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Lorentz Invariant Analytic S-Matrix Amplitudes

by Klaus Hepp

Eidgendssische Technische Hochschule, Ziirich

(15.VIIL63)

Abstract. A canonical decomposition of analytic relativistic S-matrix elements (for processes
between non-massless particles with arbitrary spins) into a finite sum of Lorentz invariant
amplitudes multiplied with covariant polynomials is investigated. Necessary and sufficient
conditions are given for the existence of a set of amplitudes, which are analytic functions in the
Lorentz invariants. The restrictions by I7-, 7- and C-invariance and by the Pauli principle are
discussed, and the results are exemplified for the spinl/, — spinl/, scattering. In an appendix the
theory of ‘multivalued’ holomorphic tensor fields over the complex mass shell and their analytic
continuation is considered.

§ 1. Introduction and Statement of the Problem

The S-matrix is of central importance in every relativistic theory of elementary
processes. In a certain basis the S-matrix elements for scattering and production
processes of particles with arbitrary spins are tensor fields transforming covariantly
under the real Lorentz group.

Considering the complexity of the mathematical structure of relativistic quantum
mechanics, it is useful to overcome as trivially as possible the complications due to the
spin degrees of freedom of the interacting particles, in order to concentrate on the true
dynamical problems of the theory. Therefore we investigate the possibility of decom-
posing the scattering amplitudes

L
T =2 TP O (Lo}
=1
into a simple set of covariants Q,,, which absorb the constraints of relativistic kine-
matics, multiplied by a finite number of invariant amplitudes 7.

Such a covariant decomposition without kinematical singularities is certainly
only possible under sufficiently strong assumptions for the S-matrix elements. Now,
it is widely believed and for the 2-particle scattering amplitude supported by general
principles, that the scattering amplitudes are boundary values of multlvalued holo-
morphic tensor fields over the complex mass shell.

The Mandelstam representation3!) for the Lorentz invariant 2-particle spin-zero
scattering amplitudes, which one assumes to be analytic in the invariants s = (p; + p,)*
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and ¢ = (p; — p4)? has been the starting point for many theoretical and numerical
investigations. For realistic processes, as pion-nucleon®) or nucleon-nucleon scat-
tering1)4), one knows from perturbation theory?2?) or from algebraic considerations?)
a finite set of covariants, for which a decomposition (1.1) should most plausibly lead
to holomorphic amplitudes in the L(C)-invariants. Yet only recently?) a general
investigation of Lorentz covariant analytic functions proved the absence of kinemati-
cal singularities in these cases (see also %8) for an independent treatment).

Starting from the representation theory of the inhomogeneous Lorentz group, we
shall discuss, under which analyticity assumptions the general scattering and produc-
tion amplitudes allow a covariant decomposition of the form (1.1) with holomorphic
or meromorphic amplitudes in the Lorentz invariants.

The necessary and sufficient conditions for a (local) holomorphic decomposition
are given in theorems 1 and 2. For production processes this decomposition is highly
non-unique and (if globally possible) only of little physical interest. On the other hand,
there always exists an independent set of meromorphic amplitudes in the Lorentz
invariants, for which the restrictions due to possible discrete symmetries can be fully
discussed.

As stated above, a global holomorphic decomposition always exists for the 2-
particle scattering amplitudes (in saturated domains). Here we give a complete
classification for the restrictions due to the discrete symmetries with an explicit con-
struction for the spin !/,—spin 1/, scattering. This will justity the usual approach, e.g.
in the framework of the Mandelstam representation, for non-massless particles with
arbitrary spins. '

In an appendix the analytic structure of ‘multivalued’ holomorphic tensor fields
over the complex mass shell is investigated. Some results on the analytic completion
with respect to covariant analytic functions are also useful for the Wightman and
Green functions in general quantum field theory.

In conclusion I wish to thank both Professor M. F1Erz and Professor R. Jost for
continuous helpful criticism and Dr. M. KuMMER and Dr. D. N. WiLL1aMS for some
clarifying duscussions. The guidance of Dr. H. Arakr and Dr. D. RUELLE at an
earlier of this work is gratefully acknowledged.

§ 2. Covariant Decomposition of Scattering Amplitudes

In this chapter we shall prove under sufficiently strong assumptions the existence
of a covariant analytic decomposition for relativistic scattering amplitudes.

The kinematic properties of a relativistic scattering system can be naturally
characterized by the representation theory of the quantum mechanical (restricted)
Poincaré group f’j, the universal covering group of the inhomogeneous restricted
Lorentz group Pl. In this framework we shall first define the basic quantities of our
Investigation.

We consider at most countably many different asymptotically free particles.
These particles are distinguished by a real index » =% =1, 2, ... for a Majorana
particle and by a purely imaginary index x + % = + ¢, - 24, ... for.a particle-
antiparticle pair, when required by a gauge group. All particles are assumed to have a
nonvanishing rest mass m, = m_ > 0.
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In the Hilbert space of a relativistic scattering theory there are 2 sets of basic

vectors to asymptotic incoming and outgoing states. From general principles!®) both
. : {=] ;

form a Fock basis over the Hilbert spaces §,_, of the one x-particle states. The _)

carry a unitary irreducible representation [m,, s,| of f—’l with the spin s, = s; =

0, 15,1, ...%7). All information about the asymptotic configurations is contained in a

set of creation and annihilation operators (_)a:; (P)gs () @ox (P), (ex = in, out).

a4 b

They obey the following transformation law under :Pi * |

U, a,4) ,a,,p), U, @A) =e 24 D (A7) ,a,(4), (2.1)

and the commutation relations (assuming the normal connection of spin and stati-
stics 28)42):

[(-—)aex (P » (—)“jx (Q)ﬁ] n, Oy ) (B)a2p®0 (P-4q) (2.2)
% 2 | A » A
I:(—)aex (p)a ’ (~)a’ex (q)ﬁ] ) == {) (23)
* A
with 7,, = + for s, and s, half-integer and #,, = — otherwise.

Here we shall briefly explain our notation: For 4 € SL (2, C) and A (4) € Ll we
set (4 p)* = A (A)) p*. Furthermore 4 - Ds (4) denotes the (2 s + 1)-dimensional
irreducible tensor representation [2 s, 0] of S L (2, C)*%). The transformation law (2.1)
corresponds to a choice of a spinor basis?) in §, _), in which the Lorentz covarianceis

bed

most simply expressed. In this connection we shall use the fact, that on the elements
@, X of the representation spaces G*, Gl»#] of Ds and the complex conjugate

representation D° a (generalized) spinor calculus is defined. Using the numerical
spinors
e = e = (D), = (— DBy = (— 1798, (2.4)

one can contract and raise and lower spinor indices covariantly. Furthermore the
matrix

(lois = Dig (,; 20+ 2~ 0)) 2.3)

is defined and non-singular for ° = |/m2 +p72, m > 0, as (p),s (p)# = 67 . Because

of (A P)yp = Doy (4) D,;ﬁ" (A) (p),s , the new creation operators

& (B = 625 (0)77 a2, (B); (2.6)

- are equally ﬁi—covariant. Hence the type of spinor index (lower-upper, dotted—
undotted) is irrelevant for the representation of the free field operators a,, () in a
spinor basis, as well as for the scattering amplitudes defined by (2.8).

The S-matrix is the unitary mapping between the asymptotic outgoing and
incoming states, defined by the following vacuum expectation values:

*) With summation over repeated indices.
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*

<x1aou£ (pl)cxl i S e xna(mt (Pn)an >0 = <x1aout (pl) gttt Hna:‘n (?n) °‘n>0 . (27)

For a Lorentz invariant scattering theory ([S, U,, (a, A)] = 0) the scattering
amplitudes in the spinor basis (the M-functions of Stapp39)%))

TZi:.ZZ (pl e l f)n) 6 (pl + wimm: T ﬁn) = <x1a{m£ (ﬁl)al e (S‘— 1) e ?Thaaok’zdt (pn) aﬂ >0
(2.8)

transform as tensor fields under the restricted homogeneous Lorentz group Ll:
T:izz (Jbl ‘ pn) - n Docz?ﬁq (A_l) T;i;: (A Pl! } e A ﬁn) (29)

The central problem is now to find a canonical representation for these covariant
tensor fields 7%, which satisfy the constraints of relativistic kinematics in a more
transparent way. This is an unsolved problem in the interesting case, where Tm 1s a
tensorvalued tempered distribution?3). We shall have to make considerably stronger
regularity assumptions in order to prove satisfactory results.

In recent years there has been much interest in demonstrating and applying the
analyticity properties of relativistic S-matrix elements. In general quantum field
theory the rigorous results of MANDELSTAM32), ZIMMERMANN%?) and LEHMANN3?)
show that the 2-particle scattering amplitude for certain processes has an analytic

continuation into an L (C)-invariant domain over the complex mass shell

M® = {Bry o |- 20) :Zjbi:(),]b?:mii,l <% <mn}, (2.10)

which contains physical points.

The assumption that the scattering amplitude T is holomorphic in an L, (C)-
invariant neighbourhood U () of one physical point p on M * is further supported by
the singularity structure of Feynman amplitudes in perturbation theory (see e.g. 19)).

Then due to the L -covariance of 7\ in a real neighbourhood of  in U (p) the anylytic
continuation (which we again denote by T((;‘;) transforms L (C)-covariantly in U (p):

T (p) = D} (A7) Ti5 (A p) (2.11)

(&

for all A € L, (C) and all p € U (p). By maximal analytic continuation along M*,

T((;; becomes an L (C)-covariant holomorphic tensor field on an L, (C)-invariant
unramified (in general non-schlicht) domain (R, 7, M) over M (see appendix A4,).

Therefore the following two theorems about the existence of a covariant singularity-
iree decomposition of covariant holomorphic tensor fields over the complex mass shell
are applicable at least in the following cases: for certain 2-particle scattering ampli-
tudes in general quantum field theory and without restrictions in analytic S-matrix
theories?)3%)18), where the existence of an L, (C)-covariant analytic continuation of
T is postulated.

The first theorem is a generalization of a theorem of BARGMANN, HALL and
WIGHTMAN ). It gives necessary and sufficient conditions for an L, (C)-invariant
‘multivalued’ holomorphic function on M to be a ‘multivalued’ holomorphic function
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of certain L, (C)-invariants. In more precise mathematical terms (for definitions
see appendix A,) we shall prove the (‘(+)’ refers to the full as well as to the proper
group):

Theorem 1: (a) The complex mass shell M as well as its image M ,, in the space
Cr+) of the L ,, (C)-invariants is a normal algebraic set.

(b) To every L., (C)-invariant function T, holomorphic on an L, (C)-invariant
domain (R, 7, M), corresponds uniquely a holomorphic function fl‘( 4 on (IAQ( £ :Az( e
M ,)), such that on the I, -saturated kernel (R**"), &, M) of (R, &, M) T is given by

T =Tyoly (2.12)

Remark: On algebraic sets, such as M and M (+), there exist in general different
inequivalent notions of holomorphy or ’complex structures’ (see e.g.¢)). On a normal
algebraic set M all these structures coincide: every local holomorphic function on M
has a convergent power series in the coordinates of the imbedding space in a neigh-
bourhood of every point of holomorphy. The first part of theorem 1 therefore implies,

that 7" and f‘( 4 have local (not uniquely determined) analytic continuations off the

mass shell M and M.
Proof: The normality of M < C4%” has been proved in 23). We remark that for

n < 2 and for #n > 2, when the masses m, cannot fulfil the condition X' m, ¢; =
-
0 for a choice of signs o; = + 1, M is a complex manifold.

Let {V{,)} be the canonical covering of the I, -saturated kernel of (R, 7, M)
defined by (4, 4) in appendix A4,. Given a holomorphic tensor field T, on (R, 7, M)
the functions 7,0 71 (p) are strongly holomorphic on U (F)(p,) " M, since M is normal.
By the theorem B of H. CArRTAN7) there exist holomorphic functions T () in the
domain of holomorphy U(}) (p,) with

T,onp) = Ti(p)on MU (p,) . (2.13)

We take the mean value
Ty ) =90 [k, A Due (A=Y TF (Ap) (2.14)
over the compact subgroup K, of L, (C)
Ky={deL, (C):A=HMH M €O (4, R)}. (2.15)

Here H is a square root of the metric form G = (¢g**) in Minkowski space, O, (4, R)
is the real (proper) 4-dimensional orthogonal group and £ ., is the volume of K with
respect to its Haar measure ) d/1. Then by the uniqueness theorem T, 0 7~ () is on
U (p;) O M trace of the L, (C)-covariant tensor field 7;(#), holomorphic in U (F'(p,).
Let now T" be holomorphic and L, (C)-invariant on (R, 7r, M). Then according to 24)
an L, (C)-invariant analytic continuation 7% (p) of T 0zt (p) into each UCH) (p,)

determines a strongly holomorphic function i’(‘ win Iy (U (p,)). T defines uniquely
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the strongly holomorphic function T{ | sron f]{' =Ly (U (p) 0 M (4 With
.. .. . . L)
Tiy [(fvf)= T, | {/I)in Ui, nU/[ fore” =1 (see appendix A4,). Therefore 6) there
exists a global strongly holomorphic function T( + on (I%( 4> T4y » M (+)) With (2.12) on
(R, 7z, M). Finally the normality of M, follows as in 24).

Theorem 1 can be applied to the L, (C)-invariant ‘Riemann surface’ (Ry, 7, M)
of a L, (C)-invariant holomorphic germ%) T, on M. Then f( 4 is the maximal

(unramified) analytic continuation of T, in the space of the L, (C)-invariants. It can
happen?) that (R*(}), 7, M) is a proper subdomain of (R, 7, M) and that a represen-
tation (2.12) of T as an analytic function f( .y of the invariants is not everythere
possible in (R, 7w, M).

In the same notation, let T((zg be an L, (C)-covariant holomorphic tensor field in
an L, (C)-invariant domain (R, 7, M) over M (e.g. in the unramified analytic
configuration of T((;}) Then one has the

Theorem 2: In every holomorphically-convex L, (C)-invariant subdomain
(R, 7, M) of (R**), 7, M) a holomorphic tensor field T can be decomposed

L
Th= 2T 0, (2.16)
into a fixed finite set of tensor polynomials Q();z) with L, (C)-invariant amplitudes
T'%,1 < A < L, holomorphic in (RH+) 7, M).

For the proof, we first remark that we need only consider tensor fields of irreducible
representations [2s, 0] of L, (C). For, by application of e, (;bi)"'ﬁ and repeated

reduction with the Clebsch-Gordon series, any L. (C)-covariant function over M can
be represented as a sum of such tensor fields without introducing singularities.

As in the proof of theorem 1, a local L, (C)-covariant analytic continuation Tﬁg;i
into U (p,) gives ) a local covariant decomposition

L

TR ) =2 T () O () (2.17)

A=1

in U} (p;) and therefore in V', (by restriction of (2.17) to M and by lifting with ).
For an irreducible representation [2 s, 0] and for a fixed » we have the following
standard covariants Qf, %3):

(a)_ fors =0: 1, det | 15;_1,?12,1513,?34‘

(b) for s > 0: S (7{’21 @) piz)aﬂz (?5;.23_1 Uﬁ"-zs) Sy i (2.18)

Here (p; U Pr)ap = (Pi)ay ())85 £ and S stands for the total symmetrization of the

x
2-spinor indices a,, ... &y, %3). The 4, €{1, ... n} are to be chosen to give all (up to a
sign) different covariants (2.18). On M ™ """ ™ one can eliminate e.g. , by momentum
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conservation. Further, because of p7 = my, > 0, the only remaining relation between
the covariants (2.18) for # = 4 and non-vanishing Gram determinant G (p,, P, p3) + 01s

'2!

;1 (p1 ’ p}) § a1a2 Mo{:.;oq, =10 (219)
with Maﬁ = (P2 U P3)yp Cycl. After having solved (2.19) e.g. for S ]lJmlocz M;3a4 the
remaining (2 s + 1) covariants

M* ... M? 3 oM 1 <7 <s
S xjep - “2r—-1°‘21' X2y 1%y L2 *25 —1%2s ( )

3

§ M;mz M§3°‘4 T M§21—1°‘21 M°3=21+1 %242 M“Zs—l“Zs (2 =7r=s) (220)
are linearly independent in &% (for the proof one computes (2.20) for (p,),; =
(0,)ap, 1 <4 << 3, to which arbitrary p,, p,, p3 With G (py, ps, p3) + 0 can be non-
singularly transformed).

Therefore for n << 4 the decomposition (2.17) is unique on M, hence on Rs*), and
one obtains global L , (C)-invariant amplitudes, holomorphic on (R*+), 7, M).

For # > 5 thisis no longer generally true. Here the existence of global holomorphic
invariant amplitudes can only be guaranteed in every holomorphically-convex
subdomain (R7¥), 7, M), using methods of analytic sheaf theory 24).

The usefulness of a covariant holomorphic decomposition (2.16) of analytic
S-matrix elements is, even if it exists globally, rather limited. Firstly, it is in general
not convenient to describe a relativistic scattering process by functions of the Lorentz
Invariants, since their number 7 (+) is in general much larger than the dimensionality
4 n of the space of n 4-vectors. Secondly, for » > 4 the number of (local) singularity-

n

free invariant amplitudes exceeds considerably the number I7 (2, + 1) of spinor

amplitudes for the process (x,, ... %,). Thus the invariant amplitudes loose their phy-
sical significance, being no longer in one-to-one correspondence with the (sometimes)
observable spin-state amplitudes.

The problems connected with the non-uniqueness of the decomposition (2.16) can
be overcome, if one admits for » > 4 meromorphic invariant amplitudes. In the points
P, where the Gramian is different from zero for certain p,, p;, p, €{n (P),, ... ® (P),},
a unique decomposition is possible with respect to the covariants (2.20) formed from
these p,, p;, py. As the determinant

A4j i L
det| Q... (Bistys B0) Qg g, (B By ) 1T &7 | (2.21)
1=1
is proportional to G (p;, ;. px)? (s, ,)?, the amplitudes T(") (p1, --- pn) can be com-
puted by solving the system of linear equations:

n
o8 (=) u
H(:‘ 11 Ta]_"'qn, (pl"" ﬂ) Q 1'7k ,n» (ﬁsz],pk) ==
i1
L n

2 Heouﬁ; T(;; (Pljp ) ka (p“p],pk) Qlwk 5, (Pi;Pj»ibk) (222)

k]tl
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A meromorphic decomposition certainly holds in any L. (C)-invariant domain
(R, m, M). The additional information from theorems 1 and 2 is that in the saturated
kernel (R*+, 7w, M) the meromorphic invariant amplitudes are strongly meromorphic
functions of the L ,, (C)-invariants, and that their singularities can be resolved by a
local holomorphic decomposition (2.17).

The meromorphic decompositions for different choices of p;, p;, p, for n > 4 will
be important for the proof of lemma 1 in appendix A4,. They are also a convenient
tool to discuss the restrictions due to discrete symmetries on the S-matrix. This may
be done along the same line as in § 3. for the 2-particle scattering amplitudes. One

finds, by choosing covariants Q;‘ifk with a definite parity under the space inversion
(3.21), that certain invariant meromorphic amplitudes T;,ﬁ_k will vanish identically

for a [[l-invariant scattering process. The other discrete symmetries will further
restrict the functional behaviour of the T/%'jk’

§ 3. 2-Particle Scattering Amplitudes and Discrete Symmetries

The covariant holomorphic decomposition (2.16) of the physically important
2-particle scattering amplitude expresses in an optimal way the connection between
ﬁi-covariance and the (here generally accepted) analyticity in (py, ... $,). The well

known applications in the framework of the Mandelstam representation exemplify
the usefulness of this decomposition.
Essential for the success of this approach is the uniqueness of the representation

(2.16) on M ™" ™. This guarantees the holomorphy of the invariant amplitudes 7%
in the saturated kernel (R**), w, M), and that the 7% can be globally obtained by

solving the system of linear equations (2.22). Over M™ "~ ™ every I -saturated set is
I-saturated, and the mass shell M is a 2-dimensional linear manifold. A highly sym-
metric choice of the independent invariants is given by #1):

S=(p1+ P2)%, t= (b1 — $0)? (3.1)

Hence the canonical representation of every 2-particle scattering amplitude T{;j
4

holomorphic in (R, 7, M), is given by IT (2, + 1) L (C)-invariant amplitudes %,
i1

which are holomorphic in the domain (I (R?), ) over the C2 (s, {). The Mandelstam

representation for T((;‘; and the analytic continuation in complex angular momentum

(see e.g. %)) rely strongly on these analyticity properties.

In addition to Pl-covariance general principles of relativistic quantum mechanics
(see e.g. 28)%2)) further restrict the relativistic S-matrix elements: by the Pauli
principle and the T C [/-invariance.

The Pauli principle is expressed by the normal connection between spin and stat-
1stics in the Fock bases of the incoming and outgoing states. Formulae (2.2) and (2.3)
imply for the scattering amplitudes the symmetry

Ty Bro - | Ba) = 0(0) T 00 By | o) (32)

%o(1)
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Here O is a permutation, which does not interchange incoming with outgoing par-
ticles, and o (0) 1s the signature of the fermion permutation under 0.
For the formulation of 7" C I1-invariance we first define in the Fock basis a class

of unitary and antiunitary representations of the factor group P/ Pl. Here we restrict
ourselves to such representations 3)17), which are compatible with a positive semidefinite

energy spectrum and which are local with respect to the asymptotic free field opera-
tors 12).

P W= @2) [ TP, (p) e+ al, (p), ) (3.3
Po”“’p
Hex @ = Diy (2 (00— 0-0)) .. (), (3.4

The unitary representations (2.1) can be extended to a local representation of the full
group P by the unitary representation of the space inversion

Ioe @ 0, TT5 = 07 en (ITP) (3.5)

and by the antiunitary representation 7,, of the time reflection

Tex u(Pex (x)oc T;cI = %"73.;5 xgpex (Tx) * ° (3'6)

Together with the unitary representation C,, of the charge conjugation

Cex xtpex (x)a Ce_xl = xnecx %x:; (x)a (3'7)

and the gauge transformations

Uex (A') ;c(Pex (x)cz Uex ()‘)_1 = 3quc%x (x)oz (38)

(with 4, g, real) they generate all unitary local representations of P/ Pi to positive
energy. With

(= | e | = | | =1
one has

J[E=+1,C=1, T?= (J[T)’=(—1)*

in the Fock space of the x x-particle states.
General principles imply 27)3%), that the antiunitary involution

l P (— %), fors, =0 (1)
aex wPex (x)a Gex = (3'9)

| it (2, fors,= 5 (1

(coinciding with the product T,, C,, Il,, for special choices of the phases 7) is a

symmetry of a relativistic scattering theory: S 6, = 6,,, S*. This implies for the
scattering amplitudes

T i, s 12 fwsn ) =B T2 2 By e [ o ) (3.10)
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with X: (1,...%) > (n, ... 1) and o (X) defined as in (3.2). If in addition the theory

is covariant under II, TorC (ie [I1,,S]1=0,T,,5*=ST,,or [C,,,S] =0 for
certain phases %), then the scattering amplitudes are further restricted by
HY .ea ity B anﬁn #

Toti...o:n (;bl...l.‘.ﬁn)=(;{)’)7n(ni)1) e ) (Hpn) Tl (le I Hﬁn)
({I-invariance, 7" = 4 1) (3.11)

PV s [ By = g (YR [p 3t T2 (T, o | HB)
( (x)T}’T |=1) (3.12)

T;l :Z (Byeoe | oov o) = (0 T::Z: (1o |-on Pa)

(C-invariance, | ¢ | = 1) (3.13)

We now discuss the restrictions on the invariant amplitudes 7% by (3.2), (3.10) and
possibly by (3.11), (3.12), (3.13). For that purpose we remark that the Mandelstam
invariants (3.1) remain unchanged under a transformation (y, ... p4) = (Poq), - - Poqa))
with O equal to X = (14) (23), Y = (12) (34) or X Y = (13) (24). Let 104

4

1<A<L=1I (2s, 1)} be a covariant basis of the representation ® (2s,;, 0] on
i=1 i=1

Mﬂl e ’!4- If one decomposes fOT O = X, Y Q;}O(l) ao(4) (PO(I) 2R3 p0(4)) and
(7 }51)0‘1,61_ a (H]b4)a4ﬁ4 Q)Eh oo By (II py, ... IT p,) with respect to this basis, one obtains

Qa4a3a2a1 (Pfl ’ p3 ’ pZ ’ pl - 2 X S t }.,u ala2a3tx4 (pl ’ p2 ’ pB ’ }b4)

L

a2a1a4a3 (P2, P1, Pa, Ps) = : Y(s, 1) i (P1, P2s 3> Pa)

"=

(T py) ™% (IT )™ Q3. g, U py, ... A1p,) --ZZ $18)3,08 4y (P1s Bos o ) -
(3.14)

Evidently the 3 operations (3.14) commute and are involutions. Because of the unique-
ness of the decomposition (3.14), the matrices X(s, ), Y(s, ) and Z(s, ¢) are L(C)-

invariant commuting involutions, holomorphicon M “ """ *_They can be simultaneous-
ly diagonalized on M ™" ™ by a nonsingular linear transformation

~ L
Q(Zoc) (p) = Z_: A(S: t)}lp Q(I;) (P) (315)

The existence of globally holomorphic matrix elements A(s, ),, follows from the
triviality of the vector space bundles generated by the projections 1/2 (1 £ X{(s, £)),
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1/2(1 4 Y{(s,¢), 1/2 (1 = Z(s, #)) over the C? using a theorem by GRAUERT (Math.
Ann. 735, 263 (1958), Theorem 6). In terms of the covariants @’1, which have now
definite parities 0%, 04, 0% = | 1 under (3.14), the restrictions due to the discrete
symmetries can be easily discussed.

(1.) Pauli principle and 7" C I1-invariance: In a scattering process between identical
initial or final particles (and sometimes between identical ingoing particles and out-
going antiparticles) these symmetries together entail useful restrictions on the invariant
amplitudes T'¥). Suppose that (x;, %, %5, #4) = (%o1)» %o(2) » %o(3) » %)) for 0 €{X. Y,
X Y}. Then (3.2) and (3.10) induce the relation

K

T;‘ll :: Py - ’ o py) =0 (0) T%(l (4 (?0(1 ’ It‘o(l)) - (3.16)

with the signature ¢ (0) = + 1 of the fermion permutations in 0. Let now both sides
of (3.16) be decomposed with respect to the covariants (3.15). Then the invariant
amplitudes T'% (s, #) with 6} + o (0) (0%y = 0% o) vanish identically, because of the
invariance of s and ¢ under 0.

The Pauli principle also restricts the amplitudes to processes of the type (A4 | pv)

or (Au|vv). Here it is convenient to choose covariants Q’WL with definite parities
o* = 4 1 under the transformation

i1a2a1o¢4 (ﬁl ’ PZ ’ ?3 ’ §b4) a2a1a3a4 (Pz ’ pl ’ p3 ’ 754)
L
- ﬂé: mﬂ (S ? t) a1a2a3a4 (pl ’ P2 ’ p3 , 754) (317)

and under Q£1a2a3a4 (P, D2, b3 1) — Q;1a2a4a3 (1, P2 Do Ps)-
Then one obtains with u = (p; — $,)%:

T (s,8) =0, T% (s, u) (3.18)

(2.) T- and C-invariance relate the scattering amplitudes belonging to the in
general different processes (x; %, | %5 2,) and (x; x| %5 %,). Again, if (2, | 3 %4) =

(%o(1) #o(2) | #o(3) %4(a) holds for 0 € {X, ¥, X Y}, then one has in case of T-invariance
:1(251,---1---1)4): (3.19)
- (118 PPN TS
= (x)T]:, - ¢(0) o(X) (HPoU)) e (HPOH)) e -T,ell (Hfbo | H?oﬁ))
and for C-invariance
L B | ) = ot 0O TR By e e Ba) (320
with phase factors ,n’ = = - 1. Therefore the invariant amplitudes T‘j{) in the

basis (3.15) vanish 1dentlca11y for o} o4 + " 0(0) o(X) or for o4+ yn°© 0(0). For

2-body processes of the type (A A | u») or (uv | A A) with Majorana particles u, », T-
and C-invariance entail relations of the kind (3.18) between the invariant amplitudes
at different points.

5 H, P.A. 37, 1 (1964)
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(3.) Il-invariance always relates the scattering amplitudes of the same process at
the points (py, ... p,) and ({1 p,, ... [T p,), which have the same L(C)-invariants.
Therefore the 7% for a //-invariant 2-body scattering process vanish for all 2 with
o+ n". An analogous statement holds in a //-invariant production process for all
sets of unique meromorphic amplitudes {T‘;‘]_)k} (2.16) corresponding to covariants

Qi o by b) = & (L p)™ ™ (T p)™™ Q% , (I py,... T p,) (3.21)

with well-defined I/-parities for G (p,, #;, px) + O.

It is easy to establish the connection of the invariant amplitudes with the spin-
state amplitudes Tﬂ; “ur (py--1.. p,) describing processes between particles x; of
momentum p; and the spm component u; in a characteristic direction. For each

4-vector p = |/m2 + p?, p) we choose a fixed L(p) € SL (2, C) with L(p) p = (m,0).
Then the creation operators

@*(p), = Dy (L(p) a* (2, (3.22)
create from the vacuum 1-particle states | p, u > transforming as
U, A) |pu>=eP" | Ap, u'> D, (R(4, p)) (3.23)

with R(A,p) =L (Ap)AL(p)eSU (2 C). The | p, u > are eigenstates of the
3-component of the spin-operator

3
S.(p) VD e LIPS PP M, (3.24)

o,B3,7,6=0

corresponding to the eigenvalue u. The scattering amplitudes (2.5) expressed by the
operators ,al)(p), define the spin-state amplitudes corresponding to S, (p). For
instance, the hehclty amplitudes 25) for a 2-particle scattering process are obtained by
choosing (py, ..|.. p4) in the centre-of-mass system and by the choice (with the polar
angles ¢, @ of p):

e I ey PR
Vo— 1P| 6 cos 'y, Ypo— | P | e ™ sin
L — —-1/2
(#) = m )

(3.25)

R e

po + ’P | &2 gin ¥ , 1;;'+ ‘P | e~ %12 og
2

The spinor amplitudes and the spin-state amplitudes are via (3.22) in a 1-to-1 corre-
spondence for physical p. Equally, the spinor amplitudes and the invariant amplitudes
are biholomorphically connected for G (pq, ps, P3) += 0. Therefore one has for the dis-
crete symmetries generated by X, Y and Z just as many nonvanishing invariant
amplitudes as there are independent helicity amplitudes.

As an illustration we shall discuss in appendix B the invariants and symmetries
for all spin!/,—spin!/, scattering processes.
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Appendix A: On the Complex Structure of Analytic Scattering Amplitudes

From the general standpoint of analytic function theory it is unnatural to restrict
the discussion of the ‘multivalued’ scattering amplitudes T((;)) to a so-called’ physical
sheet’ 3¥): Firstly, it is not at all clear that such a ‘physical sheet’ can be defined.
Secondly, a reasonable behaviour of the invariant amplitudes (2.12), (2.16) can only
be proved in the interior of the domain of analyticity of T((;‘)) . Since the properties of
the scattering amplitudes ‘across the cuts’ are of importance e.g. for the Mandelstam
representation, any restriction of the analyticity domain of T((;‘)) should only be made
at later stages of the calculation. Lastly, we shall discuss in this appendix the simul-
taneous analytic continuation of holomorphic tensor fields, where one has to consider

(in general) non-schlicht hulls of holomorphy over M and M (4)- But it will turn out
that apart from topological complications all results are essentially the same as in the
schlicht case.

A,: Domains over the complex mass shell.

The analytic configuration of a ‘multivalued’ holomorphic function on M is -
except for ramification points — a domain (R, n, M), defined by a Hausdorff space R
and a locally topological mapping « from R into M (for an introduction into the
theory of functions of several complex variablesseee.g. %)%6)). If 7 is a homeomorphism,
then (R, 7, M) is called schlicht.

A complex-valued continuous function f on a domain D < R is holomorphic, if for
every P € D there exists a schlicht neighbourhood U(P), such that foz! is holo-
morphic on s (U(P) 0 D) < M. Therefore (R, 7z, M) has locally the structure of the

normal algebraic set M < C%” and f oz is locally strongly holomorphic.

‘ The maximal analytic continuation f along M of a locally convergent power series
generates a set R, of holomorphic germs f,, p € M. By the usual topologization one
obtains a domain (R, #, M) over M with z (f,) = p. On (R, m, M) f is unique and
holomorphic and separates points P, P’ € R, over the same ground-point & (P) =
7 (P’). A domain (R, 7, M) is called L ,,(C)-invariant, if there exists a schlicht open
L,,)(C)-invariant covering U ={U,} of R (i.e. with L ,(C) = (U,) == (U,)). Then
L,,(C) operates as a complex Lie group on (R, 7, M):

A (P) = (:rzlga)‘lo/loa'c(P), U,el, Ae L, (C),Pel, (A.1)

A holomorphic vector field F* on an L ,(C)-invariant domain (R, 7, M) is called
L (C)-covariant, if in every & (Up), Uge U, F*on~! has a tensor transformation
law under L ,(C).

An L ,)(C)-invariant domain is generated by the maximal analytic continuation
along M of a L ,(C)-covariant holomorphic function 7% (p) due to the permanence of
the functional equation *):

T*(p) = )] D% (A7) T* (A p) (A.2)

*) This question has also been treated by H. P. Stapp#). I thank Dr. Stapp for corres-
pondence,
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Let I ,, be the mapping, which maps p = (p,, ... p,) € C*” on ther (+) = (n + 1) n/2
(+ max {0, (n/4)}) essentially different typical invariants 1) of L ,,(C) (viz. the scalar
products (p;, #;), 1 =< ¢ < j < » and possibly the determinants det | p;, p;, P, 25 |,
1 <¢<j<7r<s<mn). Then an open set D < C*" (resp. in M™) is called I ;-
saturated, if D — I',o I(,)(D) holds or, equivalently, if D contains for every p € D
the closed L, ,(C)-orbit

B, (p)={dp: AeLy,(C)} (A.3)

or, equivalently, a regular point ) $ with I ,,(p) = I,,(p). Examples of I-saturated
open sets are the extended tubes ¥, = C%» %) and the Mandelstam domain 31) on
M™ ™ 1f one omits from a L 4)(C)-invariant domain D (in C4" or an M ) the points
P with B(,,(p) ¢ D, then one obtains the I -saturated kernel D*+) of D. It follows
from 20)24) that Ds+) is open and connected for connected D.

A domain (R, 7w, M) is called I (y-saturated, if there exists a /| -saturated schlicht
covering W ={U,} of R (i.e. with I }o I, (xw(U,) =z (U,)). The I ,,-saturated
kernel (R*+), 7z, M) of a L ,, (C)-invariant domain (R, 7, M) is canonically related to a
domain (lé( 4o sy M (1)) over the complex mass shell M .+ in the space C"+ of the
L ..(C)-invariants. For the proof, we remark that (R**+), 7, M) has a countable
schlicht covering {V{,),1 < ¢ < oo}, wherew (V{,)) = U/, have the form U{*) (p;)
N M with

Ug @) =1{p: [ I8, @) — I8 @) | <&, lsos7(+)} (A.4)

and where furthermore, if we set for Uf 5 U(" "

0if Vi) O V=9
1

gl =
, otherwise

{V{,,} has the property that

(a) to each U,,, i > 1, there exists a U[,,, 7 < 4, with U/, N U/,, + ¢ and &/ =
1 (connectedness)
(b) for U(iﬂ NU,O Uk, * qS and &7 = 1 one has g* = gi*
(transitivity of the equality of points in Rs(+).
Inversely (a) and (b) are sufficient conditions ) for a set {U[,, = M, ¢*!} to define
a domain over M. Therefore the set {14 EU{'H) = Uy, e*} defines a domain (R,
75y, M 4) over M, where every point P, € R, is an equivalence class of points

-~

Bl € [2'{ +) having the same coordinates on M, and &% = 1, and where 7 ,) maps
P, € R, on its coordinatesA in M ., X i
If one sets for P € R** I, (P) = P, then one obtains a natural mapping I,

from R*+) onto R, with the commutative diagram:
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j(+) .
R 3 RS(+) - — P R(+)
7 l l n ! i) (A.5)
M M - M
I(+)

I (+) 1s holomorphic and pointwise open 2°)24), and every I ()-saturated domain over
the C4" and M is the I, .y-preimage of a domain over C y and M

Ay: Holomorphy envelopes for covariant analytic funktions.

In general quantum field theory as well as in an analytic S-matrix theory it is
useful to know, into which domain all L, (C)-covariant functions, holomorphic in a
domain over C** or M ¥, can be simultaneously continued. In this connection we first
remark that for any domain (U,n, V) over a normal analytic set VV < C, the unrami-
fied envelope of holomorphy (H (U),n’, V) is again a domain over V. Then we can
prove the following:

Lemma 1: In a I, -saturated domain R = (R, nw, C**) every L,(C)-covariant

holomorphic function F is holomorphic in the envelope of holomorphy H,, (R)
(I4 (H (I (R))), &', C*") of R in the space of the Lorentz invariants.

Proof: For n << 2 and for » = 3 and representations [z, s] with |» —s| < 2, a
global holomorphic decomposition of F as in (2.17) gives the desired analytic continua-

tion into H (+)(R), since the invariant coefficient functions are holomorphic in (f( y(R),

~

74y, C(4)) and hence in (H (f(+\(R)),nE+), CA'H)). For n =3 and |7 —s| =4 and for
n = 4 one obtains different meromorphic continuations of F into H ., (R), according
to the different possible meromorphic eliminations of redundant covariants Qf, ).
Except for an at least 2-codimensional set of exceptional points (which lie e.g. for
n=3, |7 —s| =4, only over the (py, p,, ps) With all (p;, ;) = 0,1 <7 <5< 3)at
least one meromorphic continuation of F is holomorphic in H,(R). A holomorphic
continuation of F into H (+)(R) is obtained by applying the 2. Riemann theorem to the
- removable set of exceptional points.

- Since the 2. Riemann theorem remains valid on a normal analytic set 1¢), an ana-
logous statement is true for saturated domains (R, &, M) over the complex mass
shell M.

If R is separated by its family of L, (C)-covariant holomorphic fonctions, then

~

also by the L ,,(C)-invariant holomorphic functions in R. Hence (f ) (RK), 74, C( +)
i1s holomorphically separable and the continuous ground-point true mapping of

(£)(R), 74y, C(4) inits holomorphy envelope is one-to-one. Then R can be considered
as a subdomain of H,(R).
In the following lemma we shall prove for an I-saturated domain ‘R in the case

n < 4 that H (R) is the maximal domain, into which all L (C)-covariant functions,
holomorphic in R, can be analytically continued.
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Lemma 2: 1 R is I-saturated and n < 4, then H (R) is convex with respect to the
class of L (C)-covariant functions holomorphic in H (R).

For the proof we have to show that for every sequence {P;} = H (R) without an
accumulation point in H (R) there exists a L (C)-covariant function, which is holo-
morphic in H (M) and unbounded on { P;}. Now, on such a sequence either the (L (C)-
covariant) coordinate functions are unbounded or the sequence {f (P;)} has no ac-
cumulation point in (H (I(R), :?z', 6). Since C = I (C47) = C»+1%2 the unramified
holomorphy envelope (H (I(R)), 7, C) is holomorphlcaliy convex 3%). Therefore there
exists an F, which is holomorphic on (H (I (R)), 7, C) and unbounded on {I )}
Then F o I has all required properties in H (*R).

Remark: M = I (M) is for # < 4 a linear manifold in the C**U%2  Therefore

lemma 2 applies alos for I-saturated domains (R, 7, M) over the complex mass shell.
Since, under the assumptions of lemma 2, the theorem B of Cartan?) is valid on the
holomorphically convex set H (R), one can prove as in 24):

Lemma 3: For an I[-saturated domain R = (R, 7w, C*"), n < 4, every L (C)-
covariant analytic function F, can be covariantly decomposed

L
F,= ) F,Q} (A.6)
i=1

with global L(C)-invariant coefficient functions, holomorphic in H (‘R).

Lemma 3 guarantees for n < 4 a covariant decomposition of the Wightman*%) and
Green functions?!)38)2). Tt follows that for the (n 4 1)-point functions, n < 4, the
analytic completion (e.g. of U T} 2%)%) is possible in the space of the invariants and

P

leads there to the maximal domain of holomorphy for the class of L ,,(C)-covariant
analytic functions.

For n > 4 (and for I, -saturated domains with # = 4) a new d1ff1cu1ty arises:
C(+ = I y(C**) is then an algebraic set in the C"'*, and therefore (H (IH)(R) n(ﬂ
c (+)) 18 not necessarily holomorphically convex 1%). Yet at theorem of D. RUELLE )
states that for » > 4 every L ,(C)-invariant domain of holomorphy (as e.g. (H (R),
', C*7) is also the exact domain of regularity of a L, ,(C)-invariant analytic function.

Appendix B: Spin 11, — Spin % Scattering

We shall illustrate the general theory by constructing a set of covariants for an
arbitrary spin!/,—spin'/, scattering process with a classification of all possible discrete
symmetries. In the most symmetrical case the relevant covariants will turn out to be
essentially the Fermi covariants 14)1).

According to (2.20) the spin?/,-spin?/, scattering amplitude Tocl1 a: (D1, Da» P3r Pa)
can be decomposed in any saturated domain into 16 invariant amplitudes 7°%(s, #).
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The covariants of the representation [1, 0]®* are linear combinations of 2-spinors 42)
Of the type Ealaz 8&3064 2 80‘1(12 (pIUP_]) A3e%q ? (PLUP]) e =) 80(3054 a'nd (pZUPJ) alaZ(PrUps) 304"
If we use on M ™ " the relations p? = my > 0and p, + py = ps + p, and the identity
(B.1)

3 £ = £ — & g
*plp T3y 8“1“3 Colty oy Tapdz

we can express all these covariants by the following (almost everythere) basis {Q(’}z)},
which has a very simple transformation law under the symmetries (3.14):

Oty B) = €y, €age, » Q)B) = Eaya, (B3 U P aye, »
Qi (B) = sy, Eaya, + Eaya, Eayay »
Ot (B) = 2ayay (b2 U Pa)aya, T €ara, B2 U D3)ryay »
Oty () = €ayay (P20 Pags, — Eaya, (P2 U P)rse, »
0ty (B) = €aya, {(Bs U b1 — Polasa, + ([P1— P2l U Pdage,} (B.2)
+ {10 [Pa — Ba)ae, + ((Bs— D5l UP2aa,} Eae,
Oty B) = €aya, {(B3 0 [B1 — Polage, T ([(P1 — P2] U Pd)age,}
~A{BLU[Pa — P3)) aya, + ([ps — P3] U Paya, } Eaga, -
Qo) (B) = €aye, {30 [1 — Pe)aye, — (B1 — Do) U Paase, }
+ {(br U [ps — Plaga, — ([(bs — D3] U Po)ayay} Euga, »

and the //-transformed covariants

Out? . (bry .o pg) = (T p,) “1f1 (]7154)014‘34 le by (I py, .. 1T py) (B-3)

oy 0y

The reduction of all [1, 0]®*-covariant polynomials to (B.2) and (B.3) over the ring
of the L(C)-invariant polynomials is essentially trivial in the van der Waerden spinor
calculus4®). This is a considerable advantage over the conventional representation of
the scattering amplitudes, where one has to operate repeatedly with the Fierz!!) and
Michel identities®3) in the p-algebra (see e.g. 1)) and to use the Dirac equation to
eliminate redundant degrees of freedom (here from 256 to 16).
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Then the standard covariants

~

Qly 1) = 0l () + (T )™ Ol (ITp) , 1 <4 <8

S

Ohy () = Q5" () — T )P Q5 (T $), 9 =< = 16 (B.4)

have a well defined parity under the commuting set of discrete symmetries X, Y and
Z (see (3.14)). One can verify in particular that only Q},, ... @3, have nonvanishing
coefficient functions for a scattering process of the type (x # | % %) (e.g. proton-proton
scattering), which is II- and C-invariant (with .5 = ,;n° = 1). Less symmetrical
processes can also easily be discussed with (B.4). Furthermore the covariants
Qs -+ O3y and Qfy, ... Q3 have a well-defined parity under the symmetry W in
(3.17). Therefore one has e.g. in the above case of proton-proton scattering the
additional relation for the invariant amplitudes:

T (s, ) =(—1)** TP (s,u),1 <A <5, (B.5)

The standard covariants Qf,(p) are related to the spin-state covariants Qﬁwz%m
(P1, --- Pa) by (3.22). After defining

w, (P)y = DS (LHP)) v, (D) = ()P, (p), (B.6)

one has to contract Q,(p) with vy (p,)™ vy, (p,)™ for the outgoing and withu,, (pg)™2

u,4 (pg)™ for the incoming particles. Then one sees that the Q‘;'l”z%” 4 (1 P2, D3, Do),

1 <7<5, are (up to a Fierz transformation) identical with the Fermi invariants for
nucleon-nucleon scattering!)!4). For instance one has

g B B0 = o {01 5w+ (1 v) W57 90} (B.7)

with the Dirac spinors g, and their charge conjugate 5 :

%,u,' (ﬁ i)ai \ / 1)7;7(;1)%
wi = -é{ 'lp?c = R ﬁi (B'S)
‘U,ui (?z) ) u‘ui (PI)
in a representation of the y-matrices with »* diagonal.
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