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Das Eindeutigkeitsproblem in der hochauflésenden
Protonenresonanzspektroskopie¥)

Von Hans Kummer
Institut fiir phys. Chemie, ETH

(30. VIII. 63)

I. Einleitung

1.1. Die Problemstellung

Die hochauflésende Kernresonanzspektroskopie ist ein typisches Beispiel einer
Spektroskopie, bei welcher man zur Berechnung der Energieterme einen sogenannten
Modell-Hamiltonoperator beniitzt, das heisst einen Operator, in welchen ein Satz von
Parametern eingeht, die nicht unmittelbar durch universelle Naturkonstanten aus-
gedriickt werden konnen, sondern deren Werte im besten Fall auf Grund einer eigens
dafiir geschaffenen Niherungstheorie abgeschitzt werden konnen.

In dieser Situation gewinnt verstidndlicherweise das zur Berechnung des Spektrums
inverse Problem an Aktualitit: Die Bestimmung der Werte dieser Parameter aus
einem experimentellen Spektrum. Im Zusammenhang damit taucht dann immer
wieder die Frage auf, ob es mehr als einen Wert des Parametersatzes gibt, der mit dem
vorgelegten experimentellen Spektrum vertriglich ist, das heisst, der bei Anwendung
der iiblichen Berechnungsvorschrift das vorgelegte Spektrum liefert.

In der vorliegenden Arbeit wird nun die eben aufgeworfene Fragestellung im
Rahmen der hochauflgsenden Protonenresonanzspektroskopie untersucht, in der
Hoffnung, dass den dabei angewandten mathematischen Methoden eine Bedeutung
zukommt, die itber den vom physikalischen Gesichtswinkel aus gesehen etwas engen
Problemkreis hinausweist.

Der stationdre Term des Hamiltonoperators, den man in der Protonenresonanz-
spektroskopie beniitzt, ist ein reiner Spinoperator von der Form:

H=29i1i3+2]ik1ilk' (1'1)
=1 i<k

Darin bedeutet I, = (I, 1,5, I;5) den Spinvektor des i-ten Protons. Der erste Teil des

Operators (Zeeman-Term) beschreibt die Wechselwirkung der einzelnen Kernspins

mit dem statischen Magnetfeld H,, das wir uns in der negativen 3-Richtung angelegt

denken.

*¥) Die vorliegende Arbeit ist eine auszugsweise Uberarbeitung der Promotionsarbeit ETH
Nr. 3378: «Beitrag zur Analyse komplizierter Protonenresonanzspektren» vom gleichen Verfasser.
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Das Protonensystem steht der magnetischen Resonanzspektroskopie in Form
eines Molekiils zur Verfiigung. Durch die in der Elektronenwolke auftretenden Stréme
erfihrt das statische Feld in der Umgebung des ¢-ten Kerns eine lokale Modifikation:

H;=H,(1-4,).

Die dimensionslose Grosse /1; heisst «chemische Verschiebung» des i-ten Protons. Wird
die Energie in Frequenzeinheiten gemessen, so sind die Grossen £, definiert durch:

1
Qi == 2;{ Y Hz‘ ’ (1_2)

worin y das gyromagnetische Verhiltnis des Protons bedeutet. Der zweite Term des
Hamiltonoperators ist Ausdruck einer durch die Elektronenwolke vermittelten
Wechselwirkung zwischen den Spins. Die Gréssen [, welche als «Spin-Spin-Kopp-
lungskonstanten» bezeichnet werden, konstituieren zusammen mit den «chemischen
Verschiebungen» den Satz von Parametern, von welchen eingangs die Rede war und
die wir im folgenden als «phinomenologische Parameter» (des Hamiltonoperators)
bezeichnen wollen.

Ist der Satz der phdnomenologischen Parameter vorgegeben, so ldsst sich das
idealisierte Absorptionsspektrum des Spinsystems, erzeugt durch ein in Richtung der
1-Achse linear polarisiertes Wechselfeld auf die bekannte Weise berechnen: Man
bestimme im Spinraum P der # Protonen eine Eigenbasis #,, ... #s» des Hamilton-
operators H und berechne die Matrix (F,), der 1-Komponente des totalen Spins:

Fy= 2 Iil (1-3)
i=1 ,

in dieser Basis. Die Zentralfrequenz einer Absorptionslinie ist dann gleich der Diffe-
renz zweier Eigenwerte von H, wihrend man ihre relative Intensitit als Summe der
Quadrate der Matrixelemente von F; «zwischen» den beiden entsprechenden Eigen-
rdumen erhalt.

Um die eben geschilderte Berechnungsvorschrift als Abbildung einer Menge in
eine andere begreifen zu kénnen, bemerken wir, dass die Menge aller Hamilton-
operatoren der Form (1) einen Teilraum N des Raumes der symmetrischen Operatoren
zu P darstellt. Dabei denken wir uns hier wie iibrigens wihrend der ganzen vorliegen-
den Arbeit den Korper der reellen Zahlen zu Grunde gelegt. I'erner verstehen wir
unter einem virtuell mdglichen (idealisierten) Absorptionsspektrum eine ungeordnete
Reihe von geordneten Zahlenpaaren:

W, 1Y, ... (w7, I1)

wobei»’ und /7 # 0 Zentralfrequenz und Intensitit der in einer willkiirlichen Ordnung
i-ten Resonanzlinie bedeuten. Dabei ist, wie wir noch beweisen werden, in unserem

Fall:
7 < (3%1), (1-4)
und die Intensititen normieren wir so, dass:

;’I’“=2”*1-n, - (1-5)
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was sich ebenfalls spiter rechtfertigen wird. Mit M bezeichnen wir dann die Menge
aller virtuell méglichen Absorptionsspektren.

Unter Beniitzung dieser Begriffe ldsst sich die erwidhnte Berechnungsvorschrift
auffassen als eine Abbildung B vom Vektorraum N aller Hamlltonoperatoren der
Form (1) in die Menge aller virtuell méglichen Spektren:

B: N> M. (1-6)

Ein Element aus B(N) wollen wir ein Absorptionsspekirum (schlechthin) nennen. Die
Frage, der wir in dieser Arbeit in einer bestimmten Richtung nachgehen, ist diejenige
nach der eindeutigen Umkehrbarkeit der Rechenvorschrift B.

Die Antwort wird durch das folgende Theorem gegeben:

T heovem

Die Rechenvorschrift ist im allgemeinen bis auf Umnumerierung der Teilchen,
sowie die selektive Umkehrung des Vorzeichens von Zeeman- und Spin-Spin-Kopp-
lungsterm eindeutig umkehrbar.

Dabei bedarf der Ausdruck «im allgemeinen» einer weiteren Prizisierung. Es sei v
ein virtuell mégliches Spektrum und #(v) die Urbildmenge von v beziiglich B. Wegen
der Eindeutigkeit von B ist fiir v + v":

m (v) Om (v') = ¢ (leer).

Mit z(v) bezeichnen wir die Anzahl der in m(v) enthaltenen Punkte, die nicht endlich
zu sein braucht.

Dann nennen wir die Abbildung B im allgemeinen k-deutig umkehrbar, wenn
nachstehende Bedingungen zutreffen:

1. Entweder ist z(v) = 0 oder z(v) > & fiir alleve M

2. Die Vereinigungsmenge aller m(v), fiir welche z(v) > & ist:

bildet eine algebraische Mannigfaltigkeit, deren Dimension niedriger ist als diejenige
von N. |

Das Theorem behauptet nun, dass B im allgemeinen 4 »!-deutig umkehrbar ist.
Diejenigen Hamiltonoperatoren, die ein bestimmtes Absorptionsspektrum definieren,
gehen durch die Gruppe x der 4 #! Transformationen ineinander iiber, die man durch
Kombination der Teilchenpermutationen mit den Vorzeicheninversionen von Zeeman-
und Spin-Spin-Wechselwirkungsterm erhilt.

Dass die unter der Gruppe x» dquivalenten Operatoren tatsidchlich dasselbe
Spektrum definieren, ist einfach einzusehen. Bei einer Umnumerierung der Teilchen
wird der Hamiltonoperator mit dem darstellenden Operator der Teilchenpermutation
am Spinraum &dhnlich transformiert. Der transformierte Operator besitzt daher das-
selbe Eigenwertspektrum wie der urspriingliche, und da F, bei dieser Operation in sich
iibergeht, definiert er sogar dasselbe Absorptionsspektrum. Ahnliches gilt fiir die
Inversion des Vorzeichens des Zeeman-Terms, welcher physikalisch die Bedeutung der
Zeitumkehr zukommt. Der transformierte Hamiltonoperator geht wieder aus dem
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urspriinglichen durch eine Ahnlichkeitstransformation hervor, diesmal mit dem reell-
orthogonalen Operator, durch welchen die Zeitumkehr am Spinraum dargestellt wird.
Da zudem bei dieser Transformation F, in — F, iibergeht folgt, dass der transformier-
te Operator wieder dasselbe Absorptionsspektrum bestimmt. Schliesslich ist es klar,
dass mit H auch —H zu demselben Absorptionsspektrum fiihrt, da — H sowohl
dieselben Eigenwertdifferenzen als auch dieselbe Eigenbasis besitzt wie /1.

Dagegen ist die Einsicht, dass die aufgezdhlten Transformationen die ernzigen sind
welche einen allgemeinen Hamiltonoperator wieder in einen solchen iiberfithren, der
dasselbe Absorptionsspektrum definiert, etwas schwieriger zu erreichen. Dem Leser
diese Einsicht zu vermitteln ist das Ziel der vorliegenden Arbeit. Bevor wir dieses Ziel
auf befriedigende Weise angehen konnen, miissen wir gewisse Begriffe einfiihren,
welche die Beschreibung der Abbildung B auf mdéglichst addquate Weise gestatten.

1.2. Der Zustandskomplex eines quantenmechanischen Systems it
endlich vielen Eigenzustinden

Jede endliche Menge von Elementen, in welcher gewisse Paare ausgezeichnet sind,
heisst ein abstrakter Streckenkomplex. Man spricht von einer Realisierung eines solchen
Komplexes im dreidimensionalen Raum, wenn man den Elementen verschiedene
Punkte dieses Raumes zuordnet und je zwei Punkte miteinander durch eine Strecke
verbindet, falls das entsprechende Elementpaar ausgezeichnet ist. Dabei kénnen die
Paare immer so gewihlt werden, dass die Strecken ausser ihren Endpunkten keine
gemeinsamen Punkte besitzen, dass also das entstehende geometrische Gebilde tat-
sdchlich ein Streckenkomplex ist. Zur Diskussion oft geeigneter als die im Dreidimen-
sionalen realisierten Streckenkomplexe, sind ihre Projektionen in die Ebene, die wir
als Schematas bezeichnen wollen.

Auch bei einem quantenmechanischen System mit endlich vielen Eigenzustanden
spielt ein gewisser Streckenkomplex eine Rolle. Der abstrakte Komplex besteht aus
den Eigenzustinden u,, ... u, des Systems mit den ausgezeichneten Paaren (u;, 1),
zwischen welchen ein Ubergang erlaubt ist. In seiner Realisierung entsprechen den
Eigenzustinden #; Punkte @, und den erlaubten Ubergingen Strecken b, = (a, 4;). Die
positive Orientierung einer Strecke soll dabei durch die Ungleichung 7 << j gekenn-
zeichnet sein. Den so definierten Streckenkomplex nennen wir den Zustandskomplex
des quantenmechanischen Systems.

Wir kommen nun zu einer kurzen Erlduterung der in dieser Arbeit verwendeten
Begriffe der Streckenkomplextopologie. Eine genauere Orientierung iiber das Gebiet,
insbesondere Beweise der hier nur kurz angedeuteten Sitze, finden sich zum Beispiel
in (7). Es liege ein Streckenkomplex K bestehend aus « Eckpunkten, die durch
Strecken miteinander verbunden sind, vor. Die Punktmenge b, = (a; a;) einer Strecke
b, = (a; a;) eines Streckenkomplexes heisst Kante.

Unter einem Weg verstehen wir eine Kantenfolge (a; a), (@, a;), - (@;,_, @; ).
Die Zahl der Glieder der Folge heisst Ldnge des Weges. Ein Weg heisst ein Krers, wenn
alle a;, ausser a; = a;, voneinander verschieden sind. Man nennt einen Strecken-

komplex zusammenhiangend, falls es zu je zwei Eckpunkten einen Weg gibt, der die
beiden Punkte enthilt.
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Unter null- bzw. eindimensionalen Keitten verstehen wir Linearkombinationen
der Art:

o i .
x=2x5ai, y:Z'yibj (1-8)
=1 j=1

mit beliebigen reellen Koeffizienten x* und y/. Unter der Linge u(v) einer eindimen-
sionalen Kette verstehen wir die Anzahl der von Null verschiedenen Koeffizienten y/.

Die Gesamtheiten der null- bzw. eindimensionalen Ketten bilden zwei Vektor-
rdume K, und K, der Dimensionen « bzw. f iiber den reellen Zahlen. Es ist niitzlich
mit einer Kette x = Z xt a;, bel welcher die Koeffizienten x1, ... xix & 0 sind, das
folgende intuitive Bild zu verbmden x 1st die Gesamtheit der Punkte @iy oon By
wobei jeder mit der zugehoérigen Komponente von x: x% (v = 1, ... k) versehen ist.
Ebenso soll die eindimensionale Kette } 'y/ b, mit y/1, ... y/m = 0 die Gesamtheit der

Strecken b; , ... 0; ~versehen mit den Zjahlen yi1, ... y/m bedeuten. Dabei kann man
die mit y7 versehene Strecke 6; auch durch die mit — y7 versehene Strecke — b; (b; mit
der umgekehrten Orientierung) ersetzen und so etwa erreichen, dass alle Strecken
positive Zahlen tragen.

Unter der Punktmenge x einer nulldimensionalen Kette verstehen wir dann ein-
fach die Menge der Punkte a; ;... a;. Analog verstehen wir unter der Punktmenge y
von y diejenige Punktmenge Welche durch die Gesamtheit der Kanten b by
reprasentiert wird.

Wir denken uns nun die Raume K, und K, mit einem Skalarprodukt versehen, das
in ihren natiirlichen Basen {«,} und {b;} zur Einheitsform degenerieren soll. Dann
erkldren wir die Randoperation 0 als lineare Abbildung von K, in K, durch:

0b,=0(a;a;) =a; — a,

und lineare Ubertragung auf allgemeine Ketten. In Matrixform schreibt sich Gleichung
(9) als:
0b, = 2 nha; = (@ 1) (1-10)

Die Matrix # mit « Zeilen und § Kolonnen heisst Inzidenzmatrix des Komplexes K.
Durch die Gleichung:

lasst sich die zur Randbildung adjungierte Operation, die sog. Korandbildung defi-
nieren. Sie wird durch die transponierte Inzidenzmatrix dargestellt:

da,= 277] = (b 7). (1-12)
Der Koeffizient #} von b; ist dabei nur dann von Null verschieden, wenn die Strecke b;
den Eckpunkt @, enthilt und zwar = + 1, falls er Endpunkt und = — 1, falls er

Anfangspunkt der Strecke ist. § @, ist also (wenn man alle Komponenten der Kette auf
+ 1 normiert) anschaulich gesprochen das im Eckpunkt 4, zusammenlaufende
Streckenbiischel, welches wir Korand bzw. Stern des Eckpunktes a, und von der
Ordnung p nennen wollen, falls sich im Punkte a, p Kanten treffen. Unter einem
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Zyklus versteht man eine eindimensionale Kette aus dem Kern Z C K, des Rand-
operators 0. Z bildet das orthogonale Komplement zum Bildraum der adjungierten
Operation 9, der Menge der Kordnder:

K,=0K,® Z. (1-13)

Jedem Kreis des Komplexes ldsst sich ein Zyklus zuordnen, indem man alle seine
(mit + 1 versehenen) Kanten gleichsinnig orientiert. Endlich interessiert der Kern
von 0 in K,, der senkrecht auf den Ridndern steht. Da, wie sich leicht zeigen ldsst, in
einem zusammenhédngenden Komplex eine nulldimensionale Kette genau dann ein
Rand ist, wenn die Summe der Koeffizienten verschwindet, folgt, dass die Rander
einen « — l-dimensionalen Teilraum von K, bilden und daraus, dass der Kern der
Korandbildung bei einem zusammenhingenden Komplex eindimensional ist. Er wird
durch die Kette

85 = a;
i=
aufgespannt.

Daher lautet die zu (13) duale Zerlegung von K :

K, = (e) @ 0K, (1-14)

Fiir ein einzelnes Element aus K, erhilt diese Zerlegung die Form:
x= ' wa;=1 (3 # e+ ) (& —1 (D x)a,.
: x & ; a %

Aus der Beziehung:
K,|Z~ 0K,

folgt fiir die Dimension ( des Zyklenraumes Z, die sog. Zusammenhangszahl des
Komplexes:

P B, (1-15)

Sie bedeutet die Maximalzahl von Kanten, die entfernt werden koénnen, ohne dass
der Komplex zerfillt.

Um unsere Begriffshildung zu vervollstindigen, brauchen wir noch folgende
Transformationsgruppen in den Radumen K, und K, sowie in der Paarmenge K, X K,
liber K,,.

In K,: Die symmetrische Gruppe 7z, der Basiselemente a,

In K,: 1. Die symmetrische Gruppe 7, der Basiselemente 8,

2. Es se1 Q; die Inversion von b; definiert durch:

Qb= (— 1)6“‘”' by -

Die Inversionsgruppe J, als welche wir die durch die Q; erzeugte Untergruppe der
linearen Gruppe von K, bezeichnen.
3. Das semidirekte Produkt:

S=mn,3

der unter 1. und 2. genannten Gruppen. J ist dabei Normalteiler in &.
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In K, x K,:
Es sei S Q ein beliebiges Element aus & mit S ez, und () € J. Dann definieren wir

durch:
(SQ) (yr X y2) = (SQy1 X Sy (1-16)

einen Isomorphismus von € in das direkte Produkt der linearen Gruppe von K, mit
sich selbst. Das Bild bei diesem Isomorphismus bezeichnen wir mit &'.

Die eben eingefithrten Begriffe der Streckenkomplextopologie lassen sich in
zwangloser Weise auf den Zustandskomplex eines quantenmechanischen Systems
iibertragen.

Die durch die Punkte a,, ... @, repriasentierten Energiezustinde und die dazuge-
horigen Energieeigenwerte E* definieren eine nulldimensionale Kette unseres Kom-

1 K:
piexes DCE e 2 Ek a, (1_17)
k

welche wir Energiekette nennen wollen. Unter einem Energiespektrum wollen wir eine
Klasse von unter 7, dquivalenten Energieketten (= Transitivitdtsbereich von 7, in
K,) verstehen. Den zu einer Energiekette gehoérigen Korand bezeichnen wir als
Frequenzkette, denn er hat die Form:

o

B B
yF — 0aF — 3" Ekoa, = 3 DV Etutb — 3 AE, ;. (1-18)
i=1

k=1 i=1%k=1

A EJ ist die zu b; gehorige Energiedifferenz und zwar gilt:
A Ei = E¥ — E¢, falls b; = (a; a;) -

Aus der Definition (18) entnimmt man unmittelbar, dass eine Frequenzkette immer
senkrecht auf allen Zyklen des Zustandskomplexes steht.
Neben der Frequenzkette spielt in unserer Betrachtung die Intensititskette:

B
yI=MTb, (1-19)
i=1

eine ausgezeichnete Rolle. I7 bedeutet dabei die Intensitdt der zum Ubergang b; ge-
horigen Absorptionslinie.

Unter einem Absorptionsspektrum verstehen wir schliesslich eine Klasse von unter
@’ dquivalenten Paaren der Art:

(v" x ¥7).

Wie man leicht sieht, ist diese Definition mit der in 1.1 gegebenen identisch.

Bevor wir den Zustandskomplex fiir das spezielle, durch den Hamiltonoperator (1)
definierte quantenmechanische System nidher beschreiben kénnen, miissen wir diesen
Hamiltonoperator genauer untersuchen.

Insbesondere bestimmen wir im folgenden Abschnitt diejenige Teilalgebra 9 der
Algebra der linearen Operatoren im Spinraum P, welche durch die Gesamtheit NV
aller Hamiltonoperatoren der Form (1) erzeugt wird. Es wird sich zeigen, dass unab-
hingig von der Protonenzahl » die mit der Algebra U vertauschbare Operatorenalgebra
A" durch die Symmetrie des Problems vollstindig bestimmt ist.
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1.2. Bestimmung der durch die Gesamtheit aller Hamiltonoperatoren der Form (7)
erzeugten Operalorenalgebra

Der Hamiltonoperator (1) ist ein reiner Spinoperator, also Operator zum Produkt-
raum: '

P=p®py..-® P,

wobel p, den Spinraum des i-ten Protons bezeichnet. Dabei wirken die Operatoren I;
nur auf den ¢-ten Faktor dieses Tensorproduktes. Wihlt man im einzelnen Spinraum
die Basis («, ) derart, dass /4 diagonal wird, so erhilt man folgende Zuordnung der
Spinoperatoren zu den Paulimatrizen:

01 04 10
I, >1/2 (1 0) I,—>1/2 (_1. 0) I, —1/2 (0 _1) (1-20)

die 2* Produktfunktionen:

; . . . . il<i2<"'<ip
o (1g) & (1) - & (i) B (1psa) - B (1) _ ‘
U1 < g e < Oy

spannen den ganzen Spinraum P auf. Hierbei durchlduft (s, ... 7,) alle Auswahlen von
Ziffern aus den ersten » natiirlichen Zahlen. Auf Grund der Zuordnung (20) erkennt
man unmittelbar, dass die so gewahlte Basis Eigenbasis der 3-Komponente:

F3:ZI2‘3
1=1

des Gesamtspins ist:
Fya (i) oo o (i) B (i) - B ) = (= 5 ) 2 () - (i) B (ipua) - B ) (1-21)

Der Eigenwert (p — n/2) besitzt offenbar den Entartungsgrad (}), da dies die Zahl der

Produktfunktionen zu einem gegebene Wert von p ist. Der Spinraum zerfillt also
nach:

P=@ V» (1-22)

in eine direkte Summe von Eigenrdumen des Operators F,. Zwischen der magneti-

schen Quantenzahl m und der Zahl p besteht, wie man der Gleichung (21) entnimmt,
der Zusammenhang:

m=p— 5. (1-23)
Der Hamiltonoperator ist offensichtlich invariant gegeniiber Drehungen des Pro-
tonensystems um die Feldrichtung. Man vermutet daher, dass die Drehimpuls-
komponente F4 das einzige Integral der Bewegung ist und dass daher F als Operator
im Spinraum P aufgefasst der einzige mit einem allgemeinen Hamiltonoperator der
Form (1) vertauschbare Operator ist:

[Fs, H] = 0. (1-24)
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Dazu gleichwertig ist die Vermutung, dass die durch die Operatoren I, ... f,g,
L1, ..1I,,1I, erzeugte Teilalgebra A der Operatorenalgebra zu P die Riume V7
irreduzibel in sich transformiert. Diese Vermutung wollen wir nun exakt beweisen.
Es gilt also:

Satz 1
Die durch die Operatoren Iy, ... I,5, I I, ... I,_; I, erzeugte Unteralgebra U der

n—1 *n

Operatorenalgebra zum Spinraum P ist halbeinfach und ihre einfachen Teilalgebren
sind volle Operatorenalgebren zu den Rdumen V2.

Bewers

Zum Beweis betrachten wir diejenige Transformationsgruppe & im Konfigurations-
raum der Spins, welche folgende Transformationen umfasst:

1. Samtliche Permutationen der Teilchen.

2. Die Spiegelung s; des ¢-ten Teilchens an der Achse des Magnetfeldes. (Eine
Spiegelung an einer Achse ist einer Drehung um den Winkel 7 dquivalent!)

Die beiden Arten von Transformationen sind durch das folgende Gesetz miteinan-
der verkniipft:

(.4) 85 =85, 14 B . (1-25)

Bei einer Protonenzahl # ist diese Transformationsgruppe isomorph zur Deckgruppe
des n-dimensionalen Hyperoktaeders. Dieser besitzt, wie man am Beispiel des drei-
dimensionalen Oktaeders abliest, » Hauptsymmetrieachsen. Die explizite Isomorphie
erhilt man, indem man der Transposition (7 k) die Vertauschung der ¢-ten mit der
k-ten Achse und der Spieglung s; die Vertauschung der Scheitelgruppe der ¢-ten Achse
zuordnet.

Gleichung (25) zeigt, dass die Spiegelungen einen Normalteiler der Gruppe & er-
zeugen und da der Durchschnitt der Spiegelungen mit den Permutationen sich auf die
Identitit beschrinkt, erweist sie sich als semidirektes Produkt der durch diese beiden
Arten von Transformationen erzeugten Untergruppen. Ihre Ordnung ist ihrer Struktur
gemiiss gleich dem Produkt der Ordnungen der symmetrischen Gruppe von # Objekten
und der Gruppe der Spiegelungen, betrigt also 2" #!

Mit Hilfe der fiir Spin-!/,-Teilchen geltenden Relationen

T

I, L= — & tys Is+ 2% E (E = Identitat in P) (1-26)

i T 2

weist man nach, dass die Beziehungen:
1 2 1 1
2L+ E) = (2 LI+ E) I,W(Z LI+ E) I, v=1,273 (1-27)

und:
(211'3)2:12 4Ii31iuji3=_l'

tp

u=1,2 (1-28)

richtig sind. Eine leichte Umformung der ersten Gleichung von (27):

L]

m16 2
E=2 (L) +

(I, I) (1-29)
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zeigt, dass die Identitdt im Spinraum P der Algebra U angehort. Daraus und aus den
Beziehungen (27) und (28) folgert man, dass die Zuordnung:

(R > (Re= (201, +5E) si>()p=214 (1-31)

einen Homomorphismus der Transformationsgruppe & in die Algebra 2 definiert.
Ferner bedeutet die Existenz von Umkehrformeln zu (31):

I I, = % ((z k) p — "; E) Iis= -, (si)p (1-32)

dass die durch lineare Ubertragung definierte Erweiterung dieses Homomorphismus
auf die Gruppenalgebra von & eine Abbildung auf die Algebra 9 darstellt.

Um den Satz 1 zu beweisen, bleibt daher nur noch nachzuweisen, dass die zur
Hyperoktaedergruppe isomorphe Transformationsgruppe K in V# (absolut) irreduzible
Darstellungen besitzt. Zu diesem Zweck stellt man zunédchst einmal fest, dass die in
Frage stehenden Darstellungen monomial sind (vergleiche Literaturstelle (8)) und
zwar werden sie durch eine eindimensionale Darstellung der Untergruppe:

K =ab 27" {51, 53, .- Sy}

an a(l) ... a(p) B(p + 1) ... f(n) erzeugt. #% und m%~ symbolisieren dabei die sym-
metrischen Gruppen der ersten p bzw. der letzten n — p Spins, wihrend {s;, S, ... S,}
fiir den durch die Transformationen s; erzeugten Normalteiler steht. Die eindimen-
sionale Darstellung der Untergruppe K’ besitzt den Darstellungskern:

N=nl nz—ﬁ {510 -+ Sps (Sp Spi1)s (Spr Spaeds ++- (Sua Sa)} -

Nun ist fiir die Reduziblitit einer monomialen Darstellung nach SHODA (9) notwendig,
dass ein Element g aus & — R’ derart existiert, dass:

R—-—NNgNg'l=4d.

Ein Element, das nicht in K’ liegt, ist nun aber notwendigerweise eine Permutation,
welche die ersten p Spin-Indices mit den letzten # — p vermischt. Da wegen (25) die
- Wirkung eines innern Automorphismus von & mit einer Permutation ¢ auf die Ele-
mente s; durch die Formel: .
75; 97 = Sqa
beschrieben werden kann, folgt, dass die Transformation:
N—=>gNg! gel - K

mindestens mit einer Vertauschung (s; <> s,) mit ¢ < p, 2 > p verkniipft ist. Dann
liegt aber s, sowohl in R — N als auch in g N g~! und somit ist die notwendige Be-
dingung fiir die Reduziblitit nicht erfiillt: Die Darstellung ist irreduzibel. q.e.d.

1.4. Der Zustandskomplex eines quantenmechanischen Systems, dem ewn allgemeiner
symmetrischey Operator aus W als Hamiltonoperator zukommt

Im vorhergehenden Abschnitt haben wir erkannt, dass die 3-Komponente I; des
Drehimpulses den Kommutanten A’ der Gesamtheit N aller Hamiltonoperatoren er-
zeugt. Damit haben wir die Voraussetzungen bereitgestellt, die nétig sind, um den
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Zustandskomplex eines quantenmechanischen Systems zu beschreiben, dessen
Hamiltonoperator der Menge ¢ aller symmetrischer Operatoren aus U angehort.
Da ' abelsch ist, folgt zunichst einmal, dass er

o =dmP =2

Eckpunkte a; enthalten muss, die zudem nach der magnetischen Quantenzahl
geordnet werden kénnen. Welche Uberginge sind nun fiir ein so definiertes quanten-
mechanisches System erlaubt? Dazu miissen wir geméss der in 1.1 eingefiihrten
Berechnungsvorschrift B die Matrixelemente des Kopplungsoperators:

in einer allgemeinen der Drehgruppe um die 3-Achse angepassten Basis von P auf ihr
Verschwinden hin priifen.

Da sich eine Drehung des Spinsystems um den positiven Winkel o um die 3-Achse
am Spinraum als ¢'*%s darstellt, gilt:

eHioFs o gmiaty _ e (1-33)
Es sei 9] eine allgemeine Eigenbasis von F, in P. Dann ist wegen (33):
el —m') —1a ( ~iaF, % ’ zocF+ gt ,(p;n)
= (o7 M F T gy = (g, By

Es folgt also entweder: m = m’ + 1 oder: (", F*+y]") = 0. Beriicksichtigt man, dass
I’y durch Symmetrisierung aus F, entsteht, so erkennt man die Giiltigkeit der folgen-
den Auswahlregel:

(v}, F. V’;n)

|m~m’\:|[]m]:+1. ' (1-34)

Daraus folgt, dass der Zustandskomplex des hier betrachteten quantenmechanischen

Systems:
CEOG ) e

Kanten enthdlt. Die Zusammenhangszahl des Komplexes ergibt sich nun nach

Formel (15):

2

C:< ”)_2n+1_ (1-36)
n—1

Wir denken uns die Strecke ¢} des Komplexes, welche die den Eigenzustdnden ent-
sprechenden Punkte a;° verbinden, nach wachsender Magnetischer Quantenzahl ge-
richtet, das heisst die positive Orientierung von:

b = (af af Y
soll im Sinne des Pfeiles in

(ay' a7 +)
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festgelegt sein. Der Komplex setzt sich aus Kreisen der Linge vier der Art:

@ ap ) (¥ ) @ (@ ) (1-37)
zusammen.
Die Ordnung des Korandes eines Punktes 4" ist eine gerade Funktion von m und
besitzt den Wert:
n 7

n + n ' (1-38)
m+ o +1 m+ o —1

Zu einer schematischen Darstellung des Komplexes in der Ebene gelangt man, indem
man die zu einem bestimmten Wert von m gehorigen Punkte in gleichmissigen Ab-
stinden auf parallelen Geraden anordnet und hierauf Punkte auf unmittelbar be-
nachbarten Geraden miteinander verbindet. Dabei kann man immer erreichen, dass

die entstehende Figur die Symmetrie C,, besitzt. Dies sei hier fiir das Dreispinsystem
durchgefiihrt:

m=+§

Figur 1

Aus der Struktur des Zustandskomplexes ergeben sich sofort gewisse Einschrin-
kungen fiir die Frequenzkette y*, da diese, wie schon in Abschnitt 1.2 festgestellt
wurde, orthogonal auf dem Zyklenraum Z stehen muss. Insbesondere gilt fiir einen
einem Kreis der Art (37) zugeordneten Zyklus z:

(6 ") = (@ @) + (@ ) — (@t ar®) — (@ apt),57) = 0

7 P 7
oder:

W

m __ om-+1 w1 ~
Vip — Vip = Vip  — Vi (1-39a)
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Daneben gibt es noch Zyklen vom Typus:

(@ a3 = (@ apth) + (@ apth) - @y,

die zu analog gebauten Relationen:

Vip — Vip = Vi — Vi (1-39b)

(2

Anlass geben. Die Zyklenbedingungen dussern sich somit in der Geometrie des
Spektrums als Aequidistanz gewisser Linien (Rule of repeated spacings!) Die Zahl der
unabhingigen Beziehungen vom Typus (39) ist gleich der Zusammenhangszahl Z,
welche sich nach (36) berechnet.

Eine weitere, gruppentheoretische beschreibbare Eigenschaft des Komplexes, die
wir bendétigen, ist die folgende: Es sei @y diejenige Untergruppe der symmetrischen
Gruppe «, der Basiselemente von K, welche Elemente zu gegebener Quantenzahl m
unter sich permutiert. Unser Komplex hat die Eigenschaft, dass fiir alle T e’

dx ~0T x, (1-38)

Ty
wobei ~ fiir den Ausdruck: «dquivalent unter der Gruppe s,» steht. Durch die
Ty
Gleichung:
Updx =0T x _ (1-39)

wird daher ein Homomorphismus von 7 in 77, definiert, dessen Bild wir mit m, be-
zeichnen wollen. Schliesslich symbolisieren wir mit "}’ das Bild der Untergruppe y
von & beim durch (16) definierten Isomorphismus. ) ist somit Untergruppe von &".

1.5. Einige prinzipielle Bemerkungen zum Beweisverfahren

Wir sind nun soweit, dass wir das prinzipielle Verfahren unserer Beweisfithrung
erlautern kénnen. Die in 1.1 eingefiihrte Berechnungsvorschrift B: N - M lasst sich
mittels der bis jetzt erliuterten Begriffe exakt beschreiben. Zudem lisst sie sich in
natiirlicher Weise als Zusammensetzung zweier Abbildungen auffassen, wenn man
als vermittelnde Zwischenmenge die Paarmenge K, x K, iiber dem Raum K, der
eindimensionalen Ketten des Zustandskomplexes wihlt, in der man beziiglich 7"}
dquivalente Paare identifiziert, was wir durch einen Index » andeuten wollen:

N A XK gy

P

\_—//

B

Die Identifikation von beziiglich n’;’.’ dquivalenten Paaren ist nétig, wenn die Zu-
ordnung A: H = y* x y! eine echte (eindeutige) Abbildung sein soll, da der Hamilton-
operator Frequenz- und Intensititskette nur bis auf Transformationen aus dieser
Gruppe festlegt.

Cist die Identifizierung aller beziiglich ganz &’ 4quivalenten Paare und kann daher
ohne weiteres auf ganz K, x K, erklirt werden.

58 H.P.A. 36, 7 (1963)
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Die Abbildung A zerfillt in ein Paar von Abbildungen, ndmlich die Berechnungs-
vorschrift A fiir die Frequenzkette, welche auf ganz N definiert werden kann und
welche sich aus der Berechnungsvorschrift A” fiir die Energiekette und der Korand-
bildung zusammensetzt :

AE )
N> K, K

Yy
Pad
w
AF

und die Abbildung A7, die nur auf einem in N dichten Bereich D, definierbar ist.
Dieser kann dadurch charakterisiert werden, dass das zu einem bestimmten Quanten-
zahlwert gehorige Teilspektrum eines Operators aus D, nicht entartet ist. Dass D in
N dicht ist, ergibt sich aus 1.3 und dem «Prinzip der Fortsetzbarkeit algebraischer
Identitaten», welches besagt, dass, falls eine algebraische Gleichung auf einer vollen
Umgebung eines euklidischen Raumes gilt, sie identisch richtig ist. Wire ndmlich D,
nicht dicht in N, so gédbe es eine volle Umgebung eines Operators aus N, mit der
Eigenschaft, dass fiir alle Operatoren aus dieser Umgebung ein zu einem bestimmten
Wert der magnetischen Quantenzahl gehériges Teilspektrum entartet ist. Auf Grund
des genannten Prinzips wiirde sich diese Eigenschaft auf den ganzen Raum N {iber-
tragen, was zu einem Widerspruch zu den Resultaten aus Abschnitt 1.3 fiihrte.

Der Beweis zerfdllt nun der Struktur der Abbildung B entsprechend in zwei Teile,
die sich je mit der Umkehrbarkeit der Abbildungen C und A beschiftigen.

II. Die Beziehung zwischen dem Frequenz/Intensitits-Kettenpaar und
dem experimentellen Spektrum (Die Abbildung C)

Es ist klar, dass die auf ganz (K, X K,), definierte Abbildung C auf vieldeutige
Weise umkehrbar ist. Die Frage, die wir in diesem Teil der Arbeit ins Zentrum der
Betrachtung riicken, ist diejenige nach der Umkehrbarkeit der Beschrankung von C
auf

AF (N) x AT (D,) = GF x G.. (2-1)
Darin bedeutet:
GF = A¥ (N)
die Gesamtheit der Frequenzketten, wenn H ganz N durchliuft und G = 4%(D,) den
Abschluss der Gesamtheit der Intensititsketten, wenn A ganz D, durchlduft.

Die Frage ist dquivalent dem Problem, diejenige Untergruppe B’ von & aufzu-
suchen, welche die Menge G¥ x G aufgefasst als Teilmenge von K, x K, invariant
lisst. Um dieses Problem zu lésen, miissen wir die Menge G x G7 als Teilmenge von
K, x K, in geeigneter Weise charakterisieren. Dazu beachte man, dass die Abbildung
A fiir jeden Operator definierbar ist, dem der in 1.4 beschriebene Zustandskomplex
zukommt. Dies ist die Gesamtheit 3, aller derjenigen Operatoren aus dem Raum ¢ der
symmetrischen Operatoren von 2, welche zu keinem Wert der Quantenzahl m ein
entartetes Teilspektrum besitzen. G¥ x GT ist dann Teilmenge der Menge

AF (o) x AL (8,).
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Unser vorldufiges Ziel ist die Bestimmung derjenigen Untergruppe B von &', welche
diese Teilmenge von K, X K, in sich transformiert. In einem zweiten Schritt zeigen
wir dann, dass die Invarianzgruppe 8B’ Untergruppe von 8 ist, womit die Beschridn-
kung der Abbildung C auf G¥ x G’ fiir unsere Zwecke hinreichend charakterisiert
sein wird.

Es folgt nun die Beschreibung der Teilmengen A% (o) und A7(9,) als Teilmengen
von K,. Unmittelbar evident ist es, dass

AF (6) = 8 K, (2-2)

gilt, da die Eigenwerte eines allgemeinen Operators aus U in keiner Weise einge-
schrankt sind.

.Um die Gesamtheit der Intensititsketten A7(,) zu charakterisieren, beweisen
wir folgende Intensitdtsrelationen:

Satz 1

Unter der Voraussetzung, dass man die relative Intensitit der zum Ubergang
by "' = (a" "' a}') gehorigen Absorptionslinie durch die Gleichung:

=41 )™ Foyp) |2 (&-3)

definiert, worin {;'} eine orthonormierte Eigenbasis von H symbolisiert, gelten die
Relationen:

"
DIt =Y In-2m k=1,...< ) (2-4)
7

7 m + n/2

Nicht unabhingig von (2-4) ist die folgende Intensitdtssummenregel:

& = (”) (2-5)

worin p durch (1-23) definiert wird. Aus (5) folgt dann, dass die Definition (3) in
Ubereinstimmung mit der Normierung (1-5) der Intensititen ist.

Bewers

Wenn wir wieder mit F, und F_ die Operatoren F, + ¢ F, und I'; — 1 I, be-
zeichnen, dann folgt aus der Definition (3):

it =4 % Foyl) P=[ (™ (Fa+ P 9p) 2.
Da der Vektor F+ ] zum Quantenzahlwert m + 1 gehort, folgt:

o=t = | % Foyl) P
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Die Normen der Vektoren F+y, und F~ ) berechnen sich nach:

|| Favf Hz—Zl (i, Py ™) P = X I
j

HFTPkHz_Z‘ IF% IZ‘ZIM =

Nun folgt aus:
[F,,F]=2F, (2-6)

2m = (f [P P19y = || Pyl [P | Foof |IP= 20 IR — 2 I
i

(5) ergibt sich aus (4) durch einen Induktionsschluss. Die Verankerung der Induktion
geschieht, indem man in (4) fiir m den Wert #/2 einsetzt. Damit erhdlt man ndmlich
direkt die Beschrdnkung von (5) auf diesen Spezialfall. Dann folgt aus (4) durch
Summation iiber %:

2];’,’;1=2m(1;)—|—§11’.’;.

i, B

Nach Induktionsvoraussetzung ist:

& =Y (pil): (e Z)C;)
S T

Die Intensitdtsrelationen (4) lassen sich in Termen der Streckenkomplextopologie
wie folgt formulieren:

Das Skalarprodukt zwischen der Intensitidtskette und dem Korand eines Punktes
a;’ besitzt den Wert 2 m:

Also:

8 ar,y') =2m. (2-4")

Da (6) und (1-33) die einzigen Relationen sind, die zwischen den Drehimpulskompo-
nenten bestehen miissen, sind (2-4) die einzigen Gleichungen, welchen eine allgemeine
Kette aus A’(,) geniigt. Die Formeln (2.4') sagen daher aus, dass A7(9,) mit einer
zum Zyklenraum parallelen Hyperebene V' zusammenfdllt:

ATB) =V =yl+ Z. (2-7)

Als Reprasentanten y] wihlen wir diejenige Kette, welche jedem Ubergang vom Typus
m <> m + 1 dieselbe Intensitdt zuordnet. Wie man auf Grund der Beziehungen (5)
leicht einsieht, ist das die Kette:

Yo= 2 " 4" 28
(») =
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mit:
qgm = 2 b

Da die Rekursionformel:
ar = — 2 oal+dm1 (2-9)

giiltig ist, folgt, dass die Kette y} ein Korand ist und daher orthogonal auf Z steht.
Es sei nun T eine Transformation aus 7, die V' in sich iiberfithrt. Da T eine orthogo-
nale Transformation ist, folgt einerseits, dass y! Eigenvektor zum Eigenwert 1 von T
ist:

Tyl =y} (2-10)
und anderseits, dass Z bei 7" in sich iibergeht:
T B==yL, (2-11)

Die beiden Gleichungen implizieren, dass 7" entweder zu 7, gehort, oder aber generell
die Werte m und — s der magnetischen Quantenzahl vertauscht. Einen typischen
Repridsentanten der Transformationen mit dieser Eigenschaft bezeichnen wir mit
(m | — m). Diese Konsequenz lisst sich sogar aus Gleichung (11) allein ziehen, das
heisst es gilt das

Lemma 1

Eine Transformation T aus 7, welche den Zyklenraum invariant ldsst, gehort bis
auf die Multiplikation mit (m | — m) zu s, ( fithrt also insbesondere die Kette y{ in
sich tiber).

Beweis

Zunichst fiihrt T als orthogonaler Operator auch den Korandraum in sich tiber.
da—"/% — d—/2 ist mit dat"/? ein Korand der kleinstméglichen von Null verschiedenen
Linge und da bei T die Linge erhalten bleibt, ist:

entweder: T da "2 = da "2
oder: T a2 = — Ja*tnl2,

Als Folge davon, dass bei T der Zyklenraum in sich iibergehen soll, ergibt sich, dass
die Invarianz von d™ fiir m’ < m — 1 diejenige von d™ impliziert:

T g® =g m <m—1=Tdn=dr
Tarw =dmh- m'<m—1= Tdm=d-miD, (2-12)

denn sonst gingen Grundkreise vom Typus:

(@ ap) (o o+ @+ ap) () @)

bel T nicht wieder in solche iiber.
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Mit Hilfe der Formel:

Zaa = qm— 1 _ am

folgert man daraus sofort fiir ein zuldssiges T e 7,

entweder: T Y da} = ) da l
@ 1 (2-13)
oder: T 3 dal* = — DY da}. [

Aus (13) folgt:
ZT(Sa 26& Z,u (551:-”):2#(]"5@?),

was (wieder unter Beriicksichtigung von (13)) bedeutet, dass 7 da;* sich nur aus
Strecken zusammensetzen kann, dieauchin 7 2 da* vorkommen. Daraus und aus der

Feststellung, dass 7 éa;" wieder ein Korand gleicher Linge sein muss, ergibt sich
schliesslich:

entweder: T dal” — da}’
oder: T da = — da; ™,

was auf Grund der Definition von 7}’ bedeutet, dass 7 bis auf die Multiplikation
(m | —m) zu dieser Gruppe gehort. qg: e.d.

Da die Inversionsgruppe 3 im Raume der Intensitdtsketten die Einheitsdar-
stellung erfihrt, miissen wir zur Beschreibung der vollen Invarianzgruppe B noch
diejenigen Transformationen aus J§ aufsuchen, welche:

A¥ (o) = 0K,

invariant lassen.

In diesen Zusammenhang gehort das

Lemma 2

Es sei K ein zusammenhidngender Streckenkomplex mit folgender Eigenschaft:

Je zwei sich schneidende Kanten gehéren zu einem Kreis der Linge g¢.

Dann gilt:

Die einzigen der Inversionsgruppe J§ angehorigen Transformationen in K, welche
den Raum der Korander in sich iiberfiihren, sind die Identitit und die Inversion aller
Strecken.

Beweis

Zum Beweis dieses Lemmas benotigen wir noch einen Begriff der Strecken-
komplextopologie.
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Definition

Unter einer ¢-Kreiskette verstehen wir eine (geordnete) Folge von Kreisen z!, 22,
z3, ... z° der Linge ¢ derart, dass der Durchschnitt zweier aufeinanderfolgender Kreise
eine Kante ist.

Essei Qe Jund Q6 K, = § K,. Da die Transformation ) orthogonal ist, fiihrt sie

auch den Zyklenraum in sich iiber. Z;i und Ek seien zwei beliebige Kanten von K und

a; e 5; a, € b, je einer ihrer Eckpunkte. Da der Komplex zusammenhidngend ist,
existiert ein Weg von a; nach a,, das heisst eine Folge von Kanten:

bsmbk

mit der Eigenschaft, dass:
bi O pitl — a, (Eckpunktes des Komplexes K)
binbi=d¢ falls |4 —7| + 1.

Zwei aufeinanderfolgende Kanten b/ und b/+1 bestimmen ihrerseits wegen der voraus-
gesetzten Eigenschaft des Komplexes K einen Kreis z7 der Linge ¢, der mit z/+! die

Kante b/+1 gemeinsam hat. Durch den Weg von a; nach g, wird daher eine ¢-Kreis-

kette bestimmt, welche die beiden Kanten b, und b, enthilt. Eine Umorientierung der
Strecke b; induziert, sollen dabei alle den Kreisen 2/ zugeordnete Zyklen z/ wieder in
Zyklen iibergehen, notwendigerweise eine solche von b, und da b, und b, zwei beliebige
Strecken des Komplexes K sind, ist damit das Lemma bewiesen. q.e.d.

Der in 1.4 beschriebene Zustandskomplex der Protonenresonanzspektroskopie
besitzt tatsdchlich die im Lemma vorausgesetzten Eigenschaften, wenn ¢ = 4 gesetzt
wird. So definieren etwa die beiden Kanten:

(@ ap*h) und (a" a*')

den folgenden Kreis der Linge 4:

(af ap ) (ap* a*?) (a2 ) (@ a)) — g <m< G — 2.

Ersetzt man darin tiberall m + d durch m — d, so erhilt man dieselbe Aussage fiir den
ergdnzenden Variationsbereich von m;

. n n
—~g + 2 < m < 5
Damit haben wir den folgenden Satz bewiesen:

Satz 2

Die Invarianzgruppe der Teilmenge 6 K, x V von K, X K, wird erzeugt durch
die Permutationsgruppe 7, die generelle Vertauschung (m | — m) der Quantenzahl-
werte m und — m, sowie durch die Inversion ] aller Basiselemente.
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Wir behaupten nun
Satz 3

Die Invarianzgruppe B’ von G¥ x G ist Untergruppe von 3.

Bewers

Wir zeigen im Prinzip, dass zwischen den Intensititen ausser den Relationen (4)
keine allgemeinen (das heisst vom speziellen Hamiltonoperator unabhidngigen)
linearen Beziehungen bestehen. Dies bedeutet, dass die lineare Hiille der Menge
G’ — yI, wo y! eine beliebige Kette aus G? bedeutet, mit Z zusammenfllt:

Z = {G" —yIt {4} = lineare Hiille von 4 .
Es sei T eine lineare Transformation, welche G! in sich iiberfithrt. Dann ist offenbar:
TZ={TG —Ty}={G'~Ty}=Z

eine Gleichung, welche mit Formel (11) iibereinstimmt. Mit Lemma 1 folgt daraus die
gewiinschte Teilaussage von Satz 3.

Lineare Beziehungen zwischen den Intensitdten von der erwdhnten Art kénnten
a priori auf Grund der Zugehorigkeit von H zu einem echten Unterraum von o gelten.
Wir zeigen aber:

Lemma 3

Ausser den Intensititsrelationen (4) kann es keine vom speziellen Hamilton-
operator unabhidngigen linearen Relationen zwischen den Intensitidten geben.

Beweis des Lemmas (indirekt)

Da N die ganze Operatorenalgebra zu V7 erzeugt (vergleiche Abschnitt 1.3),
miissten solche Relationen symmetrisch sein in bezug auf die neben m auftretenden
Indizes. Die einzigen Beziehungen dieser Art, welche weder von den Intensitdts-
relationen (4) abhingig sind, noch ihnen widersprechen, sind:

1. Die Gleichheit aller Intensitidten, die zu einem bestimmten Quantenzahliiber-
gang m/m + 1 gehoren.

2. Die Summe:

2 I (2-14)

7

besitzt fiir irgend einen Wert der Quantenzahl m einen vom Index % unabhingigen
Wert a.

Der erste Fall kann sofort auf den zweiten zuriickgefithrt werden, denn wenn alle
Intensititen zu den Ubergidngen m/m + 1 iibereinstimmen, folgert man aus (5):

X mt=p,
7
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Um die zweite Moglichkeit auszuschliessen, halte man sich vor Augen, dass die Fest-
legung der Summe (14) wegen der Giiltigkeit der Gleichungen (4) den Wert der ent-
sprechenden Summe zum Quantenzahliitbergang m — 2/m — 1 determiniert.

Die Intensititen zum Ubergang (— #/2)/(— #/2 + 1) kénnen aber auf Grund der
Zugehorigkeit von H zu einem echten Teilraum N von W in keiner Weise eingeschrankt
werden, da, wie wir im Teil IIT der Arbeit (Beweis zu Satz 6) erkennen werden, die
Gesamtheit der A'-Komponenten von Operatoren aus N mit dem Raum S? aller
symmetrischer Operatoren zum Eigenraum V! von Fj identisch ist. g.e.d.

Um den Beweis von Satz 3 zu vervollstindigen, haben wir noch zu zeigen, dass
jede Transformation Q aus der Inversionsgruppe J, welche G” invariant ldsst, auch
0 K, in sich dberfithrt. Dazu dquivalent ist wegen der Orthogonalitit von Q der
Nachweis, dass jede auf G¥ orthogonal stehende Kette bei Q wieder in eine solche
tibergeht. Wie kénnen wir nun G* als Teilmenge von K, charakterisieren? Die einzige
Eigenschaft, die wir neben derjenigen, Teilmenge von § K, zu sein, noch beniitzen
werden, ist ihre Invarianz unter n;,”.

Z Qz symmetrisch z-@z2

<><><>>\

Qz nichr symmetrisch z’ r’-Qz

OO v

Figur 2

Mit z bezeichnen wir den einem Grundkreis des Komplexes zugeordneten Zyklus:

2= (af ap™) + (@t af??) — (aptt o) — (af a7 (2-15)

Die Kette Q z besteht aus denselben Kanten, eventuell mit der inversen Orientierung
versehen. Die neben den trivialen Beispielen Q z = z und Q z = — z moglichen trans-
formierten Ketten lassen sich wie folgt klassifizieren.
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1. Man erhdlt Q z aus z oder — z durch Umorientierung einer einzigen Strecke.

2. Man erhdlt Q z aus z durch Umorientierung zweier zusammenhingender
Strecken.

3. Man erhidlt @z aus z durch Umorientierung zweier durchschnittsfremder
Strecken.

Im Fall 2. ldsst sich noch eine feinere Unterscheidung vornehment:

2a. Die beiden Strecken gehoren zu demselben

2b. nicht zu demselben Quantenzahliibergang.

Nennen wir eine Kette vom Typus Q z symmetrisch, falls sie bei Vertauschung von
ay ™t und a} ™! in sich oder in die negative Kette iibergeht, so iiberlegt man sich, dass
die unter 2. und 3. eingeordneten Ketten symmetrisch sind, wahrend die unter 1. be-
schriebenen Ketten diese Eigenschaft nicht besitzen.

Im symmetrischen Fall konstruieren wir die Kette z — @ z. Im Fall 1. dagegen
bilden wir durch Vertauschung der zu m + 1 gehorigen beiden Eckpunkte eine neue
Kette 2" und definieren dann die Kette 2’ — () 2. Wegen den erwdhnten Eigenschaften
der Menge G* (Teilmenge von d K,, Invarianz unter 7,’,) miissen die so konstruierten
Ketten orthogonal auf G¥ stehen:

a) z—Qzy)=(0(z—Qz), 2%) =0, l
(2-16)
b) (' —QzyF) = (0( —Qz) 2% =0. |

In den Fillen 1. und 2a. verlangt die Gleichung (16) die Ubereinstimmung zweier
Energieterme zu einem bestimmten Wert von m, was auf Grund von Satz 1 aus 1.3
nicht allgemein zutreffen kann. Im Fall 2b. folgt die Geichheit zweier Energieterme
zu m und m + 2

m+2 w
B B,

Da aber die zu einem bestimmten Wert der Quantenzahl » gehoérigen Energieterme in
keiner Weise voreinander ausgezeichnet sind, wiirde dies wieder das Zusammen-
fallen von zum gleichen Wert von m gehoérigen Energieterme bedingen.

Schliesslich fithrt man Fall 3. wie folgt auf den Fall 2a. zuriick: Ersetzt man in
y=2—Qz=>0b; — b, die eine Strecke b; durch eine andere mit demselben Anfangs-
punkt, so erhdlt man eine neue Kette y’, die immer noch auf G¥ orthogonal stehen
muss. Dasselbe gilt auch von der Kette y — y’, die aber wieder von demselben Typus
ist, wie die Kette z — 0 z im Falle 2a. Damit ist Satz 3 bewiesen.

Wir gelangen zur Formulierung von

Hauptsatz 7

Die Abbildung C ist im allgemeinen vierdeutig umkehrbar. Die vier mit dem ge-
gebenen Absorptionsspektrum vertriglichen Kettenpaare gehen durch Vertauschung
von m und — m und die Inversion der Frequenzkette auseinander hervor.

Uber die in den Sitzen 2 und 3 enthaltenen Aussagen hinaus wurde dabei beniitzt,
dass sogar B’ = B ist, oder in andern Worten, dass die Transformationen (m | — m)
und J die Paarmenge G¥ x G! tatsichlich in sich transformieren. Um dies einzu-
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sehen, {iberlege man sich, dass zwei Hamiltonoperatoren, die durch Zeitumkehr aus-
einander hevorgehen und welche nach 1.1 dasselbe Absorptionsspektrum definieren,
zu zwei verschiedenen Kettenpaaren Anlass geben, die durch generelle Vertauschung
von m und — m ineinander iibergehen. Der Grund dafiir liegt darin, dass die Zeitum-
kehr am Spinraum durch einen Operator dargestellt wird, der generell die Eigen-
rdume von Fj zu den Eigenwerten m und — m vertauscht.

Ebenso bestimmen H und — H, welche zu zueinander inversen Frequenzketten
Anlass geben, dasselbe Absorptionsspektrum.

Eine Konsequenz des Hauptsatzes, die unmittelbar praktische Bedeutung besitzt,
ist das folgende

Korollar zum Hauptsatz 1

Durch das Absorptionsspektrum ist das Energiespektrum im allgemeinen bis auf
Spiegelung am Nullpunkt eindeutig bestimmt.

Dabei geniigt es im allgemeinen zur Bestimmung des Energiespektrums die Zu-
ordnung der Linien zum Zustandskomplex so zu treffen, dass die Zyklenbedin-
gungen (1-39) fiir die Frequenzen und die Intensititsrelationen (4) erfiillt sind.

Das Korollar folgt aus dem Hauptsatz unter Beniitzung der Bemerkung, dass fiir
einen Hamiltonoperator aus N gilt:

S p(H) = (&%, ¢p) =0

(co = Kette mit lauter iibereinstimmenden Komponenten) und dass daher durch die
Frequenzkette die Energiekette eindeutig bestimmt wird. Wahrend Frequenzketten,
die durch die Transformation (m | — m) auseinander hervorgehen, zu demselben
Energiespektrum (vgl. dessen Definition) fithren, bedeutet die Inversion der Frequenz-
kette die Spiegelung des Energiespektrums am Nullpunkt.

II1. Beziehungen zwischen den phinomenologischen Parametern und
dem Energiespektrum. Die Forminvarianzgruppe des Hamiltonoperators
(Die Abbildung A)

3.1. Die Problemstellung

Im Teil II dieser Arbeit haben wir uns bemiiht, zu zeigen, dass diejenige Informa-
tion, die im experimentellen Absorptionsspektrum enthalten ist, im allgemeinen hin-
reicht, um das Energiespektrum bis auf Spiegelung am Nullpunkt eindeutig zu be-
stimmen. Um das eingangs aufgestellte Theorem zu beweisen, werden wir nun noch
die Richtigkeit des folgenden Satzes nachweisen:

Hauptsatz 2

Die einzigen Operatoren aus N, welche dasselbe Energiespektrum definieren wie
ein allgemeiner Hamiltonoperator der Form (1-1) gehen aus diesem durch eine Per-
mutation der Teilchen oder mittels der Zeitumkehr hervor.
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Da nun zwei symmetrische Operatoren genau dann dasselbe Eigenwertspektrum
besitzen, wenn sie zueinander orthogonal dhnlich sind, miissen wir nach der Gesamt-
heit § der Ahnlichkeitstransformationen mit orthogonalen Operatoren im Spinraum
P fragen, welche den Unterraum N der symmetrischen Operatoren ¢ von 9 in sich
transformiert. Diese Gesamtheit §) bildet eine Gruppe, welche wir als Forminvarians-

gruppe des Hamiltonoperators (1-1) bezeichnen wollen. Eine zum Hauptsatz dquiva-
lente Formulierung ist die folgende:

Korollar zum Hauptsatz 2

Die Forminvarianzgruppe & des Hamiltonoperators (1-1) wird durch die Zeit-
umkehr und die symmetrische Gruppe der Teilchen erzeugt. In dieser Form wollen
wir den Hauptsatz beweisen.

3.2. Die Forminvarianzgruppe (®) eines allgemeinen symmetrischen Operators aus A

Satz 1

Die Forminvarianzgruppe $ des Hamiltonoperators (1-1) ist Untergruppe der
Forminvarianzgruppe ® eines allgemeinen Operators aus 9[.

Beweis

Es sei Y €o. Da N ganz U erzeugt, ist Y eine ganze rationale Funktion f einer
Basis By, ... B, von N:

Y=f(By,...B) r=Y,n(n+1). (3-1)
Es sei ferner

J; (X)=LXL X = allgemeiner Operator in P (3-2)

eine Ahnlichkeitstransformation mit einem orthogonalen Operator L im Spinraum P.
Dann ist:

JL(Y) =f(J(By), ... Jo(B)))- (3-3)

Falls nun J; € §, folgt aus (3), dass J,(Y) wieder dem Erzeugnis % von N angehort.
Da zudem L als orthogonal vorausgesetzt wurde, ist J;(Y) € ¢ und daher J; € ®.
g.e.d.

Auf analoge Weise sieht man ein, dass  Untergruppe der Automorphismengruppe
von U ist. Wir werden also darauf gefiihrt nach der Automorphismengruppe einer

direkten Summe von vollen Matrixringen iiber dem Korper der reellen Zahlen zu
fragen.

Satz 2

Die Automorphismengruppe einer direkten Summe von vollen Matrixringen ist
semidirektes Produkt des Normalteilers ¢ der innern Automorphismen mit einer
Untergruppe g, welche die isomorphen Matrixringe unter sich permutiert.
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Satz 2 ist die Zusammenfassung der nachstehenden beiden Sitze:

Satz 3

Jeder Automorphismus einer direkten Summe von vollen Matrixringen, welcher
das Zentrum elementweise fest lisst, ist ein innerer.

Satz 4

Jeder Automorphismus einer Algebra von Diagonalmatrizen permutiert deren
Basisidempotente. '

Beweis zu Satz 3
Es sei

A=A,y & ... + 2,

die direkte Summe der Matrixringe U; und ¢; (¢ = 1, ... ) die Basisidempotenten des
Zentrums von . Ferner sei « ein Automorphismus von A, welcher das Zentrum
elementweise fest ldsst. Ein Element X € ; wird durch die Gleichung:

charakterisiert. Durch Ausiiben von « gemiss:

o (X g) =a(X) g = a(X)

1

folgt, dass die @ einzelnen Matrixringe invariant ldsst. Wir haben also lediglich noch zu
beweisen, dass jeder Automorphismus einer vollen Matrixalgebra ein innerer ist. Dies
besorgte schon H. WEYL in Literaturstelle (6). Wir geben hier einen kurzen Abriss
seines Beweises. WEYL zeigt zunichst, dass die Eigenwerte einer Matrix bei einem
Automorphismus invariant bleiben. Dies bedeutet, dass die Bildmatrix G* einer vor-
gegebenen Diagonalmatrix G mit lauter verschiedenen, dem Grundkérper angehérigen
Eigenwerten zu dieser #hnlich ist. Durch die Ahnlichkeitstransformation mit der
Matrix A, welche G* in G iiberfiihrt, wird ein innerer Automorphismus der Matrix-
algebra definiert, den WEYL mit dem urspriinglich gegebenen X - X* zusammensetzt.
Von diesem zusammengesetzten Automorphismus weist er dann nach, dass er wieder
ein innerer ist und zwar erzeugt durch eine Diagonalmatrix 4,. Also folgt dann, dass
auch der urspriinglich gegebene ein innerer sein muss.

Beweis zu Satz 4

Es seien ¢, ... ¢, die Basisidempotenten einer Algebra A’ von Diagonalmatrizen
und X - X* ein Automorphismus von U’. Setzt man ¢ an als:

v
* 2’ k
Ei— aigk
k=1

so folgt aus & = &

of (af — 1) = 0 oder ok =

0"
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Ferner ergibt sich aus der Tatsache, dass die Einheitsmatrix bei einem Automorphis-
mus fest bleibt:

4
— ® o Fo —
1_281— Ek o & = kz &y == 1
1,

i=1

und hieraus durch Multiplikation mit ¢;:

r s

g
2%—
i=1

- das heisst jede Zeile der Matrix «/ muss genau eine 1 enthalten. Da zudem die Ab-
bildung X - X* eine Abbildung von % auf sich sein soll, darf die Matrix nicht singulir
sein, was unter Beriicksichtigung des Vorangegangenen bedeutet, dass sie eine Per-
mutationsmatrix sein muss. g.e.d.

Es sei nun 4 ein Automorphismus einer direkten Summe von Matrixringen iiber
den reellen Zahlen, bei welchem die Basisidempotenten ¢; des Zentrums die Permuta-
tion g erfahren. Ferner sei Q) derjenige Automorphismus von 2, der dadurch definiert
wird, dass man die Komponenten Y, €, eines beliebigen Elementes Y € U der
Permutation ¢ unterwirft. Dann ist:

0 4-]

ein innerer Automorphismus, da er das Zentrum fest lisst (Satz 3). Jeder Automor-
phismus erlaubt daher die Darstellung:

A=07.

wobei der Durchschnitt aller Q’s und aller J’s nur die Identitit enthilt. Ferner ldsst
mit J auch Q J Q! das Zentrum fest, ist also wieder ein innerer Automorphismus.
Diese Feststellungen enthalten Satz 2.

Aus Satz 2 folgert man unmittelbar, unter Beriicksichtigung, dass ein Permuta-
tionsoperator orthogonal ist:

Satz 5

Die Untergruppe & der Automorphismengruppe der Algebra 2, welche den
Unterraum ¢ der symmetrischen Operatoren invariant lasst, ist semidirektes Produkt
des Normalteilers ¢ der durch orthogonale Elemente von U erzeugten innern Auto-
morphismen mit der Untergruppe g der dussern Automorphismen von 2L.

3.3. Die Bestimmung derjenigen Transformationen der Forminvarianzgruppe $,
die zu den innern Automorphismen (') von W gehoren

Die Gesamtheit der Transformationen aus §, die innere Automorphismen von A
definieren, bildet einen Normalteiler §’ von $.
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Wir wiederholen einige Bezeichnungen: Der Spinraum P zerfillt unter der Dreh-
gruppe um die 3-Achse in Teilrdume dquivalenter Darstellungen:

P= @ V?, (3-4)
b0
wobei
p=m+ % (3-5)

Der Raum N der Operatoren der Form (1-1) erzeugt den Endomorphismenring % von
P unter der Drehgruppe um die 3-Achse, der, seiner Definition gemaiss, in eine direkte
Summe von vollen Operatorenalgebren A? zu den Rdumen V? zerfillt:

Mit ¢ bezeichnen wir den Raum der symmetrischen Operatoren aus 2, wihrend S? den
Raum der symmetrischen Operatoren in V# symbolisieren soll.
Wir beweisen zunéchst:

Satz 6

Es sei §; die Gruppe der auf S? beschrinkten Transformationen von §’. Dann ist:

9 =9

Bewers
Wir haben zu zeigen, dass die Abbildung:
@ N— S, | (3-7)

welche jedem Element H € N seine Komponente H! e S! zuordnet, ein Operator-
isomorphismus beziiglich " von N auf S! ist. Die Eigenschaft der Operatorhomo-
morphie folgt einfach aus der Feststellung, dass der Raum S? bei §’ invariant bleibt.
Bezeichnen wir mit E,; denjenigen Operator aus 2, der die Basisfunktion:

= B(L) ... Bl — 1) Bli + 1) ... fln — 1) () i) (3-8)
auf die Funktion:
be=p1) ... 08k —1) Bk + 1) ... f(n — 1) B(n) a(k)

und das durch die Produktfunktionen definierte Komplement von (8) in V* auf 0 ab-
bildet, so ist offenbar: (¢¢ = Einselement von #)

— 2t =—(s)t = ZEjj — Ey (3-9)
ji

; 1
2(LI) = (k) — 126 = 72 Ejj — (Eyi + Eg) + Ey + Eyy- (3-10)
i
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Diese Formeln zeigen, dass die Bilder der Basiselemente {I,,, I, I} von N fiir n > 2
bei der Projektion (7) linear unabhingig bleiben. Dies ist fiir die Elemente I, I,
untereinander und in bezug auf die /,; unmittelbar evident. Die gegenseitige lineare
Unabhingigkeit der Operatoren (I,5)! beruht auf der Nichtsingularitdt der Matrix:

[ —1 = | . . 417
+1 —1
M, = ~ 1 .
. . +1
|+ 1 ; ; +1 —1-

fir » > 2. Die Determinante von M, besitzt den Wert 4. Unter Beniitzung der
Rekursionsformel:

det M, = — 2"=% et M -

n n—73

erkennt man mittels eines einfachen Induktionsschlusses, dass die Determinante von
M, von Null verschieden ist.

Nun existieren 1/2 n(n + 1) solche Basiselemente, eine Zahl, welche gerade mit der
Dimension des Raumes S! tibereinstimmt. Somit ist die Projektion ¢, fiir » > 2 tat-
sdchlich ein Operatorisomorphismus auf S?, womit Satz 6 bewiesen ist. q.e.d.

Folgende Begriffe spielen in der weiteren Untersuchung eine Rolle:
= symmetrische Gruppe der # Teilchen
A, lineare Hiille der darstellenden Operatoren von # am Spinraum P
AW =A NN
S = V1@ V1 (= Unterraum von P)

2 = S'@ S*1 (= Unterraum von g)

95 = Gruppe der auf } beschrinkten Transformationen von §’

W= W, 0 (AW @ A1) = lineare Hiille der darstellenden Operatoren von m am
Teilraum & des Spinraums.

Satz 7
Die Gruppe $; enthdlt nur Ahnlichkeitstransformationen mit orthogonalen
Elementen aus U,z.
Beweis

Mit ¢, bezeichnen wir entsprechend zu (7) die Projektion:
@s! N — Sn-1 , (3-12)

welche jedem Element aus N seine Beschrinkung H» 1 auf 17»~1 zuordnet. Ebenso wie

im Beweis von Satz 6 zeigt man, dass ¢, ein Operatorisomorphismus beziiglich £’ von
N auf 571 darstellt.

p=g 09 )
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definiert dann einen Operatorisomorphismus von S*1 auf S!. Explizite ist ¢ durch
die Gleichungen:

a) @ (i) =s{"" b) @ ((k)) = (iR)"" | (3-14)
und lineare Ubertragung definiert. Durch die Festsetzung:

v (@ 8) = gla) plt) o (3-15)

und die Forderung der allgemeinen Linearitit ldsst sich die Abbildung widerspruchs-
frei zu einem Homomorphismus von ! auf A+ erweitern. Es sei nun J; eine Trans-
formation aus §%, also L die Komponente des orthogonalen Operators L in ! @ AL
Da ¢ einen Operatorisomorphismus darstellt, gilt fiir alle X € S?

@ (L' X LY) = L1 p(X) L1 (3-16)

worin L1 und L»~1 die Komponenten von L in den Teilalgebren ! und A"-! bedeuten.
Die durch (15) definierte Erweiterung ¢ des Operatorisomorphismus bezieht die Un-
terrdume der symmetrischen Operatoren von 2 und A" eineindeutig aufeinander.
Sie fithrt deshalb einen antisymmetrischen und infolgedessen auch einen orthogonalen

Operator zu V'? in einen ebensolchen zu /71 iiber. Diese Uberlegungen zeigen, dass
Gleichung (16) offenbar durch:

Lrt = (LY (3-17)

befriedigt wird, wenn wir wieder unter ¢ die durch (15) definierte Erweiterung des
Operatorisomorphismus verstehen. (Auch L7-1 = — (L) ist eine Losung von (16),
die jedoch denselben innern Automorphismus von U definiert wie ¢(L?').) Der Operator
L lasst sich somit darstellen als:

-~

L=1L'4 (LY. (3-18)

Wir haben jetzt nur noch zu zeigen, dass L zu U} gehért; dann impliziert ndmlich

Gleichung (18) unter Beachtung der Definitionsformeln (14b) und (15) von ¢, dass L
ein Element von 90, ist.
Gegentiber der symmetrischen Gruppe 7 zerfillt V1 in zwei irreduzible Teilrdume:

Vi W+ Wi (3-19)

wobei W zur totalsymmetrischen Darstellung gehért, wihrend W die zum Young’
schen Tableau:

k n-1

-

e B —p

Figur 3

gehorige Darstellung vermittelt.

59 H.P.A. 36, 7 (1963)
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Wir haben zu zeigen, dass falls /; den Raum N in sich iiberfiihrt, die Komponente
L' von L den Raum W invariant ldsst. Da L1 orthogonal ist, folgt dann, dass L! auch
WL in sich iiberfithrt und dass daher L zu UL gehort.

Um diesen Beweis zu fithren benétigen wir folgende Hilfsformel:
n Spw(H) = (n — 1) Spo(H) + Sp,(H) - (3-20)

Sp,(H), Spw(H) bezeichnen dabei die Spuren von H iiber die Teilrdume V? bzw. W.
Zum Beweis der Formel (20) bemerken wir:
Jedes Element aus N ldsst sich schreiben als:

B = i:”i (i)p + kaik (k) p—1/2 (kaik) E. (3-21)
Ferner gilt: - - 1
— Spo(si) = Spulsi) = Spo((tk)) = Sp, (1)) =1 (3-22)
und:
a) Spwls) =— "2 b) Spy(lk) =1. (3-23)

Von den Formeln (22) und (23) ist einzig (23a) nichttrivial; die folgenden Uberlegun-
gen dienen zu ihrem Beweis: Der Zerlegung (19) von V! angepasste Basisvektoren
sind:

w;=¢t,—4¢t 1=1,...n—1in W+

" (3-24)
Wy, = 2 L inWw.
k=1

Uns interessiert der Entwicklungskoeffizient u,, von s;u, bei u,. s;u, ldsst sich
schreiben:

S;u, = —u,+ 21,. (3-25)

Kennt man nun den Entwicklungskoeffizienten von ¢; bei #,, dann ldsst sich die ge-
suchte Grosse leicht berechnen. Jener ergibt sich aber in der Matrix:

FE . . . B 19
o 1 . . . 1
Dll =
o . . . 1 1
-1 . . . =1 1]

deren Elemente durch die Gleichungen:
Ay =0y L E<m
d,=—1 k=1..n—1

d,. =+1 1=1...n—1,n

in
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gegeben sind, als Adjunkt des Elementes 4,,, dividiert durch die Determinante von
D,. Setzt man in D, an Stelle der letzten Zeile die Summe aller Zeilen, so erhilt man
eine Dreiecksmatrix mit derselben Determinante, die sich dann leicht zu # berechnet:

det D, =n.

Um das Adjunkt von d;, zu berechnen, braucht man fiir 7 << # den Wert einer Unter-
determinante der Art:

. —
o
S

0 . |
| 1 0 i
ijo 0 1 0o .
|£0 0 H
-1 . -1 -1 —1 . *1\\

Durch # — 1 — ¢ Transpositionen der Kolonnen macht man daraus eine Matrix mit
der Determinante — 1, derart, dass die Unterdeterminante den Wert (— 1)"— besitzt.
Dem Adjunkt kommt daher in jedem Fall der Wert + 1 zu und der gesuchte Ent-
wicklungskoeffizient lautet mithin in der Tat fiir alle s;:

2 n—2
SPw(s:) = pin = W 1=— "

Unter Beniitzung der Formeln (22) und (23) folgt nun aus (21):

SpwlH) = =22 30 1112 3 o,

i<k
SpoH) = — X v, +1/2 3 0y
i<k
SpH) =+ D v, +1/2 D] wy
i<k

Durch Elimination der Summen J}; v;, 1/2 } w;, erhidlt man daraus (20).
Aus (20) folgt jetzt fiir J; €$’, also L € A:

Spo(L H L) — Sp,,(H) fiir alle He N . (3-26)

Wenn wir mit Py, den orthogonalen Projektor von V! auf W bezeichnen, ldsst sich
(26) auch schreiben:

Sty ( Py L1 HY L) = Sp, (P HY)
Durch zyklische Vertauschung in der Spur auf der linken Seite der Gleichung erhalt
man dann:

Sp (L' Py, L' — P,) H') =0, (3-27)
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eine Gleichung, welche fiir alle H! gelten muss. Da die Gesamtheit aller 1-Komponen-
ten der Operatoren aus N mit S! iibereinstimmt (vgl. Beweis zu Satz 6) folgt, dass der
Operator:

[P, I'— P,
beztiglich dem Frobenius-Skalarprodukt:
A, Be* (4, B) = Sp, (A*+ B)
auf S! orthogonal steht, und da er selbst symmetrisch ist, ergibt sich:
[Ly, Py] =0, (3-28)

eine Gleichung, welche in der Tat aussagt, dass L! den Raum W in sich transformiert.
q.e.d.

Satz 8

$; enthilt nur Ahnlichkeitstransformationen mit darstellenden Operatoren von
Teilchenpermutationen an V1.

Bewers

Es seien E;, die analog zu den E, € % definierten Operatoren von A*~ und ¢ die
durch die Zuordnung:

Ey—Ey (3-29)

induzierte lineare Abbildung von S! auf S7—1. Da die Produktfunktionen in V! und
Vn—1 genau dieselbe Darstellung von 9, vermitteln, ist ¢ ein Operatorisomorphismus
beziiglich der Gruppe der Ahnlichkeitstransformationen mit Elementen aus 2, und
wegen Satz 7 auch beziiglich der Gruppe §’. Die Abbildung y = ¢! o ¢ von S*auf sich
ist somit ein beziiglich §)’ zuldssiger Automorphismus von S'.

Wir zerlegen nun S! gemiiss:

Sl=Z 4R (3-30)

in zwei Unterrdume Z und R, von welchen Z durch die s} und R durch die (¢ 2)! auf-
gespannt werden soll. Z ist sogar eine kommutative Algebra. Fiir Elemente z € Z und
7 € R gilt dann offenbar:

2@ =—2z  z0)=r. (3-31)

Es seien nun J; €$’, J;. die Beschrinkung von J; auf St und Py, P, die Projektoren
auf die entsprechenden Unterriume gemiss der Zerlegung (30). Dann ist einerseits
wegen (31):

Z(]Ll (Z))::%(PR Ji: (2))+%(Pz J (3)): PpJu@)— Py Jn(2)

und andererseits wegen der Operatorisomorphieeigenschaft von beziiglich §’ und (31):

%(]u (Z))= le(X(z)): — PrJp(2) — Py Jp(2).
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Der Vergleich der beiden Formeln zeigt:

Pp Jp (2)=0
oder:

Ju () =Py Jp. (2) - (3-27)

(27) bedeutet, dass Z bei J;. in sich iibergeht. Da aber Z eine Algebra von Diagonal-
matrizen ist, permutiert nach Satz 4 ein zulissiges J;. die Basisidempotenten:

E,;=1/2 (& + S:)

unter sich. Das zugehérige L! permutiert dann die Produktfunktionen unter sich und
kann als treue Darstellung einer Teilchenpermutation gedeutet werden. gl
Aus den Sdtzen 6 und 8 extrahiert man:

Satz 9

Die einzigen innern Automorphismen von 9, die zur Forminvarianzgruppe § von
H gehoren sind diejenigen, die durch darstellende Operatoren von Teilchenpermuta-
tionen erzeugt werden.

3.4. Die Bestimmung derjenigen Transformationen der Forminvarianzgruppe,
die zu den dussern Automorphismen (o) von W gehdren

Satz 710

Der einzige dussere Automorphismus von U, der zur Forminvarianzgruppe von H
gehort, ist derjenige, der durch den darstellenden Operator der Zeitumkehr erzeugt
wird.

Beweis

Um Satz 10 zu beweisen, bemerken wir, dass der Transitivitdtsbereich 7 unter der
Gruppe der dussern Automorphismen des speziellen Elementes

F3:Z;Iz'3

von N mit N nur die beiden Elemente F3 und — F teilt. Dies sieht man sofort ein,
wenn man beachtet, dass der Durchschnitt T 0 N die Darstellung:

TON =" (. 7)
erlaubt und dass ¢,(7) nur die beiden Operatoren:
(—%—f—l)elund—(-—%+l)81

enthilt. Dabei ist ¢; der durch (7) definierte Operatorisomorphismus von N auf S!.

g.e.d.
Die Sitze 9 und 10 enthalten den zu beweisenden Hauptsatz 2.
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Appendix

In diesem Abschnitt wollen wir einige Beziehungen betrachten, welche auf Grund
der Zugehorigkeit des Hamiltonoperators zu einem echten Unterraum von ¢ gelten.
Solche Beziehungen sind von grosser praktischer Bedeutung, einmal bei der Bestim-
mung von Frequenz- und Intensitdtskette aus dem experimentellen Spektrum (Zu-
ordnungsproblem), dann aber auch zur Verbesserung der Messwerte mittels der
Methode der kleinsten Quadrate. Wir beschrinken dabei unsere Betrachtung auf
sowohl in den Intensititen als auch in den Frequenzen lineare Relationen.

Durch Untersuchung der Teilspuren des Hamiltonoperators in den Raumen V7
erhdlt man eine Klasse von intensititsfreien Beziehungen der erwédhnten Art. Modulo
den Vielfachen der Identitit ldsst sich der Hamiltonoperator als Linearkombination:

2H= ZQi (si)p + Zk Jix (R)p | (A-1)

schreiben. Aus den Gleichungen:

n—1 ‘n—1 . n—2 n—2
Sp,,(si)=(p_1)—( , ) S;bp((zk))( ; )+(p_2) (A-2)

worin wie sonst:

p=m + (A-3)

|3

folgert man:

R Ny EIR SR FYA

Unter Beniitzung einer geeigneten Normierung der Energie folgt daraus fiir den
Mittelwert £™ der zum Quantenzahlwert m gehérigen Energieterme:

Em = Sp,(H) ( ) 2 it - me (A-5)
i<k
Daraus erhilt man fiir die iiber die Uberginge m —> m + 1 gemittelte Frequenz:
-1 ¢ 2 m+ 1 ]
Pro== ;2 2 ]lk (A 6)

i=1

v™ erweist sich also als eine lineare Funktion von m und es gilt daher:

ym = 1/2 (ym-1 4 ym+1) |, (A-7)

Von diesem Typus gibt es (# — 2) unabhidngige Relationen zwischen den Frequenzen.
Eine davon abhidngige Beziehung, die beim Dreispinsystem eine gewisse Rolle spielt,
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erhdlt man direkt aus (4). Mit Hilfe der Relation:

i n
e 1)17(?):0.

leitet man namlich daraus ab:

n

2, (= 1) Sp,(H) = 0. (A-8)

P=0

Daraus folgt, dass die Energiekette orthogonal auf der Kette

n

A o)
y=2 (=1) 2 a}

20

steht. Und da die Koeffizientensumme von y verschwindet, ¥ sich also als Rand einer
Kette x schreiben lisst: -

5 =0

=)

besitzt diese Orthogonalititsrelation die Gestalt:
(%, 9) = (+F, 0x) = (y", %) = 0. (A-9)

Die explizite Form dieser Beziehung zwischen den Absorptionsfrequenzen hingt
natiirlich sehr von der Wahl der Kette x ab, die ja nur bis auf Addition eines Zyklus
bestimmt ist. Beim Dreispinsystem lisst sich fiir x eine beliebige Kette von folgendem
Typus wahlen:

x = bh-32 _ bl— 2 _ b_2_ 12 | p+1f2 (A-10)

wobei der Durchschnitt von je zwei Kanten b aus % leer sein soll. Dadurch werden die
Klassen dquidistanter Linienpaare, zu welchen die Zyklenbedingungen Anlass geben,
noch vergrossert. '

Da die Ketten vom Typus (10) von der gleichen Lange (vier) sind, wie die Grund-
zyklen des Zustandskomplexes, ist es moglich, sie durch Transformationen aus 7, in
Zyklen iiberzufithren und umgekehrt, ohne dabei die Menge G zu verlassen: Dies ist
der tiefere Grund dafiir, dass die Kenntnis der Absorptionsfrequenzen beim Dreispin-
system in keinem Fall hinreicht um die Zuordnung der Linien zum Zustandskomplex
in eindeutiger Weise zu treffen.

Die néchst komplizierteren Beziehungen von der hier betrachteten Art sind so-
wohl in den Intensititen als auch in den Frequenzen genau vom ersten Grad. Man
erhilt sie durch Untersuchung der Teilspuren des Zeeman-Terms Z in den Raumen
V¢, Bezeichnet man mit S™ das erste Moment aller Linien, welche zum Ubergang
m <> m + 1 gehoéren:

St = ) 'ym In (A-11)
dann gilt ndmlich:
Spy(Z) = Sm1 — Sm. (A-12)
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Dies folgt aus der leicht zu beweisenden Beziehung:

27— [H,F,]FJ. (A-13)
Aus der Gleichung:

n
Spel(Z) = — (P> 2 Q, (A-14)
gewinnt man sofort die Rekursionsformel:

m n—p+1
m—1 P

Slbp(Z) -

Spya (2). (A-15)

(12) 1n (15) eingesetzt liefert die gesuchten Beziehungen:

n(2m—1)S"1=mn—20m—1)S" 24+ (m—1) (n+ 2m) S™ (A-16)

von welchen es # — 2 unabhéngige gibt.
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