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Die Dynamik der Blochschen Wand

von U. Enz
Philips Forschungslaboratorium N.V. Philips’ Gloeilampenfabrieken, Eindhoven-Niederlande

(1. XI. 63)

1. Einleitung

Ein magnetischer Kristall ist im allgemeinen in Wei3sche Bezirke, auch Domé-
nen genannt, aufgeteilt. Innerhalb eines Weilschen Bezirkes haben alle Magneti-
sierungsvektoren die gleiche Richtung. Diese ist parallel zu einer der magnetischen
Vorzugsrichtungen des Kristalls. Zwei Bezirke mit verschiedener Orientierung der
Magnetisierung sind durch eine Blochsche!) Wand getrennt, in der die Magneti-
sierung in kontinuierlicher Weise die Richtung dndert (Fig. 1). Die Blochsche
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Fig. 1
Anschauliche Darstellung einer Blochwand

Wand kann als die Struktur bezeichnet werden, die diesen Ubergang von einer
Richtung zur andern bei minimaler freier Energie vollzieht. Die Blochsche Wand
besitzt eine charakteristische endliche Ausdehnung, die Wanddicke. In verschie-
denen Kristallstrukturen treten verschiedene Arten von Winden auf; hier wird die
Beschrankung auf 180°-Wéinde in uniachsialen Kristallen gemacht. Der Zweck die-
ses Artikels ist es, die Statik und insbesondere die Dynamik der Blochschen Wand
zu beschreiben.

2. Statik

Gegeben sei ein uniachsialer Kristall mit der Kristallachse (c-Achse) in der
z-Richtung eines rechtwinkligen Koordinatensystems x, v, z (Fig. 2). Die Magneti-
sierung des Kristalls werde beschrieben durch den ortsabhidngigen Vektor M von
konstanter Linge. Im Kristall trete eine magnetische Anisotropie von der Form

Fr = K sin20 (1)
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Fig. 2
Situation der Blochschen Wand im uniachsialen Kristall. Die Vorzugsrichtung der Magneti-
sierung M ist parallel zur Achse ¢. Die x-Achse wurde parallel zur Wandnormalen gewihlt.

auf, worin 0 der Winkel zwischen der Magnetisierung M und der ¢-Achse und K eine
konstante Energie pro Volumeneinheit darstellt. Ferner trete die Austauschenergie
A auf. Normalerweise bezieht sich die Austauschenergie auf die magnetischen
Momente benachbarter Atome. Hier wird das magnetische Material als wirkliches
Kontinuum betrachtet. Die Austauschenergie A bezieht sich daher hier auf die
Richtungsinderung von M pro Lingeneinheit und hat die Dimension einer Energie
pro Lingeneinheit. Weiter kann ohne Einschrinkung der Allgemeinheit angenom-
men werden, dass 6 nur von x abhidngt, dass also der magnetische Vektor M immer
parallel zur y-z-Ebene bleibt. 6 ist eine kontinuierliche Funktion von x; und die
Austauschenergie kann fiir diesen Fall als

af
(7, ) )
geschrieben werden.

Wir schreiben nun das Variationsproblem fiir die Blochsche Wand, wobei
Randeffekte an den Begrenzungen des Kristalls unberiicksichtigt bleiben:

+ oo
5 f (4 (%)2 + K sin®f) dx = 0. (3)
Dies ergibt sich aus der Forderung, dass die totale freie Energie ein Minimum wird.

Die Euler-Gleichung zu (3) lautet:

dz0 K .
—d}? S5 -2—2— sin2 9 . (4)

Loésungen dieser Gleichung sind 6 = 0, 6 = »# & und

O N +1 -
sinfl = /f : (5)
coshl T (¥ + x)
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Die beiden ersten Losungen haben die tiefste Energie, in dieser Notation ist diese
gleich null. Die beiden andern Lésungen (Fig. 3) haben beide eine positive Energie,

namlich
Eo=+4]4AK (6)

pro Flicheneinheit. Eo ist also nur in bezug auf Nachbarzustinde ein Minimum,
dennoch ist die Wand als Ganzes gegeniiber Stérungen beliebiger Art stabil. Die
allgemeinste Losung von (4) lisst sich durch elliptische Funktionen geben, doch
kann gezeigt werden, dass diese Losungen, die eine Vielzahl von dquidistanten
Winden darstellen, nicht einem Minimum von (3) entsprechen.

Es besteht ferner noch die charakteristische Linge

+ oo
xo=fsin6‘dx:ﬂ L (7)

- 00

die « Wanddicke», sie gibt den Abschnitt auf der x-Achse an, in dem 0 wesentlich
von 0 oder w abweicht. Diese Wand teilt also den Kristall in zwei Gebiete, in denen
6 ~ 0 bzw. 6 ~ 7 ist. Wesentlich ist noch, dass die Losung invariant ist gegeniiber
Koordinatentransformationen auf der x-Achse, was in der Integrationskonstanten x’
zum Ausdruck kommt.

Anschaulich gesprochen stellen also die beiden nichttrivialen Losungen (5) ein
Drehen des Magnetisierungsvektors M von zum Beispiel M//c nach M//(— ¢) beim
Fortschreiten auf der x-Achse in positiver Richtung dar. Die beiden verschiedenen
Vorzeichen entsprechen einem positiven oder negativen Drehsinn. Im einen Fall ist
sinf immer negativ, im andern Fall immer positiv. Man kann sagen, dass die Wand
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Fig. 3
Grafische Darstellung der Losung (5) des Variationsproblems (3) 8 = () und sin 6(x)
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Triger einer Invarianten 4 7 ist, wobei & den totalen Drehwinkel darstellt und
die Vorzeichen den Drehsinn andeuten.

Es sei in diesem Zusammenhang noch bemerkt, dass in realen Kristallen das
Auftreten, die Art und die Anzahl der Winde durch die Begrenzung des Kristalles
gegeben ist, wobei ein zweites Variationsproblem auftritt, in das neben der totalen
Wandenergie auch die totale magnetostatische Energie der Streufelder eingeht,
wie viele Berechnungen?) zeigen. Dennoch lisst sich die Struktur der einzelnen
Wand auf die oben beschriebene Weise berechnen, in ihr widerspiegeln sich im
Gegensatz zum zweiten Variationsproblem die lokalen Feldeigenschaften.

3. Dynamik

Bis hierher hatten wir es mit der Blochschen Wand als statisches Gebilde zu tun,
nun gehen wir {iber zur Beschreibung der dynamischen Eigenschaften, wobei wir der
grundlegenden Arbeit von DORING3) folgen. Auch hier beschrinken wir uns wieder
auf das oben erwihnte Beispiel der 180°-Wand im uniachsialen Kristall. Durch
das Anlegen eines magnetischen Feldes H parallel zur ¢-Achse, also parallel (bzw.
antiparallel) zur Magnetisierungsrichtung wird ein Druck P der Grosse

P=2HM (8)

auf die Blochsche Wand ausgeiibt. Die Richtung des Druckes ist so, dass das Gebiet,
in dem H parallel zu M ist, die Neigung hat, sich zu vergrissern. Der Druck P
hingt bemerkenswerterweise nicht von der Struktur der Wand ab, sondern nur von
der Tatsache, dass M zu beiden Seiten der Wand antiparallel ist. Der Druck P setzt
die Wand ldngs der x-Achse in Bewegung, sie besitzt nun eine Geschwindigkeits-
komponente v; = v auf der x-Achse.

Das Ergebnis von DORING ist zusammengefasst das folgende: Die bewegte
Blochsche Wand besitzt eine Energie E pro Flicheneinheit, die grosser ist als die
Energie E¢ der ruhenden Wand. Der Unterschied E — Ej ist in erster Naherung
proportional zum Quadrat der Geschwindigkeit der Wand. Der Proportionalitits-
faktor kann als mo/2 geschrieben werden, so dass die folgende Beziehung entsteht:

E—Eg= 2002, 9)

Man kann also den Energieunterschied zwischen bewegter und ruhender Wand als
kinetische Energie pro Flicheneinheit der Wand deuten und ihr eine Masse i, zu-
schreiben. Fiir die Masse ergibt sich als erste Niherung

mo — (2 y2 xo)_l = Eo (8 7T 7/2 A)_l (10)

in Grammen pro Flicheneinheit. Darin sind Eo und xo die oben definierte Wand-
energie bzw. Wanddicke, widhrend y = ¢/2 m ¢ das gyromagnetische Verhiltnis
bedeutet. Es ist ein wesentliches Resultat, dass ¢ im Ausdruck fiir die Wandmasse
auftritt, denn die Trdgheit der Wand ist eine direkte Folge der Koppelung der
Magnetisierung M mit einem zugehdérigen Drall M/y. Beim Durchlaufen der Wand
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durch einen festen Punkt auf der x-Achse fithrt die Magnetisierung an diesem Punkt
eine Drehbewegung von 6 = 0 nach § = & aus. Dabei macht sich der Drall iiber
magnetomechanischen Parallelismus bemerkbar.

Im folgenden wird eine Ableitung dieser Resultate gegeben, die wesentlich ein-
facher ist als die urspriingliche und die zudem den Vorteil grosserer Allgemeinheit
hat, indem keine Beschrinkung auf kleine Geschwindigkeiten gemacht wird. Aus-
gangspunkt hierzu ist die in Fig. 4 dargestellte Situation. Die Magnetisierung M
wird im allgemeinen bei einer bewegten Wand nicht exakt parallel zur y-z-Ebene
stehen, sondern mit dieser einen Winkel ¢ einschliessen. Im folgenden wird die Vor-
aussetzung gemacht, dass g geniigend klein ist, um sin ¢ durch ¢ ersetzen zu kénnen.

Zz

/i
Fig. 4

Die Winkel 6 und ¢ in der bewegten Blochschen Wand

Auf die Magnetisierung M wirken folgende Drehmomente: In x-Richtung ein
Moment, das durch die Austauschwechselwirkung der Nachbaratome auf M aus-
geiibt wird und in dieser Notation 2 A 02 0/dx2 betrigt. Ferner wirkt in gleicher
Richtung das zuriicktreibende Moment der Anisotropie — K sin2 6. In einer Rich-
tung lotrecht zu M in der y-z-Ebene wirkt hauptsiachlich das Drehmoment 4 = M2 g,
hervorgerufen durch das demagnetisierende Feld 4 w M. Es kann gezeigt werden,
dass das restliche, in dieser Richtung wirkende Drehmoment
02 00 \2
()xq;) T 9 (—();)

K cos?0 sin2 ¢ — 2A(
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unter der Voraussetzung 4 w M2 » K vernachlissigt werden kann. Durch zwei-
maliges Schreiben des Drallsatzes in den erwdhnten Richtungen ergibt sich daher:

2% oo 1 g Bip
QAW—KSIHZG——?M—O;, (11)
1 00

Durch Differentiation von (12) nach ¢ ergibt sich leicht:

020 1 020 K .
3~ @ om = za om0, W)

was bei Zeitunabhingigkeit von 6 wieder Gleichung (3) ergibt. In Gleichung (13)
tritt eine Geschwindigkeit

c=2y)2n4 (14)

auf, die den Charakter einer Grenzgeschwindigkeit hat. Eine Lésung von (13) ist
: K .| ¥ — vt

Slne == [COSh 1/7 E] ’ 5 = W_;—_(_J_G_F . (15)

Hieraus erhellt sich, dass Gleichung (13) invariant in bezug auf die spezielle «Lo-
rentz-Transformation» x, ¢ ist. Aus (15) ist weiter ersichtlich, dass die bewegte
Wand eine um einen Faktor /1 — (v/c)2 kleinere Wanddicke aufweist als die ruhende,
was als «Lorentz-Kontraktion» aufgefasst werden kann. Ferner folgt die Wand-
masse (10) direkt aus der Beziehung

Eo=moc?. (16)

Es handelt sich dabei um die Ruhemasse per Flicheneinheit der Wand. Die Ablei-
tung der Wandmasse erscheint hier besonders einfach. Wie sich weiter unten noch

zeigen wird, ergibt sich auch eine Geschwindigkeitsabhidngigkeit der Masse ent-
sprechend

m(v) = mo(l — (v/c)?)*. (17)

Dieses Resultat und auch die Wandkontraktion wurde ohne Ableitung bereits in
einer Notiz von BEAN4) erwihnt. Eine experimentelle Bestitigung dieser Resultate
existiert gegenwirtig nur in bezug auf das Auftreten einer Wandmasse. Bei Win-
den, die in Potentialmulden gebunden sind, wurden Wandresonanzen®) festgestellt,
die auf eine trige Masse schliessen lassen. Die Grenzgeschwindigkeit ¢ lisst sich
leicht errechnen: Bei BaFe;20:4, einem hexagonalen Oxyd, wurde eine Wand-
energie von Eo = 2,8 erg cm~2 experimentell bestimmt?). Da auch K bekannt ist
(K =8,3-10% erg cm~3), ergibt sich aus (6) 4 = 1,5-10-7dyn und aus (14)
¢ =1,7-104cm sec™l. Diese Geschwindigkeit, deren Gréssenordnung auch fiir
andere Ferrite reprisentativ ist, setzt eine obere Grenze fir die Schaltgeschwindig-
keit von Speicherkernen. Zum Beispiel muss bei einer geforderten Schaltgeschwin-
digkeit von 10-7 sec der pro Wand zuriickzulegende Weg kleiner als 1,7 - 10-3 cm
= 17 w sein. Eine Analyse des Schaltvorgangs an Rechteckferriten zeigt, dass diese
Bedingung gut erfiillt ist.
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4. Lagrange-Prinzip

Es soll hier nicht unerwdhnt bleiben, dass sich Gleichung (13) auch direkt aus
folgendem Variationsprinzip herleiten lisst:

d //" {A [(—g%)z — 512 (aaz) ] + K 51n26} dxdi=0. (18)

Die Euler-Gleichung dieses Wirkungsprinzipes ist identisch mit (13). Zur Errech-
nung der Wirkung pro Zeiteinheit ist die Losung (15) in (18) einzusetzen.
Es ldsst sich leicht zeigen, dass die Energie der bewegten Wand durch

H= f {A (B2 + X (‘)3 )] + Ksmze} dx (19)

gegeben ist, woraus auch (17) folgt. Die Gleichung (19) entspricht der Hamilton-
Gleichung zum Lagrange-Prinzip (18). Die Gleichungen (15) bis (17) lassen eine
Analogie des vorliegenden Falles der bewegten Blochwand mit der relativistischen
Bewegung eines Elementarteilchens deutlich hervortreten. Noch deutlicher wird
dieser Zusammenhang, wenn Gleichung (18) durch hinzufiigen von Termen (0/0y)2
und (0/02)? vierdimensional geschrieben wird. Die Euler-Gleichung ist dann
2

AG—-C%%TE=£;SH126 (20)
Diese partielle Differentialgleichung steht in direkter Analogie zur Klein-Gordon-
Gleichung$), welche der Spezialfall von (20) fiir 6 <€ 1 ist. Der Autor glaubt, dass
dieser Analogie eine grundlegende Bedeutung zukommt?).

Ich moéchte Dr. J. Smit fiir viele wertvolle Diskussionen meinen Dank aus-
sprechen.
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