propriétés de I'«interaction». La justification de tout le formalisme
des équations maitresses, l'utilité et I'interprétation de ses équations devraient alors
pouvoir étre démystifiées,
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I1. Equation maitresse généralisée en mécanique quantique
1. Préliminaives

En réarrangeant les arguments de SWENsON?), on peut s’affranchir de la cir-
constance suivante: la base utilisée pour écrire I’équation maitresse est construite
sur les vecteurs propres d'un hamiltonien non-perturbé; le formalisme développé
par SWENSON est en principe indépendant d’un calcul de perturbation; il est par
conséquent naturel d’envisager une extension dans laquelle on élimine toute référence
@ une séparvation de I’ hamiltonien en parties perturbée et non-perturbée. Cette extension
forme l'objet de cette partie IT; son intérét réside surtout dans le fait que cette
possibilité de choisir arbitraivement la base est essentielle en mécanique statistique
(voir partie III); accessoirement, on notera que la mécanique quantique présente
un fait nouveau par rapport a la mécanique classique, a savoir: si A est une obser-
vation qui «détermine complétement» I'état du systéme (par 13, on entend, en
mécanique classique, que ’observation porte sur tous les degrés de liberté internes
du systéme, et, en mécanique quantique, que le spectre de 4 est non-dégénéré), alors
I'entropie S, exprimant le manque de connaissance?) sur 4 est constante au cours
du temps pour un systéme classique cependant que, pour un systéme quantique,
elle peut augmenter3); cette question pourrait étre traitée quantitativement au
moyen du formalisme développé ici.

Le contexte dans lequel se situe la recherche d'une équation maitresse en méca-
nique quantique sera tout d’abord rappelé avec suffisamment de détails pour pou-
voir servir d’appui a la généralisation statistique.

Soit {a} un systéme quelconque de vecteurs orthonormés a 1, complet dans
I'espace de HILBERT du systéme physique consideré; un vecteur ¢ quelconque de
cet espace sera écrit:

=2 g0 ol g,= (o ¢,

soit 0 une observable quelconque, 1'évolution au cours du temps de sa valeur
moyenne pour un état initial ¢ sera donnée par:

(¢, 0¢)) = (g, 0" g 2 P P O

développons encore:
Octx'a" - 2 Oocﬂ Uﬁcx

ot U? est I'opérateur unitaire d’évolution; on supposera, pour simplifier 1’écriture,
que les observables considérées ont un spectre discret; cette restriction n’est pas
essentielle, mais elle s’avérera adéquate dans le formalisme statistique. Si de plus,
A est diagonale dans la base choisie, on a:

Ay = X 4w Ui
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ainsi, Iévolution de {A’), est complétement connue lorsqu’on connait celle de:

Zt

oo o

o ~1 t
= UL, U

On donne alors a Z* une forme qui permettra de le traiter plus facilement. On sait
que H étant un opérateur borné et auto-adjoint (on ne fait pas d’autres hypothéses
sur H), D un domaine connexe dans le plan complexe, tel que le spectre de H, noté
Sp(H), soit entierement contenu dans l'intérieur de D, f(/) une fonction analytique
dans D, I un contour rectifiable fermé contenu dans D et entourant Sp(H), et enfin
R? est l'opérateur borné, défini comme l'inverse de (H — [ I) pour toute valeur
complexe / hors de Sp(H), alors

1

f{H) = — 5= $ 1O R dI

en particulier, f(/) = exp(— 7 [ #) est analytique dans le plan complexe tout entier
et on a donc, pour tout contour /" entourant Sp(H):

Ut = —

9§exp(_m) R dl

r

29 m

de plus, Sp(H) étant borné, R? tend vers zéro lorsque /, en valeur absolue, tend vers
I'infini; on peut, par conséquent, déformer le contour I'de telle sorte qu’on obtienne
(pour t non-nul):

+
It — S(_t) f G E+Nt RE+IN) JF
ou: s(f) est le signe de ¢, ' = s(¢) , avec y est un nombre positif, non-nul, aussi
petit qu’on veut; apres avoir posé:
W pl o pl
‘Zocac'oc" = Roc’cx Ro:oc” ’ (1)
on peut donc écrire (pour ¢t non-nul):
o oo'o”

+ oo + oo
Zygrqr = (27)72 f dEy dez exp[i(E1 — E2 — 21 %) t] ZEwin', Eytin'

en faisant le changement de variables

2E =EFE,+ E;; 2E =E — Es,

on obtient:
+ oo
Ex
fooc’oc” = f dE Zoco:t’o:" (2)
avec: )

+ oo
ZE . = ;2 f dE' exp[21(E' — iq') 8] Z 5 EE (3)

aolo” 2 pE
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Une équation intégrodifférentielle linéaire pour Z* n’a pas encore ¢té obtenue, b_ien
qu’il ne semble pas y avoir d’objection de principe a cela; une telle équation existe
en revanche déjat)é) pour Z%?; en effet, lorsqu’on calcule la dérivée temporelle de

2

ZE1 il apparait dans I'intégrant un terme de la forme
(¢ —1V)Z" avec 1=E+E —in; ! =E—E' +iy;

I'équation d’évolution pour Z%! peut alors étre obtenue comme conséquence ma-
thématique de I'équation centrale:
' 4 N4 . T g i 7
(Z _ l) Zﬁa’a” - Sgoc’oa" — 2 [thxlﬁ Zga’oc” _ W”oc Zcm'oc"] ? (4)
8

ol S et W seront définies dans la suite; cette relation est formellement identique
a la réunion des équations (S.27) et (S.39)1); toutefois, celles-ci n’ont été obtenues
par SWENSON que dans le cas ot1 les indices { () } se référent au systéme des vecteurs

propres d'un certain hamiltonien non-perturbé; c’est cette restriction qu’on se pro-
pose de lever maintenant.

2. Déduction de la relation (4)

Considérons I'opérateur résolvant R! pour les valeurs de / hors de ’axe réel, ceci
suffit pour pouvoir effectuer le programme esquissé dans l'introduction. Séparons
alors R! en deux opérateurs D! et Nt respectivement diagonal et hors-diagonal dans
la base {o}:

Rt = Dt + Nt avec

Dia, =R 6. = D (x) (Smr ;

oo o

pour un vecteur f quelconque de 'espace de HILBERT $ du systéme considéré,
formons:

) =(, Rt }) ;
en utilisant la relation de HILBERT:
(({—I)R'R' =R —R",

il est facile de voir que:
Im[f(7)] =Im() || R[],
et comme:
|| R*'f|| =0 entraine f=0,

on en déduit que pour tout vecteur non-nul de § et pour tout / situé hors de 'axe
réel, on a que Im[f(/)] est différent de zéro; cela implique que D¥(x) est différent
de zéro pour tout « et tout / hors de I'axe réel; comme D' est de plus diagonal, on en
déduit que D! admet un inverse pour tout / hors de I'axe réel. Formons alors I'opé-
rateur hors-diagonal:

Ut = (DY)-1 Nt (D)1,

18 H. P. A. 37, 3 (1964)
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dont les éléments sont donc:
Usw = Nog|D'(e) D'(e) ;
on peut alors écrire, suivant en cela SWENSON1):
R — D! DL Ut Dt
En remplacant ceci dans la définition (1):

Zoarar = D'(@) D¥ (@) Oy 8y + Do) D (o) Ky Do) D* (o) (5)

o'’
Kifoca Ugc’ot Uéc‘a” + [Dr(oc) Ui’aﬁ” ézxtx’ -+ DI(OC) Ui’a” 5oux”]/Dl(O() Dl’(a) ’
ce qu’'on pourra écrire symboliquement:
Z¥ =p'D" + D)D" K¥ D' DV . (5)

Cette notation, employé dans les relations (5), (7) et (8) et dont la clé est donnée
par comparaison des équations (5) et (5'), doit étre comprise comme une générali-
sation a trois indices de la notation matricielle: la régle principale est que si une
grandeur a trois indices est multipliée a gauche par une grandeur a deux indices
(matrice!), les régles ordinaires du calcul matriciel sont applicables:

(I)z KH oma - ZD 50&05 - Dl((x) Koo

o'

(la seconde égalité étant due au fait que D? est diagonal); en revanche, si on multi-
plie a droite, la régle suivante doit étre suivie:
(Kll Dl Dl zxoca — 2 KZI Dl' Kli Dl(OC!) Dl’(aﬂ) .

ocﬂy e oo’

Définissons encore:

114 ] - 7 T
X:x = Zococa _ R Roca ’
w7l I
aa, e KGCX’CX, —_— Uara UOCOL' -

Pour o' = &”, la relation (5') se réduit alors & une expression qu'on peut écrire, sous
la forme condensée issue de (5):

Xll’ _— Dl Dl’ + Dl DZ’ ]ll’ Dl Dl’ . (6)

on remarque que la notation considérée ici se réduit a la notation matricielle habi-
tuelle, ou X", D' et J¥ sont considérés comme des opérateurs dans l'espace de
HiLBERT. Considérons enfin les quantités S¥, . définies formellement par:

U ED D =14+ K D (7)

effectivement, ce systeme d’équations linéaires ne définit les S¥ (et cela de maniére
unique!) que si Uopérateur (I 4 J% D' DY) admet un inverse; en vertu de la re-
lation (6), cette condition est équivalente a la condition d’existence d’'un inverse
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pour X"; imposer cette condition pour toutes les valeurs de / et I’ constituerait une
restriction extrémement sévére et d’ailleurs superflue; en effet, d’aprés ce qui a été
dit dans I'introduction, il suffit d’imposer 'existence de I'inverse de X* pour / et /'
situées respectivement de part et d’autre, et aussi prés que l'on veut, de I'axe réel;
cette condition, beaucoup moins restrictive, est essentielle pour que l’équation
maitresse qu’on obtiendra formellement ait effectivement un sens, et cela d’autant
plus qu'on retrouvera cette condition dans la définition des W¥ (voir ci-dessous
et aussi 8)).
En multipliant & gauche I'équation (7) par D' D¥, on obtient:

X QW W : (8)

cette relation permet ainsi d’exprimer les Z%, , comme combinaisons «linéaires»
(pour le sens & donner & ce mot, voir les derniéres remarques du paragraphe 3) des
XU, les coefficients de ces combinaisons «linéaires» étant les ngl;.an définis par la
relation (7). La relation (4) qu’on cherche & établir étant aussi une relation «linéaire»
entre les Z7, il suffit par conséquent, pour l'obtenir, de connaitre I'équation cor-
respondante en X'; c’est cette derniére (I’équation (12) ci-dessous) qu’on va établir
maintenant. A cet effet, reprenons la relation (6):

X — (I + D' DY Jzz') D' DV, (6a)
Xll’ . Dl Dl’ (I _|__ ]ll' DI, Dl’) : (Gb)
définissons alors formellement les quantités W, par:

Wlt’ (I + Dl Dl' ]'ll') — ]ll' (93)

ou, explicitement:

Wll’ s ]ll' (I + Dl D.l’ ]ll’) ~1 , (gb)
qu’'on peut développer, toujours formellement, en:
Wll’ — ]ll' L ]ll’ Dl Dl’ ]Il' + ]Zl’ DI Dl’ Jll’ Dl DI.' ]ll’ —_ e, (9C)

La définition (9a) et ses transformations n’ont effectivement de sens que si I'opé-
rateur (I 4+ D' D' J%) admet un inverse, ce qui revient a dire, en vertu de la rela-
tion (6), que X% lui-méme admet un inverse; on retrouve donc ici la'condition déja
rencontrée lors de la définition des S¥. De (9Db) et (6a), on tire:

Wi X% — ¥ Dt Dt (9d)
ce qu'on peut introduire dans (6b):
X" — D' D (1 + WP X7 (10)
en faisant alors usage de:

¢—1) 3 X%, = D'a) — D'(a) = F"'(O;)

o
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qui est une conséquence immédiate de la relation de HILBERT, on trouve a partir
de (10):

F¥(a) = (I — ') D'(er) D¥ () + D'(w) D" (o) 4;: Wes F* (B) (11)

en remarquant que F”(«) est antisymétrique en / et ' et que:
(’Wll‘)T - Wl’l

(car il en est, par définition, de méme pour J%), on peut alors récrire la relation (11)
ou le dernier terme est remplacé par:

- i r .
— 1 D) D (a);Wﬁa,
on a posé:
ﬁ/u' — ; F% W -

en comparant alors la relation (11) ainsi transformée et la relation (10) dont elle
est issue, on obtient:

0 — 1) Xl = F¥(0) 0, — i 3 (W Xl — Wi Xl (12)
B

qui n’est donc qu'une maniére différente d’écrire la relation (10). Il suffit alors
d’introduire cette relation dans (8) pour obtenir immédiatement la relation (4) re-
cherchée, ou

g‘H' - Fll’ (OL) Sll'

aaran aaraﬂ .

3. Premiéres conclusions

On sait!) qu'une fois qu'on posséde la relation (4), le passage a 1’équation
maitresse généralisée qui gouverne 1’évolution de Z%* n’est plus quune conséquence
mathématique. On peut par conséquent affirmer que les seules conditions supplé-
mentaires qu'on a imposées au systéme pour pouvoir déduire rigoureusement
I'équation maitresse généralisée a partir de I’équation de SCHRODINGER sont:

(i) H énergie (totale) du systéme, est un opérateur borné,
(ii) X" admet un inverse partout ol on I'utilise.

On remarquera que la condition (i) est aussi supposée par vAN HoVE4) et son
école; une généralisation & H non-borné n’est pas exclue, mais il faudrait alors
imposer des conditions plus particuliéres sur H ou sur les états considérés. Quant
a la condition (ii), il nous suffira d’indiquer que d’une part, quoique passée sous
silence, cette condition est tout aussi indispensable qu’ici dans le travail de SWEN-
SoN?), et que d’autre part, elle remplace de maniére concise les hypothéses de con-
vergence qu’on est obligé de faire, au moins implicitement, dans les développements
en série habituels4)8), Il faut voir que les relations (4), (8) et (12) sont des relations
entre nombres et non des relations entre variables: on n’affirme pas que les coeffi-
cients de ces «combinaisons linéaires» sont indépendants des X, respectivement des
Z; le terme de «relations linéaires» est donc abusif au sens strict; cette remarque
conduit a poser la question de la signification, et donc de la justification des équa-
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tions maitresses elles-mémes; cette question ne peut trouver saréponse que lorsqu’on
commence 4 évaluer les solutions des équations obtenues (voir par exemple 3)); il
apparait alors qu’il est beaucoup plus facile d’évaluer les quantités directement
liées & W que celles qui le sont & X. Il est d’autre part important de remarquer que
X, W, etc., bien qu’écrits sous forme opératorielle, dépendent essentiellement de la
base a partir de laquelle ils sont définis.

III. Transposition en mécanique statistique
4. Enoncé du probléme

Le but de cette troisiéme partie est d’introduire explicitement les «macrocel-
lules» de la mécanique statistique quantique et de déduire, dans ces conditions,
une équation maitresse généralisée qui sera formellement identique a celle de la
premiére partie.

Considérons pour cela le modéle mathématique suivant: soient § un espace de
HILBERT, { E5 } une partition de § en sous-espaces orthogonaux et {4} I’ensemble
des opérateurs auto-adjoints de la forme

A =%’A(A)EA,

ou les A(A) sont des nombres réels quelconques. _

On prétend que ce formalisme décrit de maniére adéquate la situation rencon-
trée en mécanique statistique quantique lorsqu’on donne, d’un systéme «macrosco-
pique» classique, une description «microscopique» quantique. $ est I'espace de HiL-
BERT attaché a la description microscopique, { A} est 'ensemble (commutatif!) des
observables macroscopiques et { £} est 'équivalent, en mécanique statistique quan-
tique des «macrocellules» de la mécanique statistique classique; les observables
macroscopiques sont les seules sur lesquelles peuvent porter les mesures. (Il est
instructif de comparer le formalisme décrit ici avec celui d’'une mécanique quantique
avec régles de supersélection). On pourrait objecter que la mécanique statistique
quantique décrite ici est trés particuliére et on peut effectivement en envisager des
généralisations; on pourrait, par exemple, supposer que certaines au moins des
observables macroscopiques ont un spectre continu, ou qu’elles ne commutent
pas nécessairement toutes entre elles. Toutefois, les raisons pour lesquelles on a
choisi tout de méme cette forme particuliére sont les suivantes:

(i) le modéle semble suffisamment réaliste,
(ii) il parait suffisamment général pour permettre une étude quantitative des phé-
nomenes irréversibles et de leurs causes,
(ii1) il est simple.

On notera enfin que tout état préparé au moyen seulement des observables macros-
copiques est décrit par un «opérateur de densité» de la forme:

W:ZPAWA avec pp =0 ; Zgbazl,
A A

WAEEA/NA ou NAET?'EA.
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N est supposé fini; ceci exprime qu’'on peut attribuer, et c’est ce qu'on fait pour
les «états macroscopiques», une probabilité a priori uniforme aux états purs qui
appartiennent a la méme macrocellule; on a:

TrWa=TrW=1,

Wi=Wp;, W¥x=W,

2 :

Wi Wa, W2W,
Le cas ol les macrocellules sont toutes de dimension 1 correspond & la situation
étudiée dans la premiere partie; le fait qu'on n’'impose pas que toutes les macro-
cellules aient la méme dimension implique que les propriétés de symétries (par
exemple sur W) rencontrées dans la premiére partie, devront étre transposées avec
soin au cas qui nous intéresse maintenant. La question qu’on se pose s’énonce alors
ainsi: étant donné un état macroscopique Wo, comment évoluent au cours du

temps les valeurs moyennes des observables macroscopiques sur W?, c’est-a-dire
quel est le comportement de

(A>yr avec W' = U WoeU?,

étant de plus admis que 'opérateur d’évolution U’ est en général une symétrie?) de
la description microscopique seulement? On laisse donc ouverte la possibilité que
Popérateur H de 1’équation de SCHRODINGER microscopique ne soit pas une obser-
vable macroscopique. On verra plus loin que cette précaution est essentielle.

5. L’équation maitvesse

Considérons donc un état macroscopique
W = E P Wpe,
Af
et I’évolution de la valeur moyenne d’'une observable macroscopique:

(Appr =< Ay = D p Tr A W,.,
<

Tr AW, = (A, = ) A(A) P(a, A,
Fa

avec

P(A, A') =(UEA U,

ainsi 1'évolution de {(A>y+ sera complétement connue si on connait celle de
PY A, A'); R étant, comme dans la premiére partie 'opérateur résolvant de H,
générateur de U?, définissons:

X¥(n, p') =(RVEpA R,

qui est lié & P*(A, A') par une relation intégrale identique a celle qui, dans l'intro-
duction, liait Z% et Z*; on peut alors suivre pas 4 pas le schéma indiqué dans ce pre-
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mier paragraphe et introduire ainsi une quantité PE#(A, A’) (qui joue ici un rdle
correspondant a celui que jouait Z%? dont I'équation d’évolution («équation
maitresse généralisée») sera une conséquence mathématique d'une relation ana-
logue 4 la relation (12), cas particulier de la relation centrale (4). C’est cette relation
qu’on se propose de transposer maintenant en mécanique statistique, en suivant le
meéme chemin que dans le paragraphe 2.

Définissons d’abord:

DlEZ<Rl>AEA; N! = R! — D!,
A

on remarque que (N, est nul et que D! admet un inverse; on peut alors définir:
Ut = (DY)-1 Ny(DY)-1

en substituant a R’ son expression en termes de D! et U?, dans la définition de
X%(A, A'), on obtient:

X¥(n, a') = D) DV(n) 8,0 + Do) DF(2) J¥(a, 2") DH(A") DY(A"), (13)

DYA) = (RWa; J¥(A, A = (U EA U,

La relation (13) est la transposition en mécanique statistique de la relation (6). On
peut & nouveau utiliser une notation condensée en imaginant que X*, D' et J# sont
des opérateurs dans un espace dont les vecteurs de base sont dénombrés par A.
La relation (13) prend alors la forme de (6). On peut définir des W?# (A, A’) par des
relations de la forme de (9a), (9b) ou (9c); la condition d’existence et d'unicité
des nouveaux W¥ est que l'opérateur X¥, dont les éléments de matrice sont main-
tenant X* (A, A') admette un inverse, et cela, comme dans la premiére partie, pour
toutes les valeurs de I et I’ situées respectivement de part et d’autre (et aussi prés
qu’on veut) de I'axe réel.

On obtient ainsi directement ’équivalent statistique de la relation (10) qui s’écrit
donc:

X¥(n, A") = DY) D¥(n) 8pp + DX(2) DP(2) 3] WH(n, &) XF (2", 0) . (14)
-

En se rapportant a sa définition, on vérifie que J satisfait a la relation:
Ny J¥(a, &'y = Na JA", A)
et par conséquent:
N, W¥(a, A') = No WH(A', A),
de méme, la relation de HILBERT a pour conséquence:

(0 —1) ) Ny X¥(a, A') = NA[DH(8) — D¥(A)] = Na F¥(8) -
. A
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De méme que I'on peut passer de (10) a (12), on montre que (14) peut s’écrire:
(=1 X%, A
— FP(8) b, — i 3 (0, &%) X¥(a", &1) — W (a7, 2) X¥(a, 2)],

N

Y

ou
W”I(A, AI) o F”'(A) Wll’(A, AI) )

De (15) suit mathématiquement 1’équation maitresse généralisée pour PE(A, A').
Lorsque tous les N sont égaux a 1, (15) se réduit & (12) comme on devait s’y
attendre, car la seconde partie est effectivement un cas particulier ce de qui précéde.

6. Probabilité «semi-fine»

Dans son Cours des HoucHES%) en particulier, vAN HovE déduit une équation
maitresse pour une probabilité semi-fine (ou «coarse-grained»), 1’étape essentielle
est a nouveau d’obtenir une relation (vAN Hove 8.11) formellement identique a (15);
la méthode décrite ci-dessus s’applique encore au cas considéré par vaN HOVE,
aussl seuls seront mentionnés maintenant les rapports entre les probabilités semi-
fines de vaN HoVE et celles qui font l'objet de cette étude.

On considere a nouveau une partition {EA } de $ en macrocellules et on cons-
truit une base {a} compatible avec cette partition, c’est-a-dire que tout vecteur o
de cette base est entiérement contenu dans un E,. On envisage les états initiaux
de la forme:

Wo = E | 29> PO(a?) (e | .

a®

(Le cas ou Po est constant sur chaque macrocellule correspond a ce qui a été fait
précédemment.) A tout opérateur auto-adjoint 4, on fait correspondre 1'«observable

semi-fine » B
)

ou A(A) est la valeur moyenne de 4 sur 1'état W, , (défini comme dans le para-
graphe 4), et on étudie 1’évolution de la valeur moyenne de A sur 'état

W= U W U
on a: B
Ayt = 2 A(n) Pa, WO
avec
Pa, WO = (Ep>ur

en introduisant la condition imposée a 1W0:

P, W) = ] Po(a%) P(n, a9)

P, a0) 2 ®

AEA
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avec
Pgwc“ = fooc"oc" - l (OC, Ut do) !2

on définit alors pour tout o dans Ex:
P, o) = P'(A, a®)[Np
qui est la relation (VAN HovE 8.2) et qui permet de définir (vAN HovE 8.1):

Pa) = Zﬂ‘ PO(a9) P, a9) ,

on a alors:

Ay = 3] Ala) P(ar)

ou 4 («) est la valeur moyenne de A sur la macrocellule E5 qui contient a.
Pi(o, @) est la probabilité «semi-fine» sur laquelle porte I’étude de vAN HOVE;
elle satisfait aux relations:

Pla, 20) = (Ppporp »
ou E, est la macrocellule qui contient «, et

P, A9 = E P, a9) .

ale A®

7. La notion d’états équivalents

Dans ce paragraphe, on se propose d’'introduire une notion qui permette d’ex-
primer la distinction entre les propriétés d’équilibre (d’essence macroscopique) et
les propriétés de stationnarité (ne relevant essentiellement pas de la structure ma-
croscopique des observations).

On dira que deux états instantanés W, et W, (non-nécessairement macroscopi-
ques!) sont macroscopiquement équivalents s’il est impossible de les distinguer
par des mesures macroscopiques effectuées en cet instant; ceci s’exprime par:

<A>W1 = <A>Wfg >
pour toute A macroscopique, ou de maniére équivalente
T?’EA W1 = T?’EA WZ,

pour toute macrocellule A; on vérifie que cette relation est effectivement une
relation d’équivalence et que chaque classe d’équivalence est caractérisée complete-
ment par un état macroscopique W défini par:

W= D"pp Wa avec pp=TrE, W',
-

o W' est un élément quelconque de la classe considérée; on a évidemment, pour
toute observable macroscopique:

Ay = %’PA A(a) .
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Si WO est 'état du systéme au temps ¢ = 0, et W I'évolution de cet état au cours
du temps, alors la classe d’équivalence de W* est caractérisée par 1'état macrosco-

pique:
Wil = %’ pall) Wa

PA(t) =17 EA Wt == <U"t EA (]t>Wo .
Si cet état initial est un état macroscopique:

WO _— 2 pAI(O) WAI ¥
A!
alors

palt) = 3 p(0) P2, A",
N
ou PY(A, A') est la quantité définie au paragraphe 5. Si, enfin, 1'état initial est de

la forme
00 = Z E.oE,
e

ou g est une matrice de densité quelconque, on retrouve la situation évoquée au
paragraphe 6, et dont l'interprétation, dans le cadre de la théorie de la mesure, est
bien connue. Ceci établit donc la liaison avec ce qui a été fait jusqu’ici. On dira
qu'un état est un «état d’équilibre macroscopique» si la classe d’équivalence de cet
état est invariante au cours du temps; cette circonstance doit étre distinguée de celle
d’état stationnaire qui se rapporte & un état invariant au cours du temps; cette
seconde condition est beaucoup plus forte. A titre d’illustration, remarquons que,
dans le cadre olt nous nous sommes placés (la partition en macrocellules étant
discrete), les trois conditions suivantes sont équivalentes:

(i) tout état microscopique, du type étudié au paragraphe 6, est un état d’équi-
libre,
(i) tout état macroscopique est stationnaire,
(iii) U? est une symétrie?) macroscopique pour tout temps ¢.

8. Conclusions

Tout d’abord, il est évident en vertu de l'identité des méthodes employées,
que les conclusions développées dans le troisiéme paragraphe (en particulier sur
I'existence et I'unicité des W) peuvent étre transposées directement aux situations
envisagées ensuite.

Contrairement a la situation rencontrée dans les équations markoffiennes de
PauLr®), les hypothéses sous lesquelles on peut déduire les équations maitresses
généralisées sont si faibles qu'on doit s’attendre a ce que ces équations décrivent
aussi bien des situations réversibles que des situations irréversibles ou quasi-pério-
diques; en particulier, les équations établies (bien qu’elles deviennent alors triviales)
sont encore valables si 'hamiltonien est une observable macroscopique: dans ce cas
les états macroscopiques sont fous stationnaires; il en est encore ainsi si U* est,
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pour tout temps #, une symétrie pour toutes les observables macroscopiques (en
effet, les macrocellules forment une partition discréte de ’espace de HILBERT de la
description microscopique, tandis que U* est une transformation continue, connexe
a I'identité): ainsi, une condition nécessaire pour que la situation statistique puisse
présenter, macroscopiquement, autre chose que des phénoménes d’équilibre (et
puisse par conséquent présenter éventuellement des phénomenes irréversibles) est
que I’évolution dans le temps, tout en étant une symétrie dans la description micros-
copique, ne jouisse plus de cette propriété pour le systéme macroscopique; ceci per-
met de rejoindre le point de vue habituel selon lequel c’est l'interaction qui est
responsable de I'approche de l'équilibre; dans le cadre proposé ci-dessus, cette
«interaction » apparait comme la différence V entre les énergies microscopique et
macroscopique: pour que tout état macroscopique ne soit pas stationnaire, il faut
que l'interaction ainsi définie ait des éléments de matrice entre macrocellules diffé-
rentes. Ainsi qu’on I’a montré, aucune hypothése particuliére sur l'interaction n’est
nécessaire a I'établissement des équations maitresses généralisées; celles-ci, en tant
que telles, sont donc d’une trop grande généralité pour ne décrire que les phéno-
ménes irréversibles: on est ainsi conduit & penser qu'a elle seule la forme de ces
€quations ne contient pas l'irréversibilité. L utilité de la déduction de ces équations,
telle qu’elle a été présentée ci-dessus, réside tout entiére en ceci: alors que d’habi-
tude, on introduit d’emblée certaines circonstances (peut-étre trop particuliéres)
rencontrées dans des systémes manifestant des propriétés irréversibles, on est main-
tenant parvenu a une équation d’évolution de la probabilité, suffisamment géné-
rale pour pouvoir permettre de délimiter et d’évaluer quantitativement les causes
de l'irréversibilité en mécanique statistique quantique. En particulier, une condi-
tion, parente de la condition de singularité diagonale de vaN HovE4) apparait im-
médiatement: les équations deviennent triviales (équilibre!) dés que (V41 VAz. ..
A,V>w est nul pour tout #, tout état macroscopique W et toutes observables
macroscopiques A;.
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