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Representations of Canonical Anticommutation Relations*)

by Huzihiro Araki**),

Department of Physics, University of Illinois, Urbana, Illinois

and Walter Wyss,
Institut fiir Theoretische Physik, ETH, Ziirich

(15.VIIL.63)

Abstract. Cyclic Representations of canonical anticommutation relations (CARs) with
charge conservation are studied. The algebra of zero charge polynomials of canonical variables.
(called the Q-algebra) is algebraically characterized by simple properties. It is proved that any
cyclic representation of the Q-algebra is uniquely extendable to a cyclic representation of CARs
with charge conservation. A cyclic representation of the Q-algebra is characterized by a certain
functional E, satisfying a positivity condition and a condition related to the Fermi statistics. The
functional E for the grand canonical ensemble of the free Fermi gas in an infinite volume is
computed and the corresponding representation of CARs is analyzed.

§ 1. Introduction

Representations of canonical commutation relations (CCRs) have been studied by
many authors and proved to be useful in the study of voN NEUMANN algebras for the
infinite free Bose gas?!). Representations of the canonical anticommutation relations
(CARs) for a finite system are completely analyzed by JorpAN and WIGNER2). Those
for an infinite system have been studied by some authors?®) but their analyses are not
necessarily convenient for the discussion of the infinite Fermi gas. The purpose of the
present paper is to develop a formulation for representations of canonical anticom-
mutation relations, which can easily be applied to the infinite free Fermi gas.

We mainly consider the representations of CARs, where a total charge N can be
defined as a selfadjoint operator having integer eigenvalues, such that the canonical
field operators either increase or decrease N by 1 and such that there is a cyclic vector
belonging to the eigenvalue 0 of N. Such representations of CARs will be called
representations of CARs with charge conservation.

The central role in our formulation will be played by the Q-algebra, defined as the
algebra of those polynomials of the canonical field variables which commute with V.
This may be considered as the algebra of observables. We can characterize the Q-
algebra algebraically by the commutation relations of the Lie algebra of finite rank

*) Supported in part by National Science Foundation.
**) On leave from Department of Nuclear Engineering, Kyoto University Kyoto, Japan.



Vol 37, 1964 Representations of Canonical Anticommutation Relations 137

operators K on a certain Hilbert space (the test function space) and by an additional
relation directly related to the Fermi statistics. The most important property of the
()-algebra is that any of its cyclic representations is uniquely extendable to a cyclic
representation of CARs with charge conservation.

A cyclic representation of the ()-algebra is characterized by a functional E(eX)
satisfying a positivity condition and a condition related to the Fermi statistics. We
compute the functional E(eX) for the grand cononical ensemble of the free Fermi gas
in an infinite volume. The representation of CARs for the infinite free Fermi gas
allows a particle-hole interpretation and has a great similarity to the representation
of CCRs for the infinite free Bose gas.

In section 2, we define the representations of CARs and prove that they are always
represented by bounded operators. In section 3, we define abstractly the algebra
generated by the canonical variables and call it the CAR-algebra. In section 4, we
prove properties of the zero charge part of the CAR-algebra and, using these proper-
ties, we define the Q-algebra abstractly in section 5. In section 6, we prove that the
(-algebra defined in section 5 is isomorphic to the zero charge part of the CAR-algebra.
In section 7, we obtain all representations of the Q-algebra for a finite system and
show that they are all given by the restriction of representations of the CAR-algebra.
In section 8, using results in previous sections, we prove the main theorem that any
cyclic representation of the ()-algebra is uniquely extendable to a cyclic representation
of the CAR-algebra with charge conservation. In section 9, we introduce an auxiliary
operator U(¢X) and in section 10, we consider the functional E(eX) which is the ex-
pectation value of U(eX) for a cyclic vector. We prove that a few simple properties of
E(eX) are equivalent to the existence of the corresponding unique cyclic representation
of the Q-algebra. In section 11, we study a few simple examples of E(eX). Finally in
section 12, we compute the E(eX) for the grand canonical ensemble of free Fermi
particles without spin in an infinite volume. This turns out to be the example
analyzed in section 11.

§ 2. Canonical Anticommutation Relations

We first give the definition of canonical anticommutation relations in a form,
which is in line with Wightman’s axioms for quantum field theory.

Definition 7: Let K be a (not necessarily complete) complex vector space with a
positive definite inner product. A representation of CARs over R is the set of a pair
of linear operators (fy) and (p* f), fin K, satisfying the following:

(1) (fy) and (p* f) are defined on a dense domain D in a Hilbert space § and
(fy) DC D and (y*f) DC D. |

(2) (fw) is antilinear in f and (yp* f) is linear in f.

B) Uw)* 2 tf) *).

(4) Forany @ e D, fe K, g € &,

), €9 @={p" /). v 9}, @P=0 | (2.1)

*) A* is the adjoint of 4. 4 > B means D(A) > D(B) and 4 ® = B P for @ € D(B) where
D(A) and D(B) are domains of 4 and B.
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{(f9), " 0}, @= (/9D (2.2)

where {4, B}, = AB + BA and (f, g) is the inner product*) of f and g.
The following theorem enables us to always take D = § and the equality in (3).
Theorem 1. In any representation of CARs, (fy) and (ptf), for any f in K&, are
bounded with the norm

L Ew) (=1l @D =111 | (2.3)

and the mapping f > (fy) and f - (p* f) can be uniquely extended to norm pre-

serving antilinear and linear mappings from the completion K of & into B(9) (the set
of all bounded linear operators on §). *
Proof. For any f e &, || || = 0, we define

() =N (Fy) (2.4)
By (1), n(f) is defined on D and by (3) and (4)
n(f)? = n(f), n(f)* 2 n(f) (2.5)

Hence, for any @ € D, we have
(D@ [P = (®,u() D) = ||| || n(f) 2]
e |[[n(h@][=]|[@]]

From this we have |
|G |E=IF]F@nNe)=]]]|*|P]|*

Therefore (f ) is bounded on D and can be extended to a bounded operator on the
whole $. By (3), (p*f) is also bounded with the same bound as (fy). From (2.5),
|| n(f) || =1 unless =n(f) = 0. Hence, || (fv) || = ||f|| unless (fy)= 0. However,
~ (fy) = 0 contradicts'(2.2) if f + 0. Hence, we have (2.3) for f + 0. On the other hand,
(2.2) implies (fy) = 0if f= 0. Therefore we have (2.3) for any f. The rest of the theorem
1s obvious.

Remark. In an application, K =D @ ... @D or K =L, ®... ® L,, where
D = D (R® is the set of all infinitely continuously differentiable complex-valued
functions of three real variables with compact supports, equipped with the inner
product of L,. The number of D in the direct sum may be taken to be 1 for the non-
relativistic Fermi particle without spin, and 4 for the Dirac particle. Such structure
of K is relevant when one introduces a unitary representation of the Euclidian or the
Lorentz group.

§ 3. CAR-algebra

The representation of CAR can be viewed as a *-representation of a certain
*-algebra, which is constructed in the following way.

*) We use the physicist’s convention that (f, g) is linear in g and antilinear in f.
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The notation for the dual. If R is as in the definition 1, & is a Hilbert space. For any
f € &, we define f* as the mapping from any g € & to the complex number (f, g). (It is

the adjoint of the mapping from a complex number ¢ to the element c.f of &) We
define {* as the set of all f* with f € K.

Definition 2. The free (non-commutative) *-algebra P(R], &%) over K is a free
complex vector space over monomials[4,] ... [4,], k; € & U 8* and 1, which is equipped
with the vector space addition, the multiplication defined by

al a® = 2 Ci C,i [hiz] [hil(m] [hiu] . [hi () ] (3.1)
Au

and the involution defined by

= 3 A, ] - (B (3.2)
7
where
at =D W] .. Bl by e RURK, ¥ = f*if b =f e Rand h* =fifh=f* € ]*.
p
In our notation, [4,] ... [A,] with n = 0 will always mean the element 1. The monomial
4] ... [h,] will also be written as [A,, ..., 4,]. (1¥*=1.)
Definition 3. Let I be the two-sided *-1deal of P(R, {*) generated by
c[f] + dlg] — [cf + dgl, e[f*] + d[g*] — [cf* + dg*] (3.3)
{71, [&l}+ {UF*, [8*1}4 {70 (8%} — (&, (3.4)

where f and g are arbitrary elements of & and ¢ f* = (¢* f)*. The CAR-algebra
A (K) over K is defined by

A(R) = P(R], 8*)/1¢ (3.5)

- Lemma 7. For any representation (fy) and (y* f) of CARs, there exists a *-repre-
sentation y of the CAR-algebra in B($) defined by

n(4)

’/’(;‘CA [f1a] -+ Payal) 20,1 H‘P (% (3.6)

where y([h]) = (p* f) if h=feR, w([h]) = (fy) if h=/f* e K. Conversely, any
*-representation y of the CAR-algebra gives a representation of CARs through
(fy) = »([7*) and (y* /) = ((f)-

Proof. Let ¥ be defined by (3.6) for all elements of P(K, K*). Partly due to (3) of the
definition 1, g is obviously a *-representation of P(R, 8¥). Because of (2) and (4) of
the definition 1, the generating elements (3.3) and (3.4) of /,are mapped to 0. HENCE
gives a *-representation of A (K). The converse is also obvious, because the relations
given by (3.3) and (3.4) are just (2) and (4) of the definition 1.

Definition 4. 1f @ € $ has the property that {y(a) @; a € U.(KR)} is dense in §,
@ is called a cyclic vector of y(A-(K)) and the representation p is called a cyclic
representation.
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For a cyclic representation, we can apply GELFAND’s method to a cyclic vector @
and the expectation functional

E(@) = (@, y(@) D), a e U(S) (3.7)

Lemma 2. The functional E(a) of (3.7) is linear in a and E(a* a) = 0 for any
a € A (R). Conversely, any functional E(a), having these properties (linearity and
positivity), can be written in the form (3.7), where the cyclic *-representation o of the
CAR-algebra is unique up to a unitary equivalence. (E(a*) = E(a)* follows from the
requirement that E(a* a) is real.)

Remark. If & is finite dimensional, it is known 2) that any *-representation of CARs
is fully reducible and the irreducible representation of CARs is unique up to a unitary
equivalence. It is easy to prove (by a similar argument as the proof of the theorem 5)
that A (K) is faithfully represented in the unique irreducible representation of CARs
for the finite dimensional & (and hence is isomorphic to the algebra of all 2» x 27
matrices where #» = dim ). Since any element a of 2.(R) for an infinite dimensional
R can be considered as an element of U ({,;) for some finite dimensional subspace &
of &, any *-representation y of A, (K) is faithful and y(a) has a unique operator norm.

We can equip U(K) with this norm and obtain a C*-algebra ﬁc(ﬁ) by the completion

of A (R). U-(K) is obviously simple, because any of its representation is faithful. We
will, however, not use the concept of C*-algebra in the following.

§ 4. The operator Q, (K)
Definition 5. Let F(]) = & @ {* be the set of all finite rank operators of the
form K = Y f, @ g,* where f,, g, e R and K f = Y f, (g,, /) for any f ¢ & We define
i-1

i=1

for any such K the following operator.

Q) = (3T 1) = 30" 1) (v (1)

where y is any representation of the CAR-algebra.

Since (3.3) is 0 in A (R), @, (K) does not depend on any particular representation
ofKasZf.@gr. _

Theorem 2. For Q = @, the following holds:

Q (61 By + ¢ Ky) = ¢ Q(Ky) + ¢ Q(Ky) (+.2)
QK*) = Q(K)* (4.3)

[Q(KY), Q(Ky)]- = Q([Ky, Ky ) (+.4)
QU @)= (11 Q(f 1% (*+.3)

where [A, B]_ = AB — BA.
The proof is obvious from (2.1), (2.2), the linearity of 9 and the identity [ab, ¢d]_ =
a{b,ci,d—{a,c} bd+calb d}, —c{a, d}, b.
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Remark. As we shall see later, the properties (4.2) ~ (4.5) completely characterize
the mapping Q. On the other hand, a mapping Q satisfying (4.2) ~ (4.4) without

(4.5) can be constructed in the following way. Let ¢ and x be a representation of CCRs.
Define

v(/) = ($(/) + im(/) /)2 and Q,(K) 2«,0 ) for K = ng,

Then Q,, so detined satisfies (4.2) ~ (4.4) but not (4.5).

If & 1s finite dimensional, any Q satisfying (4.2) ~ (4.4) gives a representation of
the Lie algebra of all # x n matrices where # = dim K. Such Q(K) can be obtained
as the infinitesimal generator of a *-representation of the full linear group, or, if we
restrict K to antihermitian matrix, as the infinitesimal generator of a unitary re-
presentation of unitary group. These representations are fully known for a finite
dimensional K. We will see in section 7 that (4.5) restricts the representation to totally
antisymmetric ones in the sense of Young tableau. The @, constructed from CCRs
gives totally symmetric ones.

Theorem 3. The mapping Q,, of the definition 5 has the property

|| 0,(K) || £ tr(K* K)'2 (4.6)

and can be extended unlquely to a continuous mapping from the Banach space of

trace class operators on & with the trace class norm (|| K ||, = tr(K* K)¥?) into the
Banach space B($) with the operator norm.
Proof. Any K € FF(R) can be written as

K=YK;j,of
i
with a suitable orthonormal set {/.}.

Let®, ¥

@[ = || W] =1and M; = (D, Q,(; ® ;) ¥).
Considering M as a # x n matrix, we have

(c, Md) = (@, Q,, (g ® h*) V) with h = Zc f;and g = Zd f..
By the theorem 1,

10, @m) || = lgll-Ilh]l=11d]-lle]l.
M| =sup | (e Md)|-|| || ||d]| =1

Therefore || Q, (K) || < sup | tr(K, M) | = tr(K* K)"2 = || K
IM] =1

Because the set of finite rank operators is dense in the set of trace class operators
relative to the trace class norm, the rest of the theorem is then obvious.
Remark. If K is hermitian, i.e. if

K ""Zlifi ® f;
i1
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with some orthonormal set {f;} and real eigenvalues 4;, then

|| @ (K) | nsau51| tr(K M) | = max (}'4, — 3 '4). (4.7)

4;>0 1]'<0

A

|
0
§5. Q-algebra

In this section we consider the algebra of operators Q(K) satisfying (4.2) ~ (4.5).

Lemma 3. Let () be a mapping from F(R) into the set of linear operators on § such
that the domains of Q(K) and Q(K)*, for any K, contain a common dense set D with
the property Q(K) D C D, Q(K)* D C D and such that (4.2) ~ (4.5) are satistied on
D. Then Q(K) is a bounded operator.

Proof. Due to the proof of the theorem 1, (4.5) and (4.3) imply that Q(f ® f*) is
bounded. Since f® g* can be expressed as a linear combination of (f+ 4g) ®
(f+Ag)* with A= 41,44, Q(f ® g*) is also bounded due to (4.2). Hence any
Q(K) 1s bounded again due to (4.2).

The algebra of operators generated by Q(K) satisfying (4.2) ~ (4.5) can be viewed
as a representation of a certain *-algebra, which is constructed in the following way.

Definition 6. The free (non-commutative) algebra P(F(R)) over F(R) is the free
complex vector space over monomials [K,]...[K,], K; e F(&) and 1 ([K,] ... [K,]
with # = 0 will mean 1), equipped with the vector space addition, the multiplication
defined by (3.1) and the involution defined by (3.2) where 4j; is now taken to be an
element of F(R]) and * on them is taken to be the hermitian conjugation of F(R).
We sometimes denote the monomial [K,] ... [K,] as [K;, ..., K,].

Definition 7. Let Ig be the two sided *-ideal of P(F(R)) generated by

LKL + 0o[Ky] — [0y Ky + Cy Ky (5.1)
(K4, [Ke]]- — [[Ky, K] (5.2)
[((f @ )2 — (1, 1) [f ® [*] (5.3)
where K, K; ¢ F() and f ¢ & The Q-algebra 90,(R) over & is defined by
Wy(R) = P (F(R))/1, (5-4)

Lemma 4. 1f Q) is a mapping from F(RK) into B($) satisfying (4.2) ~ (4.5), then
there exists a *-representation of the Q-algebra defined by

Q(AZICZ[KU.] o [Kaal) =ZZCA Q(Kyy) - QK2 -

(It n =0, Q(K;) ... Q(K,) 1s to be understood as 1.) Conversely, any *-representation
of the Q-algebra on a Hilbert space §) gives a mapping from F(R) into B($) satisfying
(4.2) ~ (4.5).

The proof is similar to that of the lemma 1.

Lemma 5. If ) gives a *-representation of the Q-algebra and ¥ is a cyclic vector
of Q(UA,(RK)), then the expectation functional

E(@) = (¥, Q@) ¥), a e Ay(R) (5.5)
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is linear in @ and E(a* a) = 0 for any a € %,(K}). Conversely, any linear non-negative
functional E(a), a € A (K) can be written in the form (5.5) where the cyclic *-re-
presentation Q of A,(K) is unique up to a unitary equivalence.

For the proof, see the ref. 4. The boundedness of the operator Q(a) follows from
the lemma 3.

We now prove a few formulas for the (-algebra, which will be used in the next
section.

Theorem 4. In the Q-algebra the following holds.

feegrP=[f®eg k] | (5.6)
[Hh ® g’f] [fa ® g;] + [/ ® g:] [fa ® gf] =L ® gf] (g2, f2) + [/ ®g§] (81, f2) (5.7)

Proof. From the relation that (5.3) is zero, we obtain for arbitrary 4,

[(f+4g @ ([+Ag)*P=([+4g./+4g [(/+1g) ®(f+4g*]

Using the relation that (5.1) is zero, we develop both sides of this equation into a
polynomial of 4 and A*. Comparing the coefficients of (1*)2, we obtain (5.6). From
(5.6), we have, for arbitrary complex 4 and u,

(/1 “{flfz) @Gt pg)* =@ tug.h+ih)(h+2af) ® (g +upeg)*].

Comparing the coefficients of 4 u*, we have

{{h®&llegl +{h®gl . ®al}
=[{h @ heoatl+{h®eahoahl
Using the relation that (5.2) is zero, we obtain (5.7).
Corollary
(L ®g*1[fe ®g*]=[h ®g*] (8 1) (5.8)
[/ @& f ®gl=[/® gl () (5.9)

§ 6. The isomorphism of the Q-algebra and the zero charge part
of the CAR-algebra

Charge quantum number. The algebra P(R, &*) can be split into a direct sum (as a
vector space) of subsets according to the ’charge quantum number’. Namely,

PR, &% — PR, &%), (6.1)

Nn= —00

where P(R, &%), is the linear subset of P(R, &%), generated by all [y, ..., Ay] such

that 7 of 4, are in &, s of 4, are in &* and » + s = N, » — s = n. We also have the
following formulas,

P(R, &%), P(], 8*),, = P(K, 8*),,., (6.2)
P(R, &*): = P(R], 8*)_, (6.3)
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Since each of the generating elements (3.3) and (3.4) of 1. is in one of the subsets
P(R, &*),, n =0, 4 1, 4 2, the two sided ideal /. has the direct sum decomposition

+00
= 2 I(?n (64')
n= 00

where I, C P(R, 8*),. Therefore, we have

E Ac(R),, AUc(R), = P(R, 8%),/1c, (6.5)

From (6.2), we have |
QI(?('R)n ' slIC(‘R)m = ﬂ(?(ﬁ)m tn (66)
Ac(R),* = Uc(K)_, (6.7)

Therefore A (K), is a *-subalgebra of A (K) and will be called the zero charge part of
A (R).
We now consider the mapping j from P(F(R)) into A, (K), defined by

N N . .
. 1% Tn(2 AL
7(2‘3;. (K eens Kn(;t)ﬂ) = 2 2 Cz[ 120 812 » + - 'fn%);.y gﬁ&,% 1} (6.8)
P R P

i=1

where K, = Z‘fﬁ ® g} *. Because of the relation that (3.3) is zero, 7 is well defined
i

(i.e. does not depend on the various ways of expressing K, as a sum of tensor

products of f’s and g’s). By the same calculation as in the theorem 2, we see that

7 I,C I.. Hence j induces a *-homomorphism of ,(R) into A.(K), which will be

denoted by the same letter . We now prove

Theorem 5. The mapping j defined by (6.8) is a *-isomorphism of %U,(K) into
A (K)o (the zero charge part of A (KR)).

Proof. We already know that j is a *-homomorphism of U,(R) into A.(R),. We
have to prove that it is onto A.(K), and that j 4 = 0 implies a = 0.

Any element of A(K) or A (K) can be considered as an element of A.(K,) or
Ay(K,) for a finite dimensional subspace &, of K. Hence, if we prove for a finite
dimensional & that 5 is onto A.(K), and that j a = 0 implies a = 0, we have the same
for an arbitrary K.

Let f; ... f, be an orthonormal basis of a finite dimensional & and let a;, = [ f;] and
¢:; = [f; ® f;*]. Due to the anticommutation relation that (3.4) is zero, any monomial
of A-(K) i1s equivalent to a monomial with at most one a; and one a;* for each 1.
Again using the anticommutation relation, we see that (&), is linearly spanned by
elements

a, ~a’...a; -a -a, -a,; ... a oak’: (6.9)

where all ¢, 7, £ are distinct and we impose the restriction

by < e <y Ty e oy By < < R (6.10)
Hence j is onto A.(K),.
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The element (6.9) can be characterized by two index sets

I:{il"'imkl"'kn}! ]:{?.1"':’.mkl“‘kn}

because [ and J determines

R by =I0 ], {otpy =TI -0 ]), {jifmp=J - (IO])

and (6.10) w111 determine individual 7,, 7, and %&,. We denote (6.9) by a(1, J). We now
prove that a(I, J) are linearly independent. Let

e, hal,)=0 | (6.11)

Let us consider the partial ordering of the pair (7, J) defined by (I;, J,) C (I, Jo) if
I, C I, and J, C J,. (C and D together implies =.) We prove that (6.11) implies
¢(Z, J) = 0 for those (I, J) which are maximal in this ordering among (I, J) appearing
n (6.11). This is, of course, sufficient to prove ¢(Z, J) = 0 for all (I, J). If we define
an operator L (b) acting on 2A.(K) for any element b of A, (K]) by

L(B)a=[bal L.(b)a={ba},

then we have, for a maximal (7, J)

HL+(“}¢#) Lﬁ(“kz) HL+(“J'V) L—(“ij) a=c, J)1

u v

fora =2 ¢(1, J) a(I, J). Hence, a(I, J) are linearly independent.
Finally we prove that %,(R) is linearly spanned by

g1, J) = Gijj »+--9i

where 7, 7, & are restricted by (6.10) and I, J are defined as before. Since 7 ¢(/, J) =
a(I, J) and since a(l, J) are linearly independent, this will guarantee that ja =0
always implies a = 0.

Consider a monomial g ({u}, {v}) =

gt ey 2~ o B (6.12)

Tugvy = Dy If some of u’s or 's are the same,
then we permute ¢’s, using the commutation relations that (4.2) is zero, so that the
¢’s with the same u’s or »’s come next to each other and subsequently use (5.8) or
(5.9) so that we obtain a polynomial of lower order. Furthermore, if » and s are per-
mutation of 1 .. p, with signatures (r) and g(s), then, due to the theorem 4, ¢ ({u}, {»})
and &(r {‘LL 5 v'}) with 'y = p,, ¥ = vy, differs by a polynomial of lower
degree. Hence by mathematical induction on the degree of polynomials, we see
that ¢(/, J) linearly spans 2,(8). This completes the proof of the theorem 5.

§ 7. Representation of the Q-algebra for a finite dimensional K

In this section we obtain all the *-representation of the Q-algebra for a finite
dimensional K. A corollary of the results in this section will be used in the next section.

Lemma 6. If & is finite dimensional, A,(K) is finite dimensional.

Proof. We have already seen that (6.12) with the restriction (6.10) span the whole
algebra, which proves the lemma.

10 H.P. A. 37, 2 (1963)



146 Huzikiro Araki and Walter Wyss H.P.A.

Lemma 7. Let K be finite dimensional and let ) be an irreducible *-representation
of Ay(K) on $. Then the operator

p- 2 0(:) (7.1)

must be a constant p on § and any two such () with the same p are unitarily equivalent.
Here {f;; ¢ = 1... n} is an orthonormal basis of & and ¢;; = [f; @ f;*].
Proof. Let Q;; = Q(g;;)- Since P commute with all Q,; due to
2[@;‘5’ Q1 :2(51'[ Qir — 0k ©13) =0,
i i

P must be a constant in an irreducible representation. The uniqueness for the case
P = Ois trivial. Namely, 2 Q;; = Oimplies Q;; = Oand, due to (5.8),Q;; = Q,; ¢;; = 0.
That is Q(a) = 0 for any a € AUy(R).

Now we consider the case p = 0. Since {Q,;; ¢ = 1...#n} is a commuting set of
projections, they have a simultaneous eigenvector, say ¥, such that

0, %, =%  Hiel (7.2)
0 if 1¢ 1,

for some subset I, of {1 ... n} consisting of p indices. Let Ig={k, ... &}, £y < ... <
by <p<hyy<..<hyand{l..p}={k ...k Rk, ..k, } Define

nhr+p

, p=r
Vo =11 Q; Yy .
pn=1
Due to (4.3) and (5.7)
Qj: Qi=0,;0,=0;;(1—-0;;), ifiz*g (7.3)
By using (7.2), (7.3) and (4.4), we have

(W, W) = (W, W) + 0 (7.4)
Due to (5.8) and (5.9)
QiiQr;i=0 if k%1 (7.5)
Qii Qik = Qik (7-6)
Hence
[P if i <p 7.7
Qis Fo {oo if 1> (7.7

Nowlet I ={g ..t h J={fi::fup < s S8, <P < Fy :60 < J,, and deline

P, )= Q; . Py (7.8)
i, IR
We shall show that the inner product of vectors ¥(I, J) as well as the behavior of Q,;
on ¥(I, ]) is uniquely determined by (4.2) ~ (4.5).
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Due to (7.5) ~ (7.8),

oo n={30 0 7.9
where
Peflumdl=d FPe=ltl. -7 (7.10)
From (7.9), it obviously follows that
(T(Il, 1), Y(1,, ]2)) =0 unless I, =1, Ji= /], (7.11)
Due to (7.3),
(L, ) | = (avl"f (1= Qp ;) Qo ) = (7, W) (112
Since Q;; = Q;; Q;; = Q;; (1 — Q;;), we have from (7.9)
0, ;W(I,J)=0 unless jelyJ andiel’y]. (7.13)

Now if ¢ € I', j e J', then 7, < 1 <14, 7, <j <j, for some & and [. (If & =m,
<4y, should be omitted and if £ = 0, 7, < should be omitted. The same for j.)
Because

Ossi, @ity = — Oruiy Qs = — Ot Or,
if all 4,, 75, 4, %5 are different, we have
Qi WL J) = (= D P U (i} T u i) (7.14
Ifi=j.¢J,7€] andj, <j <j,,, then we use
Qs st = O (1= 0;.5)
as well as the equality used for (7.14) and we have
Q;: WU, J) = (= P00 y(r, T o {i} — {63) (7.15)

where O(x) = 1,if x > O0Oand =0, if x < 0.
Iftj=d,el, 7€l and 7, < <4, we use

Qikz' ijik = iji Qikik

as well as the equality used for (7.14) and we have

Q; W, J) = (= )00 (L g i} — {7}, ) (7.16)
Finally, if j = 4, € I, i = j, € J, we use all equalities used above and we have
Qi WL J) = (= )P — {7}, ] — {5}) (7.17)

Since {Q,,} is assumed to be irreducible, any vector is cyclic and hence ¥(I, J) span
the whole space. Therefore (7.9) ~ (7.17) shows the required uniqueness.
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Theorem 6. Any representation () of the Q-algebra over a finite dimensional K is
fully reducible. Its irreducible representation is uniquely characterized by the value
of the operator P defined by (7.1).

Proof. Let A be any *-algebra of finite dimension. By the transfinite induction,
the Hilbert space is a direct sum of subspaces, in each of which U is cyclic*). These
cyclic spaces are finite dimensional if 9 is finite dimensional. Furthermore the ortho-
gonal complement of any invariant subspace of *-algebra is also invariant. Therefore
any *-algebra of finite dimension is fully reducible and, due to the lemma 6, Q(,(8))
is fully reducible. The rest of the theorem is due to the lemma 7.

Remark. 1f we consider the @, defined through the definition 5 with the unique
irreducible representation?) y of the CARs for a finite dimensional &, and if we restrict
the Hilbert space to the eigenspace of P belonging to the eigenvalue p, then we obtain
a representation of the Q-algebra with P = p. This representation is irreducible as will
be shown below. The above theorem asserts that this exhausts all possible representa-
tions of the Q-algebra.

The proof of the irreducibility: Take any vector ¥ in the eigenspace of P. ¥ is a
cyclic vector of ¢(U.(K)). Moreover, any monomials of y(f) and y(g*) except those in
A (R), brings ¥ into a different eigenspace of P and the monomials in %A .(K), are
mapped by y into polynomials of Q,(K) due to the theorem 5. Hence restricted to one
eigenspace of P, any ¥ is a cyclic vector of Q,(U,(K)), which proves the desired
irreducibility.

Corollary 7. Let Q be a representation of the Q-algebra over a finite dimensional K.
There always exists a larger Hilbert space ' D $ and a representation ¢ of CARs
defined on §’ such that Q,, defined through the definition 5 coincides with the given
Q on $.

Proof. Any representation of the Q-algebra is fully reducible and each irreducible
representation can be embedded in an irreducible representation of CARs according
to the above remark. Hence the entire representation can be embedded in the direct
sum of the irreducible representations of CARs.

Definition 8. An element a of a *-algebra U which can be written as a = b6*.b for
some b e A will be called positive. If a € A-(KR), is a positive element of A (K), then
77! a will be called a y-positive element of U,(K).

Corollary 2. Let Q be a representation of the (-algebra over &, where & need not
be finite dimensional. Any y-positive element of %,(R) is represented by a positive
semidefinite operator.

Proof. Any element of A.(K) can be considered as an element of A.(K,) for a
suitable finite dimensional subspace &, of & and hence any w-positive element of
Ay(K) can be considered as that of A,(K,) for some finite dimensional subspace
R, of K. Then we can apply corollary 1 and corollary 2 follows.

§ 8. Cyclic representations of CARs with charge conservation

In this section, we introduce the definition of a cyclic representation of CARs with
charge conservation and prove that they are determined already by a cyclic
representation of the (-algebra.

*) See the ref. 4 page 253.
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Definition 9. A cyclic representation of the CAR-algebra with charge conserva-
tion is a representation y of A.(R) with a cyclic vector ¥, such that

90 = v(Ye (R),) ¥

are orthogonal to each other for different n. (The total Hilbert space §) is decomposed

o0
as = 1'%

Theorem 7. 1f Q is any representation of the (Q-algebra on a Hilbert space $Q with a
cyclic vector g, then there exists a cyclic representation y of the CAR-algebra with
charge conservation on a Hilbert space § such that
(1) there exists a unitary operator S from §, onto $,,, satisfying S Q(a) S7* = Q(a)

for any a « Q[Q(ﬁ)

(2) and S1¥o =¥ is a cyclic vector of A(R) in H.

Such y is unique up to a unitary equivalence.

Proof. The uniqueness of y is seen in the following way. Since ¥ is cyclic, the
expectation functional E(a) = (¥, y(a) W), a € A.(K) will determine p up to a unitary
equivalence. However, by (6.5) any a can be written as

Z a,, a,eW(R), (8.1)

n=—-000

and by the orthogonality of §, for different #, we have

E(a) = (¥, Q" ag) V) (8.2)

Hence o is unique up to a unitary equivalence.
The existence of v is proved just as easily. We define E(a) by (8.1) and (8.2).
Note that, if a € A (R),, » = 0, then E(a) = 0. Since @, 7~ and a — 4, are all linear,

E(a) is linear in a. Furthermore, due to corollary 2 to the theorem 6 for y-positive
elements, we have

o

E@*a) = >} (¥, Q' (a,a,))¥y)=0
Hence, due to the lemma 2, we have a Hilbert space §, a representation y of A.(R)
and a cyclic vector ¥ in §, satisfying E(a) = (¥, y(a) ¥). By definition, $, 1 $,,
for # + m. Furthermore, by construction, (¥, Q,(a) ¥) = (¥,, Q(a) ¥q) for any
a € Ay(K), which implies the existence of the unitary operator S satisfying (2) due to
the lemma 5. This completes the proof of the theorem.

§ 9. The operator U(K)

By the theorem 7 and the lemma 4, the mapping @ from F(R) into B($,) with a
cyclic vector ¥, will uniquely define a cyclic representation of the CAR-algebra with
charge conservatlon We now consider another mapping U into B($,), which
can replace Q.
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We first consider the element

exp [K] = Zoo‘ n!/ -1 [K]" (9.1)
#n=0

for any K e F(R). When one discusses an equation in %,(8) involving a finite number
of K; € F(R), there always exists a finite dimensional subspace &, of & such that all
K, are in &, ® K¥, and one can consider the equation in the finite dimensional sub-
algebra Ay(K,) of Ay(K). In particular, (9.1) converges in the unique topology of the -
finite dimensional vector space.

We now prove

Lemma 8. (1) exp [K], K € F(8) linearly span 2 ,(8).

(2) exp [K] depends only on exp K.

(3) (exp [K])* = exp [K*].
(4)

4) exp [K,] exp [K,] = exp [K, ¢ K,] where K, 0 K, 1s any operator
in F(R) satisfying exp K, exp K, = exp K; 0 K,.

(5) exp[f® g*] = 1 + ¢(g, /) [/ ® g*] where g(x) = 271 (¢ — 1).

Proof. Tt is sufficient to prove (1) ~ (5) for a finite dimensional K. As is shown
before, the infinite dimensional case follows from this.

(1) Clearly [ f ® g*] algebraically generates Ag(K). Hence, by (5), exp [K] algebraically
generates A, (K). By (4), (1) follows.
(3) and (5) are obvious from the definition (9.1) and the relation (5.6).
(4) for commuting K’s follows from the definition (9.1) where K, 0 K, is taken
as K, + K,. (4) for commuting K’s with K, o K, different from K; + K, follows
from (2). (4) for noncommuting K'’s is proved at the end.

(2) Any K, can be written in the Jordan normal form
K, =} E; (i + N}

where E! E! — 6, E!, " E! =1, Al+ ' fori=+j, EIN! = N'E! = ¢, N, (N} ¢ =
= 0 for a finite d}. E}, 2and N} are uniquely defined by this equation and the stated
conditions, apart from their order. If exp K; = exp K,, then we have

D E; (exp} + M}) = ) E? (exp ¥ + M)

where M: = (exp 1) X (k!)~ (N;)%. Since a sufficiently high power of M’ vanishes,
k-1

we have E} = E7, exp A} = exp A2 and M} = M? after a suitable rearrangement of

suffices j. Now log (1 + (exp —A}) M%) = Nlwhere log is defined by a power series which

terminates at finite term in this case. Hence N} = NZ. On the other hand, exp x =

exp yimpliesx = v + 2 m ¢ ;. Thus we see that K, = K; + 27 ¢ L where L =X m, E,,

the m; are integers, E; E; = §;; E; and E; commutes with K,. E; can be written as

E;= X fix®g:* where (g4, f;;) = 6;; 6;,. Hence, using (4) for commuting K’s with
= A |
K, 0 K, = K, + K, repeatedly and using (5), we have (2).
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(4) We use the formula

1+zA=a@/ﬂ+Am4Adl (9.3)
)

where the integration is over any path I" from 0 to z in the complex A-plane, on which
(1 + A A) is non-singular, and is well defined (for a fixed I") if 1 4 z 4 is non-singular.
Both sides of (9.3) are (operator-valued) analytic function of z and they coincide for
small z as can be seen by the power series expansion. If 4 =X E; (4, + N,) is the
Jorgan normal form of A, 1 + z A becomes singular only at finite number of points
z = — A;'. Hence we have (9.3).

We define

1
ngoqu:fu+zAwﬂyu4wﬂﬂ (9.4)
0
where A(o7) = ¢ ™2 — 1 and the integration is over a path I" from 0 to 1 in the
complex A-plane, on which 1 + 4 4 is non-singular. Since 1 + A (o 7) is non-singular,
(9.4) is well defined for each I'. Since singular points A = — 47! of (1 + 1 A(o7))!

depend on ¢ and 7 continuously, (9.4) is locally analytic in ¢ and 7 for a suitable choice
of /. Furthermore, by (9.3),

JFK1 K2 _ (0K 1)O(Ky) (9.5)
We now investigate the equation
LKL K] oK )0k ) (9.6)

By the Baker-Hausdorf formula?), C, satisfying e? ¢ = ¢%, can for sufficiently small
A and B be given by a converging series, in which each term is a multiple commutator
of A and B. Because of the relations that (5.1) and (5.2) are zero, we see that (9.6)
follows from (9.5) for small ¢ and 7. Since the right hand side of (9.6) does not depend
on [ due to (2), it is analytic for any ¢, 7 and so is the left hand side. Therefore, (9.6)
holds for any ¢ and 7.

We now want to prove that the properties (1) ~ (5) of exp [K] is essentially equi-
valent to the properties of [K].

Theorem 8. Let &(R) be the multiplicative group of operators ¥, K € F(R),

equipped with an involution (eX)* — ¢X*. Let U be the mapping from &(8) into linear
operators on Hilbert space §, satisfying

(1) The U(L), L e&(K) are defined on a common dense domain D such that U(L) DC D.
(2) U is a *-homomorphism, i.e.

U(L)* D U(L¥%) 9.7)

U(Ly Ly) = U(L,) U(Ly) ) - (9.8)
(3) (expA (f, f) — 1) (U(exp A f @ f*) — 1) is independent of A.
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Then U(L), L € ¢(R) is bounded and there exists a unique representation @ of the
()-algebra on § such that

U(e®) = Qlexp [K)) = %% 0.9)

Conversely, if ( is a representation of the (Q-algebra on $, U defined by (9.9) is a
*-representation of ¢(R) satisfying (1) ~ (3).

Proof. The converse part is obvious from lemma 8. Now let U be given. We
define

n(f) = (@ =)t (UlexpAf ® f*) — 1)

which is independent of A. Solving for U(exp A f ® f*) and substituting it for L’s in
(9.7) and (9.8) we see that =(f)* D n(f) and n(f)2 = n(f). By the proof of the theorem 1,
n(f) is bounded and so is U(exp A f @ f*). U(exp A f @ f*) is obviously continuous
in A.

For a moment, let us consider a finite dimensional subspace &), of K. &(K;) is a
Lie group and a finite number of f® f* and 7 f ® f* linearly span its Lie algebra
F(R,). Hence the product of ¢¥ ®/* covers at least a certain neighbourhood of 1.
Furthermore, since &(K,) is connected, it is multiplicatively generated by a neigh-
bourhood of 1. Hence U(L) for any L € &(8) is bounded and it is a continuous re-
presentation.

According to GARDING®) the Lie algebra F(R) is then represented by linear
operators on a common dense domain. Namely, Q(K) = il_r)% (U(e*) — 1)/4 satisfies

(4.2) ~ (4.4) on a dense domain. In addition, due to (3), it satisfies (4.5). Hence all
Q(K) are bounded due to the lemma 3 and we have a *-representation Q of the Q-
algebra Ag(K,) due to the lemma 4. Furthermore, by definition, (9.9) is satisfied. The
uniqueness of Q is obvious from the equation (9.9).

Since £(&) and AQ(K) are the unions of &(K,;) and of AQ(RK,), respectively, for all
possible &;, we have the theorem for any K.

§10. The functional E(L)

We again follow Gelfand and consider the functional
E(L) = (¥, U(L) ¥V) (10.1)

Theorem 9. If U is as in the theorem 8, E(L) defined by (10.1) satisfies

N
X ury B(IE B 20, (10.2)

4F =1

(") — 1) 1 (E(Ly M L) — E(Ly Ly)) = constant of 4, (10.3)

where L, L,, L, € ¢(R), f € 8 and ¢; and 4 are arbitrary complex numbers. Conversely,
if E(L) is a functional of L e ¢(&) and satisfies (10.2) and (10.3), there exists a Hilbert
space §), a *-representation U of ¢(f), satisfying (3) of the theorem 8, and a vector ¥
in § which is cyclic with respect to {U(L); L € ¢(R)}.
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The proof is similar to those of lemma 2 and lemma 5. The boundedness of U(L)
comes from the theorem 8 in this case. (E(L*) = E(L)* follows from the reality of the
left hand side of (10.2).)

Remark 7. We can prove theorems similar to the theorem 8 and 9 even if we restrict
L to unitary operators. In this case U(L) will also be unitary. We can also prove
similar theorems for the set of L = X where K is an operator of the trace class on &,
due to the theorems 3 and 7.

Remark 2. In the example of CCRs in the remark after the theorem 2, we can con-
struct*) a unitary operator U(e'X) = ¢'?%) for a hermitian K and the functional
E(e'X). The operator U(L) satisfies (9.7) and (9.8) but it does not satisfy (3) of the
theorem 8. Although U(L) for a unitary L is bounded, Q(K) is not bounded, in this case.

§ 11. Examples

A simple and yet nontrivial (though well-known) example is given by
E; (L) =1 (11.1)

The representations of A (]) and W (K) associated with this functional will be
denoted by v,y and Q;y. The subspaces §, for y;, will be 0 for negative #n. $, is
1-dimensional and a vector in §, will be denoted by ¥,,;,(R). v, (g*) will annihilate
¥ ;w(R) for any g € & The E(a) for a € Ac(K) can be calculated by the formula

(Frw ) vyl fas s oo &) Ppw(R)) = 6, det (£, g))  (11.2)

It is easy to see that ¥ ;(R) is a cyclic vector of the subalgebra generated by v y(f),
f € & Furthermore, we have

Lemma 9. The representation gy, is irreducible.

Proof. We know that ¥, () is a cyclic vector. Hence it is enough to prove that
the projector on ¥, () is in the algebra. Let {f,} be an orthonormal basis of & and
let P, be the spectral projector of y,u(f, @ f,*) belonging to zero. They commute
with each other we can define P, = JT P,. It is easy to see that ¥, () is the unique

a

simultanious eigenvector of (£, *) belonging to zero. Hence P, is the projector on
¥ ;w(8) and g,y is irreducible.

We denote by 6y, the operator which is (— 1)" on §,,(8), where §,,(R) is the
representation space of y .

Another example is easily obtained from the above example by

viw () =y (T H*) (11.3)
Yiw (1*) =y (T 1) (11.4)

where T is any conjugation in &, i.e., 72=1, Ti=—4 T and (Tf, T g = (g f).

If we write the Q, for ¢y by Q7y, we have Q7 (f® g%) = tr (f® g*) — Qm(T g ®
(T f)*) and

Bl (%) =% (11.5)

*) See the footnote 23 of the ref. 1.
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Contrary to vy, yjw(f) annihilate Yiw(8K)-
Next we consider the space § = H;»(R) @ H JW( ), the vector ¥, = lPJW(R) ®
SPJW(R) and

Yor () = p((1 =) h) ® 1+ 0, ® 9T, (02 ) (11.6)

where g is an operator on R, satisfyingp > 0,1 — p > 0,4 € R or K%, o2 f* = (o2 f)*
and (1 — )12 f* = ((1 — g)¥2 f)*. Since 6, anticommute with all g (h), 27 defined
by (11.6) satisfy the Definition 1. Furthermore, since ¢ and 1 — g is assumed to be

positive definite, o2 & and (1—)p!2 & will be dense in &. Hence the repeated appli-
cation of y,7(f), f € & on ¥, will give a dense set in § (K] ) ® ‘P]W(ﬁ). Then, as can

be seen by mathematical induction on % of § = ng )®55]W( ) the

repeated application of y,7(/*), f € &, on vectors in § JYW( )@‘P]W(R) will give a

total set in §,;(K) ® H;w(K). Hence ¥ is a cyclic vector of y,r(A(K)). Thus y,r
gives a cyclic representation of the CAR-algebra with charge conservation, where
%, is given by

$0 =2 9w R)nr ® By (R), (11.7)
If we define another representation of the CAR-algebra by

1/"'g:r (f) = ejw Yiw (Q% /) ® 6fW +1® "PJI:W ((1 - Q)"lr /) HJW (11.8)

where fe R and v’,7(f*) =v',r(f)*, theny’,r(h) commutes with any y,(A") and hence
W, 1s not irreducible.
The functional E(L) for v, is calculated in the appendix 4 and is given by

E(®) = (¥, Q,r (¢F)) W,) = exp tr log (1 + (¢¥ — 1) o) (11.9)

The case where g becomes a projection operator can be constructed in the following
way. Let 8 = &, + K,, &, | &, and let P, be the projection operator on the subspace
K, in ] We consider *) the decomposition § () = H;w(R) @ Hyw(RKy) discussed
in the appendix B and we define

Yp,T (k) = v (Prh) @ 14 05, @ yiy (Poh). (11.10)

It is obious, from the lemmag, that Ypy1 is an irreducible representation of the

CAR-algebra with charge conservation. The calculation in the appendix 4 shows
that E(L) for Ypyr 1s given by

E(eX) = (Z1(®), Opyr (F) ¥ (R) = cxp trlg (L4 (X —1) ) (11.11)
where ¥, (R) = ¥, (R1) ® ¥, (K.
*) In this decomposition, y i for { can be defined as

yiw (B) = yyw (h) & 1 + 0w @ wyw (hy)
where 2 = hy+hy, h; € K; or K;*.
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§ 12. Infinite free Fermi gas

The gas of non-relativistic Fermi particles without spin in a finite cubic volume V
can be described by v where K is taken to be the Hilbert space &, of L,-functions
over V. Let {f;} be the complete orthonormal set of periodic functions V-2 ¢*j* where
k; takes discrete values. We define the operator H, acting on K&, by

Hy =Y #2m ], @ ff (12.)
i
By the appendix B, U(exp f# (v — H,)) is a traceable operator and the grand canonical

ensemble of free Fermi particles without spin in a volume V is defined by the state

(i.e. linear continuous functional over observables U,(R;)) characterized, according
to the theorem 9, by

E(L) = tr (U(L) U™ "))t (U™ 77y) (12.2)

=exptrlog (1+ (L —1)p (8, p) (12.3)

where (12.3) is calculated from (12.2) in the appendix C and
-BH Bu~BH
o (B.u) ="V @ LT (12.4)

By taking the limit V' - oo, we obtain the grand canonical ensemble for the infinite
free Fermi gas. It is given by (12.3) where g (B, u) is given by the same equation as
(12.4) except that H, is replaced by the non-relativistic free Hamiltonian H = £2/2 m.
(8 is taken to be L,(R?) and % is the multiplication by % of the Fourier transform of
the function f(x) € Ly(R3).)

Obviously, o > 0, 1 — ¢ > 0 for f + cc. Such representation has already been
discussed in the section 11. The formula (11.6) is very similar to the case of the infinite
free Bose gas?). The formula (11.6) allows a particle-hole interpretation in an obvious
way.

For the limit 8 - oo of zero temperature, we obtain

E(L) =exptrlog (1 + (L — 1) P(u)) (12.5)

where the projection operator P(u) is for the subspace k2/2m . This represen-
tation is also obtained in the section 11. In partlcular Ypu 1 (H(R)) is irreducible
in the space $),.
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Appendix A

We calculate*) E(e®) for g, given by (11.6). For this calculation we only assume
0> 0,1—p > 0 and hence the case for yp, is included.

From (11.2) and vy, (f*) ¥ ;5 (8) = 0, we have

(FooYor [h s v fur B oo @11 Wo) = det (g1, 0 1))- (A1)

If {/;} is an orthonormal set, then we have

(Po, Qur [ ®]ﬁf, w34 Py @f:lyjo) = det ((fi’@fj))'

N

Let K be hermitian and sufficiently small. We can write K = 3 A, f; ® f;* where
i=1
{f:} is an orthonormal set and 2, is small. Hence we have

N )
eX — [T (1+ 0 (i) [f; ® f{]), where & (i) — ¢ — 1 is small and therefore

11

N

(1[10' Qp'r (3{1{}) ) :Z 2 (1;0' (ki)) det ((f;:f’ fkj))

W0 Lhy k) i1
— det (1 + A) = exptrlog (1 + A)

where**) 4 = (o(¢) (f;, 0 /;))i,j-1..~and log(l + A) can be defined by a power series
expansion for small K. Since tr A" = tr ((eX — 1) p)*, we have

E(e*) = exp trlog (1 + (¢ — 1) o) = det (1 + (¢X — 1) o) (A.2)

*) It is also possible to prove (11.9) by ordering creation and annihilation operators in ¢Q(K),

**) The formula det B = exp tr log B can easily be proved for a hermitian B by the spectral

decomposition of B. Considering B = B,+z B, with hermitian B’s and using the analytic con-

tinuation in z from the real axis to ¢ we obtain the formula for the general case. Here log B is

defined as in the section 9 and if B is singular i.e. det B = 0 then tr log B should be taken to
be — oco.
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for a sufficiently small and hermitian K. We now set K = z; K; + z, K, where K; and
K, are hérmitian. The two extreme sides of (A.2) are clearly analytic for all value of
z, and z, and hence (A.2) holds for all z, and z,. Thus we have (11.9). (Note that (¢¥—1) ¢
can be considered as a finite matrix on the finite dimensional space spanned by f; and

of,i=1...N)

Appendix B

In this appendix, we introduce two different ways of obtaining y;y by using the
tensor product of Hilbert spaces. As an application we generalize the definition of
U jw(L) for a wider class of operators L and calculate tr Uy (L) for a certain class of
operators L.

Let {o} be an index set of ordinary numbers, &, be subspaces of ] R, R if
o = fand R = 3 ],. We consider the incomplete infinite (or finite) direct product?)
*

H =119 (R, containing I1®Y¥,,(R,). As is easily seen, there exists a unitary
o o

operator S mapping § onto §;(R) satisfying

V(R =S 7% Y’J,W (R,) (B.1)
Y (B) =S (25H® 0 wp @ Yy (%,) ®51>]® lﬂ) S (B.2)

where b = 2 h,, b, € R, or K ,*, 0 4is the 0,y for § ;1 (R), defined in the section 11.
(The inside of the parenthesis in (B.2) clearly gives an irreducible representation of
the CARs with charge conservation and the expectation functional E(L) in the

vector IT® W, (R,) is 1. Hence S exists.) Since gy is irreducible, S is unique (up toa
[+

number). In particular, if {f,} is a complete orthonormal set and &, = {c f,}, then

Hw(R,) is 2-dimensional, ¥, (8,) is, for example, ((1))

Y (f2) andyyy, (£2) are (1) and (go)

respectively, and (B.1) and (B.2) are familiar formulas.
Another method to construct §,,(R) is the one by Fock®). Let & ®” be the tensor

product of # copies of & and Asym K©7 be its totally anti-symmetric part?).
Consider

$y (R) = 3© Asym 8" (B3)

#=0

where R®° is one-dimensional and a vector in R ®°is to be identified with¥,,(R). If B
maps RE™ into R@* then 1, ® B maps K"+ into R +1, Let E45 be the projection
on Asym K%” and let As (1, ® B) be the operator on §;(f), being 0 on all Asym
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K@, I+ m+t and being E5%, (1,® B) EX,, on Asym KRE@m+1_ The generalized

m--t
creation and annihilation operator is then defined

(b+™Bbn) — fAs (1, ® B) ((n + )| (m + £)1 jt12)i2 (B.4)

t-0

In particular, if B = f € K or f* € &* (which should be considered as a mapping from

KO0 to K9 and from KR! to R respectively), then we identify (b+1 £8%) asy p(f)
and (b0 f* bY) as pp(f*). It is easy to prove that y;y so defined is a representation

of CARs with charge conservation, y;y(f*) annihilate ¥, (R) (defined as any
fixed vector in §®°) and ¥ ;;;(R) is a cyclic vector with the charge 0. Hence $;(8),
¥ w(R) and vy, defined here are unitarily equivalent to our earlier definitions. In
this formulation, Q(K) = (b+! K b%).
We now define U(L) for a wider class of L. Let L be an operatorin R with || L || < 1.
We define
L) = 2® L (B.5)

n=0

where L®* acts on Asym K®". Since ||[L®"|| <L |[|UL)||=1. I L; > L
strongly with || L; || =1, then U(L;) - U(L) on each Asym R®" strongly. Since
|| U(L;) || is bounded by 1 independent of j, this implies U(L;) - U(L) strongly.
Namely U(L) is strongly continuous in L. Obviously U(L,) U(L,) = U(L, Ly). If K
is positive semidefinite and A = 0, we may consider one-parameter semigroups
U(e~*%) and U(e'*X) and we easily can prove that their infinitesimal generators are
Qw(— K) and Q (¢ K). Since K and 7 K for K € F(R), K > 0 linearly generate the
Lie algebra F(R), we see that U(L) coincides with the previously defined U(L) for
Les(R). B L=L,L, L,ece(R), || Ly|| =1, then we define U(L) = U(L,) U (L,}.
As is easily seen, (B.5) and other properties hold also for such U(L).

Finally, let us assume that L is a positive definite hermitian operator of the trace

o
class. Wehave L = e % K = } A, f, ® f*, 3 e=* < oo and {f,} is a complete ortho-
i-1

e N
normal set in ] Let 4, =0 for ¢ > N. Then U=U,U,, U, =% U, II 1,,

faif YN

N
U,=1I®1,® [I® U, U, = ¢ %Ui®1*) where the tensor product is in the tensor
i1 iPHIN

product decomposition §;,(K) = 1€ H,,(K;) with K = {cf;}. Since tr U; =
i
1 + exp — 4;, we have
tr U(L) =IItr U(L;)) =II' (1 + exp — 4;) = exptrlog (1 + L) (B.6)
i j

where the product /7 (1 + exp — Zj) is absolutely convergent due to Xe % < a.

7
Appendix C. The calculation of (12.3)

Since ef#~FHv is positive definite operator in the trace class, U(ef*~fHv) is also an
operator in the trace class. First we consider a Hermitian K. We have



Vol. 37, 1964 Representations of Canonical Anticommutation Relations 159
-BH
tr U(eX) UE™ ") = tr U(Ly)

where K e F(R) and L, = eK/? (¢P=PHy) K12 s a positive definite operator of the
trace class. By (B.6) we have

tr U™ ") = exp tr log (1 + Py

tr U(Lg) = exp trlog (1 4+ Lg)
From the integral expression for log, we easily see
trlog (1 + L) = tr e¥/? (log (1 + L)) e X =trlog (1 + &*1* L e~ %%
= trlog (1 + o eﬁ#_ml”)
For any operators 4 and B of finite rank, we have
exp tr (log (1 + B) —log (1 + A)) =det (1 + B) (1 + A4)~!
=exptrlog (14 (B—A)(1+ A4)7)

By continuity, the same equation is true for any operators 4 and B in the trace class.
Hence

&> = tr {UE) UE™ ")) | tr U™

—exp trlog (1 + (¢ — 1) o)

where

_ eﬁﬂ“ﬁHV/ (1+ eﬂ.ﬂ 'fﬁHV)-

Finally, we set K = K, + z K, where K, and K, are Hermitian. By analytic
continuation from a real z to z = 7, we obtain the same formula for a general K.
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