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Zur Quantentheorie der Wellenfelder

von B. L. van der Waerden
Mathematisches Institut der Universität Zürich

W. Heitler zum 60. Geburtstag gewidmet

(15. VIII. 63)

Summary. Along the lines indicated by V. Fock and K. Friedrichs, a rigorous foundation of
Field Quantum Theory is presented. In § 2 a scalar boson field is considered, in § 3 the electron-
positron field, in § 4 the neutrino field, and in § 5 the electro-magnetic field.

§ 1. Einleitung
Wenn ein Physiker versucht, einen Mathematiker für die Probleme der Quantentheorie

der Wellenfelder zu interessieren, so ist die Schwierigkeit meistens, dass der
Mathematiker die Probleme nicht versteht, weil die Formulierung ihm nicht präzis
genug ist. Das Hauptziel der vorliegenden Arbeit ist, die Grundbegriffe und
Grundgleichungen der Quantentheorie der Wellenfelder so zu formulieren, dass jeder
Mathematiker sie verstehen kann. Inhaltlich enthält die Arbeit nichts Neues.

Die alte Quantenmechanik von Born, Heisenberg und Jordan ging von der
Vertauschungsrelation

Pi-lt -{y W

aus. Wie die Operatoren p und q definiert waren, wurde nicht gesagt. Im Fall des

Wasserstoffatoms gelang es Pauli1), die Energiewerte durch algebraische Überlegungen

auf Grund der Relation (1) zu bestimmen, aber diese Methode war nicht leicht zu
verallgemeinern. Erst als Schrödinger2) die Operatoren p und q durch ihre Wirkung
auf die Wellenfunktion explizit definierte, war der Weg zur Quantenmechanik beliebiger

Systeme von endlich vielen Teilchen frei.
Analog ist die Situation in der Quantentheorie der Wellenfelder. Häufig postuliert

man Vertauschungsrelationen für die fundamentalen Operatoren der Theorie und
versucht, daraus alles herzuleiten. Man kann aber auch die fundamentalen Operatoren
durch Erzeugungs- und Vernichtungsoperatoren explizit ausdrücken. Alle Probleme
werden dann viel bestimmter und vielleicht auch leichter zu lösen.

Häufig denkt man sich das Feld durch ebene Wände begrenzt und verlangt eine

Periodizitätsbedingung. Das ist aber nicht nötig. V. Fock3) hat einen Weg angegeben,
auf dem man die Quantentheorie der Wellenfelder im unendlichen Raum exakt
begründen kann. K. Friedrichs4) hat mit Hilfe der Theorie der Distributionen von
L. Schwarz5) diese Begründung mathematisch einwandfrei durchgeführt.
60 H. P.A. 36, 7 (1963)
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Friedrichs hat den Fall des skalaren Bosonfeldes und den des Elektron-Positron-
Feldes behandelt, nicht aber den wichtigen Fall des elektromagnetischen Feldes. In
der vorliegenden Arbeit soll auch dieser Fall durchgerechnet werden.

Zur Bequemlichkeit des Lesers wird die Theorie von Friedrichs nicht als bekannt
vorausgesetzt, sondern in ihren Grundzügen neu entwickelt. In § 2 wird das skalare
Bosonfeld im wesentlichen nach Friedrichs behandelt, in § 3 das Elektronpositron-
Feld mit leicht abgeänderten Bezeichnungen, die die relativistische Invarianz besser

hervortreten lassen. Wie man das Neutrino-Antineutrino-Feld nach der zweikompo-
nentigen Spintheorie zu behandeln hat, ist dann klar; in § 4 wird es ausgeführt.

Bei der Quantisierung des elektromagnetischen Feldes geht man zweckmässig
nicht von den Feldstärken, sondern von den Potentialen aus. Normiert man diese

durch die «Coulomb-Normierung», so tritt die relativistische Invarianz der Theorie
nicht deutlich hervor. Die Lorentznormierung dagegen ist relativistisch invariant,
aber nicht eindeutig. Um die dadurch entstehenden Schwierigkeiten zu lösen, hat
K. Bleuler6) eine indefinite Metrik eingeführt. In § 5 soll gezeigt werden, dass das

unnötig ist. Man kann einen Hilbertraum mit halbdefiniter Metrik einführen, der
durch eine «Projektion» in einen Hilbertraum mit definiter Metrik übergeführt wird.
Ist 0' die Projektion eines Vektors 0 des ursprünglichen Hilbertraumes, so hängt der
Zustand des Feldes nur von 0' ab und alle messbaren Grössen (zum Beispiel die
Feldstärken) werden durch Operatoren im Raum der Projektionen 0' dargestellt.

Die Einheiten sollen immer so gewählt werden, dass c 1 und h=2n wird.

§ 2. Skalares Bosonfeld

A. Wellenpakete

Die relativistische Wellengleichung eines skalaren Teilchens mit der Masse fi
lautet

Au — utt /A u (1)

Als Lösungen haben wir ebene Wellen

u e'kx~iat (2)

mit
co2 iA + k2 (3)

Dabei bedeutet k x das skalare Produkt der Vektoren k und x, ebenso k2 das skalare
Quadrat des Vektors k. Wir beschränken uns auf Lösungen mit co AO:

co mfk) ffx2 + k2)1'2. (4)

Aus den ebenen Wellen kann man Wellenpakete bilden, indem man (2) mit einer
komplexen Amplitude cpxfk) multipliziert und über den ganzen &-Raum integriert:

cpifx, t) (2 tt)"3'2 fcpifk) «•'*»-«•' dk3. (5)

Hat man n Teilchen, so setzt man ganz analog

cpn fxx, X„, t) (2 TT)"3»'2 [<pn fkx, ...,k„) ^(*—« dk3". (6)
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Für freie Teilchen (ohne Wechselwirkung und ohne äusseres Feld) ist cpnfkx, kn)

von t unabhängig, aber im allgemeinen Fall kann cpnfki, von t abhängen.
Statt cp„fklt kn) schreiben wir im folgenden kurz cpnfk)n. Das Symbol fk)n steht

also für die Reihe der n Vektoren kx, kn. Das Quadratintegral oder die «Norm»

Ar<pl„k)=f<p:fk)ncpnfk)ndk3" (7)

(das Sternchen * bedeutet konjugiert komplex)

soll endlich sein. Dann ist auch die Norm der Funktion cp{*] links in (6) endlich, und
zwar gilt für jedes t

M] M ¦ (8)

Wir können also einfach AATcpn schreiben.
Für Bosonen verlangt man, dass cpnfk)n symmetrisch inkx, kn ist. Dann ist auch

cpnfx)n symmetrisch.

B. Zustände des Feldes

Wir setzen zunächst t 0. Dann wird (6)

cpn(x)n (2 n)-^2fcpnfk)n eiSkx dk3". (9)

Jeder Zustand mit fester Teilchenzahl n wird für t 0 durch eine Formel (9)
gegeben. Für jede Teilchenzahl n haben wir also einen Hilbertraum AAVn- Jetzt soll ein
einziger Hilbertraum gebildet werden, der alle diese Räume A?fn umfasst. Er besteht
aus allen Folgen

0 {<Po, 9>iMu 9?2vX> • • •} • (10)

Dabei ist cp0 eine komplexe Zahl, cpx eine Funktion von %, cp2 eine Funktion von xx und
x2, etc. Jede einzelne Funktioncpn soll symmetrisch in den Argumenten xx, xn sein
und eine endliche Norm haben. Jedes cpn lässt sich also nach (9) entwickeln. Die Summe
der Normen

oo

DT®=ESft<Pn (ii)
0

soll endlich sein. Die einzelnen 0 heissen Zustandsvektoren; sie bilden einen Hilbertraum.

Wir nehmen an, dass jeder von Null verschiedene Zustandsvektor 0 einen Zustand
des Feldes definiert und dass 0 und a 0 für a + 0 denselben Zustand definieren.
Ist nur eine einzelne Funktion <pn von Null verschieden, so schreiben wir 0 cpn. Wir
haben dann einen Zustand, in dem zur Zeit t 0 genau n Teilchen vorhanden sind.

Ist £fî0 1, was man durch Multiplikation von 0 mit einem passenden Faktor a
immer erreichen kann, und ist G ein Gebiet im 3 w-dimensionalen Raum der fx)n oder fk)n,
das bei allen Permutationen der x oder k in sich übergeht, so ist das Integral über G

\ftfAnfnfAnàx3" oder J<p*(k)n tpn(k)ndk3» (12)
G G
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die Wahrscheinlichkeit dafür, dass genau n Teilchen vorhanden sind, deren Ortsoder

Impulsvektoren dem Gebiet G angehören. Insbesondere ist 99* <p0 die Wahrscheinlichkeit,

dass kein Teilchen vorhanden ist.

C. Vernichtungs- und Erzeugungsoperatoren

Wir definieren nun den Vernichtungsoperator b~(k'), der ein Teilchen mit Impuls
k' vernichtet. Der Operator soll cp0 in 0 überführen und tpn in tp~_x:

9X1 (X • • ¦. K-i) n112 <Pn (*i. • • • - K-i. k') (13)

Das heisst : ein Zustand 0 cpn, in dem genau n Teilchen vorhanden sind, wird durch
den Operator b~fk') übergeführt in einen Zustand, in dem nur n — 1 Teilchen
vorhanden sind. Die Wahrscheinlichkeit, dass diese Teilchen Impulse in der Nähe von
kv kn_x haben, ist proportional der Wahrscheinlichkeit, dass die ursprünglichen
n Teilchen Impulse in der Nähe von kx, kn-i und k' haben.

Analog wird der Erzeugungsoperator b+fk') definiert, der ein Teilchen mit Impuls
k' erzeugt. Er führt cpn_1 in cp+ über:

?:fk)„ n1'2 Sy {<pn_i fkv kn-i) ô fk' -kn)}. (14)

Dabei ist Sy{f} für jede Funktion / von kx, ,kn das arithmetische Mittel der n\
Funktionen, die aus / durch Permutation der Argumente entstehen.

Beide Operatoren b^ und b+ sind als uneigentliche Operatoren, d.h. als Distributionen

zu verstehen. Das heisst: b+fk') 0 ist kein Zustandsvektor, wohl aber

b+ {g} 0 fgfk') b+fk') 0 dk'3 (15)

mit einer stetigen Testfunktion g, die ausserhalb eines beschränkten Gebietes im
/V-Raum Null ist. Der Operator b+{g) führt cpn_x in

ti{g} rc1'2 Sy {cpn_i fkx, Vi) gfK)} (16)

über. Auch b~ ist als uneigentlicher Operator aufzufassen; denn cpnfkx, kn_x, k')
braucht für gegebene k' als Funktion von kx, kn_1 kein endliches Quadratintegral
zu haben, wohl aber

<p-{g} n^Jgfk') cpn fkx, kn_i, k') d3 k'. (17)

Damit der Operator b~{g} auf 0 anwendbar ist, muss man nur verlangen, dass die
Summe dieser Quadratintegrale, also die Norm von b~{g} 0 endlich bleibt. Analog für
b+{g}0.

Die Vertauschungsregel

b-fk') b+fk") - b+fk") b-fk') ôfk' - k") (18)

bedeutet

*>-{f} b+{g} - b+{g) b~{f} /"/(*') g(k') dk' (I9)

für je zwei Testfunktionen / und g. Sie folgt direkt aus den Definitionen von b~~{f] und
b+{g}. Analog leitet man die bekannten Vertauschungsregeln für b~fk') b-fk") und für
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b+fk') b+fk") her. Die Vertauschungsrelationen sind also in dieser Theorie keine
Hypothesen, sondern beweisbare Sätze.

Die Operatoren b~ und b+ sind zueinander adjungiert, das heisst die Skalar-
produkte fW, b~ 0) und fb+ W, 0) sind einander gleich. Daher schreibt man statt b~

und b+ manchmal b und X
Ähnlich wie b-fk') und b+fk') werden b~(x') und b+fx') definiert. Der Operator

b~fx') vernichtet ein Teilchen an der Stelle x', das heisst er führt <p„(x)n über in

X-l (*1. • • • *«-l) W1'2 ?>„(%.¦¦•. *»-l- *') • (20)

Ebenso erzeugt b+fx') ein Teilchen im Punkte x'.
Die Beziehungen zwischen b+fk') und è±(%') lauten

b-fx') (2 jr)-3'2 /V(£') <?*'*'*' rf£'3, (21)

&+(*') (2 tt)-3'2 A+(£') X*'*' dk'3 (22)

D. Die Operatoren P und Q

Die ebene Welle (2) erfüllt für jedes feste k die Differentialgleichung des klassischen

Oszillators
ü + oA u 0 (23)

Man kann das Feld also als ein System von unendlich vielen Oszillatoren auffassen.
Definiert man nun für jedes feste k' die Operatoren Q und P durch

Q=(2 co)-1'2 fb+ + b~) (24)

P 2-1'2 oA2 i fb+ - bA (25)

so sind P und Q selbstadjungierte Operatoren, die die gewöhnliche Vertauschungs-
rplïi i"|on

Pfk') Qfk") - Qfk") Pfk') -id fk" - k') (26)

erfüllen.

E. Der Energie-Operator

In der Quantentheorie des Oscillators kann man den Energieoperator als

\ fP2 + oAQ2)

ansetzen; die Nullpunktsenergie wird dann 1j2ca. Für die Feldtheorie ist es aber

zweckmässiger, die Nullpunktsenergie Null zu setzen. Das erreicht man, indem man
den Energieoperator als

¦i- (P + co * Q) (P - co i Q) a> b+fk') b-fk') (27)

ansetzt. Übt man diesen Operator auf eine Folge von Funktionen <pnfk)n aus, so sieht

man, dass jede einzelne dieser Funktionen mit

cofk') {ô(kl-k') + --- + ô fkn - k')} (28)



950 B. L. van der Waerden H. P. A.

multipliziert wird. In diesem Fall hat also das Produkt der uneigentlichen Operatoren
b+fk') und b-fk') als uneigentlicher Operator einen Sinn.

Die Gesamtenergie des Feldes ist die Summe der Energien der einzelnen Oscilla-
toren:

H0= f m b+fk') b-fk') dk'3. (29)
j

Der Index 0 bedeutet, dass nur die innere Energie des Feldes berücksichtigt ist.
Übt man den Operator H0 auf einen Zustand 0 aus, der durch eine Folge {<pn(k)„}
definiert ist, so sieht man, dass die einzelnen cpnfk)n genau mit

2> cofK) + • • • + œ(k„) (30)

multipliziert werden. Also kann der Operator H0 in der Impulsdarstellung so definiert
werden : _X, {?„(*).} «2» 9>.(*)„} • (31)

Jetzt kann man auch exp (— i H0 t) bilden, indem man die Funktionen cpnfk)n mit
exp (— i E cot) multipliziert

e-iH't{cpnfk)n}={e-'i£m)tcp„fk)„}- (32)

Diese Formel bedeutet folgendes. Geht man von einem Zustand (#5(0) zur Zeit
t 0 aus, der durch das Fourier-Integral (9) gegeben ist, und will man wissen, wie
dieser Zustand sich im Laufe der Zeit entwickelt, wenn alle Wechselwirkungen und
äusseren Einwirkungen vernachlässigt werden, so muss man die einzelnen Amplituden
<pnfk)n rechts in (9) mit exp (— iE cot) multiplizieren. Das Ergebnis ist genau die
frühere Formel (6), die damit theoretisch gerechtfertigt erscheint.

F. Teilchenzahl

Ein anderer selbstadjungierter Operator ist

N= fb+fk') b-fk')dk'3. (33)

Die einzelnen cpn sind Eigenfunktionen dieses Operators; der Eigenwert ist n:

Ncpn ncpn. (34)

Somit ist N der Operator der Teilchenzahl, und die Zustände cpn sind die
Eigenfunktionen dieses Operators. Der Wert der Teilchenzahl ist immer endlich, nämlich
gleich n im Zustand 0 cpn, aber der Erwartungswert der Teilchenzahl kann unendlich

sein.

G. Der Zustand als Funktion der Zeit

Wir betrachten nun die Zeitabhängigkeit des Zustandes 0 etwas genauer. Der
Energieoperator sei

H H0 A- Hx. (35)

Zur Zeit t 0 haben wir einen Zustand 0(0), dargestellt durch eine Folge von
Funktionen

0(0) {cpnffx)n, 0)} (36)
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Zur Zeit t haben wir einen Zustand Oft). In der Heisenberg-Darstellung wird 0ft) mit
(?(0) identifiziert, das heisst 0ft) wird durch die gleiche Folge (36) dargestellt. In der

Schrödinger-Darstellung wird 0(f) durch die Folge

®(t) Wn((A„A)} (37)

dargestellt. In dieser Darstellung hat man dann

0ft)=e-iHt0fO) (38)

Durch die Fourier-Transformation (9) kann man zum Impulsraum übergehen. Tut
man das zur Zeit t, so erhält man

cpnffx)n, t) (2 n)-3">2fcp'n ((*)„, t) eisk* dk3". (39)

Vergleicht man die Entwicklung (39) mit der früheren (6), so sieht man, dass die
Funktionen cp'n mit den früheren cpnfk)n durch die Beziehung

9» - ?»(*)„ «-'(*-" (4°)

verknüpft sind. Die cpnfk)n haben gegenüber den cp'n den Vorteil, dass sie im Fall freier
Teilchen nicht von der Zeit abhängen. Ist Hx eine kleine Störung, so ändern sich die
cpnfk)„ nur langsam mit der Zeit.

Die Darstellung des Zustandes 0 durch die Folge der Funktionen tpn(k)n nimmt eine

Mittelstellung zwischen der Heisenberg- und der Schrödingerdarstellung ein. Man
nennt diese intermediäre Darstellung die Wechselwirkungsdarstellung.

Ist b~fk') der Operator der Vernichtung eines Teilchens mit Impuls k' zur Zeit t
in der Wechselwirkungsdarstellung, also der Operator, der cpnfk)n zur Zeit t in

9Xi (X • ¦ • ZX nV cpn fklt Vi- *') (41)

überführt, und ist b~(x', t) der Operator der Vernichtung eines Teilchens im Punkte x'
zur Zeit t, so hat man analog zu (21) die Beziehung

b-fx', t) (2 7t)-3'2 fb-fk') ei{k'x'-a't) dk'3. (42)

Ebenso gilt für die Erzeugungsoperatoren

b+fx', t) f2n)~3<2 fb+fk') ei{-k'x'+m'l) dk'3 (43)

Dabei sind b~ und b+ links und rechts als Operatoren aufgefasst, die auf den
Zustand 0ft) zur Zeit t wirken. Man kann sie aber auch als Operatoren auffassen, die auf
0(0) wirken, indem man nach Heisenberg 0ft) mit 0(0) identifiziert. Die
Operatorgleichungen (42) und (43) bleiben dann bestehen.

Im Fall freier Teilchen sind die Operatoren b~fk') und b+fk') konstant. In diesem
Fall folgt aus (42), dass der Operator b-fx', t) dieselbe Differentialgleichung erfüllt
wie die ebene Welle (2) :

Ab-- fff b---= pt2 b-. (44)
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H. Die Mehrzeitenfunktion cpn(x, t)n

Es sei 0O der Zustandsvektor des Vakuums :

0O= {1,0,0,...}. (45)

Ist nun ein beliebiger Zustandsvektor 0 gegeben und will man die einzelnen zu 0
gehörigen Funktionen cpnfx)n berechnen, so braucht man nur das Skalarprodukt

f0o,b-fxx) ...b-fxn)0) nA2cpnfx)n (46)

zu bilden. Die Symmetrie der Funktion cpn folgt aus den Vertauschungsregeln für die
Operatoren b-.

Man kann die Operatoren b~(x) auch zu verschiedenen Zeiten tj bilden und eine
Funktion cpn(x, t)n durch

(0O, b-fxi, ti)... b-fxn, tn) 0) nA2 cpnfx, t)n (47)

definieren. Setzt man voraus, dass die Verbindungsvektoren

(*,• - H< h - h)

alle raumartig sind, so wird man in einer guten Bosonentheorie erwarten, dass die
Operatoren b~fxj, tf) alle vertauschbar sind. Die Funktionen <pnfx, t)n werden dann
wieder symmetrisch.

Für freie Teilchen kann man die Funktionen <pnfx, t)n explizit berechnen:

cpnfx, t)n (2 nA3">2jcpnfki, ...,kn) ««<**-«"> dk3". (48)

Diese Formel ist eine naheliegende Verallgemeinerung von (6).
Die Mehrzeitenfunktion cpnfx, t)n ist ein sehr nützliches Hilfsmittel, wenn man die

relativistische Invarianz einer Theorie beweisen will. Man habe eine Lorentztransformation,

die die Variablen x und t in x' und t' überführt. Man wähle nun zu jedem
x ein t so, dass alle t' einander gleich werden. Dann kann man die transformierten
Funktionen

f'nfx', t')n <Pnfx, t)n

nach (48) berechnen, daraus den Zustand 0'ft') bilden und untersuchen, ob die
Differentialgleichungen für 0' dieselben sind wie für 0.

Die Idee einer Mehrzeitentheorie, deren relativistische Invarianz leicht zu
beweisen ist, stammt von Dirac7).

§ 3. Elektron-Positron-Feld

Die Dirac-Gleichung eines einzelnen freien Elektrons lautet in der Bezeichnung
von Dirac8):

fPo-ßiO-p-ß3pc)X 0. (1)
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Hier bedeutet p0 der Differentialoperator i dt und p der dreidimensionale Vektor
mit Komponenten i dx, i dy und i dz. Die ß und a sind numerisch gegebene vierreihige
Matrices, und % ist ein vierkomponentiger Spinor. Die Komponenten von % mögen %x

heissen. Als Lösungen von (1) haben wir ebene Wellen

Xa(xA\k,s,e)=cûl(s,e)eikx-i'"t. (2)

Dabei nimmt e die beiden Werte + 1 an: + für positive Energie, — für negative.
Ferner ist

co e (pi2 4- k2A2 (3)

Der Spinindex s nimmt ebenfalls die Werte + 1 an. Man kann für s etwa den Eigenwert

von a3 nehmen :

ff3 X s X • (4)

Das bedeutet, dass für den Spinor cfs, e) mit den Komponenten cafs, e) ein Eigenvektor
der Matrix a3 gewählt wird ; der Spin in der Richtung der 2-Achse hat dann den Wert
1U s i Va- Statt der Richtung der z-Achse hätte man auch irgend eine andere

Richtung nehmen können, zum Beispiel im Fall k 4= 0 die Richtung des Impulsvektors

k. Man musste dann, wie Friedrichs es in *), Part V, § 28 tut, für s den Eigenwert

und für cfs, e) einen Eigenvektor der Matrix

ak ,_,
T TX (5)

nehmen. Wir halten uns aber vorläufig an die erste Verabredung. Die cfs, s) [s + 1,

e + 1] sind dann vier numerisch gegebene, linear unabhängige Spinoren.
Statt xAx' l\k, s, e) werden wir auch %fx, a,t\k, s, e) oder kurz %fk, s, e) schreiben.
Die Löchertheorie beruht auf der Annahme, dass immer nur endlich viele Wellen

positiver Energie besetzt und nur endlich viele Wellen negativer Energie unbesetzt
sind. Wenn eine Welle positiver Energie %fk, s, + 1) besetzt ist, so ist ein Elektron mit
Impuls k und Spin s vorhanden. Wenn eine Welle negativer Energie %fk, s, — 1) unbesetzt

ist, so ist ein Positron mit Impuls — k und Spin s vorhanden.
Wir betrachten nun solche Zustände, in denen ne Elektronen und np Positronen

vorhanden sind, insgesamt also

n ne4-np (6)

Teilchen. Sind die Spins, Impulse und Energievorzeichen dieser Teilchen gegeben, so

sind die n Tripel
(kx,sx,Ex), fK,sn,sn)

bekannt. Die Wellenfunktion des Systems von n Teilchen ist das Produkt der n
Faktoren %fxj, a7-, t | kjt sjt ef).

Dieses Produkt ist mit einer Wahrscheinlichkeitsamplitude cpjk, s, s)n zu
multiplizieren, nach den k zu integrieren und nach den s und e zu summieren. So erhält man
die Wahrscheinlichkeitsamplitude im fx, oc)-Raum:

r -
cpnfx, «), (2 n)-3"'2E / <Pnfk, s, e)n Jj *(*,, oc,, t | *,, s,, ef) dk3" (7)
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Die Funktion cpjk, s, e)„ soll antisymmetrisch in allen Argumenttripeln sein. Dann
ist auch cpnfx, <x) antisymmetrisch in den Argumentpaaren fx, oc).

Die Norm von cpnfx, oc)„ wird durch Integration über die x und Summation über die
oc (von 1 bis 4 für jedes einzelne oc,) definiert:

Ûf<P„=E [tä<Pndx3». (8)

Analog für die cpnfk, s, e)n. Die Eigenvektoren cafs, e) sind orthogonal und können so

normiert werden, dass

Ectfs', e') ca(s', e') 1 (9)
a

wird. Dann verifiziert man, dass die Norm von tpnfx, «)„ gleich der Norm von <p„fk, s, e)„
ist. Wir können also einfach Dîcpn schreiben, ohne uns um die Argumente zu kümmern.

Ein Zustandsvektor 0 wird wieder als eine Folge von Funktionen

0 {<Po. <Pi(x, «)i, <Pifx, oc)2, } (10)

mit endlicher Norm

OW^E^n (û)

definiert. Wir betrachten zunächst, wie in § 2, nur Zustände des Feldes zu einer festen
Zeit, zum Beispiel zur Zeit t 0. Das Integral von cp* cpn über ein Gebiet G im Raum
der k, e und s, das bei allen Permutationen der n Tripel (kv sx, ex), in sich übergeht,
ist wieder gleich der Wahrscheinlichkeit, dass das Feld aus n Teilchen besteht, deren
Vektoren k, Spinorientierungen s und Ladungsvorzeichen e dem Gebiet G angehören.

Der Vernichtungsoperator a~(k', s', e') wird genau so definiert wie früher der
Vernichtungsoperator b~fk'). Der Operator a~(k', s', e') führt also cpnfk, s, e)„ in

q>»-i(K s> X-i w1'2 <Pn(K h. «i I • • •
I Z-i. s„_i. eJ>-i I k'> Z £') (12)

über. Beim Erzeugungsoperator a+ muss man diesmal eine alternierende Summe
bilden. Der Operator a+ führt also cpn_xfk, s, e)n_x in

cp+nfk, s, e)„ n1'2 Asy {cpn_xfk, s, e)n^ ôfk' - kn) ôfs' - sn) ôfe' - en)} (13)
über.

Die fundamentalen Operatoren der Theorie sind aber nicht diese a~ und a+,
sondern zwei Operatoren xp- und xp+, die so definiert werden :

(14)
ZX Z s') a- wenn e' +l

a+ wenn e' -1,
,+(k', s', e') a+ wenn e' +l

a- wenn e' -l.
(15)

Der Operator xp- vernichtet also ein Elektron oder erzeugt ein Positron. Der
Operator xp+ erzeugt ein Elektron oder vernichtet ein Positron. Statt ip- schreiben wir
auch ip, und statt y>+ schreiben wir xp\ um uns der bei den Physikern üblichen
Bezeichnung anzupassen.
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Die Vertauschungsregel für die Operatoren xp und yfi lautet

[xpfk', s', e') fHk", s", e")]+ ôfk' - k") ôfs' - s") ôfe' - e") (16)

wobei [A B]+ A B + B A gesetzt ist.
Die Operatoren xpafx) und xplfx) werden am einfachsten durch eine Fouriertrans-

formation definiert, analog zu den Formeln (21) und (22) in § 2:

xpAx) (2 n)-3<2£fxpfk', s', e') Xafk', s', e') dk'3 (17)

xplfx) (2 n)'3'2£ fxpHk', s', e') X*afk', s', e') dk'3 (18)

Man erhält dann für die xpafx') und xpl(x') genau die richtige Vertauschungs-
relation

bPafA) fl(x")A ôfx' - x") ôfa - ß) (19)

Wie in § 2 kann man die Operatoren xpfx', t) und xp^fx', t) auch für beliebige Zeiten t

definieren und die relativistische Invarianz der Theorie prüfen. Das soll jetzt nicht
näher ausgeführt werden. Wir bemerken nur, dass die Formeln (17) und (18) für
beliebige Zeiten t ungeändert gelten. Im Fall freier Teilchen sind die xpfk', s', e') rechts
konstant. Daraus folgt, dass xpfx, t) wie x der Differentialgleichung (1) genügt und
xp^fx, t) wie X* der konjugiert-komplexen Differentialgleichung.

§ 4. Neutrino-Antineutrino-Feld

Eine relativistische Wellengleichung erster Ordnung für einen zweikomponentigen
Spinor kann nach der Spinoranalyse9) nur eine der beiden von Weyl10) zuerst
vorgeschlagenen Formen

(Po~°P)x Q (1)

oder

(Po + op)X 0 (2)

haben. Dabei sind av a2, a3 die drei Paulischen zweireihigen Matrices. Die Gleichungen
sind bei Spiegelungen nicht invariant. Die zugehörigen Teilchen haben die Masse Null.

Lee und Yang11) haben vorgeschlagen, eine der beiden Gleichungen (1) oder (2)
als Wellengleichung für das Neutrino und die andere für das Antineutrino
anzunehmen. Nach Feynman und Gell-Mann12) passt die Gleichung (1) für Neutrinos am
besten zu den Messungen über die Richtungsverteilung beim /^-Zerfall.

Setzt man eine Lösung von (1) als ebene Welle an:

X* ca<P"-iat, (3)

so findet man als Bedingung für den Spinòr c und die Frequenz co

fm + a ¦ k) c 0 (4)

Nun hat die Matrix a k die Eigenwerte -j- | k \. Also muss man

co e\k\,e= + l (5)
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setzen. Wählt man e + 1, so erhält man eine ebene Welle mit positiver Energie und
Spin entgegengesetzt zum Vektor k. Wählt man e — 1, so erhält man eine Welle mit
negativer Energie und Spin gleichgerichtet mit k. Zu jeder Wahl von e gehört ein

einziger Spinor efk, e). Als Lösungen von (1) erhalten wir die ebenen Wellen

Xafx, t\k,e) cjjt, e) eikx-M (6)

Aus Produkten von solchen ebenen Wellen bilden wir, wie in § 3, Wellenpakete

r n

cpnfx, a)„ (2 n)~3"i2E / <pn(K X Ï[U*. * I k> e) dk3", (7)
s •> 1

wobei die cpnfk, e)n wieder antisymmetrisch sein sollen. Der weitere Aufbau der Theorie
verläuft genau wie in § 3.

§ 5. Das elektromagnetische Feld

A. Ebene Wellen

Grosse lateinische Buchstaben bezeichnen im folgenden Vierervektoren, zum
Beispiel

K fk, co) X fx, t)

Das Skalarprodukt von K und X ist

KX kx-mt. (1)

Das Viererpotential A wird durch die Lorentzbedingung

i;zx o (2)
i

eingeschränkt. Wenn keine Ladungen vorhanden sind, gilt die Wellengleichung

A AA - d2A 0 (3)

Als Lösungen von (3) haben wir ebene Wellen

Avfk, s) Cvfs) eiKX (4)

Wegen der Lorentzbedingung (2) muss

KC 0 (5)

sein; wir haben also für jedes K drei linear unabhängige ebene Wellen, die durch einen
Index s fs 1, 2, 3) unterschieden werden können. Die Wellengleichung (3) ergibt für
K die Bedingung

K2 k2 - oß 0 (6)

Wir wählen für co die positive Wurzel

w | k | (7)
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Für jedes feste K können wir die z-Achse durch eine Drehung in die Richtung des

Vektors k bringen. Dann wird
K (0, 0, ca, co) (8)

Als linear unabhängige Lösungen der Gleichung (5) wählen wir

Cfl) (1, 0, 0, 0) (90

C(2) (0, 1, 0, 0) (92)

C(3) (0, 0, 1,1) f93y

Die ersten beiden Lösungen entsprechen den beiden Polarisationsrichtungen einer
Lichtwelle. Die dritte Lösung kann durch Umeichen des Potentials zu Null gemacht
werden. Eine solche Umeichung besteht darin, dass man A durch A + V f ersetzt,
wobei / eine beliebige differenzierbare Funktion von x und t und V der Vektor
fdx, d2, d3, — dt) ist. Wählt man

/ g eiKX (10)

mit einer beliebigen Konstanten g, so wird in der ebenen Welle (4) der Vektor C durch

C + igK=C + igcoCf3) (11)

ersetzt. Insbesondere wird C(3) durch (1 + i geo) C(3) ersetzt. Wählt man g ijco,
so wird C(3) durch Null ersetzt und das Viererpotential

Afk, 3) Cf3)eiKX (12)

wird Null. Das heisst also: Das Viererpotential Afk, 3) erzeugt kein Feld.
Bildet man aus den drei Viererpotentialen A fk, s) eine Linearkombination

Afk) oc(l) Afk, 1) + oc(2) Afk, 2) + oc(3) Afk, 3) (13)

so kann man nach dem eben Gesagten den Faktor oc(3) durch Null ersetzen, ohne dass
das Feld sich ändert. Setzt man oc(3) 0, so wird Ai 0 und div ^4=0. Das heisst:
die Normierung oc(3) 0 ist die Coulombeichung. Jede Umeichung bedeutet eine
andere Wahl von oc(3), während oc(l) und oc(2) ungeändert bleiben.

In der Definition der Basislösungen Cfl) und C(2) steckt noch eine Willkür. Durch
die Richtung der z-Achse sind nämlich die Richtungen der x- und y-Achse noch nicht
festgelegt. Man kann also Cfl) und C(2) einer reellen orthogonalen Transformation
unterwerfen. Die Koeffizienten oc(l) und oc(2) werden dabei ebenfalls reell orthogonal
transformiert, während oc(3) ungeändert bleibt. Für das Folgende ist eine solche
Transformation belanglos. In allen Formeln setzen wir voraus, dass für jeden Vektor
k die Richtungen der x- und y-Achse beliebig gewählt sind. In bezug auf dieses Achsenkreuz

bilden wir dann die Vierervektoren Cfs). Die Koordinaten von Cfs) in bezug auf
ein festes, von k unabhängiges orthogonales Koordinatensystem mögen C^fs) heissen.
Dabei läuft also s von 1 bis 3 und v von 1 bis 4.
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B. Wellenpakete

Wir multiplizieren nun jede ebene Welle (4) mit einer Wahrscheinlichkeitsamplitude
cpxfk, s), summieren über s und integrieren über den Ä-Raum. So erhalten wir eine

Wellenfunktion für ein einzelnes Photon :

cpXvfX) cpifX, v) (2 n)-3'2 [E<Pi(K s) AAK s) dk3 (14)
•t s

Für t 0 lautet (14) so:

<Pu W <Pi(x, v) (2 n)'3'2 [E<Pi(k> s) C»(s) Jkx dk3 (15)
•r s

Lässt man den Index v nur von 1 bis 3 gehen, so rechnet man leicht aus, dass die
Norm der Funktion links

AfcpA - [ E<pf(x, v) cpx(x, v) dx3 (16)
J v-1

gleich der Norm der Funktion rechts

DT<p[h) fEfì(K s) cpifk, s) dk3 (17)

ist. Wir können daher diese Norm einfach AA(cpx nennen. Sie ist eine reine Rechengrösse
und hat keine physikalische Bedeutung.

Ist insbesondere cpxfx, v) 0, so hat auch cpx(k, s) die Norm Null, also ist cpxfk, s)

0 bis auf eine Nullmenge im Ä-Raum. Daraus folgt, dass cpxfk, s) durch cpxfx, v) im
wesentlichen eindeutig bestimmt ist.

Die Coulombeichung des Viererpotentials (14) wird erhalten, indem man rechts
Avfk, 3) durch Null ersetzt. Wir erhalten so das reduzierte Viererpotential

cpifX, v) (2 jr)-3'2 fE' <Pi(K s) A„fk, s) dk3. (18)

Dabei bedeutet £' eme Summe von 1 bis 2. Insbesondere erhält man für t 0

cp[(x, v) (2 n)-3>2 f 27' q>ifk, s) C„fs) eihx dk3. (19)
J s

Ist cpifx, v) für v — 1, 2, 3 gegeben, so ist dadurch cpx(k, s) für s 1, 2, 3 im wesentlichen

eindeutig bestimmt; dann ist aber auch das reduzierte Wellenpaket cp'xfx,v)
nach (19) eindeutig bestimmt. Den Übergang von cpx zu cpf nennen wir Projektion.
In der Impulsdarstellung geschieht die Projektion einfach dadurch, dass die Funktion
cpifk, 3) durch Null ersetzt wird, während <pxfk, 1) und cpxfk, 2) ungeändert bleiben.

Unter der reduzierten Norm AAA' cpx der Funktion verstehen wir die Norm der
Projektion cp[:

Dt'<Pi- M- (20)
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Die reduzierte Norm kann direkt aus der Wahrscheinlichkeitsamplitude cpxfk, s) be
rechnet werden, indem man cpxfk, 3) durch Null ersetzt und die gewöhnliche Norm
bildet:

aa <h /' E' ?f(*.s) vi(k s) dk3. (2i)

Bei der Definition der reduzierten Norm haben wir die Coulombeichung verwendet.
Man kann aber auch ohne Bezugnahme auf eine bestimmte Eichung cp[ als die Klasse
aller cpx definieren, die durch Umeichung aus einem bestimmten cpx entstehen. Die
Norm AAtcp'i kann man dann als das Minimum der Normen aller cpx dieser Klassen
definieren. Das Minimum aller Summen (17) bei gegebenen cpx(k, 1) und cpifk, 2) und
variablen cpx(k, 3) ist nämlich die reduzierte Summe (21).

Jetzt ist es nicht mehr schwer, Wellenpakete für n Photonen zu bilden. Wir nehmen
ein Produkt von ebenen Wellen (4) in lauter unabhängigen Variablen fX^Vj),
fXn, v„). Das Produkt wird mit einer Wahrscheinlichkeitsamplitude cpjk, s)n multipliziert,

die symmetrisch in allen Argumentpaaren fkx, sx), fkn, s„) ist und eine
endliche Norm hat. Dann wird über alle s von 1 bis 3 summiert und über alle k integriert :

r 2
cpnfX, v)„ (2 n)-3"*2 / Efn(K s)n[jAvfk, s) dk3" (22)

•'s 1

Die reduzierte Funktion cp'n wird erhalten, indem alle Avfk, 3) durch Null ersetzt
werden :

<p'nfX, v)n (2 n)-3"'2 / E' fnfk, X JjAAk, s) dk3". (23)
J s 1

Dabei bedeutet 2J' Ane Summation über alle s von 1 bis 2.

Die Norm und die reduzierte Norm von cpn werden wie vorhin definiert, am
einfachsten durch Summation und Integration im Impulsraum:

XX, =fE<P*«(k' s) fnfK s) dk3« (24)

DT <Pn OT<p'n fE VKK S) <Pn(K S) dk3" (25)

Die Projektion cpn^-cp'n bildet den Hilbertraum aller Funktionen (22) auf den
Hilbertraum der Projektionen ab.

C. Zustandsvektoren

Wir nehmen nun an, dass ein Zustand des Feldes durch eine Folge von Funktionen

0={cpo,cp1fk,s)1,cp2fk,s)2,...} (26)

definiert ist, wobei die Summe der Normen

Zf0=27X>„ (27)
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endlich sein soll. Derselbe Zustand 0 kann auch durch eine Folge von Funktionen
<pnfx,v) definiert werden. Man erhält <pn(x,v), indem man in (22) links und rechts
t 0 setzt:

cpnfx,v)n= f2n)-3"'2 f E<Pnfk,s)nfjCvfs) eikx dk3". (28)
•> s 1

Die Folgen 0 heissen Zustandsvektoren. Jeder Folge 0 ist eine Projektion 0'
zugeordnet, die erhalten wird, indem alle cpn(k, s)n, in denen ein s 3 ist, weggelassen werden.

Wir nehmen an, dass der Zustand des Feldes bereits durch die Projektion 0'
bestimmt ist. Zu 0' 0 gehört kein Zustand. Zu 0' und oc 0' gehört derselbe Zustand.

Unter der reduzierten Norm AT' 0 verstehen wir die Norm der Projektion 0':
oo oo

CX'0= Af®' =ErAT'q>n=E 9C<p'n • (29)
0 0

Die reduzierte Norm definiert eine halbdefinite Metrik im Raum der 0, aber eine

positiv-definite Matrik im Räume der 0'. Der Raum der 0' ist der Raum der physikalisch

feststellbaren Zustände. Der Raum der 0 ist nur eine mathematische
Hilfskonstruktion, die bei Untersuchungen über die relativistische Invarianz nützlich ist.

Den Raum der Projektionen 0' wollen wir R2 nennen, weil in (23) über s nur bis 2

summiert wird. Den Raum der 0 nennen wir R3. Man kann R3 in einen noch grösseren
Zustandsraum Ri einbetten, indem man auch noch solche Viererpotentiale Afk,4)
zulässt, die die Lorentzbedingung (2) nicht erfüllen. Man kann zum Beispiel «longitudinale

Wellen» von der Form (4) mit

Cf4) (0, 0, 1, 0) (30)

hinzunehmen. In diesem Raum Ri kann man dann nach Bleuler6) eine indefinite
Metrik einführen. Nachher beschränkt Bleuler sich dann auf einen linearen Unterraum,

der durch eine von Gupta13) angegebene lineare Bedingung, Gleichung 2.11 in6),
definiert wird. Dieser Unterraum ist, wie man leicht nachrechnet, genau unser Raum
R3. Die indefinite Metrik in P4 erzeugt in R3 eine halbdefinite, nämlich eben die durch
unsere reduzierte Norm (29) definierte Metrik. Unsere Theorie ist also mit der Gupta-
Bleulerschen äquivalent.

D. Vernichtungs- und Erzeugungsoperatoren

Der Vernichtungsoperator b-fk', s') vernichtet ein Photon mit Impuls k' und
Polarisation s'. Er führt also <p„fk, s)n in cpn_x über:

<P--Ifk, s)n-l nV2<Pn((Ks)„-l,k',s'). (31)

Ebenso erzeugt b+fk', s') ein Photon mit Impuls k' und Polarisation s'. Er führt
<Pn-i(k, s)„_! in cp+ über:

q>: fk, s)n n1» Sy {cp„_ifk, s)n_x ôfk' - k„) öfs' - s„)} (32)
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Beide Operatoren werden nur für s' 1, 2, 3 gebildet. Sie führen also nicht über
den Raum R3 hinaus. Photonen, die die Lorentzbedingung nicht erfüllen, werden nicht
erzeugt und nicht vernichtet, sondern sie bleiben überhaupt ausser Betracht.

Die Operatoren b~ und b+ mit s 3 haben keine physikalische Bedeutung: sie

wirken auf die Vektoren 0 des mathematischen Hilbertraumes R3. Die Operatoren
mit s 1 oder 2 dagegen wirken auf den Raum R2 der physikalischen Zustands-
vektoren 0' : sie vernichten und erzeugen echte Lichtquanten.

Die Vertauschungsrelationen lauten wie immer

[b-fk', s') b+fk", s")] ôfk' - k") ôfs' - s") (33)

[b-fk', s') b-fk", s")] 0 (34)

[b+fk', s') b+fk", s")] 0 (35)

E. Energie, Potential und Feldstärken

Die Energie des elektromagnetischen Feldes ist, wie in § 2 (29), die Summe der
Energien der einzelnen Oscillatoren :

H0= f JJ'co b+fk', s') b-(k', s') dk'3 (36)
J s'

Setzen wir also für s' — 1, 2, 3

qfk', s') (2 co)-1'2 b-fk', s') (37)

q\k', s') (2 co)-1'2 b+fk', s') (38)

so wird

H0 f JJ' 2 co2 q\k', s') qfk', s') dk'3 (39)

Das Viererpotential des Feldes wird nun als selbstadjungierter Operator so
definiert :

X \EW' s') X(X s') + q\k', s') A*fk', s')} dk'3 (40)
•l s'

Diese Formel ist ganz analog der üblichen Formel, in der statt des Integrals eine
Summe über alle Eigenschwingungen des in einen Kasten eingeschlossenen Feldes
steht. Die einzelnen Avfk' s') und A*fk' s') sind Funktionen von x und t, die die
Differentialgleichungen (2) und (3) erfüllen; also genügt auch Av diesen
Differentialgleichungen.

Aus dem Viererpotential Av kann man durch Differentiation die Feldstärken
bilden :

J>, »ZX - V„AV • (41)
Man findet aus (40) :

F»r [EW' S') FW> S') + l'(k'' S') F*r(k'. S')} dk'3 (42)
J s'

16 H. P. A. 36, 7 (1963)
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Die zu s' 3 gehörigen Feldstärken sind Null, also braucht man in der Summe
rechts nur die Glieder s' 1 und 2 mitzunehmen. Man kann also bei der Berechnung
von F von vornherein mit der Coulomb-Normierung rechnen. At ist dann Null und
man findet

g _ d,A ifE' m W> s') XX s') - q\k', s') A*(k', s')} (43)

§> rotA =t fE'W-S') [k',A(k',s')} -q\k',s') [k't A*fk', s')]} (44)

wobei [k, Ä] das Vektorprodukt der Raumvektoren k und A bedeutet. (£ und §
erfüllen natürlich die Maxwellschen Gleichungen für das Vakuum.

F. Schlussbemerkung

Das elektromagnetische Feld in Wechselwirkung mit Elektronen kann in der
üblichen Weise behandelt werden. Wenn das übliche «Feld in einem Kasten» durch
das Feld im unendlichen Raum ersetzt wird, hat man in jeder Formel, der die Operatoren

6+ und b~ oder q und q+ enthält, die Summation über alle diskreten Zustände
durch eine Summation über s' und Integration über k zu ersetzen. Mathematisch
einwandfrei kann man die Theorie allerdings nicht formulieren, da sie anscheinend

divergiert.
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