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Zur Quantentheorie der Wellenfelder

von B. L. van der Waerden
Mathematisches Institut der Universitit Ziirich

W. HEITLER zum 60. Geburtstag gewidmet

(15. VIII. 63)

Summary. Along the lines indicated by V. Fock and K. FRIEDRICHS, a rigorous foundation of
Field Quantum Theory is presented. In § 2 a scalar boson field is considered, in § 3 the electron-
positron field, in § 4 the neutrino field, and in § 5 the electro-magnetic field.

§ 1. Einleitung

Wenn ein Physiker versucht, einen Mathematiker fiir die Probleme der Quanten-
theorie der Wellenfelder zu interessieren, so ist die Schwierigkeit meistens, dass der
Mathematiker die Probleme nicht versteht, weil die Formulierung ihm nicht prizis
genug ist. Das Hauptziel der vorliegenden Arbeit ist, die Grundbegriffe und Grund-
gleichungen der Quantentheorie der Wellenfelder so zu formulieren, dass jeder
Mathematiker sie verstehen kann. Inhaltlich enthdlt die Arbeit nichts Neues.

Die alte Quantenmechanik von BorN, HEISENBERG und JORDAN ging von der
Vertauschungsrelation

M—q:b=——2% | (1)

aus. Wie die Operatoren $ und ¢ definiert waren, wurde nicht gesagt. Im Fall des
Wasserstoffatoms gelang es PauL1?), die Energiewerte durch algebraische Uberlegun-
gen auf Grund der Relation (1) zu bestimmen, aber diese Methode war nicht leicht zu
verallgemeinern. Erst als SCHRODINGER2) die Operatoren $ und ¢ durch ihre Wirkung
auf die Wellenfunktion explizit definierte, war der Weg zur Quantenmechanik beliebi-
ger Systeme von endlich vielen Teilchen frei.

Analog ist die Situation in der Quantentheorie der Wellenfelder. Haufig postuliert
man Vertauschungsrelationen fiir die fundamentalen Operatoren der Theorie und
versucht, daraus alles herzuleiten. Man kann aber auch die fundamentalen Operatoren
durch Erzeugungs- und Vernichtungsoperatoren explizit ausdriicken. Alle Probleme
werden dann viel bestimmter und vielleicht auch leichter zu 16sen. _

Hiufig denkt man sich das Feld durch ebene Winde begrenzt und verlangt eine
Periodizitidtsbedingung. Das ist aber nicht nétig. V. Fock?®) hat einen Weg angegeben,
auf dem man die Quantentheorie der Wellenfelder im unendlichen Raum exakt be-
griinden kann. K. FRIEDRICHS?) hat mit Hilfe der Theorie der Distributionen von
L. ScawaRrz?®) diese Begriindung mathematisch einwandfrei durchgefiihrt.

60 H.P.A. 36, 7 (1963)
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FriepricHs hat den Fall des skalaren Bosonfeldes und den des Elektron-Positron-
Feldes behandelt, nicht aber den wichtigen Fall des elektromagnetischen Feldes. In
der vorliegenden Arbeit soll auch dieser Fall durchgerechnet werden.

Zur Bequemlichkeit des Lesers wird die Theorie von FRIEDRICHS nicht als bekannt
vorausgesetzt, sondern in ihren Grundziigen neu entwickelt. In § 2 wird das skalare
Bosonfeld im wesentlichen nach FriEDRICHS behandelt, in § 3 das Elektronpositron-
Feld mit leicht abgednderten Bezeichnungen, die die relativistische Invarianz besser
hervortreten lassen. Wie man das Neutrino-Antineutrino-Feld nach der zweikompo-
nentigen Spintheorie zu behandeln hat, ist dann klar; in § 4 wird es ausgefiihrt.

Bei der Quantisierung des elektromagnetischen Feldes geht man zweckmaissig
nicht von den Feldstirken, sondern von den Potentialen aus. Normiert man diese
durch die «Coulomb-Normierung», so tritt die relativistische Invarianz der Theorie
nicht deutlich hervor. Die Lorentznormierung dagegen ist relativistisch invariant,
aber nicht eindeutig. Um die dadurch entstehenden Schwierigkeiten zu lésen, hat
K. BLEULERSY) eine indefinite Metrik eingefithrt. In § 5 soll gezeigt werden, dass das
unnoétig ist. Man kann einen Hilbertraum mit halbdefiniter Metrik einfithren, der
durch eine «Projektion» in einen Hilbertraum mit definiter Metrik iibergefiihrt wird.
Ist @' die Projektion eines Vektors @ des urspriinglichen Hilbertraumes, so hingt der
Zustand des Feldes nur von @’ ab und alle messbaren Grossen (zum Beispiel die Feld-
stirken) werden durch Operatoren im Raum der Projektionen @’ dargestellt.

Die Einheiten sollen immer so gewdhlt werden, dass ¢ = 1 und 2 = 27 wird.

§ 2. Skalares Bosonfeld

A. Wellenpakete
Die relativistische Wellengleichung eines skalaren Teilchens mit der Masse u
lautet
Au — u,, = uu . (1)
Als Losungen haben wir ebene Wellen
u — eikx—@‘wt (2)
mit
w?=pu? 4 k. (3)

Dabei bedeutet & x das skalare Produkt der Vektoren % und x, ebenso 22 das skalare
Quadrat des Vektors k2. Wir beschrinken uns auf Lésungen mit w = 0:

o = w(k) = (u? + k)12, (4)

Aus den ebenen Wellen kann man Wellenpakete bilden, indem man (2) mit einer
komplexen Amplitude g,(k) multipliziert und {iber den ganzen k-Raum integriert:

Pl ) = @) [ gulh) 51 5)

Hat man » Teilchen, so setzt man ganz analog

@, Ty, ..., X, 1) = (27)202 f @n (yy ..., By) EE 000 g (6)
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Fir freie Teilchen (ohne Wechselwirkung und ohne dusseres Feld) ist (%4, ... , &,)
von ¢ unabhingig, aber im allgemeinen Fall kann @,(%,, ...) von # abhédngen.
Statt ¢,(ky, ..., k,) schreiben wir im folgenden kurz ¢,(),. Das Symbol (%), steht

also fiir die Reihe der » Vektoren %, ..., k,. Das Quadratintegral oder die «Norm»
O = [ 9200 @ilh), db” | 7
(das Sternchen * bedeutet konjugiert komplex)

soll endlich sein. Dann ist auch die Norm der Funktion ¢{* links in (6) endlich, und
zwar gilt fiir jedes ¢

0 = Orgl . (8)
Wir koénnen also einfach (O« @, schreiben.
Fiir Bosonen verlangt man, dass ¢, (&), symmetrischin %, ..., &, ist. Dann ist auch

®,(%), symmetrisch.

B. Zustinde des Feldes

Wir setzen zunichst £ = 0. Dann wird (6)

Pul)y = )37 [, (R), & ZF i ©

Jeder Zustand mit fester Teilchenzahl % wird fiir £ = 0 durch eine Formel (9) ge-
geben. Fiir jede Teilchenzahl # haben wir also einen Hilbertraum #,. Jetzt soll ein
einziger Hilbertraum gebildet werden, der alle diese Rdume %, umfasst. Er besteht
aus allen Folgen

D = {@o, P1(%)1, Po(%)2, .-} - (10)
Dabei ist ¢, eine komplexe Zahl, ¢, eine Funktion von x,, ¢, eine Funktion von x; und
%y, etc. Jede einzelne Funktion ¢, soll symmetrisch in den Argumenten %, ..., %, sein

und eine endliche Norm haben. Jedes g, 1dsst sich also nach (9) entwickeln. Die Summe
der Normen '

or® = 3" Ory, (11)

soll endlich sein. Die einzelnen @ heissen Zustandsvektoren; sie bilden einen Hilbert-
raum.

Wir nehmen an, dass jeder von Null verschiedene Zustandsvektor @ einen Zustand
des Feldes definiert und dass @ und o @ fiir « + 0 denselben Zustand definieren.
Ist nur eine einzelne Funktion ¢, von Null verschieden, so schreiben wir @ = ¢,. Wir
haben dann einen Zustand, in dem zur Zeit ¢ = 0 genau = Teilchen vorhanden sind.

Ist 97® = 1, was man durch Multiplikation von @ mit einem passenden Faktor «
immer erreichen kann, und ist G ein Gebiet im 3 #-dimensionalen Raum der (x), oder (%),
das bei allen Permutationen der x oder % in sich iibergeht, so ist das Integral iiber G

[or@ 06,z oder [ gxE), 9,(h), dho" (12)
G G i
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die Wahrscheinlichkeit dafiir, dass genau » Teilchen vorhanden sind, deren Orts- -
oder Impulsvektoren dem Gebiet G angehdren. Insbesondere ist ¢f ¢, die Wahrschein-
lichkeit, dass kein Teilchen vorhanden ist.

C. Vernichtungs- und Erzeugungsoperatoren

Wir definieren nun den Vernichtungsoperator 4—(%’), der ein Teilchen mit Impuls
k" vernichtet. Der Operator soll ¢, in 0 tiberfithren und ¢, in ¢,_;:

Y1 By oo s Byy) =02, (By, oo, Ry, BY) (13)

Das heisst: ein Zustand @ = ¢,, in dem genau % Teilchen vorhanden sind, wird durch
den Operator b—(%’) iibergefiihrt in einen Zustand, in dem nur » — 1 Teilchen vor-
handen sind. Die Wahrscheinlichkeit, dass diese Teilchen Impulse in der Nihe von
Ry, ..., k,_; haben, ist proportional der Wahrscheinlichkeit, dass die urspriinglichen
n Teilchen Impulse in der Ndhe von &, ..., k,_; und %" haben.

Analog wird der Erzeugungsoperator 4+ (") definiert, der ein Teilchen mit Impuls
k' erzeugt. Er fithrt @, ; in @} {iber:

@ (k) = 112 Sy {p,y (R, ..., kyy) O (R — k) } (14)

Dabei ist Sy{f} fiir jede Funktion f von %y, ..., &, das arithmetische Mittel der !
Funktionen, die aus f durch Permutation der Argumente entstehen.

Beide Operatoren b~ und 4+ sind als uneigentliche Operatoren, d.h. als Distribu-
tionen zu verstehen. Das heisst: b+ (k') @ ist kein Zustandsvektor, wohl aber

b {g} @ = [ o) b (k) D ak'? (15)

mit einer stetigen Testfunktion g, die ausserhalb eines beschrinkten Gebietes im
£’-Raum Null ist. Der Operator b+{g} fiihrt ¢,_; in

@ 383 =12 Sy {@u1 (ky, oo, Ryy) (R} (16)
itber. Auch b4~ ist als uneigentlicher Operator aufzufassen; denn ¢, (%, ..., k,_y, &)
braucht fiir gegebene £’ als Funktion von %, ..., k,_; kein endliches Quadratintegral
zu haben, wohl aber

#r e} = m [ ) @y by oo By, B) PR (17)

Damit der Operator b—{g} auf @ anwendbar ist, muss man nur verlangen, dass die
Summe dieser Quadratintegrale, also die Norm von b~{g} @ endlich bleibt. Analog fiir
b+{g} @.

Die Vertauschungsregel

b=(R") bH(R") — bH(R") b—(R') = O(R" — R") (18)
bedeutet

b-{1} b+{g} — b+{g} b-{f} = [ (k) (k) ak (19)

fiir je zwei Testfunktionen f und g. Sie folgt direkt aus den Definitionen von 6—{f} und
b+{g}. Analog leitet man die bekannten Vertauschungsregeln fiir 6—(£’) b—(£") und fiir
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b*+(k’) b+(R") her. Die Vertauschungsrelationen sind also in dieser Theorie keine
Hypothesen, sondern beweisbare Sitze.

Die Operatoren b~ und b+ sind zueinander adjungiert, das heisst die Skalar-
produkte (¥, b~ @) und (b+ ¥, @) sind einander gleich. Daher schreibt man statt -
und b+ manchmal » und &%

Ahnlich wie 6-(F’) und b+(%’) werden b~(x') und b+(x’) definiert. Der Operator
b=(«") vernichtet ein Teilchen an der Stelle «’, das heisst er fiithrt ¢,(x), tiber in

(Pn—=1 (xl’ RN xn—l) — pli2 ®n (xl yore s Xyt X’) ¥ (20)

Ebenso erzeugt b*(x") ein Teilchen im Punkte x’.
Die Beziehungen zwischen 6%(k’) und b+(x’) lauten

(') = (2.7)-%2 f b (k) &% dr's (21)

bHx') = (21) 3 f bH(R) e ¥ 7 dR's | (22)

D. Die Operatoren P und Q

Die ebene Welle (2) erfiillt fiir jedes feste & die Differentialgleichung des klassi-
schen Oszillators it otu—0. (23)

Man kann das Feld also als ein System von unendlich vielen Oszillatoren auffassen.
Definiert man nun fiir jedes feste 2" die Operatoren  und P durch

Q= Qo)™ @bt +07), (24)

P = 21212 (b+ — b)), (25)
so sind P und @ selbstadjungierte Operatoren, die die gewthnliche Vertauschungs-
relation PK) Q") — Q') P(k) = —i 8 (&' = ¥) (26)
erfiillen.

E. Der Energie-Operator

In der Quantentheorie des Oscillators kann man den Energieoperator als
5 (PP )

ansetzen; die Nullpunktsenergie wird dann 1/, . Fiir die Feldtheorie ist es aber
zweckmissiger, die Nullpunktsenergie Null zu setzen. Das erreicht man, indem man
den Energieoperator als

S P+ 0iQ) (P—wiQ) =wbk)b(¥) (27)

ansetzt. Ubt man diesen Operator auf eine Folge von Funktionen ¢,(k), aus, so sieht
man, dass jede einzelne dieser Funktionen mit

O(R) {8 (by — K) + -+ + 6 (B, — &)} (28)
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multipliziert wird. In diesem Fall hat also das Produkt der uneigentlichen Operatoren
b*(£’) und b—(%') als uneigentlicher Operator einen Sinn.
Die Gesamtenergie des Feldes ist die Summe der Energien der einzelnen Oscilla-

toren:
Hy=[obH(k) b-(k') dk'® . (29)
v

Der Index 0 bedeutet, dass nur die innere Energie des Feldes beriicksichtigt ist.
Ubt man den Operator H, auf einen Zustand @ aus, der durch eine Folge {g,(k),}
definiert ist, so sieht man, dass die einzelnen ¢, (&), genau mit

Do =owk)+ - + ok, (30)
multipliziert werden. Also kann der Operator H, in der Impulsdarstellung so definiert
werden:

Jetzt kann man auch exp (— ¢ H, {) bilden, indem man die Funktionen g¢,(£), mit
exp (— 4 2 w ¢) multipliziert

e ! o, (R),} = {eT "V p,(R),} . (32)

Diese Formel bedeutet folgendes. Geht man von einem Zustand @(0) zur Zeit
t = 0 aus, der durch das Fourier-Integral (9) gegeben ist, und will man wissen, wie
dieser Zustand sich im Laufe der Zeit entwickelt, wenn alle Wechselwirkungen und
dusseren Einwirkungen vernachlissigt werden, so muss man die einzelnen Amplituden
®,(k), rechts in (9) mit exp (— 7 2 w ¢) multiplizieren. Das Ergebnis ist genau die
frithere Formel (6), die damit theoretisch gerechtfertigt erscheint.

F. Teilchenzahl

Ein anderer selbstadjungierter Operator ist
N =fb+(k’) b—(k") dk'3 . (33)
Die einzelnen ¢, sind Eigenfunktionen dieses Operators; der Eigenwert ist »:
N@=ng,. (34)

Somit ist N der Operator der Teilchenzahl, und die Zustdnde ¢, sind die Eigen-
funktionen dieses Operators. Der Wert der Teilchenzahl ist immer endlich, ndmlich
gleich # im Zustand @ = ¢,, aber der Erwartungswert der Teilchenzahl kann unend-
lich sein. .

G. Der Zustand als Funktion der Zeit
Wir betrachten nun die Zeitabhingigkeit des Zustandes @ etwas genauer. Der
Energieoperator sei
Zur Zeit ¢t = 0 haben wir einen Zustand @(0), dargestellt durch eine Folge von

Funktionen B(0) — {% ((x)m O)} . (36)
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Zur Zeit ¢ haben wir einen Zustand @(¢). In der Heisenberg-Darstellung wird @(¢) mit
@(0) identifiziert, das heisst @(¢) wird durch die gleiche Folge (36) dargestellt. In der
Schrédinger-Darstellung wird @(¢) durch die Folge

D) = {ga((%). 1)} (37)

dargestellt. In dieser Darstellung hat man dann
D) = e P(0) . (38)

Durch die Fourier-Transformation (9) kann man zum Impulsraum iibergehen. Tut
man das zur Zeit ¢, so erhdlt man

P (%), 1) = (270)-3n12 f o ((h), £) ¢85 din (39)

Vergleicht man die Entwicklung (39) mit der friiheren (6), so sieht man, dass die
Funktionen ¢, mit den fritheren ¢,(k), durch die Beziehung

Pulk)y = @alk), 7" 15 (40)

verkniipft sind. Die ¢,(k), haben gegeniiber den ¢, den Vorteil, dass sie im Fall freier
Teilchen nicht von der Zeit abhingen. Ist H, eine kleine Stérung, so dndern sich die
®,(k), nur langsam mit der Zeit.

Die Darstellung des Zustandes @ durch die Folge der Funktionen ¢, (%), nimmt eine
Mittelstellung zwischen der Heisenberg- und der Schrédingerdarstellung ein. Man
nennt diese intermedidre Darstellung die Wechselwirkungsdarstellung.

Ist b—(%’) der Operator der Vernichtung eines Teilchens mit Impuls £" zur Zeit ¢
in der Wechselwirkungsdarstellung, also der Operator, der ¢,(k), zur Zeit ¢ in

Py (Bis oo Bpq) = 112, (Ry, oo, Ry, R) (41)

iiberfithrt, und ist 5—(«’, £) der Operator der Vernichtung eines Teilchens im Punkte x’
zur Zeit ¢, so hat man analog zu (21) die Beziehung

b=(x',t) = (2 n)‘3’2fb(k’) gt E—al) JRts, ' (42)
Ebenso gilt fiir die Erzeugungsoperatoren
b’ 8 = 2 yt)—3f2fb+(k’) g EFH 0 gt s (43)

Dabei sind &~ und b+ links und rechts als Operatoren aufgefasst, die auf den Zu-
stand @(¢) zur Zeit ¢ wirken. Man kann sie aber auch als Operatoren auffassen, die auf
@(0) wirken, indem man nach Heisenberg @(f) mit @(0) identifiziert. Die Operator-
gleichungen (42) und (43) bleiben dann bestehen.

Im Fall freier Teilchen sind die Operatoren b~(%') und 6+(%’) konstant. In diesem
Fall folgt aus (42), dass der Operator b—(x’, t) dieselbe Differentialgleichung erfiillt
wie die ebene Welle (2):

Ab-— 0} b = 2 b, (44)
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H. Die Mehrzeitenfunktion @,(x, t),,

Es sei @, der Zustandsvektor des Vakuums:
®,={1,0,0,...}. (45)

Ist nun ein beliebiger Zustandsvektor @ gegeben und will man die einzelnen zu @
gehorigen Funktionen ¢,(x), berechnen, so braucht man nur das Skalarprodukt

(Dg, b (%) ... b (x,) @) = n!2 g, (x), (46)

zu bilden. Die Symmetrie der Funktion ¢, folgt aus den Vertauschungsregeln fiir die
Operatoren 5.

Man kann die Operatoren 6~(x;) auch zu verschiedenen Zeiten £; bilden und eine
Funktion ¢,(x, ), durch

(@0’ b_(xl’ tl) ten bi(xn’ 'tn) @) = n!1[2 (pn(xt t)n (47)

definieren. Setzt man voraus, dass die Verbindungsvektoren

alle raumartig sind, so wird man in einer guten Bosonentheorie erwarten, dass die
Operatoren b~(x;, ¢;) alle vertauschbar sind. Die Funktionen ¢,(x, ), werden dann
wileder symmetrisch.

Fiir freie Teilchen kann man die Funktionen g, (¥, f), explizit berechnen:

@, (x, 1), = (2 7)-3nI2 f(pn(kl, oo k) EEBE00 gran (48)

Diese Formel ist eine naheliegende Verallgemeinerung von (6).

Die Mehrzeitenfunktion ¢,(x, #), ist ein sehr niitzliches Hilfsmittel, wenn man die
relativistische Invarianz einer Theorie beweisen will. Man habe eine Lorentztrans-
formation, die die Variablen x und ¢ in " und ¢ iiberfithrt. Man wihle nun zu jedem

% ein ¢ so, dass alle ¢’ einander gleich werden. Dann kann man die transformierten
Funktionen

Pu¥, 1), = (%, 1),

nach (48) berechnen, daraus den Zustand @’(¢') bilden und untersuchen, ob die Diffe-
rentialgleichungen fiir @ dieselben sind wie fiir @.

Die Idee einer Mehrzeitentheorie, deren relativistische Invarianz leicht zu be-
weisen ist, stammt von Dirac?).

§ 3. Elektron-Positron-Feld

Die Dirac-Gleichung eines einzelnen freien Elektrons lautet in der Bezeichnung
von DIRACS):

(Po—Prop—Psu) x=0. (1)



Vol. 36, 1963 Zur Quantentheorie der Wellenfelder 953

Hier bedeutet p, der Differentialoperator ¢ 0, und $ der dreidimensionale Vektor
mit Komponenten 7 0,, 7 0, und ¢ 0,. Die # und ¢ sind numerisch gegebene vierreihige
Matrices, und y ist ein vierkomponentiger Spinor. Die Komponenten von y mégen y,
heissen. Als Losungen von (1) haben wir ebene Wellen

s Wt ] B 8 8) = ¢x [5, £ Pt (2)

Dabei nimmt ¢ die beiden Werte + 1 an: + fiir positive Energie, — fiir negative.
Ferner ist
=& (u?+ K. 3)

Der Spinindex s nimmt ebenfalls die Werte 4+ 1 an. Man kann fiir s etwa den Eigen-
wert von oy nehmen:

0'3%:-3%. (4)

Das bedeutet, dass fiir den Spinor ¢(s, €) mit den Komponenten ¢, (s, ¢) ein Eigenvektor
der Matrix ¢, gewéhlt wird; der Spin in der Richtung der z-Achse hat dann den Wert
1,5 = 4 1/,. Statt der Richtung der z-Achse hitte man auch irgend eine andere
Richtung nehmen konnen, zum Beispiel im Fall 2 + 0 die Richtung des Impuls-
vektors k2. Man miisste dann, wie FRIEDRICHS es in %), Part V, § 28 tut, fiir s den Eigen-
wert und fiir ¢(s, ¢) einen Eigenvektor der Matrix

ok
= 7] (5)
nehmen. Wir halten uns aber vorldufig an die erste Verabredung. Die ¢(s, &) [s = £+ 1,
¢ = 4 1] sind dann vier numerisch gegebene, linear unabhéngige Spinoren.
Statt y,(x, ¢ | &, s, &) werden wir auch y(x, «, ¢ | &, s, €) oder kurz y(%, s, &) schreiben.
Die Lochertheorie beruht auf der Annahme, dass immer nur endlich viele Wellen
positiver Energie besetzt und nur endlich viele Wellen negativer Energie unbesetzt
sind. Wenn eine Welle positiver Energie y(%, s, + 1) besetzt ist, so ist ein Elektron mit
Impuls & und Spin s vorhanden. Wenn eine Welle negativer Energie y(&, s, — 1) unbe-
setzt ist, so ist ein Positron mit Impuls — & und Spin s vorhanden.
Wir betrachten nun solche Zustinde, in denen #, Elektronen und #, P091tronen
vorhanden sind, insgesamt also
n=n,+n, (6)

Teilchen. Sind die Spins, Impulse und Energievorzeichen dieser Teilchen gegeben, so
sind die » Tripel

(kl! Sl’ 81)» e (km Sn: En)

bekannt. Die Wellenfunktion des Systems von # Teilchen ist das Produkt der #
Faktoren y(x;, a;, ¢ | &;, 55, €)).

Dieses Produkt ist mit einer Wahrscheinlichkeitsamplitude ¢, (%, s, €), zu multi-
plizieren, nach den % zu integrieren und nach den s und ¢ zu summieren. So erhilt man

die Wahrscheinlichkeitsamplitude im (x, «)-Raum:

@, (%, (2 m) 3”22:']%1336 Hx t| &, s;, &) dk3" . (7)
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Die Funktion g,(%, s, €), soll antisymmetrisch in allen Argumenttripeln sein. Dann
ist auch @, (x, «) antisymmetrisch in den Argumentpaaren (¥, o).

Die Norm von ¢, (¥, «), wird durch Integration tiber die ¥ und Summation iiber die
« (von 1 bis 4 fiir jedes einzelne «;) definiert:

e, =) / P @, dx3" (8)

Analog fiir die ¢,(%, s, €),. Die Eigenvektoren c,(s, &) sind orthogonal und kénnen so
normiert werden, dass
D k(s &) eyls’, &) =1 (9)
wird. Dann verifiziert man, dass die Norm von ¢, (¥, o), gleich der Norm von ¢,(%, s, ¢),
ist. Wir konnen also einfach 7@, schreiben, ohne uns um die Argumente zu kiimmern.
Ein Zustandsvektor @ wird wieder als eine Folge von Funktionen

@ = {%, @1(%, &)1, @o(%, ), - - } (10)
mit endlicher Norm
O =D Iy, (11)
0

definiert. Wir betrachten zunichst, wie in § 2, nur Zustinde des Feldes zu einer festen
Zeit, zum Beispiel zur Zeit £ = 0. Das Integral von ¢} ¢, tiber ein Gebiet G im Raum
der %, e und s, das bei allen Permutationen der » Tripel (£, s, &), ... in sich iibergeht,
ist wieder gleich der Wahrscheinlichkeit, dass das Feld aus # Teilchen besteht, deren
Vektoren %, Spinorientierungen s und Ladungsvorzeichen & dem Gebiet G angehéren.
Der Vernichtungsoperator a—(%’, s’, ¢’) wird genau so definiert wie frither der Ver-
nichtungsoperator 6—(%'). Der Operator a—(k’, s’, &) fithrt also ¢,(%, s, €), in

®,_1(k, s, &), = nll? Pulky, 51, 8 \ | Ro1, Sp—1s €n1 | ks, &) (12)

iiber. Beim Erzeugungsoperator a* muss man diesmal eine alternierende Summe bil-
den. Der Operator a* fiihrt also ¢, _;(%, s, €),_; in

@y (B, s, &), = ni2 Asy {g, 1(k, s, &), 0K — k,) (s —5,) 6(e" —&,)}  (13)
tiber. :

Die fundamentalen Operatoren der Theorie sind aber nicht diese ¢~ und at,
sondern zwei Operatoren 9~ und y*, die so definiert werden:

p(k,s,&¢)=a, wenn & =+1
(14)
=at, wenn ¢ =-—1,

wpr(k',s', &) =at, wenn & =+1

] (15)

—=a-, wenn ¢ =—1.

b

Der Operator ¢~ vernichtet also ein Elektron oder erzeugt ein Positron. Der
Operator y+ erzeugt ein Elektron oder vernichtet ein Positron. Statt ¢~ schreiben wir
auch y, und statt ¢+ schreiben wir ', um uns der bei den Phy51kern tiblichen Be-
zeichnung anzupassen.
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Die Vertauschungsregel fiir die Operatoren v und 9’ lautet

(K, ', &) (7, 8", &)1, = O — B) (5" — ") O(e’ — &), (16)

wobel [A B], = A B + B A gesetzt ist.
Die Operatoren y,(x) und ] (x) werden am einfachsten durch eine Fouriertrans-
formation definiert, analog zu den Formeln (21) und (22) in § 2:

Pal¥) = (2 ﬂ)“3’22fw(k’, s, &) yalk', 8", &) dR'2, (17)

pir) = (27) mgfjw s €) AR S E) dRYS (18)

Man erhdlt dann fiir die y,(x") und p}(x’) genau die richtige Vertauschungs-
relation

[ () wh(x")] = (" — 2") O(x — B) . (19)

Wie in § 2 kann man die Operatoren u(x’, £) und o!(x’, #) auch fiir beliebige Zeiten ¢
definieren und die relativistische Invarianz der Theorie priifen. Das soll jetzt nicht
ndher ausgefithrt werden. Wir bemerken nur, dass die Formeln (17) und (18) fiir be-
liebige Zeiten ¢ ungeindert gelten. Im Fall freier Teilchen sind die y(&’, s’, &’) rechts
konstant. Daraus folgt, dass y(x, #) wie ¥ der Differentialgleichung (1) geniigt und
y'(x, ) wie y* der konjugiert-komplexen Differentialgleichung.

§ 4. Neutrino-Antineutrino-Feld

Eine relativistische Wellengleichung erster Ordnung fiir einen zweikomponentigen
Spinor kann nach der Spinoranalyse?) nur eine der beiden von WEYL1?) zuerst vorge-
schlagenen Formen

(po—0p) x =10 (1)

oder

(o +0p) x=0 (2)

haben. Dabei sind oy, 0,, 04 die drei Paulischen zweireihigen Matrices. Die Gleichungen
sind bei Spiegelungen nicht invariant. Die zugehorigen Teilchen haben die Masse Null.
LEE und YANG!) haben vorgeschlagen, eine der beiden Gleichungen (1) oder (2)
als Wellengleichung fiir das Neutrino und die andere fiir das Antineutrino anzu-
nehmen. Nach FEYNMAN und GELL-MANN12) passt die Gleichung (1) fiir Neutrinos am
besten zu den Messungen tiber die Richtungsverteilung beim f-Zerfall.
Setzt man eine Losung von (1) als ebene Welle an:

T = 0 eikx--iwt , (3)
so findet man als Bedingung fiir den Spinor ¢ und die Frequenz w
(w-+0-kc=0. (4)

Nun hat die Matrix o % die Eigenwerte 4 | £ |. Also muss man

w=¢|k|, e==+1 (5)
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setzen. Wahlt man & = + 1, so erhilt man eine ebene Welle mit positiver Energie und
Spin entgegengesetzt zum Vektor £. Wahlt man ¢ = — 1, so erhdlt man eine Welle mit
negativer Energie und Spin gleichgerichtet mit 4. Zu jeder Wahl von ¢ gehort ein
einziger Spinor c(%, €). Als Losungen von (1) erhalten wir die ebenen Wellen

Xalt, | by €) = cy(k, &) 57000 (6)

Aus Produkten von solchen ebenen Wellen bilden wir, wie in § 3, Wellenpakete

0.5 0)y — )2 5 ke, TT gulot | o) dion, g

wobel die @, (%, ¢), wieder antisymmetrisch sein sollen. Der weitere Aufbau der Theorie
verlduft genau wie in § 3.

§ 5. Das elektromagnetische Feld
A. Ebene Wellen

Grosse lateinische Buchstaben bezeichnen im folgenden Vierervektoren, zum
Beispiel
K=(khw, X=(@1.

Das Skalarprodukt von K und X ist
KX=kx—owt. (1)

Das Viererpotential 4 wird durch die Lorentzbedingung

20, d;=D (2)

1

eingeschrankt. Wenn keine Ladungen vorhanden sind, gilt die Wellengleichung
(1A =44 — 0?4 =0. (3)
Als Lésungen von (3) haben wir ebene Wellen
Ak, s) = C,(s) &KX, (4)
Wegen der Lorentzbedingung (2) muss
KC=0 (5)

sein; wir haben also fiir jedes K drei linear unabhéngige ebene Wellen, die durch einen
Index s (s = 1, 2, 3) unterschieden werden kénnen. Die Wellengleichung (3) ergibt fiir
K die Bedingung

K2=F —0?2=0. (6)

Wir wahlen fiir w die positive Wurzel

w—] k] 7
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Fiir jedes feste K kénnen wir die z-Achse durch eine Drehung in die Richtung des
Vektors % bringen. Dann wird

K=1(0,00 o). (8)

Als linear unabhingige Losungen der Gleichung (5) wahlen wir

c(1) = (1,0,0,0), (%)
C(2) = (0,1,0,0), | (92)
C(3) = (0,0,1,1). (95)°

Die ersten beiden Losungen entsprechen den beiden Polarisationsrichtungen einer
Lichtwelle. Die dritte Losung kann durch Umeichen des Potentials zu Null gemacht
werden. Eine solche Umeichung besteht darin, dass man 4 durch 4 + V' f ersetzt,
wobei [ eine beliebige differenzierbare Funktion von x und ¢ und I/ der Vektor
(04, 05, 03, — 0,) ist. Wihlt man

f =g ez‘KX (10)

mit einer beliebigen Konstanten g, so wird in der ebenen Welle (4) der Vektor C durch
C+1gK=C+1igwC(3) (11)

ersetzt. Insbesondere wird C(3) durch (1 + 7 g w) C(3) ersetzt. Wahlt man g = i/,
so wird C(3) durch Null ersetzt und das Viererpotential

Ak, 3) = C(3) XX (12)

wird Null. Das heisst also: Das Viererpotential A (%, 3) erzeugt kein Feld.
Bildet man aus den drei Viererpotentialen A (%, s) eine Linearkombination

AR) = a(1) A(k, 1) + «(2) A(k, 2) + a(3) A(k, 3), (13)

so kann man nach dem eben Gesagten den Faktor «(3) durch Null ersetzen, ohne dass
das Feld sich dndert. Setzt man «(3) = 0, so wird 4, = 0 und div 4 = 0. Das heisst:
die Normierung «(3) = 0 ist die Coulombeichung. Jede Umeichung bedeutet eine
andere Wahl von «(3), wiahrend «(1) und «(2) ungedndert bleiben.

In der Definition der Basislésungen C(1) und C(2) steckt noch eine Willkiir. Durch
die Richtung der z-Achse sind namlich die Richtungen der x- und y-Achse noch nicht
festgelegt. Man kann also C(1) und C(2) einer reellen orthogonalen Transformation
unterwerfen. Die Koeffizienten «(1) und «(2) werden dabei ebenfalls reell orthogonal
transformiert, wihrend «(3) ungedndert bleibt. Fiir das Folgende ist eine solche
Transformation belanglos. In allen Formeln setzen wir voraus, dass fiir jeden Vektor
k die Richtungen der x- und y-Achse beliebig gewihlt sind. In bezug auf dieses Achsen-
kreuz bilden wir dann die Vierervektoren C(s). Die Koordinaten von C(s) in bezug auf
ein festes, von £ unabhéngiges orthogonales Koordinatensystem mogen C,(s) heissen.
Dabei liduft also s von 1 bis 3 und » von 1 bis 4.
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B. Wellenpakete

Wir multiplizieren nun jede ebene Welle (4) mit einer Wahrscheinlichkeitsampli-
tude @, (%, s), summieren iiber s und integrieren iiber den A-Raum. So erhalten wir eine
Wellenfunktion fiir ein einzelnes Photon:

PuX) = pu(X,9) = @) [ (ke 5) A, k. ) dk (14)

Fiir ¢ = 0 lautet (14) so:

P () = gi5,9) = @) [ Sk, ) Cyfs) o k. (15)

Lasst man den Index » nur von 1 bis 3 gehen, so rechnet man leicht aus, dass die
Norm der Funktion links

3
O = | X gtins) pule, ») dn? (16)
y=1

gleich der Norm der Funktion rechts

O = [ Dot o) pulk, s) dk® (17)

ist. Wir kénnen daher diese Norm einfach (O7¢, nennen. Sie ist eine reine Rechengrosse
und hat keine physikalische Bedeutung.

Ist insbesondere ¢, (x, ») = 0, so hat auch ¢, (%, s) die Norm Null, also ist ¢, (%, s) =
0 bis auf eine Nullmenge im £-Raum. Daraus folgt, dass ¢,(%, s) durch ¢,(x,») im
wesentlichen eindeutig bestimmt ist.

Die Coulombeichung des Viererpotentials (14) wird erhalten, indem man rechts
A, (%, 3) durch Null ersetzt. Wir erhalten so das reduzierte Viererpotential

@y(X,v) = (2 77:)‘3’2/2' P1(%, 5) A, (%, s) dR® . (18)
Dabei bedeutet " eine Summe von 1 bis 2. Insbesondere erhilt man fiir ¢ =0
#ix9) = @2 [ 3 ik, 9) Cofs) ¢ dh>. (19)

Ist @ (x, v) fiiry = 1, 2, 3 gegeben, so ist dadurch ¢, (%, s) fiir s = 1, 2, 3 im wesent-
lichen eindeutig bestimmt; dann ist aber auch das reduzierte Wellenpaket ¢j(x, »)
nach (19) eindeutig bestimmt. Den Ubergang von ¢, zu ¢; nennen wir Projektion.
In der Impulsdarstellung geschieht die Projektion einfach dadurch, dass die Funktion
@1(k, 3) durch Null ersetzt wird, wihrend @,(k, 1) und g,(k, 2) ungeindert bleiben.

Unter der reduzierten Norm 7' ¢, der Funktion verstehen wir die Norm der
Projektion ¢j:

O o, = Ty, (20)
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Die reduzierte Norm kann direkt aus der Wahrscheinlichkeitsamplitude ¢, (%, s) be
rechnet werden, indem man ¢, (%, 3) durch Null ersetzt und die gew6hnliche Norm
bildet:

O @, = /2 *(k, s) @, (k, s) di? . (21)

Bei der Definition der reduzierten Norm haben wir die Coulombeichung verwendet.
Man kann aber auch ohne Bezugnahme auf eine bestimmte Eichung ¢; als die Klasse
aller ¢, definieren, die durch Umeichung aus einem bestimmten ¢, entstehen. Die
Norm O7¢; kann man dann als das Minimum der Normen aller ¢, dieser Klassen
definieren. Das Minimum aller Summen (17) bei gegebenen ¢, (%, 1) und ¢, (%, 2) und
variablen ¢, (%, 3) ist ndmlich die reduzierte Summe (21).

Jetztist es nicht mehr schwer, Wellenpakete fiir » Photonen zu bilden. Wir nehmen
ein Produkt von ebenen Wellen (4) in lauter unabhingigen Variablen (X, »), ...,
(X,, v,). Das Produkt wird mit einer Wahrscheinlichkeitsamplitude ¢, (%, s), multipli-
ziert, die symmetrisch in allen Argumentpaaren (%, s,), ..., (&,, s,) ist und eine end-

n>sn

liche Norm hat. Dann wird iiber alle s von 1 bis 3 summiert und iiber alle % integriert:

BuX, )= )y [ S k), [T Ak, 5) abo (22)

Die reduzierte Funktion ¢, wird erhalten, indem alle 4 ,(#, 3) durch Null ersetzt
werden :

Pu(X, ), = (27) 3" /ernks HA (k, ) dbo, (23)

Dabei bedeutet }” eine Summation iiber alle s von 1 bis 2
Die Norm und die reduzierte Norm von ¢, werden wie vorhin definiert, am ein-
fachsten durch Summation und Integration im Impulsraum:

g~ [ Dk, s) gk, o) awr, 29

o7 @, = Ofgl, = f 3 px(k, s) @ik, 5) AR (25)

Die Projektion ¢, > ¢, bildet den Hilbertraum aller Funktionen (22) auf den
Hilbertraum der Projektionen ab.

C. Zustandsvektoren

Wir nehmen nun an, dass ein Zustand des Feldes durch eine Folge von Funktionen

D = {po, P1(%, 8)1, Po(k, 8)a. ... } (26)

definiert ist, wobei die Summe der Normen

o =3 O, | (27)
0
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endlich sein soll. Derselbe Zustand @ kann auch durch eine Folge von Funktionen
@,(x, v) definiert werden. Man erhilt ¢,(x, »), indem man in (22) links und rechts
t = 0 setzt: '

pulr o = )02 [ X,k ), [ C,f5) & b 29

Die Folgen @ heissen Zustandsvektoren. Jeder Folge @ ist eine Projektion @' zuge-
ordnet, die erhalten wird, indem alle ¢,(%, s),, in denen ein s = 3 ist, weggelassen wer-
den. Wir nehmen an, dass der Zustand des Feldes bereits durch die Projektion @’ be-
stimmt ist. Zu @’ = 0 gehort kein Zustand. Zu @' und o @’ gehort derselbe Zustand.

Unter der reduzierten Norm O’ @ verstehen wir die Norm der Projektion @':

ON® = 0@ =3 O ¢, = 3 O, (29)
0 0

Die reduzierte Norm definiert eine halbdefinite Metrik im Raum der @, aber eine
positiv-definite Matrik im Raume der @’. Der Raum der @’ ist der Raum der physika-
lisch feststellbaren Zustinde. Der Raum der @ ist nur eine mathematische Hilfs-
konstruktion, die bei Untersuchungen iiber die relativistische Invarianz niitzlich ist.

Den Raum der Projektionen @’ wollen wir R, nennen, weil in (23) tiber s nur bis 2
summiert wird. Den Raum der @ nennen wir K;. Man kann R, in einen noch grosseren
Zustandsraum R, einbetten, indem man auch noch solche Viererpotentiale A(%,4)
zulidsst, die die Lorentzbedingung (2) nicht erfiillen. Man kann zum Beispiel «longitudi-
nale Wellen» von der Form (4) mit :

C4) = (0,0,1,0) (30)

hinzunehmen. In diesem Raum R, kann man dann nach BLEULERS®) eine indefinite
Metrik einfithren. Nachher beschrankt BLEULER sich dann auf einen linearen Unter-
raum, der durch eine von GUPTA13) angegebene lineare Bedingung, Gleichung 2.11in %),
definiert wird. Dieser Unterraum ist, wie man leicht nachrechnet, genau unser Raum
R,. Die indefinite Metrik in R, erzeugt in R, eine halbdefinite, ndmlich eben die durch
unsere reduzierte Norm (29) definierte Metrik. Unsere Theorie ist also mit der Gupta-
Bleulerschen dquivalent.

D. Vernichtungs- und Erzeugungsoperatoren

Der Vernichtungsoperator 6=(k’, s’) vernichtet ein Photon mit Impuls %" und
Polarisation s’. Er fiihrt also ¢, (%, s), in ¢, _, iiber:

(pf;-fl(k’ S)n-—l = 74’1!2 %((k: s)n—l’ k” S,) * (31)

Ebenso erzeugt b*(k’, s’) ein Photon mit Impuls 2" und Polarisation s’. Er fiihrt
®¥n_1(k, §),_1 In @, iiber:

@y (R, 5), = 112 Sy {@, 1(k, 5),1 (K" — &,) O(s" — s,)} . (32)
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Beide Operatoren werden nur fiir s’ = 1, 2, 3 gebildet. Sie fiithren also nicht iiber
den Raum R; hinaus. Photonen, die die Lorentzbedingung nicht erfiillen, werden nicht
erzeugt und nicht vernichtet, sondern sie bleiben iiberhaupt ausser Betracht.

Die Operatoren 4~ und b* mit s = 3 haben keine physikalische Bedeutung: sie
wirken auf die Vektoren @ des mathematischen Hilbertraumes R,. Die Operatoren
mit s = 1 oder 2 dagegen wirken auf den Raum R, der physikalischen Zustands-
vektoren @’: sie vernichten und erzeugen echte Lichtquanten.

Die Vertauschungsrelationen lauten wie immer

[b=(K, §) bR, s")] = O(k' — k") 8(s’ — "), (33)
b-(k', s') b-(k",s")] =0, (34)
[b+(R, §') bH(E", s")] =0 . (35)

E. Energie, Potential und Feldstirken

Die Energie des elektromagnetischen Feldes ist, wie in § 2 (29), die Summe der
Energien der einzelnen Oscillatoren:

- R f S bk, s) b-(k, §') dR'3. (36)
Setzen wir also fir s’ =1, 2, 3
g&',s") = 2 w)"2b-(R,s"), : "1BT)
g'(k',s') = Qw) 12 bk, s, - (38)
so wird
Hy= [ X'202 ¢k, s) gk, ) ak™. (39)

Das Viererpotential des Feldes wird nun als selbstadjungierter Operator so defi-
niert:

A, = [ X g, s) A, 5) + g, ) A3K, 5y v (40)

Diese Formel ist ganz analog der iiblichen Formel, in der statt des Integrals eine
Summe iiber alle Eigenschwingungen des in einen Kasten eingeschlossenen Feldes
steht. Die einzelnen A,(%"s’) und A¥(k's") sind Funktionen von x und ¢, die die
Daifferentialgleichungen (2) und (3) erfiillen; also geniigt auch 4, diesen Differential-
gleichungen. |

Aus dem Viererpotential 4, kann man durch Differentiation die Feldstdrken
bilden:

F,=V,4,-V,4,. (41)

Man findet aus (40):

Foy= [ Ztal' s ) + ¢'(K, &) EAK, o)} di'2. 42)

16 H.P.A. 36, 7 (1963)
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Die zu s" = 3 gehorigen Feldstirken sind Null, also braucht man in der Summe
rechts nur die Glieder s" = 1 und 2 mitzunehmen. Man kann also bei der Berechnung
von F,, von vornherein mit der Coulomb-Normierung rechnen. 4, ist dann Null und
man findet

C=-0,4= sz' w {qk',s) Ak, s") — q'(F,s") A*(k',s")}, (43)

H=rotd = fffZ lg', s') (K, AR, )] — ¢'(R, &') [K', AX(R', $)]} . (44)

wobei [k, A] das Vektorprodukt der Raumvektoren 2 und 4 bedeutet. € und § er-
fillen natiirlich die Maxwellschen Gleichungen fiir das Vakuum.

F. Schiussbemerkung

Das elektromagnetische Feld in Wechselwirkung mit Elektronen kann in der
iiblichen Weise behandelt werden. Wenn das iibliche «Feld in einem Kasten» durch
das Feld im unendlichen Raum ersetzt wird, hat man in jeder Formel, der die Opera-
toren b+ und b~ oder ¢ und ¢* enthilt, die Summation iiber alle diskreten Zustinde
durch eine Summation {iber s’ und Integration iiber & zu ersetzen. Mathematisch ein-
wandfrei kann man die Theorie allerdings nicht formulieren, da sie anscheinend
divergiert.
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