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Sur la généralité des équations maîtresses quantiques

par Gérard Emch
Institut de Physique Théorique de l'Université, Genève

(15. XII. 63)

Abstract: The problem of general conditions of validity for a generalized master equation is
investigated. The case of pure quantum mechanics is treated in details as well as the case of a
quantum statistics in which the macroscopic observables form a classical system. It appears
that all the master equations so obtained are identical in form. As the principal result we can
assert that the physical conditions under which it is possible to derive rigorously a generalized
master equation are of a generality comparable with that of the Schrödinger equation.

I. Introduction

Depuis une dizaine d'années, la mécanique statistique des phénomènes irréversibles

jouit d'un regain d'intérêt; en particulier, un pas décisif a été accompli lors de
la découverte d'une voie nouvelle menant, sous des hypothèses physiques très
raisonnables, vers des équations (les «équations maîtresses généralisées») qui sont
une extension de la célèbre équation de Pauli. Examinant un certain nombre de
systèmes quantiques manifestant des propriétés d'irréversibilité, van Hove a constaté

que ceux-ci présentaient en particulier certaines propriétés communes de
l'interaction connues depuis sous le nom de «singularité diagonale». Prenant alors ces

propriétés comme hypothèses de départ, ce qui lui a permis d'éviter l'hypothèse
de «chaos moléculaire» répétée, van Hove est parvenu à déduire ses équations
maîtresses généralisées. Devant le succès de cette méthode, confirmé encore par des

travaux ultérieurs, ils est tentant de se demander si les conditions suffisantes de
van Hove sont aussi nécessaires ; cette question suppose donc une démarche en sens
inverse de celles de van Hove et de ses successeurs. La solution de ce problème se

décompose en deux étapes. Tout d'abord, il faut analyser les conditions sous
lesquelles on peut déduire les équations, c'est-à-dire qu'il faut établir le domaine de
validité de ces équations dans le cadre de la mécanique statistique quantique. Cet
article se propose de répondre à ces questions préliminaires en vue de pouvoir aborder
la seconde étape, à savoir l'étude des causes de l'irréversibilité et de leurs
conséquences sur les propriétés de 1'«interaction». La justification de tout le formalisme
des équations maîtresses, l'utilité et l'interprétation de ses équations devraient alors
pouvoir être démystifiées.
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II. Équation maîtresse généralisée en mécanique quantique

1. Préliminaires

En réarrangeant les arguments de Swenson1), on peut s'affranchir de la
circonstance suivante: la base utilisée pour écrire l'équation maîtresse est construite
sur les vecteurs propres d'un hamiltonien non-perturbé ; le formalisme développé
par Swenson est en principe indépendant d'un calcul de perturbation; il est par
conséquent naturel d'envisager une extension dans laquelle on élimine toute référence
à une séparation de l'hamiltonien en parties perturbée et non-perturbée. Cette extension
forme l'objet de cette partie II; son intérêt réside surtout dans le fait que cette
possibilité de choisir arbitrairement la base est essentielle en mécanique statistique
(voir partie III) ; accessoirement, on notera que la mécanique quantique présente
un fait nouveau par rapport à la mécanique classique, à savoir : si A est une
observation qui «détermine complètement» l'état du système (par là, on entend, en

mécanique classique, que l'observation porte sur tous les degrés de liberté internes
du système, et, en mécanique quantique, que le spectre de A est non-dégénéré), alors
l'entropie SA exprimant le manque de connaissance2) sur A est constante au cours
du temps pour un système classique cependant que, pour un système quantique,
elle peut augmenter3) ; cette question pourrait être traitée quantitativement au

moyen du formalisme développé ici.
Le contexte dans lequel se situe la recherche d'une équation maîtresse en mécanique

quantique sera tout d'abord rappelé avec suffisamment de détails pour pouvoir

servir d'appui à la généralisation statistique.
Soit {a} un système quelconque de vecteurs orthonormés à 1, complet dans

l'espace de Hilbert du système physique considéré; un vecteur cp quelconque de

cet espace sera écrit:

f Z <P* a ou f* (*' f) '
a

soit 0 une observable quelconque, l'évolution au cours du temps de sa valeur
moyenne pour un état initial cp sera donnée par:

fcp*, CV) ftp, 0<?)=279£9V <W,
a', a"

développons encore:

<W Z °* u«-« uk-
Ol, ß

où U* est l'opérateur unitaire d'évolution; on supposera, pour simplifier l'écriture,
que les observables considérées ont un spectre discret; cette restriction n'est pas
essentielle, mais elle s'avérera adéquate dans le formalisme statistique. Si de plus,
A est diagonale dans la base choisie, on a :

A^ ZA(«)UJ«U««'
a

OÙ
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ainsi, révolution de <-4'>,, est complètement connue lorsqu'on connaît celle de:

7* TT4. JJ1^ rv r* rv ¦ v-' rv rv ^-^ rv rv ¦a a aa

On donne alors à Z1 une forme qui permettra de le traiter plus facilement. On sait
que H étant un opérateur borné et auto-adjoint (on ne fait pas d'autres hypothèses
sur H), D nn domaine connexe dans le plan complexe, tel que le spectre de H, noté
SpfH), soit entièrement contenu dans l'intérieur de D, ffl) une fonction analytique
dans D, r nn contour rectifiable fermé contenu dans D et entourant SpfH), et enfin
R1 est l'opérateur borné, défini comme l'inverse de fH — l L) pour toute valeur
complexe l hors de SpfH), alors

w) --skf m Rl dl

en particulier, ffl) —- exp(— i 11) est analytique dans le plan complexe tout entier
et on a donc, pour tout contour r entourant SpfH) :

TA - -tZ__ £ exp (- i 11) R1 dl

r
de plus, SpfH) étant borné, R1 tend vers zéro lorsque /, en valeur absolue, tend vers
l'infini; on peut, par conséquent, déformer le contour F de telle sorte qu'on obtienne
fpour t non-nul) :

+ oo

U* 7Z_ f e-i(E + W)t R(EAivl dE2l7l J
— co

où: s ft) est le signe de t, A sfl) 'rj, avec rj est un nombre positif, non-nul, aussi

petit qu'on veut; après avoir posé:

ZlL'a- — K'«. RL"

on peut donc écrire fpour t non-nul) :

+ 00 4- 00

3«v (2 ^Z2 / dEx J dEz exp [ifEx - Ez - 2 i rj') t] Z%AJ'> E'+i»',
— OO — 00

en faisant le changement de variables

2 E Ex + Ez ; 2 E' Ex — Ez

on obtient:

4.V f dE ZEJa. (2)

- 00

avec:
4- 00

Zî'k- -^ f dE' exp [2 i fE' - i r,') f] ZE+^' E~E'+^ (3)
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Une équation intégrodifférentielle linéaire pour Z1 n'a pas encore été obtenue, bien
qu'il ne semble pas y avoir d'objection de principe à cela; une telle équation existe
en revanche déjà4)6) pour ZE't; en effet, lorsqu'on calcule la dérivée temporelle de

ZE'\ il apparaît dans l'intégrant un terme de la forme

fl - V) Zlv avec / E + E' - i rj' ; V E - E' + * V ;

l'équation d'évolution pour ZE'1 peut alors être obtenue comme conséquence
mathématique de l'équation centrale:

(i - 0 4'aV &«. - * Z Ä 4a'a" ~ K^1 - (4)
ß

où S et W seront définies dans la suite; cette relation est formellement identique
à la réunion des équations (S.27) et (S.39)1); toutefois, celles-ci n'ont été obtenues

par Swenson que dans le cas où les indices {(a)} se réfèrent au système des vecteurs

propres d'un certain hamiltonien non-perturbé ; c'est cette restriction qu'on se

propose de lever maintenant.

2. Déduction de la relation (4)

Considérons l'opérateur résolvant R1 pour les valeurs de l hors de l'axe réel, ceci
suffit pour pouvoir effectuer le programme esquissé dans l'introduction. Séparons
alors R1 en deux opérateurs D1 et N1 respectivement diagonal et hors-diagonal dans
la base {a}:

R' D1 Ar N[ avec

DA R> <$_, DHa) <$„. ;
aa aa aa \ / aa »

pour un vecteur / quelconque de l'espace de Hilbert § du système considéré,
formons :

ffl) ff,R'f) ;

en utilisant la relation de Hilbert:

fl - V) R1 R1' Rl - R1'

il est facile de voir que:

Im[/(Q] Im(Z)||Ä»/||,
et comme:

|| Rlf\\ =0 entraîne / 0,

on en déduit que pour tout vecteur non-nul de § et pour tout / situé hors de l'axe
réel, on a que Im [ffl)] est différent de zéro; cela implique que Dlfa) est différent
de zéro pour tout a et tout l hors de l'axe réel; comme D1 est de plus diagonal, on en
déduit que D1 admet un inverse pour tout l hors de l'axe réel. Formons alors
l'opérateur hors-diagonal:

U1 fDi)-1 Ni (Ö*)-1

18 H. P. A. 37, 3 (1961)
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dont les éléments sont donc:

UL' KJD'fc,) D'fA) ;

on peut alors écrire, suivant en cela Swenson1) :

Ri D1 + Di TJi Di

En remplaçant ceci dans la définition (1) :

4av Dlfa) //(a) ô„, dm. + Z)'(a) D!'(a) *&«• ^V) Dl'fA) (5')
où

^C,- - Ka UL- A [Dl\A) Ul.tt. ôm, + D\A) Ula,a. Ó„.]/D'(«) J/(a)

ce qu'on pourra écrire symbohquement :

Z11' D1 D1' y D1 D1' K11' D1 D1' (5)

Cette notation, employé dans les relations (5), (7) et (8) et dont la clé est donnée

par comparaison des équations (5) et (5'), doit être comprise comme une généralisation

à trois indices de la notation matricielle: la règle principale est que si une
grandeur à trois indices est multipliée à gauche par une grandeur à deux indices
(matrice!), les règles ordinaires du calcul matriciel sont applicables:

(D1 K11)^. 27 Dif <v D\A) iCa-

(la seconde égalité étant due au fait que Dx est diagonal) ; en revanche, si on multiplie

à droite, la règle suivante doit être suivie:

{Klv D1 Dl)m.x„ 27 K%7 Dl, D';x, **„. D\A) Dl\A)
ß,Y

Définissons encore:
-v-w __ ylV -dì r>r

aa' aa'a' a'a aa'

jiv __ -prit' jjl jji'J aa' aa'a' a'a aa' '

Pour a' a", la relation (5') se réduit alors à une expression qu'on peut écrire, sous
la forme condensée issue de (5) :

xiv Di Dv _|_ Di Dv jiv Dt Dv ^
on remarque que la notation considérée ici se réduit à la notation matricielle
habituelle, où X11', D1 et J11' sont considérés comme des opérateurs dans l'espace de

Hilbert. Considérons enfin les quantités S"aV définies formellement par:

ff + J11' D1 D1') S11' e= 7 + K11' D1 D1' ; (7)

effectivement, ce système d'équations linéaires ne définit les S11' (et cela de manière
unique!) que si l'opérateur fl -f- J11' D1 D1') admet un inverse; en vertu de la
relation (6), cette condition est équivalente à la condition d'existence d'un inverse
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pour Xlv ; imposer cette condition pour toutes les valeurs de l et V constituerait une
restriction extrêmement sévère et d'ailleurs superflue; en effet, d'après ce qui a été

dit dans l'introduction, il suffit d'imposer l'existence de l'inverse de Xlv pour l et V

situées respectivement de part et d'autre, et aussi près que l'on veut, de l'axe réel;
cette condition, beaucoup moins restrictive, est essentielle pour que l'équation
maîtresse qu'on obtiendra formellement ait effectivement un sens, et cela d'autant
plus qu'on retrouvera cette condition dans la définition des Wlv (voir ci-dessous

et aussi 8)).

En multipliant à gauche l'équation (7) par D1 D1', on obtient:

xw sir zw (8)

cette relation permet ainsi d'exprimer les Z'^,a„ comme combinaisons «linéaires»

(pour le sens à donner à ce mot, voir les dernières remarques du paragraphe 3) des

X™ß, les coefficients de ces combinaisons «linéaires» étant les S"^-a» définis par la
relation (7). La relation (4) qu'on cherche à établir étant aussi une relation «linéaire»
entre les ZIV', il suffit par conséquent, pour l'obtenir, de connaître l'équation
correspondante en Xu' ; c'est cette dernière (l'équation (12) ci-dessous) qu'on va établir
maintenant. A cet effet, reprenons la relation (6) :

X11' fl + D1 D1' /"') D1 D1', (6 a)

XW Dl Dl' (j _j_ jW jjt Dl'j (6b)

définissons alors formellement les quantités W1^, par:

W11' ff + D1 D1' f) J11' (9 a)

ou, explicitement:
ww jw (7 + Di Dv jityx ; (9 b)

qu'on peut développer, toujours formellement, en:

W11' J11' — J'1' D1 D1' J"' A- J11' D1 D1' J11' D1 D1' J11' — • • •. (9 c)

La définition (9a) et ses transformations n'ont effectivement de sens que si
l'opérateur fl -f- D1 D1' J11) admet un inverse, ce qui revient à dire, en vertu de la relation

(6), que Xw lui-même admet un inverse; on retrouve donc ici la condition déjà
rencontrée lors de la définition des S11'. De (9b) et (6a), on tire:

wir X11'=f D1 D1', (9d)

ce qu'on peut introduire dans (6 b) :

xw Di Dv (/ + ww Z«') /10)

en faisant alors usage de:

fl - V) 27 X* D\a) - Z/(«) - F11'fa)
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qui est une conséquence immédiate de la relation de Hilbert, on trouve à partir
de (10):

F"'(a) fl - V) D\a) D1'fc,) + Dlfa) Dl\a) 27 Kß ^iß) 01)
ß

en remarquant que F11'(a) est antisymétrique en l et V et que:

fwliy w1'1

(car il en est, par définition, de même pour /"'), on peut alors récrire la relation (11)
où le dernier terme est remplacé par :

-i&(x) &(*)£&%;
ß

on a posé :

W11' i F11' W11' ;

en comparant alors la relation (11) ainsi transformée et la relation (10) dont elle
est issue, on obtient:

il - O Kn *"V) *„' - * Z [^5 Xl' ~ Wl KA (I2)
ß

qui n'est donc qu'une manière différente d'écrire la relation (10). Il suffit alors
d'introduire cette relation dans (8) pour obtenir immédiatement la relation (4)
recherchée, où

S11', F11'la.) S11', „°aa'a" — L W °aa'a" •

3. Premières conclusions

On sait1) qu'une fois qu'on possède la relation (4), le passage à l'équation
maîtresse généralisée qui gouverne l'évolution de ZE't n'est plus qu'une conséquence
mathématique. On peut par conséquent affirmer que les seules conditions
supplémentaires qu'on a imposées au système pour pouvoir déduire rigoureusement
l'équation maîtresse généralisée à partir de l'équation de Schrödinger sont:

(i) H énergie (totale) du système, est un opérateur borné,
(ii) Xlv admet un inverse partout où on l'utilise.

On remarquera que la condition (i) est aussi supposée par van Hove4) et son
école; une généralisation à H non-borné n'est pas exclue, mais il faudrait alors
imposer des conditions plus particulières sur H ou sur les états considérés. Quant
à la condition (ii), il nous suffira d'indiquer que d'une part, quoique passée sous
silence, cette condition est tout aussi indispensable qu'ici dans le travail de Swenson1),

et que d'autre part, elle remplace de manière concise les hypothèses de

convergence qu'on est obligé de faire, au moins implicitement, dans les développements
en série habituels4)6). Il faut voir que les relations (4), (8) et (12) sont des relations
entre nombres et non des relations entre variables : on n'affirme pas que les coefficients

de ces «combinaisons linéaires» sont indépendants des X, respectivement des

Z; le terme de «relations linéaires» est donc abusif au sens strict; cette remarque
conduit à poser la question de la signification, et donc de la justification des èqua-
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tions maîtresses elles-mêmes ; cette question ne peut trouver sa réponse que lorsqu'on
commence à évaluer les solutions des équations obtenues (voir par exemple 5)) ; il
apparaît alors qu'il est beaucoup plus facile d'évaluer les quantités directement
liées à W que celles qui le sont à X. Il est d'autre part important de remarquer que
X, W, etc., bien qu'écrits sous forme opératorielle, dépendent essentiellement de la
base à partir de laquelle ils sont définis.

III. Transposition en mécanique statistique

4. Enoncé du problème

Le but de cette troisième partie est d'introduire explicitement les «macrocellules»

de la mécanique statistique quantique et de déduire, dans ces conditions,
une équation maîtresse généralisée qui sera formellement identique à celle de la
première partie.

Considérons pour cela le modèle mathématique suivant: soient § un espace de

Hilbert, {Ea} une partition de § en sous-espaces orthogonaux et {^4} l'ensemble
des opérateurs auto-adjoints de la forme

A =2JAfA)EA,
A

où les A (a) sont des nombres réels quelconques.
On prétend que ce formalisme décrit de manière adéquate la situation rencontrée

en mécanique statistique quantique lorsqu'on donne, d'un système «macroscopique

» classique, une description «microscopique» quantique: §> est l'espace de

Hilbert attaché à la description microscopique, {A} est l'ensemble (commutatif des
observables macroscopiques et {EA} est l'équivalent, en mécanique statistique quantique

des «macrocellules» de la mécanique statistique classique; les observables
macroscopiques sont les seules sur lesquelles peuvent porter les mesures. (Il est
instructif de comparer le formalisme décrit ici avec celui d'une mécanique quantique
avec règles de supersélection). On pourrait objecter que la mécanique statistique
quantique décrite ici est très particulière et on peut effectivement en envisager des

généralisations; on pourrait, par exemple, supposer que certaines au moins des

observables macroscopiques ont un spectre continu, ou qu'elles ne commutent
pas nécessairement toutes entre elles. Toutefois, les raisons pour lesquelles on a
choisi tout de même cette forme particulière sont les suivantes:

(i) le modèle semble suffisamment réaliste,
(ii) il paraît suffisamment général pour permettre une étude quantitative des phé¬

nomènes irréversibles et de leurs causes,
(iii) il est simple.

On notera enfin que tout état préparé au moyen seulement des observables
macroscopiques est décrit par un «opérateur de densité» de la forme:

W ZPaWa avec pA > 0 ; 27 ^A 1
>

A A

WA EAjNA où NA^TrEA.
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NA est supposé fini; ceci exprime qu'on peut attribuer, et c'est ce qu'on fait pour
les «états macroscopiques», une probabilité a priori uniforme aux états purs qui
appartiennent à la même macrocellule ; on a :

Tr WA Tr W 1

W*A WA ; W* W

Wl < WA ; IT2 < W

Le cas où les macrocellules sont toutes de dimension 1 correspond à la situation
étudiée dans la première partie; le fait qu'on n'impose pas que toutes les
macrocellules aient la même dimension implique que les propriétés de symétries (par
exemple sur W) rencontrées dans la première partie, devront être transposées avec
soin au cas qui nous intéresse maintenant. La question qu'on se pose s'énonce alors
ainsi: étant donné un état macroscopique Wo, comment évoluent au cours du
temps les valeurs moyennes des observables macroscopiques sur W, c'est-à-dire
quel est le comportement de

(Aywt avec W1 U1 W» U-1,

étant de plus admis que l'opérateur d'évolution T]1 est en général une symétrie7) de
la description microscopique seulement On laisse donc ouverte la possibilité que
l'opérateur H de l'équation de Schrödinger microscopique ne soit pas une observable

macroscopique. On verra plus loin que cette précaution est essentielle.

5. L'équation maîtresse

Considérons donc un état macroscopique

w ZPa-wa.,
A'

et l'évolution de la valeur moyenne d'une observable macroscopique:

A'

où:
Tr A* WA. s <4(>A. 27 -1(A) P'fA, A')

A

avec
PtfA,A')^<U-tEAUAA-,

ainsi l'évolution de (A~)wt sera complètement connue si on connaît celle de
P'fA, A1); Ri étant, comme dans la première partie l'opérateur résolvant de H,
générateur de TA, définissons:

XttXA,A')=<[RlEARAA-,

qui est lié à P'fA, A1) par une relation intégrale identique à celle qui, dans
l'introduction, liait Z11' et Z'; on peut alors suivre pas à pas le schéma indiqué dans ce pre-
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mier paragraphe et introduire ainsi une quantité PE'*fA, A1) (qui joue ici un rôle
correspondant à celui que jouait ZE-*) dont l'équation d'évolution («équation
maîtresse généralisée») sera une conséquence mathématique d'une relation
analogue à la relation (12), cas particulier de la relation centrale (4). C'est cette relation
qu'on se propose de transposer maintenant en mécanique statistique, en suivant le
même chemin que dans le paragraphe 2.

Définissons d'abord:

Di 27 <R1>a EA', Ni ^Ri - Di,
A

on remarque que <2V«>A est nul et que D1 admet un inverse; on peut alors définir:

TJi fDi)~->-NifDi)-i

en substituant à R! son expression en termes de D1 et U1, dans la définition de

X"'(A, A'), on obtient:

X"'(A, A') DlfA) DrfA) ÔAA, + DlfA) D1'(a) Ju'fA, A') Z)'(A') D1\a) (13)

ou:
DifA) - <[Ri}A ; /"'(A, A') s (U1 EA tZ>.a' •

La relation (13) est la transposition en mécanique statistique de la relation (6). On

peut à nouveau utiliser une notation condensée en imaginant que Xlv, D1 et /"' sont
des opérateurs dans un espace dont les vecteurs de base sont dénombrés par A.
La relation (13) prend alors la forme de (6). On peut définir des Wn'fA, A') par des

relations de la forme de (9a), (9b) ou (9c); la condition d'existence et d'unicité
des nouveaux W11' est que l'opérateur Xu', dont les éléments de matrice sont
maintenant XU'(A, A1) admette un inverse, et cela, comme dans la première partie, pour
toutes les valeurs de l et V situées respectivement de part et d'autre (et aussi près
qu'on veut) de l'axe réel.

On obtient ainsi directement l'équivalent statistique de la relation (10) qui s'écrit
donc:

Z"'(A, A') D\A) DvfA) ÔAA, + D>(A) Dl'fA) Z ^'(A, A") Xu\a", A1) (14)
A"

En se rapportant à sa définition, on vérifie que / satisfait à la relation :

AZ/"'(A,A')=AZAa'> A)

et par conséquent:

NA, Wu'fA, A') NA W"fA', A)

de même, la relation de Hilbert a pour conséquence:

P - *') Z NA' *"'(A. A') iVA [DlfA) - Dl'fA)] NA F"'(a)
A'
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De même que l'on peut passer de (10) à (12), on montre que (14) peut s'écrire:

(/ - /') Z"'(A, A')

F"'(A) Za' - * Z [^"'(A, A") XU'(A", A') - Wu'fA", A) X"'(A, A')]
(15)

A"

OÙ

Wu'fA, A') i Fu'fA) Wu'fA, A')

De (15) suit mathématiquement l'équation maîtresse généralisée pour PE,tfA, A1).

Lorsque tous les NA sont égaux à 1, (15) se réduit à (12) comme on devait s'y
attendre, car la seconde partie est effectivement un cas particulier ce de qui précède.

6. Probabilité «semi-fine»

Dans son Cours des Houches4) en particulier, van Hove déduit une équation
maîtresse pour une probabilité semi-fine (ou «coarse-grained»), l'étape essentielle
est à nouveau d'obtenir une relation (van Hove 8.11) formellement identique à (15) ;

la méthode décrite ci-dessus s'applique encore au cas considéré par van Hove,
aussi seuls seront mentionnés maintenant les rapports entre les probabilités semi-
fines de van Hove et celles qui font l'objet de cette étude.

On considère à nouveau une partition {EA} de § en macrocellules et on construit

une base {a} compatible avec cette partition, c'est-à-dire que tout vecteur a
de cette base est entièrement contenu dans un EA. On envisage les états initiaux
de la forme :

W° Z I a°> P<V) <a° I
•

a°

(Le cas où Po est constant sur chaque macrocellule correspond à ce qui a été fait
précédemment.) A tout opérateur auto-adjoint A, on fait correspondre Inobservable
semi-fine »

A=%AfA)EA,
A

où AfA) est la valeur moyenne de A sur l'état WA, (défini comme dans le

paragraphe 4), et on étudie l'évolution de la valeur moyenne de A sur l'état

W U1 W* TA* ;

on a:
<Aywt 2jAfA)P'fA, W»)

A
avec

P'(A, W0) - (EAywt

en introduisant la condition imposée à W°:

P'(A, W0) JApofa0) P\A, a0)
a»

OÙ

P<(A,a°)=27^aa°
aeA
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avec
P' =7' — I (et TI1 a°) I2

on définit alors pour tout a dans EA :

Pl(a,a°) =Pt(A,a°)INA,

qui est la relation (van Hove 8.2) et qui permet de définir (van Hove 8.1) :

P'(oc) £ pofa0) P\a, a°) '
a»

on a alors:

<Äywt £ A& ptW ¦
a

où A (a) est la valeur moyenne de A sur la macrocellule EA qui contient a.
P*fa, oc°) est la probabilité «semi-fine» sur laquelle porte l'étude de van Hove;

elle satisfait aux relations :

P'fa, a») <P^>A

où EA est la macrocellule qui contient a, et

P'(A, A") 27 p'(a> a°) •

a0 e A"

7. La notion d'états équivalents

Dans ce paragraphe, on se propose d'introduire une notion qui permette
d'exprimer la distinction entre les propriétés d'équilibre (d'essence macroscopique) et
les propriétés de stationnarité (ne relevant essentiellement pas de la structure
macroscopique des observations).

On dira que deux états instantanés Wx et Wz (non-nécessairement macroscopiques!)

sont macroscopiquement équivalents s'il est impossible de les distinguer
par des mesures macroscopiques effectuées en cet instant; ceci s'exprime par:

(AyWi <fAyWt,

pour toute A macroscopique, ou de manière équivalente

Tr EA Wx Tr EA W2

pour toute macrocellule A ; on vérifie que cette relation est effectivement une
relation d'équivalence et que chaque classe d'équivalence est caractérisée complètement

par un état macroscopique W défini par:

W ]TpAWA avec pA^TrEAW',
A

où W' est un élément quelconque de la classe considérée; on a évidemment, pour
toute observable macroscopique:

74V 27 ^A-4(A).
A
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Si W° est l'état du système au temps t 0, et W1 l'évolution de cet état au cours
du temps, alors la classe d'équivalence de Wt est caractérisée par l'état macroscopique

:

Wft)=£pAft)WA,
A

OÙ

pAft) s Tr EA IT* <JT* EA TJ*yw,.

Si cet état initial est un état macroscopique :

wo jrpA>(°)wA'>
A'

alors

/>AW=27ZZO)p((A>A'),
A'

où P'(A, A') est la quantité définie au paragraphe 5. Si, enfin, l'état initial est de
la forme

ë° ZEA'QEA-
A'

où q est une matrice de densité quelconque, on retrouve la situation évoquée au
paragraphe 6, et dont l'interprétation, dans le cadre de la théorie de la mesure, est
bien connue. Ceci établit donc la liaison avec ce qui a été fait jusqu'ici. On dira
qu'un état est un «état d'équilibre macroscopique» si la classe d'équivalence de cet
état est invariante au cours du temps ; cette circonstance doit être distinguée de celle
d'état stationnaire qui se rapporte à un état invariant au cours du temps; cette
seconde condition est beaucoup plus forte. A titre d'illustration, remarquons que,
dans le cadre où nous nous sommes placés (la partition en macrocellules étant
discrète), les trois conditions suivantes sont équivalentes:

(i) tout état microscopique, du type étudié au paragraphe 6, est un état d'équi¬
libre,

(ii) tout état macroscopique est stationnaire,
(iii) U* est une symétrie7) macroscopique pour tout temps t.

8. Conclusions

Tout d'abord, il est évident en vertu de l'identité des méthodes employées,
que les conclusions développées dans le troisième paragraphe (en particulier sur
l'existence et l'unicité des W) peuvent être transposées directement aux situations
envisagées ensuite.

Contrairement à la situation rencontrée dans les équations markoffiennes de

Pauli9), les hypothèses sous lesquelles on peut déduire les équations maîtresses
généralisées sont si faibles qu'on doit s'attendre à ce que ces équations décrivent
aussi bien des situations réversibles que des situations irréversibles ou quasi-périodiques;

en particulier, les équations établies (bien qu'elles deviennent alors triviales)
sont encore valables si l'hamiltonien est une observable macroscopique: dans ce cas
les états macroscopiques sont tous stationnaires ; il en est encore ainsi si TA est,
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pour tout temps t, une symétrie pour toutes les observables macroscopiques (en
effet, les macrocellules forment une partition discrète de l'espace de Hilbert de la
description microscopique, tandis que U' est une transformation continue, connexe
à l'identité) : ainsi, une condition nécessaire pour que la situation statistique puisse
présenter, macroscopiquement, autre chose que des phénomènes d'équilibre (et
puisse par conséquent présenter éventuellement des phénomènes irréversibles) est

que l'évolution dans le temps, tout en étant une symétrie dans la description
microscopique, ne jouisse plus de cette propriété pour le système macroscopique; ceci permet

de rejoindre le point de vue habituel selon lequel c'est l'interaction qui est
responsable de l'approche de l'équilibre; dans le cadre proposé ci-dessus, cette
«interaction » apparaît comme la différence V entre les énergies microscopique et
macroscopique: pour que tout état macroscopique ne soit pas stationnaire, il faut
que l'interaction ainsi définie ait des éléments de matrice entre macrocellules
différentes. Ainsi qu'on l'a montré, aucune hypothèse particulière sur l'interaction n'est
nécessaire à l'établissement des équations maîtresses généralisées; celles-ci, en tant
que telles, sont donc d'une trop grande généralité pour ne décrire que les phénomènes

irréversibles: on est ainsi conduit à penser qu'à elle seule la forme de ces

équations ne contient pas l'irréversibilité. L'utilité de la déduction de ces équations,
telle qu'elle a été présentée ci-dessus, réside tout entière en ceci: alors que d'habitude,

on introduit d'emblée certaines circonstances (peut-être trop particulières)
rencontrées dans des systèmes manifestant des propriétés irréversibles, on est
maintenant parvenu à une équation d'évolution de la probabilité, suffisamment générale

pour pouvoir permettre de délimiter et d'évaluer quantitativement les causes
de l'irréversibilité en mécanique statistique quantique. En particulier, une condition,

parente de la condition de singularité diagonale de van Hove4) apparaît
immédiatement: les équations deviennent triviales (équilibre!) dès que (VAX VAz ¦ ¦

AnVyw est nul pour tout n, tout état macroscopique W et toutes observables
macroscopiques Ai.
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