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Die Dynamik der Blochschen Wand

von U. Enz
Philips Forschungslaboratorium N.V. Philips' Gloeilampenfabrieken, Eindhoven-Niederlande

(1. XI. 63)

1. Einleitung
Ein magnetischer Kristall ist im allgemeinen in Weißsche Bezirke, auch Domänen

genannt, aufgeteilt. Innerhalb eines Weißschen Bezirkes haben alle
Magnetisierungsvektoren die gleiche Richtung. Diese ist parallel zu einer der magnetischen
Vorzugsrichtungen des Kristalls. Zwei Bezirke mit verschiedener Orientierung der
Magnetisierung sind durch eine Blochsche1) Wand getrennt, in der die Magnetisierung

in kontinuierlicher Weise die Richtung ändert (Fig. 1). Die Blochsche
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Fig. 1

Anschauliche Darstellung einer Blochwand

Wand kann als die Struktur bezeichnet werden, die diesen Übergang von einer
Richtung zur andern bei minimaler freier Energie vollzieht. Die Blochsche Wand
besitzt eine charakteristische endliche Ausdehnung, die Wanddicke. In verschiedenen

Kristallstrukturen treten verschiedene Arten von Wänden auf ; hier wird die
Beschränkung auf 180°-Wände in uniachsialen Kristallen gemacht. Der Zweck dieses

Artikels ist es, die Statik und insbesondere die Dynamik der Blochschen Wand
zu beschreiben.

2. Statik

Gegeben sei ein uniachsialer Kristall mit der Kristallachse (c-Achse) in der
z-Richtung eines rechtwinkligen Koordinatensystems x, y, z (Fig. 2). Die Magnetisierung

des Kristalls werde beschrieben durch den ortsabhängigen Vektor M von
konstanter Länge. Im Kristall trete eine magnetische Anisotropie von der Form

Fk K sin26 (1)
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Fig. 2

Situation der Blochschen Wand im uniachsialen Kristall. Die Vorzugsrichtung der Magnetisierung

M ist parallel zur Achse c. Die ^-Achse wurde parallel zur Wandnormalen gewählt.

auf, worin 0 der Winkel zwischen der Magnetisierung M und der c-Achse und K eine
konstante Energie pro Volumeneinheit darstellt. Ferner trete die Austauschenergie
A ani. Normalerweise bezieht sich die Austauschenergie auf die magnetischen
Momente benachbarter Atome. Hier wird das magnetische Material als wirkliches
Kontinuum betrachtet. Die Austauschenergie A bezieht sich daher hier auf die
Richtungsänderung von M pro Längeneinheit und hat die Dimension einer Energie
pro Längeneinheit. Weiter kann ohne Einschränkung der Allgemeinheit angenommen

werden, dass 0 nur von x abhängt, dass also der magnetische Vektor M immer
parallel zur y-z-Ehene bleibt. 6 ist eine kontinuierliche Funktion von x; und die
Austauschenergie kann für diesen Fall als

geschrieben werden.
Wir schreiben nun das Variationsproblem für die Blochsche Wand, wobei

Randeffekte an den Begrenzungen des Kristalls unberücksichtigt bleiben:

4- oo

/HS2 + *sin20)^ ° (3)

Dies ergibt sich aus der Forderung, dass die totale freie Energie ein Minimum wird.
Die Euler-Gleichung zu (3) lautet:

d26

dx2
K

77" sin2 0. (4)

Lösungen dieser Gleichung sind 0 0, 0 n tc und

± 1
sin0

cosh |/ —- (x A- x')
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Die beiden ersten Lösungen haben die tiefste Energie, in dieser Notation ist diese
gleich null. Die beiden andern Lösungen (Fig. 3) haben beide eine positive Energie,
nämlich

Eo + 4 YAK (6)

pro Flächeneinheit. Eo ist also nur in bezug auf Nachbarzustände ein Minimum,
dennoch ist die Wand als Ganzes gegenüber Störungen beliebiger Art stabil. Die
allgemeinste Lösung von (4) lässt sich durch elliptische Funktionen geben, doch
kann gezeigt werden, dass diese Lösungen, die eine Vielzahl von äquidistanten
Wänden darstellen, nicht einem Minimum von (3) entsprechen.

Es besteht ferner noch die charakteristische Länge

Xo

4-00

/ sin0 dx (7)

die «Wanddicke», sie gibt den Abschnitt auf der x-Achse an, in dem 0 wesentlich
von 0 oder n abweicht. Diese Wand teilt also den Kristall in zwei Gebiete, in denen
0 an 0 bzw. 0 sa n ist. Wesentlich ist noch, dass die Lösung invariant ist gegenüber
Koordinatentransformationen auf der x-Achse, was in der Integrationskonstanten x'
zum Ausdruck kommt.

Anschaulich gesprochen stellen also die beiden nichttrivialen Lösungen (5) ein
Drehen des Magnetisierungsvektors M von zum Beispiel Mjjc nach Mjjf— c) beim
Fortschreiten auf der x-Achse in positiver Richtung dar. Die beiden verschiedenen
Vorzeichen entsprechen einem positiven oder negativen Drehsinn. Im einen Fall ist
sin0 immer negativ, im andern Fall immer positiv. Man kann sagen, dass die Wand

le,sin e

sin9=rr—Cosx

/ 180°
\sjn e

n 90°
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Fig. 3
Grafische Darstellung der Lösung (5) des Variationsproblems (3) 0 d(x) und sin d(x)
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Träger einer Invarianten -J- n ist, wobei n den totalen Drehwinkel darstellt und
die Vorzeichen den Drehsinn andeuten.

Es sei in diesem Zusammenhang noch bemerkt, dass in realen Kristallen das
Auftreten, die Art und die Anzahl der Wände durch die Begrenzung des Kristalles
gegeben ist, wobei ein zweites Variationsproblem auftritt, in das neben der totalen
Wandenergie auch die totale magnetostatische Energie der Streufelder eingeht,
wie viele Berechnungen2) zeigen. Dennoch lässt sich die Struktur der einzelnen
Wand auf die oben beschriebene Weise berechnen, in ihr widerspiegeln sich im
Gegensatz zum zweiten Variationsproblem die lokalen Feldeigenschaften.

3. Dynamik
Bis hierher hatten wir es mit der Blochschen Wand als statisches Gebilde zu tun,

nun gehen wir über zur Beschreibung der dynamischen Eigenschaften, wobei wir der
grundlegenden Arbeit von Döring3) folgen. Auch hier beschränken wir uns wieder
auf das oben erwähnte Beispiel der 180°-Wand im uniachsialen Kristall. Durch
das Anlegen eines magnetischen Feldes H parallel zur c-Achse, also parallel (bzw.
antiparallel) zur Magnetisierungsrichtung wird ein Druck P der Grösse

P 2H M (8)

auf die Blochsche Wand ausgeübt. Die Richtung des Druckes ist so, dass das Gebiet,
in dem H parallel zu M ist, die Neigung hat, sich zu vergrössern. Der Druck P
hängt bemerkenswerterweise nicht von der Struktur der Wand ab, sondern nur von
der Tatsache, dass M zu beiden Seiten der Wand antiparallel ist. Der Druck P setzt
die Wand längs der %-Achse in Bewegung, sie besitzt nun eine Geschwindigkeitskomponente

Vx v auf der #-Achse.
Das Ergebnis von Döring ist zusammengefasst das folgende: Die bewegte

Blochsche Wand besitzt eine Energie E pro Flächeneinheit, die grösser ist als die
Energie Eo der ruhenden Wand. Der Unterschied E — Eo ist in erster Näherung
proportional zum Quadrat der Geschwindigkeit der Wand. Der Proportionalitätsfaktor

kann als Wo/2 geschrieben werden, so dass die folgende Beziehung entsteht :

E - Eo ~ ^ ¦ (9)

Man kann also den Energieunterschied zwischen bewegter und ruhender Wand als
kinetische Energie pro Flächeneinheit der Wand deuten und ihr eine Masse «o
zuschreiben. Für die Masse ergibt sich als erste Näherung

m0 (2y2 xo)-1 Eo(8 7iy2A)-i (10)

in Grammen pro Flächeneinheit. Darin sind Eo und xo die oben definierte
Wandenergie bzw. Wanddicke, während y e/2 m c das gyromagnetische Verhältnis
bedeutet. Es ist ein wesentliches Resultat, dass y im Ausdruck für die Wandmasse
auftritt, denn die Trägheit der Wand ist eine direkte Folge der Koppelung der
Magnetisierung M mit einem zugehörigen Drall Mjy. Beim Durchlaufen der Wand
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durch einen festen Punkt auf der »-Achse führt die Magnetisierung an diesem Punkt
eine Drehbewegung von 0 0 nach 0 n aus. Dabei macht sich der Drall über
magnetomechanischen Parallelismus bemerkbar.

Im folgenden wird eine Ableitung dieser Resultate gegeben, die wesentlich
einfacher ist als die ursprüngliche und die zudem den Vorteil grösserer Allgemeinheit
hat, indem keine Beschränkung auf kleine Geschwindigkeiten gemacht wird.
Ausgangspunkt hierzu ist die in Fig. 4 dargestellte Situation. Die Magnetisierung M
wird im allgemeinen bei einer bewegten Wand nicht exakt parallel zur y-z-Ebene
stehen, sondern mit dieser einen Winkel cp einschliessen. Im folgenden wird die
Voraussetzung gemacht, dass cp genügend klein ist, um sin cp durch cp ersetzen zu können.

Fig. 4

Die Winkel 0 und tp in der bewegten Blochschen Wand

Auf die Magnetisierung M wirken folgende Drehmomente: In »-Richtung ein
Moment, das durch die Austauschwechselwirkung der Nachbaratome auf M
ausgeübt wird und in dieser Notation 2 A ò2 djòx2 beträgt. Ferner wirkt in gleicher
Richtung das zurücktreibende Moment der Anisotropie —K sin2 0. In einer Richtung

lotrecht zu M in der y-z-Ebene wirkt hauptsächlich das Drehmoment 4 n M2 cp,

hervorgerufen durch das demagnetisierende Feld An M. Es kann gezeigt werden,
dass das restliche, in dieser Richtung wirkende Drehmoment

Kc0s*dSin2<p-2A(j£)+<p(™-ddy
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unter der Voraussetzung 4 jr M2 > K vernachlässigt werden kann. Durch
zweimaliges Schreiben des Drallsatzes in den erwähnten Richtungen ergibt sich daher:

2^^--Xsin20 ZM^) (11)
ox2 y ot '

4jiM2w -M^. (12)' y ot

Durch Differentiation von (12) nach t ergibt sich leicht:

was bei Zeitunabhängigkeit von 0 wieder Gleichung (3) ergibt. In Gleichung (13)
tritt eine Geschwindigkeit

c 2y]/2nA (14)

auf, die den Charakter einer Grenzgeschwindigkeit hat. Eine Lösung von (13) ist

sin» [coshj/^ 1= 7 -¦ (15)
l/i - (vjc)2

Hieraus erhellt sich, dass Gleichung (13) invariant in bezug auf die spezielle «Lo-
rentz-Transformation » x, t ist. Aus (15) ist weiter ersichtlich, dass die bewegte
Wand eine um einen Faktor )/l — (vjc)2 kleinere Wanddicke aufweist als die ruhende,
was als «Lorentz-Kontraktion» aufgefasst werden kann. Ferner folgt die Wandmasse

(10) direkt aus der Beziehung

Eo m0 c2 (16)

Es handelt sich dabei um die Ruhemasse per Flächeneinheit der Wand. Die Ableitung

der Wandmasse erscheint hier besonders einfach. Wie sich weiter unten noch
zeigen wird, ergibt sich auch eine Geschwindigkeitsabhängigkeit der Masse
entsprechend

mfv) mofl — fvjc)2)'* ¦ (17)

Dieses Resultat und auch die Wandkontraktion wurde ohne Ableitung bereits in
einer Notiz von Bisan4) erwähnt. Eine experimentelle Bestätigung dieser Resultate
existiert gegenwärtig nur in bezug auf das Auftreten einer Wandmasse. Bei Wänden,

die in Potentialmulden gebunden sind, wurden Wandresonanzen5) festgestellt,
die auf eine träge Masse schliessen lassen. Die Grenzgeschwindigkeit c lässt sich
leicht errechnen: Bei BaFei20i9, einem hexagonalen Oxyd, wurde eine
Wandenergie von Eo 2,8 erg cm-2 experimentell bestimmt2). Da auch K bekannt ist
(K 3,3- 106ergcm-3), ergibt sich aus (6) A 1,5 • IO"7 dyn und aus (14)
c 1,7 • IO4 cm sec-1. Diese Geschwindigkeit, deren Grössenordnung auch für
andere Ferrite repräsentativ ist, setzt eine obere Grenze für die Schaltgeschwindigkeit

von Speicherkernen. Zum Beispiel muss bei einer geforderten Schaltgeschwindigkeit

von 10-7 sec der pro Wand zurückzulegende Weg kleiner als 1,7 • 10-3 cm
17 [x sein. Eine Analyse des Schaltvorgangs an Rechteckferriten zeigt, dass diese

Bedingung gut erfüllt ist.
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4. Lagrange-Prinzip
Es soll hier nicht unerwähnt bleiben, dass sich Gleichung (13) auch direkt aus

folgendem Variationsprinzip herleiten lässt:

AI {A(£ï-r (AT]+ «*"">} *""="¦ m
Die Euler-Gleichung dieses Wirkungsprinzipes ist identisch mit (13). Zur Errechnung

der Wirkung pro Zeiteinheit ist die Lösung (15) in (18) einzusetzen.
Es lässt sich leicht zeigen, dass die Energie der bewegten Wand durch

*-/H#r+*(T)i+«"}* i>9>

gegeben ist, woraus auch (17) folgt. Die Gleichung (19) entspricht der Hamilton-
Gleichung zum Lagrange-Prinzip (18). Die Gleichungen (15) bis (17) lassen eine
Analogie des vorliegenden Falles der bewegten Blochwand mit der relativistischen
Bewegung eines Elementarteilchens deutlich hervortreten. Noch deutlicher wird
dieser Zusammenhang, wenn Gleichung (18) durch hinzufügen von Termen fòjòy)2
und fòjòz)2 vierdimensional geschrieben wird. Die Euler-Gleichung ist dann

Diese partielle Differentialgleichung steht in direkter Analogie zur Klein-Gordon-
Gleichung6), welche der Spezialfall von (20) für 0 <§ 1 ist. Der Autor glaubt, dass
dieser Analogie eine grundlegende Bedeutung zukommt7).

Ich möchte Dr. J. Smit für viele wertvolle Diskussionen meinen Dank
aussprechen.
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