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Das Eindeutigkeitsproblem in der hochauflösenden
Protonenresonanzspektroskopie*)

Von Hans Kummer
Institut für phys. Chemie, ETH

(30. VIII. 63)

I. Einleitung

1.1. Die Problemstellung

Die hochauflösende Kernresonanzspektroskopie ist ein typisches Beispiel einer
Spektroskopie, bei welcher man zur Berechnung der Energieterme einen sogenannten
Modell-Hamiltonoperator benützt, das heisst einen Operator, in welchen ein Satz von
Parametern eingeht, die nicht unmittelbar durch universelle Naturkonstanten
ausgedrückt werden können, sondern deren Werte im besten Fall auf Grund einer eigens
dafür geschaffenen Näherungstheorie abgeschätzt werden können.

In dieser Situation gewinnt verständlicherweise das zur Berechnung des Spektrums
inverse Problem an Aktualität: Die Bestimmung der Werte dieser Parameter aus
einem experimentellen Spektrum. Im Zusammenhang damit taucht dann immer
wieder die Frage auf, ob es mehr als einen Wert des Parametersatzes gibt, der mit dem
vorgelegten experimentellen Spektrum verträglich ist, das heisst, der bei Anwendung
der üblichen BerechnungsVorschrift das vorgelegte Spektrum liefert.

In der vorliegenden Arbeit wird nun die eben aufgeworfene Fragestellung im
Rahmen der hochauflösenden Protonenresonanzspektroskopie untersucht, in der
Hoffnung, dass den dabei angewandten mathematischen Methoden eine Bedeutung
zukommt, die über den vom physikalischen Gesichtswinkel aus gesehen etwas engen
Problemkreis hinausweist.

Der stationäre Term des Hamiltonoperators, den man in der Protonenresonanzspektroskopie

benützt, ist ein reiner Spinoperator von der Form :

n

H ZQtIt,+ £jtkItIk. (1-1)
» 1 i < k

Darin bedeutet It (Ia, Ii2, Ii3) den Spinvektor des t-ten Protons. Der erste Teil des

Operators (Zeeman-Term) beschreibt die Wechselwirkung der einzelnen Kernspins
mit dem statischen Magnetfeld H0, das wir uns in der negativen 3-Richtung angelegt
denken.

*) Die vorliegende Arbeit ist eine auszugsweise Überarbeitung der Promotionsarbeit ETH
Nr. 3378: «Beitrag zur Analyse komplizierter Protonenresonanzspektrcn» vom gleichen Verfasser.
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Das Protonensystem steht der magnetischen Resonanzspektroskopie in Form
eines Moleküls zur Verfügung. Durch die in der Elektronenwolke auftretenden Ströme
erfährt das statische Feld in der Umgebung des Ften Kerns eine lokale Modifikation:

H, H0(1-A,).
Die dimensionslose Grösse Ai heisst «chemische Verschiebung» des Ften Protons. Wird
die Energie in Frequenzeinheiten gemessen, so sind die Grössen Qt definiert durch:

Oi ln y X. (1-2)

worin y das gyromagnetische Verhältnis des Protons bedeutet. Der zweite Term des

Hamiltonoperators ist Ausdruck einer durch die Elektronenwolke vermittelten
Wechselwirkung zwischen den Spins. Die Grössen Jik, welche als «Spin-Spin-Kopplungskonstanten»

bezeichnet werden, konstituieren zusammen mit den «chemischen
Verschiebungen» den Satz von Parametern, von welchen eingangs die Rede war und
die wir im folgenden als «phänomenologische Parameter» (des Hamiltonoperators)
bezeichnen wollen.

Ist der Satz der phänomenologischen Parameter vorgegeben, so lässt sich das
idealisierte Absorptionsspektrum des Spinsystems, erzeugt durch ein in Richtung der
1-Achse linear polarisiertes Wechselfeld auf die bekannte Weise berechnen: Man
bestimme im Spinraum P der n Protonen eine Eigenbasis ux, u2n des Hamiltonoperators

H und berechne die Matrix (Fx)u der 1-Komponente des totalen Spins:

n

F1=EIn X3)
t-i

in dieser Basis. Die Zentralfrequenz einer Absorptionslinie ist dann gleich der Differenz

zweier Eigenwerte von H, während man ihre relative Intensität als Summe der
Quadrate der Matrixelemente von Fx «zwischen» den beiden entsprechenden
Eigenräumen erhält.

Um die eben geschilderte Berechnungsvorschrift als Abbildung einer Menge in
eine andere begreifen zu können, bemerken wir, dass die Menge aller Hamilton-
operatoren der Form (1) einen Teilraum N des Raumes der symmetrischen Operatoren
zu P darstellt. Dabei denken wir uns hier wie übrigens während der ganzen vorliegenden

Arbeit den Körper der reellen Zahlen zu Grunde gelegt. Ferner verstehen wir
unter einem virtuell möglichen (idealisierten) Absorptionsspektrum eine ungeordnete
Reihe von geordneten Zahlenpaaren :

fv1, P), fv", I")

wobei v' und P A= 0 Zentralfrequenz und Intensität der in einer willkürlichen Ordnung
Ften Resonanzlinie bedeuten. Dabei ist, wie wir noch beweisen werden, in unserem
Fall: ,„?<(f-i). (IX
und die Intensitäten normieren wir so, dass :

E J* 2"-1 • n (1-5)
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was sich ebenfalls später rechtfertigen wird. Mit M bezeichnen wir dann die Menge
aller virtuell möglichen Absorptionsspektren.

Unter Benützung dieser Begriffe lässt sich die erwähnte Berechnungsvorschrift
auffassen als eine Abbildung B vom Vektorraum N aller Hamiltonoperatoren der
Form (1) in die Menge aller virtuell möglichen Spektren:

B: N->M. (1-6)

Ein Element aus B(N) wollen wir ein Absorptionsspektrum (schlechthin) nennen. Die
Frage, der wir in dieser Arbeit in einer bestimmten Richtung nachgehen, ist diejenige
nach der eindeutigen Umkehrbarkeit der Rechenvorschrift B.

Die Antwort wird durch das folgende Theorem gegeben :

Theorem

Die Rechenvorschrift ist im allgemeinen bis auf Umnumerierung der Teilchen,
sowie die selektive Umkehrung des Vorzeichens von Zeeman- und Spin-Spin-Kopp-
lungsterm eindeutig umkehrbar.

Dabei bedarf der Ausdruck «im allgemeinen» einer weiteren Präzisierung. Es sei v
ein virtuell mögliches Spektrum und mfv) die Urbildmenge von v bezüglich B. Wegen
der Eindeutigkeit von B ist für v A= v' :

m (v) n m fv') p (leer).

Mit zfv) bezeichnen wir die Anzahl der in mfv) enthaltenen Punkte, die nicht endlich
zu sein braucht.

Dann nennen wir die Abbildung B im allgemeinen ft-deutig umkehrbar, wenn
nachstehende Bedingungen zutreffen :

1. Entweder ist zfv) 0 oder zfv) > k für alle v e M
2. Die Vereinigungsmenge aller mfv), für welche zfv) > k ist:

U mfv)
z(v) > h

bildet eine algebraische Mannigfaltigkeit, deren Dimension niedriger ist als diejenige
von N.

Das Theorem behauptet nun, dass B im allgemeinen 4 n\-deutig umkehrbar ist.
Diejenigen Hamiltonoperatoren, die ein bestimmtes Absorptionsspektrum definieren,
gehen durch die Gruppe x der 4 n Transformationen ineinander über, die man durch
Kombination der Teilchenpermutationen mit den Vorzeicheninversionen von Zeeman-
und Spin-Spin-Wechselwirkungsterm erhält.

Dass die unter der Gruppe x äquivalenten Operatoren tatsächlich dasselbe

Spektrum definieren, ist einfach einzusehen. Bei einer Umnumerierung der Teilchen
wird der Hamiltonoperator mit dem darstellenden Operator der Teilchenpermutation
am Spinraum ähnlich transformiert. Der transformierte Operator besitzt daher
dasselbe Eigenwertspektrum wie der ursprüngliche, und daFjbei dieser Operation in sich

übergeht, definiert er sogar dasselbe Absorptionsspektrum. Ähnliches gilt für die
Inversion des Vorzeichens des Zeeman-Terms, welcher physikalisch die Bedeutung der
Zeitumkehr zukommt. Der transformierte Hamiltonoperator geht wieder aus dem
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ursprünglichen durch eine Ähnlichkeitstransformation hervor, diesmal mit dem
reellorthogonalen Operator, durch welchen die Zeitumkehr am Spinraum dargestellt wird.
Da zudem bei dieser Transformation Fx in — Fx übergeht folgt, dass der transformierte

Operator wieder dasselbe Absorptionsspektrum bestimmt. Schliesslich ist es klar,
dass mit H auch — H zu demselben Absorptionsspektrum führt, da — H sowohl
dieselben Eigenwertdifferenzen als auch dieselbe Eigenbasis besitzt wie H.

Dagegen ist die Einsicht, dass die aufgezählten Transformationen die einzigen sind
welche einen allgemeinen Hamiltonoperator wieder in einen solchen überführen, der
dasselbe Absorptionsspektrum definiert, etwas schwieriger zu erreichen. Dem Feser
diese Einsicht zu vermitteln ist das Ziel der vorliegenden Arbeit. Bevor wir dieses Ziel
auf befriedigende Weise angehen können, müssen wir gewisse Begriffe einführen,
welche die Beschreibung der Abbildung B auf möglichst adäquate Weise gestatten.

1.2. Der Zustandskomplex eines quantenmechanischen Systems mit
endlich vielen Eigenzuständen

Jede endliche Menge von Elementen, in welcher gewisse Paare ausgezeichnet sind,
heisst ein abstrakter Streckenkomplex. Man spricht von einer Realisierung eines solchen

Komplexes im dreidimensionalen Raum, wenn man den Elementen verschiedene
Punkte dieses Raumes zuordnet und je zwei Punkte miteinander durch eine Strecke

verbindet, falls das entsprechende Elementpaar ausgezeichnet ist. Dabei können die
Paare immer so gewählt werden, dass die Strecken ausser ihren Endpunkten keine
gemeinsamen Punkte besitzen, dass also das entstehende geometrische Gebilde
tatsächlich ein Streckenkomplex ist. Zur Diskussion oft geeigneter als die im Dreidimensionalen

realisierten Streckenkomplexe, sind ihre Projektionen in die Ebene, die wir
als Schematas bezeichnen wollen.

Auch bei einem quantenmechanischen System mit endlich vielen Eigenzuständen
spielt ein gewisser Streckenkomplex eine Rolle. Der abstrakte Komplex besteht aus
den Eigenzuständen ux, »a des Systems mit den ausgezeichneten Paaren fut, uk),
zwischen welchen ein Übergang erlaubt ist. In seiner Realisierung entsprechen den

Eigenzuständen ui Punkte a{ und den erlaubten Übergängen Strecken bk fa{ aA Die
positive Orientierung einer Strecke soll dabei durch die Ungleichung i < j
gekennzeichnet sein. Den so definierten Streckenkomplex nennen wir den Zustandskomplex
des quantenmechanischen Systems.

Wir kommen nun zu einer kurzen Erläuterung der in dieser Arbeit verwendeten
Begriffe der Streckenkomplextopologie. Eine genauere Orientierung über das Gebiet,
insbesondere Beweise der hier nur kurz angedeuteten Sätze, finden sich zum Beispiel
in (7). Es liege ein Streckenkomplex K bestehend aus a Eckpunkten, die durch ß

Strecken miteinander verbunden sind, vor. Die Punktmenge bk (a{ af) einer Strecke
bk fai af) eines Streckenkomplexes heisst Kante.

Unter einem Weg verstehen wir eine Kantenfolge (a{ ai fa{ a{ fa{ a{
I 13 u ò n i. rr

Die Zahl der Glieder der Folge heisst Länge des Weges. Ein Weg heisst ein Kreis, wenn
alle «,, ausser a, «,¦ voneinander verschieden sind. Man nennt einen Strecken-

Jk ll ln

komplex zusammenhängend, falls es zu je zwei Eckpunkten einen Weg gibt, der die
beiden Punkte enthält.
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Unter null- bzw. eindimensionalen Ketten verstehen wir Finearkombinationen
der Art :

x E%lai> y EyJbJ x§)
»-1 j-l

mit beliebigen reellen Koeffizienten xl undy^. Unter der Fänge fify) einer eindimensionalen

Kette verstehen wir die Anzahl der von Null verschiedenen Koeffizienten yJ.

Die Gesamtheiten der null- bzw. eindimensionalen Ketten bilden zwei Vektorräume

Kx und Ky der Dimensionen a bzw. ß über den reellen Zahlen. Es ist nützlich
mit einer Kette x E x' a;, bei welcher die Koeffizienten x'i, x'k A= 0 sind, das

folgende intuitive Bild zu verbinden: x ist die Gesamtheit der Punkte at a,

wobei jeder mit der zugehörigen Komponente von x: x1" fv — 1, k) versehen ist.
Ebenso soll die eindimensionale Kette Y^yj bj mit yJ'i, yj™ #= 0 die Gesamtheit der

i
Strecken b, b, versehen mit den Zahlen vJ'i, yj™ bedeuten. Dabei kann manJx Jm s ' J
die mit y-> versehene Strecke ô ¦ auch durch die mit — yJ versehene Strecke — bj (6 ¦ mit
der umgekehrten Orientierung) ersetzen und so etwa erreichen, dass alle Strecken
positive Zahlen tragen.

Unter der Punktmenge x einer nulldimensionalen Kette verstehen wir dann
einfach die Menge der Punkte a, a, Analog verstehen wir unter der Punktmenge y1 R

von y diejenige Punktmenge, welche durch die Gesamtheit der Kanten b} bj
repräsentiert wird.

Wir denken uns nun die Räume Kx und K mit einem Skalarprodukt versehen, das
in ihren natürlichen Basen {«,-} und {&¦} zur Einheitsform degenerieren soll. Dann
erklären wir die Randoperation d als lineare Abbildung von K in Kx durch :

d bt d fa, a

und lineare Übertragung auf allgemeine Ketten. InMatrixform schreibt sich Gleichung
(9) als:

'
a

àbk=£riiat=(â-n)t. (1-10)
i-l

Die Matrix r\ mit a Zeilen und ß Kolonnen heisst Inzidenzmatrix des Komplexes K.
Durch die Gleichung:s

fy, ox) fd y, x) (1-11)

lässt sich die zur Randbildung adjungierte Operation, die sog. Korandbildung
definieren. Sie wird durch die transponierte Inzidenzmatrix dargestellt:

7=1

Der Koeffizient rjh von ô ¦ ist dabei nur dann von Null verschieden, wenn die Strecke bj
den Eckpunkt ah enthält und zwar + 1, falls er Endpunkt und — 1, falls er
Anfangspunkt der Strecke ist. ò ak ist also (wenn man alle Komponenten der Kette auf
+ 1 normiert) anschaulich gesprochen das im Eckpunkt ak zusammenlaufende
Streckenbüschel, welches wir Korand bzw. Stern des Eckpunktes ak und von der

Ordnung p nennen wollen, falls sich im Punkte ak p Kanten treffen. Unter einem
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Zyklus versteht man eine eindimensionale Kette aus dem Kern Z C Ky des

Randoperators d. Z bildet das orthogonale Komplement zum Bildraum der adjungierten
Operation ô, der Menge der Koränder :

Ky ÒKx®Z. (1-13)

Jedem Kreis des Komplexes lässt sich ein Zyklus zuordnen, indem man alle seine

(mit + 1 versehenen) Kanten gleichsinnig orientiert. Endlich interessiert der Kern
von ò in Kx, der senkrecht auf den Rändern steht. Da, wie sich leicht zeigen lässt, in
einem zusammenhängenden Komplex eine nulldimensionale Kette genau dann ein
Rand ist, wenn die Summe der Koeffizienten verschwindet, folgt, dass die Ränder
einen a — 1-dimensionalen Teilraum von Kx bilden und daraus, dass der Kern der
Korandbildung bei einem zusammenhängenden Komplex eindimensional ist. Er wird
durch die Kette

a

co= Eai
i-l

aufgespannt.
Daher lautet die zu (13) duale Zerlegung von Kx:

Kx=fca)®dKy. (1-14)

Für ein einzelnes Element aus Kx erhält diese Zerlegung die Form:

x e x{ a, z E x co + E(xi -—(E **)) ai ¦

i cc k i OC ft

Aus der Beziehung :

KyjZ s ÒKy

folgt für die Dimension f des Zyklenraumes Z, die sog. Zusammenhangszahl des

Komplexes :

Ì- ß _ a + l (1-15)

Sie bedeutet die Maximalzahl von Kanten, die entfernt werden können, ohne dass

der Komplex zerfällt.
Um unsere Begriffsbildung zu vervollständigen, brauchen wir noch folgende

Transformationsgruppen in den Räumen Kx und K sowie in der Paarmenge Ky X Ky
über Ky.

In Kx: Die symmetrische Gruppe nx der Basiselemente ai
In Ky: 1. Die symmetrische Gruppe n der Basiselemente b{

2. Es sei Qi die Inversion von bt definiert durch:

Qi h (- 1)'« h
Die Inversionsgruppe 3» als welche wir die durch die Q{ erzeugte Untergruppe der
linearen Gruppe von Ky bezeichnen.

3. Das semidirekte Produkt:

der unter 1. und 2. genannten Gruppen. 3 ist dabei Normalteiler in S.



Vol. 36, 1963 Eindeutigkeitsproblem in hochauflösender Protonenresonanzspektroskopie 907

In Ky x Ky:
Es sei 5 Q ein beliebiges Element aus S mit S eny und Q e 3- Dann definieren wir
durch :

(S Q) fVi * y2) fSQyxx S y2) (1-16)

einen Isomorphismus von S in das direkte Produkt der linearen Gruppe von Ky mit
sich selbst. Das Bild bei diesem Isomorphismus bezeichnen wir mit <S'.

Die eben eingeführten Begriffe der Streckenkomplextopologie lassen sich in
zwangloser Weise auf den Zustandskomplex eines quantenmechanischen Systems
übertragen.

Die durch die Punkte ax, aa repräsentierten Energiezustände und die dazugehörigen

Energieeigenwerte Ek definieren eine nulldimensionale Kette unseres
Komplexes K: _ __,y xE=£Ekak, (1-17)

welche wir Energiekette nennen wollen. Unter einem Energiespektrum woUen wir eine
Klasse von unter nx äquivalenten Energieketten Transitivitätsbereich von nx in
Kx) verstehen. Den zu einer Energiekette gehörigen Korand bezeichnen wir als

Frequenzkette, denn er hat die Form :

yF SxE JT Ek ôak=EJT Ek rf bs £A Ej b, (1-18)
k-l \=1 h-l j'-l

A E-> ist die zu 6 • gehörige Energiedifferenz und zwar gilt :

A Ei Ek - El, falls b} fa, ak).

Aus der Definition (18) entnimmt man unmittelbar, dass eine Frequenzkette immer
senkrecht auf allen Zyklen des Zustandskomplexes steht.

Neben der Frequenzkette spielt in unserer Betrachtung die Intensitätskette :

y' EIJh (1-19)

eine ausgezeichnete Rolle. F bedeutet dabei die Intensität der zum Übergang bj
gehörigen Absorptionslinie.

Unter einem A bsorptionsspektrum verstehen wir schliesslich eine Klasse von unter
S' äquivalenten Paaren der Art:

(yF x y1) ¦

Wie man leicht sieht, ist diese Definition mit der in 1.1 gegebenen identisch.
Bevor wir den Zustandskomplex für das spezielle, durch den Hamiltonoperator (1)

definierte quantenmechanische System näher beschreiben können, müssen wir diesen

Hamiltonoperator genauer untersuchen.
Insbesondere bestimmen wir im folgenden Abschnitt diejenige Teilalgebra 51 der

Algebra der linearen Operatoren im Spinraum P, welche durch die Gesamtheit A7

aller Hamiltonoperatoren der Form (1) erzeugt wird. Es wird sich zeigen, dass

unabhängig von der Protonenzahl n die mit der Algebra % vertauschbare Operatorenalgebra
W durch die Symmetrie des Problems vollständig bestimmt ist.
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1.2. Bestimmung der durch die Gesamtheit aller Hamiltonoperatoren der Form (1)

erzeugten Operatorenalgebra

Der Hamiltonoperator (1) ist ein reiner Spinoperator, also Operator zum Produktraum:

P p1®pi...®pn
wobei p, den Spinraum des Ften Protons bezeichnet. Dabei wirken die Operatoren I,
nur auf den Ften Faktor dieses Tensorproduktes. Wählt man im einzelnen Spinraum
die Basis (a, ß) derart, dass Ii3 diagonal wird, so erhält man folgende Zuordnung der

Spinoperatoren zu den Paulimatrizen :

Z-I/2Ç;) /.->l/2(j;) J.-1/2(J_Î) (1-20)

die 2" Produktfunktionen:

H<H< ¦¦¦ < h
oc fix) oc (»„) a fifi) ß fip+x) ß fi„)

ip fi y tp+2 ¦ ¦ ¦ y tn

spannen den ganzen Spinraum P auf. Hierbei durchläuft (ix iA alle Auswahlen von
Ziffern aus den ersten n natürlichen Zahlen. Auf Grund der Zuordnung (20) erkennt
man unmittelbar, dass die so gewählte Basis Eigenbasis der 3-Komponente:

n

i-l
des Gesamtspins ist :

F3 a. ftx) ...afip)ß (vi) • • • ß fin) (#--£-)« W ¦ • ¦ a W ß M -ß W (1-21)

Der Eigenwert fp — n/2) besitzt offenbar den Entartungsgrad ("), da dies die Zahl der
Produktfunktionen zu einem gegebene Wert von p ist. Der Spinraum zerfällt also
nach:

n

P= ® V» (1-22)
P-o

in eine direkte Summe von Eigenräumen des Operators F3. Zwischen der magnetischen

Quantenzahl m und der Zahl p besteht, wie man der Gleichung (21) entnimmt,
der Zusammenhang :

(1-23)
11

'" ~ f 2 •

Der Hamiltonoperator ist offensichtlich invariant gegenüber Drehungen des

Protonensystems um die Feldrichtung. Man vermutet daher, dass die Drehimpulskomponente

F3 das einzige Integral der Bewegung ist und dass daher F3 als Operator
im Spinraum P aufgefasst der einzige mit einem allgemeinen Hamiltonoperator der
Form (1) vertauschbare Operator ist:

[F3, H] 0 (1-24)
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Dazu gleichwertig ist die Vermutung, dass die durch die Operatoren Il3, In3,

Ix I2, ¦¦¦ Xi In erzeugte Teilalgebra 31 der Operatorenalgebra zu P die Räume Vp

irreduzibel in sich transformiert. Diese Vermutung wollen wir nun exakt beweisen.
Es gilt also:

Satz 1

Die durch die Operatoren I13, In3, Ix I2, 7„_x In erzeugte Unteralgebra 'S! der

Operatorenalgebra zum Spinraum P ist halbeinfach und ihre einfachen Teilalgebren
sind volle Operatorenalgebren zu den Räumen Vp.

Beweis

Zum Beweis betrachten wir diejenige Transformationsgruppe ft im Konfigurationsraum

der Spins, welche folgende Transformationen umfasst :

1. Sämtliche Permutationen der Teilchen.
2. Die Spiegelung s{ des Ften Teilchens an der Achse des Magnetfeldes. (Eine

Spiegelung an einer Achse ist einer Drehung um den Winkel n äquivalent!)
Die beiden Arten von Transformationen sind durch das folgende Gesetz miteinander

verknüpft :

(» k) sk s, (» k) (1-25)

Bei einer Protonenzahl n ist diese Transformationsgruppe isomorph zur Deckgruppe
des M-dimensionalen Hyperoktaeders. Dieser besitzt, wie man am Beispiel des

dreidimensionalen Oktaeders abliest, n Hauptsymmetrieachsen. Die explizite Isomorphic
erhält man, indem man der Transposition (i k) die Vertauschung der Ften mit der
k-ten Achse und der Spieglung s, die Vertauschung der Scheitelgruppe der Ften Achse
zuordnet.

Gleichung (25) zeigt, dass die Spiegelungen einen Normalteiler der Gruppe 9K

erzeugen und da der Durchschnitt der Spiegelungen mit den Permutationen sich auf die

Identität beschränkt, erweist sie sich als semidirektes Produkt der durch diese beiden
Arten von Transformationen erzeugten Untergruppen. Ihre Ordnung ist ihrer Struktur
gemäss gleich dem Produkt der Ordnungen der symmetrischen Gruppe von n Objekten
und der Gruppe der Spiegelungen, beträgt also 2" n

Mit Hilfe der für Spin-1/2-Teilchen geltenden Relationen

X X - \ «*, /» +ÔfE (F Identität in P) (1-26)

weist man nach, dass die Beziehungen :

(2 I, Ik + Z F)2 F (2 I, Ik + 4 F) Ikv (2 J, Ik + \ E) Ilv v 1, 2, 3 (1-27)

und:

(2/i3)2=F 4 7i3 X X - X .«=1.2 (1-28)

richtig sind. Eine leichte Umformung der ersten Gleichung von (27) :

F 4(M*)2 + t(7.-7*) (1-29)
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zeigt, dass die Identität im Spinraum P der Algebra % angehört. Daraus und aus den

Beziehungen (27) und (28) folgert man, dass die Zuordnung:

fik)-+fik)P=(2I;Ik + ±-E) si->fsl)P 2I{3 (1-31)

einen Homomorphismus der Transformationsgruppe ft in die Algebra 51 definiert.
Ferner bedeutet die Existenz von Umkehrformeln zu (31) :

Ii 4 | ((* k)P - \ E) Ia \ (s,)P (1-32)

dass die durch lineare Übertragung definierte Erweiterung dieses Homomorphismus
auf die Gruppenalgebra von ft eine Abbildung auf die Algebra 31 darstellt.

Um den Satz 1 zu beweisen, bleibt daher nur noch nachzuweisen, dass die zur
Hyperoktaedergruppe isomorphe Transformationsgruppe ft in F* (absolut) irreduzible
Darstellungen besitzt. Zu diesem Zweck stellt man zunächst einmal fest, dass die in
Frage stehenden Darstellungen monomial sind (vergleiche Fiteraturstelle (8)) und
zwar werden sie durch eine eindimensionale Darstellung der Untergruppe :

&' 7i*annß-*{s1,s2,...s„}

an a(l) afp) ßfp + 1) ßfn) erzeugt. jr£ und #}}-* symbolisieren dabei die
symmetrischen Gruppen der ersten p bzw. der letzten n — p Spins, während {sx, s2, sn}

für den durch die Transformationen Sj erzeugten Normalteiler steht. Die eindimensionale

Darstellung der Untergruppe ft' besitzt den Darstellungskern:

9l Kn'ß~P K. • • • V (sp Vi)- (Vi Va)' • • • X-is»)} ¦

Nun ist für die Reduziblität einer monomialen Darstellung nach Shoda (9) notwendig,
dass ein Element g aus ft — ft' derart existiert, dass :

-i(ft'-3i)ng9lg
Ein Element, das nicht in ft' liegt, ist nun aber notwendigerweise eine Permutation,
welche die ersten p Spin-Indices mit den letzten n — p vermischt. Da wegen (25) die

Wirkung eines innern Automorphismus von ft mit einer Permutation q ani die
Elemente Sj durch die Formel:

sj X Ad)

beschrieben werden kann, folgt, dass die Transformation :

31 -> g 9c g-1 geft-ft'
mindestens mit einer Vertauschung (s,-<-> sk) mit i < p, k > p verknüpft ist. Dann
liegt aber sk sowohl in ft' — 91 als auch in g 91 g-1 und somit ist die notwendige
Bedingung für die Reduziblität nicht erfüllt: Die Darstellung ist irreduzibel. q.e.d.

1.4. Der Zustandskomplex eines quantenmechanischen Systems, dem ein allgemeiner
symmetrischer Operator aus 31 als Hamiltonoperator zukommt

Im vorhergehenden Abschnitt haben wir erkannt, dass die 3-Komponente F3 des

Drehimpulses den Kommutanten W der Gesamtheit N aller Hamiltonoperatoren
erzeugt. Damit haben wir die Voraussetzungen bereitgestellt, die nötig sind, um den
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Zustandskomplex eines quantenmechanischen Systems zu beschreiben, dessen

Hamiltonoperator der Menge a aller symmetrischer Operatoren aus 31 angehört.
Da 31' abelsch ist, folgt zunächst einmal, dass er

a dim F 2"

Eckpunkte a™ enthalten muss, die zudem nach der magnetischen Quantenzahl m
geordnet werden können. Welche Übergänge sind nun für ein so definiertes
quantenmechanisches System erlaubt? Dazu müssen wir gemäss der in 1.1 eingeführten
Berechnungsvorschrift B die Matrixelemente des Kopplungsoperators:

2 Fx Fx + i F2 + Fx -iF2= F+ + F_

in einer allgemeinen der Drehgruppe um die 3-Achse angepassten Basis von P auf ihr
Verschwinden hin prüfen.

Da sich eine Drehung des Spinsystems um den positiven Winkel a um die 3-Achse
am Spinraum als elccF> darstellt, gilt:

e+iaF> F+e~iaF° XF+. (1-33)

Es sei ff eine allgemeine Eigenbasis von F3 in P. Dann ist wegen (33) :

e»((«-»')-Da ^« F+yjf) fe~taF'ff, e-ia-F+e'iaF'y>f)

- fff, X« e+i«F° F+ e~ixF'ff) fff, F+y>f)

Es folgt also entweder: m m' + 1 oder: fy™, F+ff') 0. Berücksichtigt man, dass

Fx durch Symmetrisierung aus F+ entsteht, so erkennt man die Gültigkeit der folgenden

Auswahlregel:
\m — m'\=\Am\ + l. (1-34)

Daraus folgt, dass der Zustandskomplex des hier betrachteten quantenmechanischen
Systems :

«-i /n\ I n \ I 2 n \'-£0UiK-i) (1-35)

Kanten enthält. Die Zusammenhangszahl des Komplexes ergibt sich nun nach
Formel (15) :

H_v)-2-+i- (i-36)

Wir denken uns die Strecke bf des Komplexes, welche die den Eigenzuständen
entsprechenden Punkte a™ verbinden, nach wachsender Magnetischer Quantenzahl
gerichtet, das heisst die positive Orientierung von :

bf « a™+1)

soll im Sinne des Pfeiles in

fafaf+1)
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festgelegt sein. Der Komplex setzt sich aus Kreisen der Fänge vier der Art:

« <+1) W+1 <X (X+2 <+1) k+1 o (^37)
zusammen.

Die Ordnung des Korandes eines Punktes af ist eine gerade Funktion von m und
besitzt den Wert :

m + — — 1
(1-38)

Zu einer schematischen Darstellung des Komplexes in der Ebene gelangt man, indem
man die zu einem bestimmten Wert von m gehörigen Punkte in gleichmässigen
Abständen auf parallelen Geraden anordnet und hierauf Punkte auf unmittelbar
benachbarten Geraden miteinander verbindet. Dabei kann man immer erreichen, dass

die entstehende Figur die Symmetrie C2v besitzt. Dies sei hier für das Dreispinsystem
durchgeführt :

..i

s_i

Figur 1

Aus der Struktur des Zustandskomplexes ergeben sich sofort gewisse Einschränkungen

für die Frequenzkette yF, da diese, wie schon in Abschnitt 1.2 festgestellt
wurde, orthogonal auf dem Zyklenraum Z stehen muss. Insbesondere gilt für einen
einem Kreis der Art (37) zugeordneten Zyklus z:

oder:
(z,yF) ffafaf+1) + .m+1 m + 2\ faf+1 af+2) (aT ar; •-),y 0

1+1 „m+1 (l-39a)
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Daneben gibt es noch Zyklen vom Typus :

af af+1) - faf af+1) + faf af+1) f< amp+1)

die zu analog gebauten Relationen :

(l-39b)

Anlass geben. Die Zyklenbedingungen äussern sich somit in der Geometrie des

Spektrums als Aequidistanz gewisser Finien (Rule of repeated spacings!) Die Zahl der

unabhängigen Beziehungen vom Typus (39) ist gleich der Zusammenhangszahl f,
welche sich nach (36) berechnet.

Eine weitere, gruppentheoretische beschreibbare Eigenschaft des Komplexes, die
wir benötigen, ist die folgende: Es sei nf diejenige Untergruppe der symmetrischen
Gruppe nx der Basiselemente von Kx, welche Elemente zu gegebener Quantenzahl m
unter sich permutiert. Unser Komplex hat die Eigenschaft, dass für alle T enf:

ò x ~ ò T x (1-38)

wobei ~ für den Ausdruck: «äquivalent unter der Gruppe ny» steht. Durch die

Gleichung :

(1-39)UT bx ôT x

wird daher ein Homomorphismus von nf in ny definiert, dessen Bild wir mit nf
bezeichnen wollen. Schliesslich symbolisieren wir mit n'f das Bild der Untergruppe nf
von S beim durch (16) definierten Isomorphismus, n'f ist somit Untergruppe von <5'.

1.5. Einige prinzipielle Bemerkungen zum Beweisverfahren

Wir sind nun soweit, dass wir das prinzipielle Verfahren unserer Beweisführung
erläutern können. Die in 1.1 eingeführte Berechnungsvorschrift B: N +> M lässt sich
mittels der bis jetzt erläuterten Begriffe exakt beschreiben. Zudem lässt sie sich in
natürlicher Weise als Zusammensetzung zweier Abbildungen auffassen, wenn man
als vermittelnde Zwischenmenge die Paarmenge Ky x Ky über dem Raum Ky der
eindimensionalen Ketten des Zustandskomplexes wählt, in der man bezüglich n'f
äquivalente Paare identifiziert, was wir durch einen Index m andeuten wollen :

N (X x Ky)ri -> M.

B

Die Identifikation von bezüglich n'f äquivalenten Paaren ist nötig, wenn die

Zuordnung A:H->yF x y1 eine echte (eindeutige) Abbildung sein soll, da der Hamiltonoperator

Frequenz- und Intensitätskette nur bis auf Transformationen aus dieser

Gruppe festlegt.
C ist die Identifizierung aller bezüglich ganz S' äquivalenten Paare und kann daher

ohne weiteres auf ganz Ky x K erklärt werden.

58 H. P.A. 36, 7 (1963)
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Die Abbildung A zerfällt in ein Paar von Abbildungen, nämlich die Berechnungsvorschrift

AF für die Frequenzkette, welche auf ganz N definiert werden kann und
welche sich aus der Berechnungsvorschrift AE für die Energiekette und der Korandbildung

zusammensetzt :

AE ô
N > Kr -> Ku

und die Abbildung A1, die nur auf einem in .ZV dichten Bereich DA definierbar ist.
Dieser kann dadurch charakterisiert werden, dass das zu einem bestimmten Quantenzahlwert

gehörige Teilspektrum eines Operators aus DA nicht entartet ist. Dass DA in
N dicht ist, ergibt sich aus 1.3 und dem «Prinzip der Fortsetzbarkeit algebraischer
Identitäten», welches besagt, dass, falls eine algebraische Gleichung auf einer vollen
Umgebung eines euklidischen Raumes gilt, sie identisch richtig ist. Wäre nämlich DA
nicht dicht in N, so gäbe es eine volle LTmgebung eines Operators aus N, mit der

Eigenschaft, dass für alle Operatoren aus dieser Umgebung ein zu einem bestimmten
Wert der magnetischen Quantenzahl gehöriges Teilspektrum entartet ist. Auf Grund
des genannten Prinzips würde sich diese Eigenschaft auf den ganzen Raum N
übertragen, was zu einem Widerspruch zu den Resultaten aus Abschnitt 1.3 führte.

Der Beweis zerfällt nun der Struktur der Abbildung B entsprechend in zwei Teile,
die sich je mit der Umkehrbarkeit der Abbildungen C und A beschäftigen.

II. Die Beziehung zwischen dem Frequenz/Intensitäts-Kettenpaar und
dem experimentellen Spektrum (Die Abbildung C)

Es ist klar, dass die auf ganz fKy x KAm definierte Abbildung C auf vieldeutige
Weise umkehrbar ist. Die Frage, die wir in diesem Teil der Arbeit ins Zentrum der

Betrachtung rücken, ist diejenige nach der Umkehrbarkeit der Beschränkung von C

auf

AF (N) x A1 (DA) CA x X. (2-1)
Darin bedeutet :

GF - X (N)

die Gesamtheit der Frequenzketten, wenn H ganz N durchläuft und G1 AI(DA) den
Abschluss der Gesamtheit der Intensitätsketten, wenn H ganz DÄ durchläuft.

Die Frage ist äquivalent dem Problem, diejenige Untergruppe 23' von £'
aufzusuchen, welche die Menge GF x G1 aufgefasst als Teilmenge von Ky x Ky invariant
lässt. Um dieses Problem zu lösen, müssen wir die Menge GF x G1 als Teilmenge von
Ky X Ky in geeigneter Weise charakterisieren. Dazu beachte man, dass die Abbildung
A für jeden Operator definierbar ist, dem der in 1.4 beschriebene Zustandskomplex
zukommt. Dies ist die Gesamtheit &A aller derjenigen Operatoren aus dem Raum a der
symmetrischen Operatoren von 31, welche zu keinem Wert der Quantenzahl m ein
entartetes Teilspektrum besitzen. G1' X G1 ist dann Teilmenge der Menge

AF(o)xA'(fiA).
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Unser vorläufiges Ziel ist die Bestimmung derjenigen Untergruppe 23 von £>', welche
diese Teilmenge von Ky x Ky in sich transformiert. In einem zweiten Schritt zeigen
wir dann, dass die Invarianzgruppe 23' Untergruppe von 23 ist, womit die Beschränkung

der Abbildung C auf GF x G1 für unsere Zwecke hinreichend charakterisiert
sein wird.

Es folgt nun die Beschreibung der Teilmengen AFfa) und ATfêA) als Teilmengen
von Ky. Unmittelbar evident ist es, dass

AF (ff) ô Kx (2-2)

gilt, da die Eigenwerte eines allgemeinen Operators aus 31 in keiner Weise
eingeschränkt sind.

.Um die Gesamtheit der Intensitätsketten AIf&A) zu charakterisieren, beweisen
wir folgende Intensitätsrelationen :

Satz 1

Unter der Voraussetzung, dass man die relative Intensität der zum Übergang

K'1 K" * Af) gehörigen Absorptionslinie durch die Gleichung:

^~1 4KC"1'XvDZ (2-3)

definiert, worin {ff} eine orthonormierte Eigenbasis von H symbolisiert, gelten die
Relationen :

n

^ lk ** "' * + nj2
(2-4)

Nicht unabhängig von (2-4) ist die folgende Intensitätssummenregel :

et^^y (2-5)

worin p durch (1-23) definiert wird. Aus (5) folgt dann, dass die Definition (3) in
Übereinstimmung mit der Normierung (1-5) der Intensitäten ist.

Beweis

Wenn wir wieder mit F+ und F_ die Operatoren Fx + i F2 und Fx — i F2
bezeichnen, dann folgt aus der Definition (3) :

IT1 4 I (vT1- XvD I2 I (wr1. (X + fA wf) |2 •

Da der Vektor F+ff zum Quantenzahlwert m+1 gehört, folgt:

Ifi-1=\(ff~\F_ff)\2.
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Die Normen der Vektoren F+ ff und F~ yj™ berechnen sich nach :

\\f+vï\\* E\W'f-v7*1)\* Ziv
i 1

II F_ff \\2 x I (vT-1, xk) |2 27 xr1-
î i

Nun folgt aus:

[F+, FA 2 F3 (2-6)

2 m (tf [F+, FA ff) 11 F_ ff \ \2 - \ \ F+ ^ ||« £ XZ1 - 27 ZZ
i i

(5) ergibt sich aus (4) durch einen Induktionsschluss. Die Verankerung der Induktion
geschieht, indem man in (4) für m den Wert n/2 einsetzt. Damit erhält man nämlich
direkt die Beschränkung von (5) auf diesen Spezialfall. Dann folgt aus (4) durch
Summation über k :

ZlZ-1 2m(n) + £lZ.
», k \pj i, h

Nach Induktionsvoraussetzung ist :

g1%-'-2nQ+(-m + î)
n\ /n

Also:
/n\ /n\X—1 t^, _ 1 ~ / \ I 0J. \ / V

X VX t e- d.

Die Intensitätsrelationen (4) lassen sich in Termen der Streckenkomplextopologie
wie folgt formulieren:

Das Skalarprodukt zwischen der Intensitätskette und dem Korand eines Punktes
af besitzt den Wert 2 m :

(ô af, yI) 2m. (2-4')

Da (6) und (1-33) die einzigen Relationen sind, die zwischen den Drehimpulskomponenten

bestehen müssen, sind (2-4) die einzigen Gleichungen, welchen eine allgemeine
Kette aus Ar(ßA) genügt. Die Formeln (2.4') sagen daher aus, dass A'f&A) mit einer
zum Zyklenraum parallelen Hyperebene F zusammenfällt :

ATfAArV y[+Z. (2-7)

Als Repräsentanteny'0 wählen wir diejenige Kette, welche jedem Übergang vom Typus
m -cry m A- 1 dieselbe Intensität zuordnet. Wie man auf Grund der Beziehungen (5)
leicht einsieht, ist das die Kette:

^1 P AI
y'0= E AAAdm (2-8

P-° (p)
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mit:
d" E bT-

i
Da die Rekursionformel:

äm - 27 à af + d™-1 (2-9)
i

gültig ist, folgt, dass die Kette y'0 ein Korand ist und daher orthogonal auf Z steht.
Es sei nun F eine Transformation aus ny, die V in sich überführt. Da F eine orthogonale

Transformation ist, folgt einerseits, dass y^ Eigenvektor zum Eigenwert 1 von F
ist:

Tyi^yi (2-10)

und anderseits, dass Z bei F in sich übergeht :

TZ=Z. (2-11)

Die beiden Gleichungen implizieren, dass F entweder zu nf gehört, oder aber generell
die Werte m und — m der magnetischen Quantenzahl vertauscht. Einen typischen
Repräsentanten der Transformationen mit dieser Eigenschaft bezeichnen wir mit
(m | — m). Diese Konsequenz lässt sich sogar aus Gleichung (11) allein ziehen, das
heisst es gilt das

Lemma 1

Eine Transformation F aus ny, welche den Zyklenraum invariant lässt, gehört bis
auf die Multiplikation mit (m \ — m) zu nf f führt also insbesondere die Kette y[ in
sich über).

Beweis

Zunächst führt F als orthogonaler Operator auch den Korandraum in sich über.
ôa~nl2 <F"'2 ist mit öa+"12 ein Korand der kleinstmöglichen von Null verschiedenen
Fänge und da bei F die Länge erhalten bleibt, ist:

entweder: F dar"'2 dar*'2

oder: F ôa^2 - òa+"'2.

Als Folge davon, dass bei F der Zyklenraum in sich übergehen soll, ergibt sich, dass
die Invarianz von dm' für m' < m — 1 diejenige von dm impliziert:

F dm' dm' ; m' < m — 1 => F dm dm

T dm' F-<m'+1> ; m' ym-l^T dm d-^+v, (2-12)

denn sonst gingen Grundkreise vom Typus :

faf'1 af) faf af+1) fam+y^

bei F nicht wieder in solche über.
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Mit Hilfe der Formel :

27 ôaf d™-1 - dm

i

folgert man daraus sofort für ein zulässiges T eny:

entweder: F ]T ôaf 27 àaf
i i

oder: T ^ ôaf - 27 &»~T ¦

i i
Aus (1.3) folgt:

f* (27T K) f (27 ô<) Ef (ôaT) 27 /« (r K) -

was (wieder unter Berücksichtigung von (13)) bedeutet, dass F ôaf sich nur aus

Strecken zusammensetzen kann, die auch in F 27 àaf vorkommen. Daraus und aus der
i

Feststellung, dass F ôaf wieder ein Korand gleicher Länge sein muss, ergibt sich
schliesslich :

entweder: T ôaf ôaf

oder: T ôaf - ôaj~m,

was auf Grund der Definition von nf bedeutet, dass F bis auf die Multiplikation
fm \ — m) zu dieser Gruppe gehört. q.e.d.

Da die Inversionsgruppe 3 im Räume der Intensitätsketten die Einheitsdarstellung

erfährt, müssen wir zur Beschreibung der vollen Invarianzgruppe 23 noch
diejenigen Transformationen aus 3 aufsuchen, welche:

AF(a) OK,
invariant lassen.

In diesen Zusammenhang gehört das

Lemma 2

Es sei K ein zusammenhängender Streckenkomplex mit folgender Eigenschaft:
Je zwei sich schneidende Kanten gehören zu einem Kreis der Länge q.

Dann gilt:
Die einzigen der Inversionsgruppe 3 angehörigen Transformationen in Ky, welche

den Raum der Koränder in sich überführen, sind die Identität und die Inversion aller
Strecken.

Beweis

Zum Beweis dieses Lemmas benötigen wir noch einen Begriff der Strecken-
komplextopologie.
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Definition

Unter einer q-Kreiskette verstehen wir eine (geordnete) Folge von Kreisen z1, z2,

z3, zs der Länge q derart, dass der Durchschnitt zweier aufeinanderfolgender Kreise
eine Kante ist.

Es sei Q e 3 und Q ô Kx= ô Kx. Da die Transformation Q orthogonal ist, führt sie

auch den Zyklenraum in sich über, b, und bk seien zwei beliebige Kanten von K und

ai e bj, akebk je einer ihrer Eckpunkte. Da der Komplex zusammenhängend ist,
existiert ein Weg von ai nach ak, das heisst eine Folge von Kanten:

bs b\... Is \
mit der Eigenschaft, dass:

bi n bi+1 av (Eckpunktes des Komplexes K)

bi n b' p falls | i — / | =t= 1.

Zwei aufeinanderfolgende Kanten tV und bJ+1 bestimmen ihrerseits wegen der
vorausgesetzten Eigenschaft des Komplexes K einen Kreis zj der Länge q, der mit zj+1 die

Kante bJ'+1 gemeinsam hat. Durch den Weg von a, nach ak wird daher eine ç'-Kreis-
kette bestimmt, welche die beiden Kanten b, und bk enthält. Eine Umorientierung der
Strecke b, induziert, sollen dabei alle den Kreisen A zugeordnete Zyklen zj wieder in
Zyklen übergehen, notwendigerweise eine solche von bk und da b, und bk zwei beliebige
Strecken des Komplexes K sind, ist damit das Lemma bewiesen. q. e. d.

Der in 1.4 beschriebene Zustandskomplex der Protonenresonanzspektroskopie
besitzt tatsächlich die im Lemma vorausgesetzten Eigenschaften, wenn q 4 gesetzt
wird. So definieren etwa die beiden Kanten:

fafaf+'j und faf af'1)

den folgenden Kreis der Länge 4 :

faf af+1) faf+1af+2) faf+2 af+1) faf+1 af) - -J < m < -| - 2

Ersetzt man darin überall m + d durch m — d, so erhält man dieselbe Aussage für den

ergänzenden Variationsbereich von m:

- -- + 2<w< —.

Damit haben wir den folgenden Satz bewiesen :

Satz 2

Die Invarianzgruppe der Teilmenge ô Kx X F von Ky X K wird erzeugt durch
die Permutationsgruppe nf', die generelle Vertauschung (m j — m) der Quantenzahlwerte

m und — m, sowie durch die Inversion / aller Basiselemente.
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Wir behaupten nun
Satz 3

Die Invarianzgruppe 23' von GF x G1 ist Untergruppe von 23-

Beweis

Wir zeigen im Prinzip, dass zwischen den Intensitäten ausser den Relationen (4)
keine allgemeinen (das heisst vom speziellen Hamiltonoperator unabhängigen)
linearen Beziehungen bestehen. Dies bedeutet, dass die lineare Hülle der Menge
G1 — y[, woy{ eine beliebige Kette aus G1 bedeutet, mit Z zusammenfällt:

Z= {G'-y[} {A} lineare Hülle von A

Es sei F eine lineare Transformation, welche G1 in sich überführt. Dann ist offenbar:

T Z={T G1 -Ty[}= {G1 -T y[) Z

eine Gleichung, welche mit Formel (11) übereinstimmt. Mit Lemma 1 folgt daraus die

gewünschte Teilaussage von Satz 3.

Lineare Beziehungen zwischen den Intensitäten von der erwähnten Art könnten
a priori auf Grund der Zugehörigkeit von H zu einem echten Unterraum von a gelten.
Wir zeigen aber:

Lemma 3

Ausser den Intensitätsrelationen (4) kann es keine vom speziellen Hamiltonoperator

unabhängigen linearen Relationen zwischen den Intensitäten geben.

Beweis des Lemmas (indirekt)

Da N die ganze Operatorenalgebra zu Vp erzeugt (vergleiche Abschnitt 1.3),
mussten solche Relationen symmetrisch sein in bezug auf die neben m auftretenden
Indizes. Die einzigen Beziehungen dieser Art, welche weder von den Intensitätsrelationen

(4) abhängig sind, noch ihnen widersprechen, sind:
1. Die Gleichheit aller Intensitäten, die zu einem bestimmten Quantenzahlübergang

mjm + 1 gehören.
2. Die Summe:

27/X1 (2-14)
i

besitzt für irgend einen Wert der Quantenzahl m einen vom Index k unabhängigen
Wert a.

Der erste Fall kann sofort auf den zweiten zurückgeführt werden, denn wenn alle
Intensitäten zu den Übergängen mjm + 1 übereinstimmen, folgert man aus (5) :

27 zt1^.
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Um die zweite Möglichkeit auszuschliessen, halte man sich vor Augen, dass die
Festlegung der Summe (14) wegen der Gültigkeit der Gleichungen (4) den Wert der
entsprechenden Summe zum Quantenzahlübergang m — 2jm — 1 determiniert.

Die Intensitäten zum Übergang (— nj2)jf— nj2 + 1) können aber auf Grund der
Zugehörigkeit von H zu einem echten Teilraum N von 31 in keiner Weise eingeschränkt
werden, da, wie wir im Teil III der Arbeit (Beweis zu Satz 6) erkennen werden, die
Gesamtheit der 3I1-Komponenten von Operatoren aus iV mit dem Raum S1 aller
symmetrischer Operatoren zum Eigenraum V1 von F3 identisch ist. q.e.d.

Um den Beweis von Satz 3 zu vervollständigen, haben wir noch zu zeigen, dass

jede Transformation Q aus der Inversionsgruppe 3. welche GF invariant lässt, auch
ô Kx in sich überführt. Dazu äquivalent ist wegen der Orthogonalität von Q der
Nachweis, dass jede auf GF orthogonal stehende Kette bei Q wieder in eine solche

übergeht. Wie können wir nun GF als Teilmenge von K charakterisieren? Die einzige
Eigenschaft, die wir neben derjenigen, Teilmenge von ô Kx zu sein, noch benützen
werden, ist ihre Invarianz unter nf.

Qz symmtrritch

1z JTjcftr symmetrisch

Figur 2

Mit z bezeichnen wir den einem Grundkreis des Komplexes zugeordneten Zyklus :

z=(afaf+1) + (a;m+1 t+2';) - («! ,+i a.+«j faf af+1) (2-15)

Die Kette Q z besteht aus denselben Kanten, eventuell mit der inversen Orientierung
versehen. Die neben den trivialen Beispielen Q z z und Q z — z möglichen
transformierten Ketten lassen sich wie folgt klassifizieren.
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1. Man erhält Q z aus z oder — z durch Umorientierung einer einzigen Strecke.
2. Man erhält Q z aus z durch Umorientierung zweier zusammenhängender

Strecken.
3. Man erhält Q z aus z durch Umorientierung zweier durchschnittsfremder

Strecken.
Im Fall 2. lässt sich noch eine feinere Unterscheidung vornehmen:
2a. Die beiden Strecken gehören zu demselben
2b. nicht zu demselben Quantenzahlübergang.
Nennen wir eine Kette vom Typus Q z symmetrisch, falls sie bei Vertauschung von

af+1 und af+1 in sich oder in die negative Kette übergeht, so überlegt man sich, dass

die unter 2. und 3. eingeordneten Ketten symmetrisch sind, während die unter 1.

beschriebenen Ketten diese Eigenschaft nicht besitzen.
Im symmetrischen Fall konstruieren wir die Kette z — Q z. Im Fall 1. dagegen

bilden wir durch Vertauschung der zu m + 1 gehörigen beiden Eckpunkte eine neue
Kette z' und definieren dann die Kette z' — Q z. Wegen den erwähnten Eigenschaften
der Menge GF (Teilmenge von ô Kx, Invarianz unter nf,) müssen die so konstruierten
Ketten orthogonal auf GF stehen :

a) fz-Qz,yF) fdfz-Qz), xE) 0
(2-16)

b) fz' -Qz, yF) fdfz'-Qz),xE)=0. j

In den Fällen 1. und 2a. verlangt die Gleichung (16) die Übereinstimmung zweier

Energieterme zu einem bestimmten Wert von m, was auf Grund von Satz 1 aus 1.3

nicht allgemein zutreffen kann. Im Fall 2b. folgt die Geichheit zweier Energieterme
zu m und m + 2

E.W +2 7TJJJ

Da aber die zu einem bestimmten Wert der Quantenzahl m gehörigen Energieterme in
keiner Weise voreinander ausgezeichnet sind, würde dies wieder das Zusammenfallen

von zum gleichen Wert von m gehörigen Energieterme bedingen.
Schliesslich führt man Fall 3. wie folgt auf den Fall 2a. zurück: Ersetzt man in

y z — Q z bj — bk die eine Strecke b, durch eine andere mit demselben Anfangspunkt,

so erhält man eine neue Kette y', die immer noch auf GF orthogonal stehen

muss. Dasselbe gilt auch von der Kette y — y', die aber wieder von demselben Typus
ist, wie die Kette z — Q z im Falle 2a. Damit ist Satz 3 bewiesen.

Wir gelangen zur Formulierung von

Hauptsatz 1

Die Abbildung C ist im allgemeinen vierdeutig umkehrbar. Die vier mit dem
gegebenen Absorptionsspektrum verträglichen Kettenpaare gehen durch Vertauschung
von m und — m und die Inversion der Frequenzkette auseinander hervor.

Über die in den Sätzen 2 und 3 enthaltenen Aussagen hinaus wurde dabei benützt,
dass sogar 23' 23 ist, oder in andern Worten, dass die Transformationen fm \ — m)
und J die Paarmenge GF x G1 tatsächlich in sich transformieren. Um dies einzu-
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sehen, überlege man sich, dass zwei Hamiltonoperatoren, die durch Zeitumkehr
auseinander hevorgehen und welche nach 1.1 dasselbe Absorptionsspektrum definieren,
zu zwei verschiedenen Kettenpaaren Anlass geben, die durch generelle Vertauschung
von m und — m ineinander übergehen. Der Grund dafür liegt darin, dass die Zeitumkehr

am Spinraum durch einen Operator dargestellt wird, der generell die Eigenräume

von F3 zu den Eigenwerten m und — m vertauscht.
Ebenso bestimmen H und — H, welche zu zueinander inversen Frequenzketten

Anlass geben, dasselbe Absorptionsspektrum.
Eine Konsequenz des Hauptsatzes, die unmittelbar praktische Bedeutung besitzt,

ist das folgende

Korollar zum Hauptsatz 1

Durch das Absorptionsspektrum ist das Energiespektrum im allgemeinen bis auf
Spiegelung am Nullpunkt eindeutig bestimmt.

Dabei genügt es im allgemeinen zur Bestimmung des Energiespektrums die
Zuordnung der Linien zum Zustandskomplex so zu treffen, dass die Zyklenbedingungen

(1-39) für die Frequenzen und die Intensitätsrelationen (4) erfüllt sind.
Das Korollar folgt aus dem Hauptsatz unter Benützung der Bemerkung, dass für

einen Hamiltonoperator aus N gilt :

SpfH) fxE,c0)=0

(c0 Kette mit lauter übereinstimmenden Komponenten) und dass daher durch die
Frequenzkette die Energiekette eindeutig bestimmt wird. Während Frequenzketten,
die durch die Transformation fm \ — m) auseinander hervorgehen, zu demselben
Energiespektrum (vgl. dessen Definition) führen, bedeutet die Inversion der Frequenzkette

die Spiegelung des Energiespektrums am Nullpunkt.

III. Beziehungen zwischen den phänomenologischen Parametern und
dem Energiespektrum. Die Forminvarianzgruppe des Hamiltonoperators

(Die Abbildung A)

3.1. Die Problemstellung

Im Teil II dieser Arbeit haben wir uns bemüht, zu zeigen, dass diejenige Information,

die im experimentellen Absorptionsspektrum enthalten ist, im allgemeinen
hinreicht, um das Energiespektrum bis auf Spiegelung am Nullpunkt eindeutig zu
bestimmen. Um das eingangs aufgestellte Theorem zu beweisen, werden wir nun noch
die Richtigkeit des folgenden Satzes nachweisen :

Hauptsatz 2

Die einzigen Operatoren aus N, welche dasselbe Energiespektrum definieren wie
ein allgemeiner Hamiltonoperator der Form (1-1) gehen aus diesem durch eine
Permutation der Teilchen oder mittels der Zeitumkehr hervor.
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Da nun zwei symmetrische Operatoren genau dann dasselbe Eigenwertspektrum
besitzen, wenn sie zueinander orthogonal ähnlich sind, müssen wir nach der Gesamtheit

§ der Ähnlichkeitstransformationen mit orthogonalen Operatoren im Spinraum
P fragen, welche den Unterraum N der symmetrischen Operatoren a von 31 in sich
transformiert. Diese Gesamtheit § bildet eine Gruppe, welche wir als Forminvarianzgruppe

des Hamiltonoperators (1-1) bezeichnen wollen. Eine zum Hauptsatz äquivalente

Formulierung ist die folgende :

Korollar zum Hauptsatz 2

Die Forminvarianzgruppe §, des Hamiltonoperators (1-1) wird durch die
Zeitumkehr und die symmetrische Gruppe der Teilchen erzeugt. In dieser Form wollen
wir den Hauptsatz beweisen.

3.2. Die Forminvarianzgruppe (@) eines allgemeinen symmetrischen Operators aus 31

Satz 1

Die Forminvarianzgruppe § des Hamiltonoperators (1-1) ist Untergruppe der

Forminvarianzgruppe © eines allgemeinen Operators aus 31.

Beweis

Es sei Yea. Da N ganz 31 erzeugt, ist Y eine ganze rationale Funktion / einer
Basis Bi, Br von N:

Es sei ferner
Y /(F1, ...Br) r=1j2nfn + l). (3-1)

JL fX) L X L X allgemeiner Operator in P (3-2)

eine Ähnlichkeitstransformation mit einem orthogonalen Operator F im Spinraum P.
Dann ist :

JLfY)=fffABi),.--fLfBr))- (3-3)

Falls nun JL e §, folgt aus (3), dass JL(Y) wieder dem Erzeugnis 31 von N angehört.
Da zudem F als orthogonal vorausgesetzt wurde, ist JifY) e a und daher JLe ©.

q. e.d.
Auf analoge Weise sieht man ein, dass © Untergruppe der Automorphismengruppe

von 31 ist. Wir werden also darauf geführt nach der Automorphismengruppe einer
direkten Summe von vollen Matrixringen über dem Körper der reellen Zahlen zu
fragen.

Satz 2

Die Automorphismengruppe einer direkten Summe von vollen Matrixringen ist
semidirektes Produkt des Normalteilers -& der innern Automorphismen mit einer
Untergruppe q, welche die isomorphen Matrixringe unter sich permutiert.
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Satz 2 ist die Zusammenfassung der nachstehenden beiden Sätze :

Satz 3

Jeder Automorphismus einer direkten Summe von vollen Matrixringen, welcher
das Zentrum elementweise fest lässt, ist ein innerer.

Satz 4

Jeder Automorphismus einer Algebra von Diagonalmatrizen permutiert deren
Basisidempotente.

Beweis zu Satz 3
Es sei

31 31! + + 2tr

die direkte Summe der Matrixringe 31,- und e, fi 1, r) die Basisidempotenten des

Zentrums von 31. Ferner sei a ein Automorphismus von 31, welcher das Zentrum
elementweise fest lässt. Ein Element X e 31,- wird durch die Gleichung:

X s X

charakterisiert. Durch Ausüben von oc gemäss:

a fX £,.) afX) e{ afX)

folgt, dass die a einzelnen Matrixringe invariant lässt. Wir haben also lediglich noch zu
beweisen, dass jeder Automorphismus einer vollen Matrixalgebra ein innerer ist. Dies

besorgte schon H. Weyl in Literaturstelle (6). Wir geben hier einen kurzen Abriss
seines Beweises. Weyl zeigt zunächst, dass die Eigenwerte einer Matrix bei einem

Automorphismus invariant bleiben. Dies bedeutet, dass die Bildmatrix G* einer
vorgegebenen Diagonalmatrix G mit lauter verschiedenen, dem Grundkörper angehörigen
Eigenwerten zu dieser ähnlich ist. Durch die Ähnlichkeitstransformation mit der
Matrix A, welche G* in G überführt, wird ein innerer Automorphismus der Matrixalgebra

definiert, den Weyl mit dem ursprünglich gegebenen X -x X* zusammensetzt.
Von diesem zusammengesetzten Automorphismus weist er dann nach, dass er wieder
ein innerer ist und zwar erzeugt durch eine Diagonalmatrix A0. Also folgt dann, dass

auch der ursprünglich gegebene ein innerer sein muss.

Beweis zu Satz 4

Es seien ex, er die Basisidempotenten einer Algebra 31' von Diagonalmatrizen
und X -x X* ein Automorphismus von 31'. Setzt man ef an als:

-* F

so folgt aus e*2 e*

ei E a<

k-l

or*(«J-l) 0 oder «f |J.
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Ferner ergibt sich aus der Tatsache, dass die Einheitsmatrix bei einem Automorphismus
fest bleibt :

r
i 27 £i 27 a*x EZ i

i 1 i, k k

und hieraus durch Multiplikation mit e* :

27 «xii-l
das heisst jede Zeile der Matrix aj muss genau eine 1 enthalten. Da zudem die
Abbildung X -X X* eine Abbildung von 31 «M/sich sein soll, daif die Matrix nicht singular
sein, was unter Berücksichtigung des Vorangegangenen bedeutet, dass sie eine
Permutationsmatrix sein muss. q.e. d.

Es sei nun A ein Automorphismus einer direkten Summe von Matrixringen über
den reellen Zahlen, bei welchem die Basisidempotenten e, des Zentrums die Permutation

q erfahren. Ferner sei Q derjenige Automorphismus von 31, der dadurch definiert
wird, dass man die Komponenten Y{ e 31; eines beliebigen Elementes Y e 3t der
Permutation q unterwirft. Dann ist:

Q~1A J

ein innerer Automorphismus, da er das Zentrum fest lässt (Satz 3). Jeder Automorphismus

erlaubt daher die Darstellung:

A Qf.

wobei der Durchschnitt aller Q's und aller /'s nur die Identität enthält. Ferner lässt
mit J auch Q J Ç-1 das Zentrum fest, ist also wieder ein innerer Automorphismus.
Diese Feststellungen enthalten Satz 2.

Aus Satz 2 folgert man unmittelbar, unter Berücksichtigung, dass ein
Permutationsoperator orthogonal ist :

Satz 5

Die Untergruppe © der Automorphismengruppe der Algebra 3t, welche den
Unterraum a der symmetrischen Operatoren invariant lässt, ist semidirektes Produkt
des Normalteilers §' der durch orthogonale Elemente von 3t erzeugten innern
Automorphismen mit der Untergruppe q der äussern Automorphismen von 3t.

3.3. Die Bestimmung derjenigen Transformationen der Forminvarianzgruppe .§,
die zu den innern Automorphismen (¦&') von 31 gehören

Die Gesamtheit der Transformationen aus .§, die innere Automorphismen von 2t

definieren, bildet einen Normalteiler §' von §.
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Wir wiederholen einige Bezeichnungen : Der Spinraum P zerfällt unter der
Drehgruppe um die 3-Achse in Teilräume äquivalenter Darstellungen :

n

F ®Vi>. (3-4)
p-o

wobei

P m + A. (3-5)

Der Raum N der Operatoren der Form (1-1) erzeugt den Endomorphismenring 3t von
P unter der Drehgruppe um die 3-Achse, der, seiner Definition gemäss, in eine direkte
Summe von vollen Operatorenalgebren 3t* zu den Räumen Vp zerfällt :

n

3t © 3t*.
p-0

Mit er bezeichnen wir den Raum der symmetrischen Operatoren aus 31, während S* den
Raum der symmetrischen Operatoren in V^ symbolisieren soU.

Wir beweisen zunächst :

Satz 6

Es sei §j die Gruppe der auf S1 beschränkten Transformationen von §'. Dann ist :

S' Si.

Beweis

Wir haben zu zeigen, dass die Abbildung:

cpx : N -> S1, (3-7)

welche jedem Element HeN seine Komponente H1 e S1 zuordnet, ein
Operatorisomorphismus bezüglich §)' von Ar auf S1 ist. Die Eigenschaft der Operatorhomo-
morphie folgt einfach aus der Feststellung, dass der Raum S1 bei §' invariant bleibt.
Bezeichnen wir mit Eki denjenigen Operator aus 3t1, der die Basisfunktion:

tj ß(l) ß(i - 1) ßfi +l)...ßfn - 1) ßfn) afi) (3-8)

auf die Funktion :

tk 0(1) ...ßfk-l)ßfk+l)... ßfn - 1) ßfn) a(Ä)

und das durch die Produktfunktionen definierte Komplement von (8) in V1 auf 0

abbildet, so ist offenbar : fep Einselement von 3t*)

-2(I,3)1 -(si)1 2jEjj-Eii (3-9)
i A=i

2 (Ij lky fik)1 - 1/2 A 127 Eii - (Ea + X.) + Eik + Eki. (3-10)



928 Hans Kummer H. P. A.

Diese Formeln zeigen, dass die Bilder der Basiselemente {Li3, I, Ik} von N für nA 2

bei der Projektion (7) linear unabhängig bleiben. Dies ist für die Elemente I, Ik
untereinander und in bezug auf die Ii3 unmittelbar evident. Die gegenseitige lineare
Unabhängigkeit der Operatoren (i^)1 beruht auf der Nichtsingularität der Matrix:

M.

+ 1

für n > 2

Rekursionsformel
Die Determinante von M3 besitzt den Wert 4. Unter Benützung der

det M„ Z»+;_detM„»—3 "

erkennt man mittels eines einfachen Induktionsschlusses, dass die Determinante von
M„ von Null verschieden ist.

Nun existieren 1/2 nfn + 1) solche Basiselemente, eine Zahl, welche gerade mit der
Dimension des Raumes S1 übereinstimmt. Somit ist die Projektion q:x für n > 2

tatsächlich ein Operatorisomorphismus auf S1, womit Satz 6 bewiesen ist. q. e. d.

Folgende Begriffe spielen in der weiteren Untersuchung eine Rolle :

symmetrische Gruppe der n Teilchen
lineare Hülle der darstellenden Operatoren von n am Spinraum P

V1 ® V"-1 f= Unterraum von P)
S1 © S"-1 f= Unterraum von a)

Gruppe der auf JF beschränkten Transformationen von §'
31^ n (3t1 © 3t"*1) — lineare Hülle der darstellenden Operatoren von n am
Teilraum S des Spinraums.

n

S

Satz 7

Die Gruppe Sj'^ enthält nur Ähnlichkeitstransformationen mit orthogonalen
Elementen aus 3L,@.

Beweis

Mit cp2 bezeichnen wir entsprechend zu (7) die Projektion:

cp2: N -+¦ S"-1, (3-12)

welche jedem Element aus N seine Beschränkung H"^1 ani V'1 zuordnet. Ebenso wie
im Beweis von Satz 6 zeigt man, dass cp2 ein Operatorisomorphismus bezüglich §' von
N auf S"-1 darstellt.

cp cf2 o cpr1 (3-13)
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definiert dann einen Operatorisomorphismus von S""1 auf S1. Explizite ist cp durch
die Gleichungen:

a) cp fs1) Sy\ b) cp ffik)1) fik)-1 (3-14)

und lineare Übertragung definiert. Durch die Festsetzung :

cp fa b) cpfa) cpfb) (3-15)

und die Forderung der allgemeinen Linearität lässt sich die Abbildung widerspruchsfrei

zu einem Homomorphismus von 3t1 auf 2l"~1 erweitern. Es sei nun Ji eine

Transformation aus 9)'E, also L die Komponente des orthogonalen Operators F in 3I1 © 3I"~1.

Da cp einen Operatorisomorphismus darstellt, gilt für alle X e S1

cp (F1 X L1) L»-1 cpfX) L«-1 (3-16)

worin F1 und L"-1 die Komponenten von L in den Teilalgebren 3t1 und 3I"_1 bedeuten.
Die durch (15) definierte Erweiterung cp des Operatorisomorphismus bezieht die
Unterräume der symmetrischen Operatoren von 3t1 und 2t"~1 eineindeutig aufeinander.
Sie führt deshalb einen antisymmetrischen und infolgedessen auch einen orthogonalen
Operator zu V1 in einen ebensolchen zu V"-1 über. Diese Überlegungen zeigen, dass

Gleichung (16) offenbar durch:

L«-1 cpfL1) (3-17)

befriedigt wird, wenn wir wieder unter cp die durch (15) definierte Erweiterung des

Operatorisomorphismus verstehen. (Auch F"_1 — cpfL1) ist eine Lösung von (16),
die jedoch denselben innern Automorphismus von 3t definiert wie cpfL1).) Der Operator
F lässt sich somit darstellen als :

L=U + cpfL1) (3-18)

Wir haben jetzt nur noch zu zeigen, dass F1 zu 21^ gehört; dann impliziert nämlich

Gleichung (18) unter Beachtung der Definitionsformeln (14b) und (15) von cp, dass L
ein Element von 3L,@ ist.

Gegenüber der symmetrischen Gruppe n zerfällt V1 in zwei irreduzible Teilräume :

V1=W+W1 (3-19)

wobei IF zur totalsymmetrischen Darstellung gehört, während W1- die zum Young'
sehen Tableau:

¦ n-1 ¦

Figur 3

gehörige Darstellung vermittelt.
59 H. P. A. 36, 7 (1963)
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Wir haben zu zeigen, dass falls JL den Raum N in sich überführt, die Komponente
L1 von L den Raum W invariant lässt. Da L1 orthogonal ist, folgt dann, dass F1 auch
W1- in sich überführt und dass daher F1 zu 3t1 gehört.

Um diesen Beweis zu führen benötigen wir folgende Hilfsformel :

n SpwfH) 1) Sp0fH) + SpnfH). (3-20)

SppfH), SpwfH) bezeichnen dabei die Spuren von H über die Teilräume F* bzw. W.
Zum Beweis der Formel (20) bemerken wir:

Jedes Element aus N lässt sich schreiben als :

Ferner gilt :

und:

H Evi (*.-)*> + 27^* (**)/>- lz (27««) e.
i =1 t< k i< k

- Sp0fs{) SpnfSj) Sp0ffik)) Spn ffik)) 1

n — 2
a) Spwfst b) Spwffik)) 1.

(3-21)

(3-22)

(3-23)

Von den Formeln (22) und (23) ist einzig (23a) nichttrivial; die folgenden Überlegungen

dienen zu ihrem Beweis: Der Zerlegung (19) von F1 angepasste Basisvektoren
sind:

u, t, — t„ i 1, n — 1 in IFX

K Etk in IF.
(3-24)

Uns interessiert der Entwicklungskoeffizient /j,in von s, un bei un. s, un lässt sich
schreiben :

2 t,. (3-25)

Kennt man nun den Entwicklungskoeffizienten von t, bei un, dann lässt sich die
gesuchte Grösse leicht berechnen. Jener ergibt sich aber in der Matrix:

D.

0

1 1

-11
deren Elemente durch die Gleichungen:

dik àik i,k < n

d,lk - 1 k 1, n -- 1

din= + l *'=!,.. n — 1, n
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gegeben sind, als Adjunkt des Elementes din, dividiert durch die Determinante von
Dn. Setzt man in Dn an Stelle der letzten Zeile die Summe aller Zeilen, so erhält man
eine Dreiecksmatrix mit derselben Determinante, die sich dann leicht zu n berechnet :

det Dn n.

Um das Adjunkt von din zu berechnen, braucht man für i < n den Wert einer
Unterdeterminante der Art :

0

1 - 1 - 1 - 1

0

1

-1
Durch n—l — i Transpositionen der Kolonnen macht man daraus eine Matrix mit
der Determinante — 1, derart, dass die Unterdeterminante den Wert (— l)"-' besitzt.
Dem Adjunkt kommt daher in jedem Fall der Wert + 1 zu und der gesuchte
Entwicklungskoeffizient lautet mithin in der Tat für alle s; :

SpwfSj) /J,in - 1 - n-2

Unter Benützung der Formeln (22) und (23) folgt nun aus (21) :

SPwfH) :-=±2>, + i/2-j>t
i<k

Sp,fH) -Xvi+1l2Emik
i<k

SPnfH) 27 "X1/2 27 0Ì,.

Durch Elimination der Summen 2J v„ 1/2 JJ coik erhält man daraus (20).
Aus (20) folgt jetzt für JL £§', also F e 3t:

SpwfL H L) SpwfH) für alle HeN. (3-26)

Wenn wir mit Pw den orthogonalen Projektor von V1 auf W bezeichnen, lässt sich
(26) auch schreiben:

SPifPwL1H1L1) Sp1fPwH1).

Durch zyklische Vertauschung in der Spur auf der linken Seite der Gleichung erhält
man dann:

Sp ffL1 Pw L1 - Pw) H1) 0 (3-27)
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eine Gleichung, welche für alle H1 gelten muss. Da die Gesamtheit aller 1-Komponen-
ten der Operatoren aus N mit S1 übereinstimmt (vgl. Beweis zu Satz 6) folgt, dass der

Operator :

HP 7"i „ p

bezüglich dem Frobenius-Skalarprodukt:

A,Bs%1 fA,B) SPifA+ B)

auf S1 orthogonal steht, und da er selbst symmetrisch ist, ergibt sich:

[Li,Pw] 0, (3-28)

eine Gleichung, welche in der Tat aussagt, dass F1 den Raum IF in sich transformiert.
q.e.d.

Satz 8

§>i enthält nur Ähnlichkeitstransformationen mit darstellenden Operatoren von
Teilchenpermutationen an V1.

Beweis

Es seien Eik die analog zu den Eik e 3t1 definierten Operatoren von 3t"-"1 und p die
durch die Zuordnung:

E*-»Êa (3-29)

induzierte lineare Abbildung von S1 auf S""1. Da die Produktfunktionen in F1 und
V""1 genau dieselbe Darstellung von 3L, vermitteln, ist p ein Operatorisomorphismus
bezüglich der Gruppe der Ähnlichkeitstransformationen mit Elementen aus 31,, und
wegen Satz 7 auch bezüglich der Gruppe §'. Die Abbildung % çr1 o p von S1 auf sich
ist somit ein bezüglich §>' zulässiger Automorphismus von S1.

Wir zerlegen nun S1 gemäss :

S1 Z + R (3-30)

in zwei Unterräume Z und R, von welchen Z durch die s1 und R durch die (i k)1

aufgespannt werden soll. Z ist sogar eine kommutative Algebra. Für Elemente z e Z und
r e R gilt dann offenbar :

x(z) -z x(r) =r ¦ X31)

Es seien nun JL e §', JLi die Beschränkung von JL auf S1 und PR, Pz die Projektoren
auf die entsprechenden Unterräume gemäss der Zerlegung (30). Dann ist einerseits

wegen (31) :

xUu W) X(PR Ju W) + X(PZ Jn (*)) Pr lu M - X lu W

und andererseits wegen der Operatorisomorphieeigenschaft von bezüglich §' und (31) :

X(lu to) Ju (*(*)) - Pr Jv to - Pi Ji> to •
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Der Vergleich der beiden Formeln zeigt :

Pr In to 0

oder:

Ju fz) Pz Ju fz) (3-27)

(27) bedeutet, dass Z bei Ju in sich übergeht. Da aber Z eine Algebra von Diagonalmatrizen

ist, permutiert nach Satz 4 ein zulässiges Ju die Basisidempotenten :

Ejj 1/2 fs1 + sj)

unter sich. Das zugehörige F1 permutiert dann die Produktfunktionen unter sich und
kann als treue Darstellung einer Teilchenpermutation gedeutet werden. q.e.d.

Aus den Sätzen 6 und 8 extrahiert man:

Satz 9

Die einzigen innern Automorphismen von 31, die zur Forminvarianzgruppe £j von
H gehören sind diejenigen, die durch darstellende Operatoren von Teilchenpermutationen

erzeugt werden.

3.4. Die Bestimmung derjenigen Transformationen der Forminvarianzgruppe,
die zu den äussern Automorphismen (p) von 3t gehören

Satz 10

Der einzige äussere Automorphismus von 31, der zur Forminvarianzgruppe von H
gehört, ist derjenige, der durch den darstellenden Operator der Zeitumkehr erzeugt
wird.

Beweis

Um Satz 10 zu beweisen, bemerken wir, dass der Transitivitätsbereich t unter der
Gruppe der äussern Automorphismen des speziellen Elementes

x 27/,-3

i-l
von N mit N nur die beiden Elemente F3 und — F3 teilt. Dies sieht man sofort ein,
wenn man beachtet, dass der Durchschnitt t n N die Darstellung :

t n N cpr1 fe1. t)

erlaubt und dass cpxfr) nur die beiden Operatoren:

(-Z + l^und-f-Z + l)*1

enthält. Dabei ist q?1 der durch (7) definierte Operatorisomorphismus von N auf S1.

q.e.d.
Die Sätze 9 und 10 enthalten den zu beweisenden Hauptsatz 2.



934 Hans Kummer H. P. A.

Appendix

In diesem Abschnitt wollen wir einige Beziehungen betrachten, welche auf Grund
der Zugehörigkeit des Hamiltonoperators zu einem echten Unterraum von a gelten.
Solche Beziehungen sind von grosser praktischer Bedeutung, einmal bei der Bestimmung

von Frequenz- und Intensitätskette aus dem experimentellen Spektrum
(Zuordnungsproblem), dann aber auch zur Verbesserung der Messwerte mittels der
Methode der kleinsten Quadrate. Wir beschränken dabei unsere Betrachtung auf
sowohl in den Intensitäten als auch in den Frequenzen lineare Relationen.

Durch Untersuchung der Teilspuren des Hamiltonoperators in den Räumen F*
erhält man eine Klasse von intensitätsfreien Beziehungen der erwähnten Art. Modulo
den Vielfachen der Identität lässt sich der Hamiltonoperator als Linearkombination :

2H=EQi{sl)P+£ja(ik)P (A-l)
i i<k

schreiben. Aus den Gleichungen:

ZXCZ) *,*»xxxz
worin wie sonst:

P m + y (A-3)

folgert man:

"«»XfXZX'iXXfXWXX/., «-»p-i)-\ p )i&, 'a\ p rv-2)iû.
Unter Benützung einer geeigneten Normierung der Energie folgt daraus für den
Mittelwert Em der zum Quantenzahlwert m gehörigen Energieterme :

^wm,^yzy+AA§A- ,A-5)

Daraus erhält man für die über die Übergänge m -> m + 1 gemittelte Frequenz :

»- 1 Kk

vm erweist sich also als eine lineare Funktion von m und es gilt daher:

vm 1/2 fv"1-1 + vm+1) (A-7)

Von diesem Typus gibt es fn — 2) unabhängige Relationen zwischen den Frequenzen.
Eine davon abhängige Beziehung, die beim Dreispinsystem eine gewisse Rolle spielt,
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erhält man direkt aus (4). Mit Hilfe der Relation:

£<-nxo-
leitet man nämlich daraus ab :

2Jf-l)PSppfH) 0. (A-8)
p-o

Daraus folgt, dass die Energiekette orthogonal auf der Kette

n (p)

y 27(-i)* 27«?
p-0 i-l

steht. Und da die Koeffizientensumme von y verschwindet, y sich also als Rand einer
Kette x schreiben lässt :

y d x

besitzt diese Orthogonalitätsrelation die Gestalt:

(xE, y) fxE, dx) fyF, x) 0. (A-9)

Die explizite Form dieser Beziehung zwischen den Absorptionsfrequenzen hängt
natürlich sehr von der Wahl der Kette x ab, die ja nur bis auf Addition eines Zyklus
bestimmt ist. Beim Dreispinsystem lässt sich für x eine beliebige Kette von folgendem
Typus wählen :

X 6-3/2 _ 5 -1/2 _ £-1/2 + £+1/2 (A.10)

wobei der Durchschnitt von je zwei Kanten 6 aus x leer sein soll. Dadurch werden die
Klassen äquidistanter Linienpaare, zu welchen die Zyklenbedingungen Anlass geben,
noch vergrössert.

Da die Ketten vom Typus (10) von der gleichen Länge (vier) sind, wie die Grundzyklen

des Zustandskomplexes, ist es möglich, sie durch Transformationen aus ny in
Zyklen überzuführen und umgekehrt, ohne dabei die Menge GE zu verlassen : Dies ist
der tiefere Grund dafür, dass die Kenntnis der Absorptionsfrequenzen beim Dreispinsystem

in keinem Fall hinreicht um die Zuordnung der Linien zum Zustandskomplex
in eindeutiger Weise zu treffen.

Die nächst komplizierteren Beziehungen von der hier betrachteten Art sind
sowohl in den Intensitäten als auch in den Frequenzen genau vom ersten Grad. Man
erhält sie durch Untersuchung der Teilspuren des Zeeman-Terms Z in den Räumen
F*. Bezeichnet man mit Sm das erste Moment aller Linien, welche zum Übergang
m «-> m + 1 gehören :

Sm=£vmIm (A-ll)
dann gilt nämlich:

SpJZ) S™"1 - Sm : (A-12)
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Dies folgt aus der leicht zu beweisenden Beziehung:

Aus der Gleichung:
2Z= [[H, FJ, F_

sm-ïnç*.
gewinnt man sofort die Rekursionsformel:

SPp(Z)
>+l

Spp-i (Z).m—1 p

(12) in (15) eingesetzt liefert die gesuchten Beziehungen:

n (2 m — 1) S™-1 m fn - 2 fm - 1)) Sm~2 + fm - 1) fn + 2 m) S"

H. P. A.

(A-13)

(A-14)

(A-15)

(A-16)

von welchen es n — 2 unabhängige gibt.
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