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Die Regularisierung der interpolierten Clusterentwicklung fiir die
Eigenfrequenzverteilung einer ungeordneten biniren Kette

von W. Schlup
Institut fiir Theoretische Physik der Universitiat Ziirich

(21. VIIL. 63)

Zusammenfassung. Dic lokal negative Verteilungsdichte f(w?) der Eigenfrequenzen von Gitter-
schwingungen eciner isotopen lincarcen Kette wird in symmetrischer Weise in erster Ordnung inden
beiden Konzentrationen interpoliert und in Form der komplexen Clusterentwicklung algebraisch
regularisiert. Das Resultat wird bis auf die Willkiir bei der Interpolation eindeutig aus der Wahr-
scheinlichkeitsbedingung f(®?) > 0 und dem Rayleigh-Theorem festgelegt.

§ 1. Einleitung

Die verschiedenen Methoden zur analytischen Berechnung der Eigenfrequenz-
verteilung eines ungeordneten Gitters lassen sich nach der Form des Ergebnisses in
vier Gruppen zusammenfassen:

I. Exakte Losungen: Sie sind nur fiir sehr spezielle Modelle bekannt (siche Ref.
Dyson (1), DomB et al. (2), RUBIN, ZWANZIG (3)).

IT. Mit Hilfe der Methode der Entkopplung von temperaturabhingigen Green-
funktionen gefundene Niherungslésungen, die dhnlich wie bei der Supraleitung ge-
wisse wesentliche Singularititen im Storparameter aufweisen und daher nicht durch
eine analytische Storungstheorie erhalten werden kénnen (siehe Ref. BONCH-BRUE-
VICH, TYABLIKOV (4)).

III. Verbesserte Methoden einer analytischen Stérungstheorie, bei der fiir eine
Losung in 1. Ordnung Terme hoherer Ordnungen mitberiicksichtigt werden, sofern
sie sich in einfacher Weise summieren lassen. Die Selektion derselben geschieht durch
eine topologische Klasseneinteilung von Graphen, die in eindeutiger Weise den ein-
zelnen Termen zugeordnet werden (siehe Ref. LANGER (5), TAKENO (6)). Unter diese
Gruppe fallen auch die Resultate der Konfigurationsmitteilung (siehe Ref. MAHANTY
(7), ScHLUP (8)).

IV. Ferner die Losungen der einfachen analytischen Stérungstheorie, die wegen
ihrer physikalischen Interpretation als Clusterentwicklung bezeichnet wird. Thr Term
n-ter Ordnung wird durch Beitrige von Clustern aus #, bzw. weniger Stératomen im
reinen Kristall mit Atomen einer geeignet gewdhlten mittleren Masse #, bestimmt.
Da die Konvergenz der Clusterentwicklung noch unbewiesen ist, kann man deren
Resultate im Sinne einer asymptotischen Entwicklung, das heisst fiir sehr kleine
Storparameter verwenden (siehe Ref. MoONTROLL, PoTTs (9), LIFSCHITZ, STEPANOVA
(10)).
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In der vorliegenden Arbeit wird versucht, die selektive Summation der Stérungs-
entwicklung mittels physikalischer Prinzipien aus der Clusterentwicklung zu be-
kommen. Wir legen unseren Betrachtungen ein spezielles Modell zu Grunde: Eine
lineare Kette harmonisch an den nichsten Nachbarn gekoppelter Atome, deren Massen
stochastische Grossen sind, die unabhingig vom Gitterplatz die Werte m, (Grund-
atom) bzw. m, (Stératom) mit der Wahrscheinlichkeit p, =1 — ¢ bzw. p, = ¢ an-
nehmen. Wegen des Rayleigh-Theorems (siehe § 5) ist der Triger der Frequenzver-
teilungsdichte f(x) (¥ = w?/4 K, w Frequenz, K Kopplungskonstante) begrenzt. Die
Clusterentwicklung lautet dann

1% q) = folx) + ¢ h(x) + ¢ folx) + -+, (1.1)

wobei wegen der Normierung

[f, ) dx =1 (1.2)
ist, und daher die Entwicklungskoeffizienten f,(x) den Integralbedingungen
ffo(x) dx=1, /'f,(x) Br=0 i=1%,... (1.3)

geniigen miissen. Hierbei ist fj(x) eine echte Verteilungsdichte, weil fy(x) > 0O 1st,
und kann daher als Wahrscheinlichkeit interpretiert werden. Die Koeffizienten
fi(x) fiir £ = 1, 2 ... sind verallgemeinerte Funktionen, die als Imaginérteil des Rand-
wertes einer analytischen Funktion definiert sind. Gleichung 1.1 wird daher nur tiber
geeignete Testfunktionen gemittelt, das heisst als Distribution, einen Sinn machen.
Aus der Eigenschaft 1.3 folgt, dass f,(x) sowohl positive als auch negative Anteile
besitzt. Das gleiche gilt fiir f,(x)/f,(*) solange fy(x) + 0 ist, das heisst im Innern des
Grundbandes. Da, wie wir sehen werden (siehe Gleichung 3.5), f;(x)/fo(*¥) am oberen
Rand des Grundbandes negativ unendlich wird, ist f(x, ¢) fiir noch so kleine ¢ in der
Nidhe des oberen Randes negativ und kann nicht mehr als Wahrscheinlichkeit ge-
deutet werden. Diese Verteilungsdichte f(x, ¢) gibt trotzdem alle Momente, welche
Polynome in ¢ sind und die direkt nach der Montroll-Momentenmethode (siehe Ref.
DowmB et al. (11)) berechnet werden konnen, richtig wieder. Es stellt sich nun das
Problem, eine Verteilungsdichte f¥(x, g) mit begrenztem Triger und beziiglich ¢ in
eine Potenzreihe entwickelbarer Momente derart einzufithren, dass f(x, ¢) und
f%x, g) in den Momenten

#(g) = A+ g+ +q 4+ 0 (1.4)
in O(g/*!) tibereinstimmen. Geniigt f?(x, ¢) ausserdem der Wahrscheinlichkeits-
bedingung f¥(x, ¢) > 0 dann bezeichnen wir f?(x, g) als eine in /-ter Ordnung regu-
larisierte Wahrscheinlichkeitsdichte zur Verteilungsdichte f(x, ¢). Ohne weitere Be-
dingungen wird es zu einer Potenzreihe von f(x, ¢) im allgemeinen unendlich viele
Regularisierungen /-ter Ordnung geben. Mit wachsendem / wird die Forderung
f%(x, q) solle nicht negativ sein, eine sehr starke Einschrinkung bewirken, die es
praktisch unméglich macht, héhere Regularisierungen zu finden.

In § 2 wird die Regularisierung mit Hilfe der analytischen momentenerzeugenden
Funktion untersucht. Symmetrieeigenschaften der Frequenzverteilung werden in § 3
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verwendet, um die bekannte Clusterentwicklung beziiglich m, = m, so zu interpolie-
ren, dass sie in erster Ordnung, das heisst bis auf Terme der 0(¢?) bzw. der 0((1 — ¢)?)
unverdndert bleibt. In § 4 wird eine algebraische Regularisierung der symmetrisierten
Clusterentwicklung in erster Ordnung durchgefiihrt, die in § 5 durch das Rayleigh-
Theorem im wesentlichen eindeutig festgelegt wird. In § 6 wird die regularisierte
Frequenzverteilung diskutiert und mit anderen Resultaten verglichen. § 7 enthilt
Bemerkungen iiber eine Ausdehnung der Regularisierung auf nicht algebraische
Funktionen.

§ 2. Regularisierung mittels analytischer Funktionen

Ist f,(x) eine Funktion einer spezielleren Funktionenklasse, z.B. eine stiickweise
analytische Funktion (im Reellen), so kann man durch die Forderung, f¥(x, q) solle
derselben angehéren, die Regularisierten weiter einschrinken. Wegen der Parameter-
abhingigkeit der Grenzen der einzelnen Stiicke ist es auch dann noch miihsam, eine
Regularisierung (im Reellen) zu finden. Diese Schwierigkeit kann man durch kom-
plexe Integration umgehen.

Im Hinblick auf die komplexe Form der Clusterentwicklung werde die Regulari-
sierung mittels einer komplexen Hilfsfunktion ausgefithrt. Da x eine positive, be-
schrinkte, stochastische Variable ist, werden die Momente aller absolut integrier-
baren Verteilungen

w:/ﬂﬂ@m (2.1)

durch

1xn'-' < x}ﬁ,f|f(x) | dx (2.2)

begrenzt sein, wobei x,; den oberen Rand des Spektrums darstellt. Hieraus folgt, dass
die momentenerzeugende Funktion

GRS 23)

n=0
fir | z | > x,, eine analytische Funktion ist, und daher fiir die Momente

— 1
W= v(z) dz (2.4)
gilt, wobei der geschlossene Weg ausserhalb |z | = x,, herumzufiihren ist. Schliess-
lich kann man den Weg noch so deformieren, dass er nur die Strecke 0 << x << x,
umfasst. Damit ldsst sich das Moment umformen in

*M

xn-:_}“ fx" ’y_(x+iQ)__jw(x—iO) I

- , (2.5)

wobel ein Vergleich mit 2.1 wegen #*(z) = 7(z*)

o) = - rwrio) (2.6)
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ergibt. Die Verteilungsdichte f(x) einer beschrinkten Variablen kann also immer als
Imagindrteil des Randwertes einer analytischen Funktion #(x) geschrieben werden.
Einfache Pole in 7(x) ergeben dabei d-f6rmige Singularititen in f(x), hohere Pole die
entsprechenden Ableitungen der 8-Funktion. In dhnlicher Weise berechnet sich der
Mittelwert ¢(x) einer ganzen analytischen Funktion in x (z.B. freie Energie, spezi-
fische Wirme):

P = 3 gur = 5 r § ole) la) s 2.7)

Die Clusterentwicklung in ihrer urspriinglichen Form hat die Gestalt der Gleichung
2.7, wobei 7(z) als Potenzreihe nach einem Stérparameter g vorliegt. Man kann durch
geeignete Regularisierung von #(z, g) in /-ter Ordnung eine Regularisierte f¥(x, g)
von f(x, g) finden. Es ist nicht leicht, die Wahrscheinlichkeitsbedingung f/(x, ¢) > 0
in eine notwendige Bedingung fiir #'(z, ¢) umzuwandeln.

Wir werden uns im folgenden nur fiir die algebraische Regularisierung in erster
Ordnung interessieren und spiter einige Bermerkungen zu allgemeineren Regulari-
sierungen machen. Die algebraische Regularisierte

0, g) = rfa) (1+ L 22 ) (2.8)

o (%)

stimmt in 1. Ordnung mit #(z, g) iiberein und ist konvergent, da | g/o y4(2)[yo(2) | < 1
ist fiir gentigend grosse | z | und o + 0, co.

§ 3. Invarianzeigenschaften der Frequenzverteilung und
Symmetrisierung der Clusterentwicklung

Wir diskutieren nun einige Eigenschaften der exakten Frequenzverteilung
Jfx, x1, &, q), wobei x; = 1/m,, e = 1 — my/m; und ¢ die Konzentration der m,-Atome
ist.

Aus der Bewegungsgleichung einer Kette

(Z—4xm) uy =+ 1, (3.1)
und der zyklischen Randbedingnug
Ny = Wy (3-2)

folgt, dass das Spektrum der Eigenfrequenzen (fiir endliche N und im limes N - oo)
unverindert bleibt, falls man m, durch m, /4 (A reell, positiv) und x durch 4 x ersetzt.
Es gilt also die Homogenititsrelation

Af(Ax, 2 xy, 8 q) =[x, %1, 6 9) . (3-3)

Ferner wird durch Vertauschen der beiden Atome und ihrer Konzentrationen die
physikalische Situation nicht gedndert, folglich ist f(x) symmetrisch in bezug auf die
Indizes 1 und 2, das heisst es besteht die Funktionalrelation

f(x, 1"_18 N 1f 1— 9) = f(x, %1, 8, q) . (3.4)

e 3y
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Die Identitdten 3.3 und 3.4, die auch fiir die momentenerzeugende Funktion 7(z)
gelten, sollen im weiteren beniitzt werden, um die Clusterentwicklung so zu inter-
polieren, dass die Resultate in 1. Ordnung sowohl in g als auch in 1 — g exakt bleiben.
Die Clusterentwicklung lautet in 1. Ordnung (siche Ref. (8)):

1 4 g 1
reg) = =—— 1+ ':;“_E‘lxl“ e+ 07\ . (3.5)
4

Sie werde in nullter Ordnung auf eine geeignete mittlere Masse m, (x, = 1/m,) mit
my — my = 0(q) bezogen, so dass wegen

2 —_— v 1 e Xy _,,XO 0 9 3'6
VA": (Z~ xl) l/g (Z— ?VO) ( + 2 (/:_ xo) + (q )) ( )
3.5 iibergeht in

1 Hy— X ge X 1 -
(2, q) = o (1 ST E K o). (3.
7(2, Q) [/Z (o= x,) ( o 2 (52— xy) + 2 z—x l—pl/ 5 + (f] )) ( /)

P

Wir wihlen x; so, dass im Term 1. Ordnung in ¢ entweder A) die Glieder hochster
Ordnung in z oder B) die Glieder héchster Ordnung in 1/z wegfallen.

A) x=xm(Leg+0@), B m—x(l+ 5 0+0e). 38

Die Glieder 0(g?) konnen so ergidnzt werden, dass x, symmetrieinvariant wird. Damit
wird

P ... 3 (3.9)

das heisst m, entspricht der mittleren Masse m bzw.

— &

B) %=1 (1 + L), (3.10)
das heisst 1/m, entspricht der mittleren reziproken Masse (1/m). Diese Wahl wiire
auch ohne die obige Charakterisierung a priori naheliegend gewesen. Die zugehdrigen
Clusterentwicklungen werden somit

1 Fe
g]/
A) 7z g) = - | 1+ 5220 T o) ), (311
V2 (z2—xp) 0 1—5l/ &
=%
1 S(I/Z—Zz’ _1)
B rzqg) =, (14958 Fo ] o L 4oy |. 312

= Wy S
I/ ‘(4 :‘u) % (1—6) (1—8]/—----‘:- )
F= Xy, J

Die Symmetrieinvarianz der Terme erster Ordnung in ¢ ist nur dann gewihrleistet,
wenn man ¢ und ¢ durch geeignete Interpolationsfunktionen ¢(g) und (e, ) ersetzt.
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Sie geniigen der Symmetriebedingung

9lg) =q(1 —q), (3.13)
éeq) =& (- 1-4) (3.14)
und miissen fiir kleine ¢ in sich iibergehen, d.h.
9(g) = ¢+ 0(g%) , (3.15)
(e, q) = € + 0(g) . (3.16)

Ferner sollen sie wegen ihrer spiteren physikalischen Deutung héchstens den Varia-
bilitdtsbereich von ¢ und ¢ besitzen:

0<g<1, (3.17)
—co<e<1. (3.18)

Die allgemeine Losung der Funktionalgleichungen 3.13 und 3.14 kann man leicht
angeben; es sind die geraden Funktionen in ¢ — 1/2 und 1/¢ — 1/2. Wir beschrinken
uns auf die polynomiale Lésung niedersten Grades in g:

g=gq(l—q)=q—¢, (3.19)

5:8(1_(])u,1f?q=£_qji:;¢.2.. (3.20)
Sie befriedigen offenbar unsere Voraussetzungen (auch 3.18, da s =1 fiir 0 < ¢ <1
keine reellen Losungen in ¢ hat). Eine interessante Eigenschaft der speziellen Inter-
polationsfunktion 3.20 ist, dass sie ausser fiir ¢ = 0 auch fiir ein ungeordnetes Gitter
mit der Stérkonzentration ¢ = g, = (1 — ¢)/(2 — &) verschwindet, d.h. das Spektrum
wire identisch mit dem eines periodischen Kristalls. Diese Eigenschaft bleibt fiir
beliebige stetige Interpolationsfunktionen & erhalten, da eine stetige Funktion, die
fiir zwel Abszissen ein entgegengesetztes Vorzeichen hat, irgendwo dazwischen
mindestens eine Nullstelle besitzt.

Wir werden nun die Regularisierung der Clusterentwicklungen 3.11 und 3.12
durchfiihren, wobei ¢ und ¢ durch die speziellen Interpolationsfunktionen ¢ und & aus
3.19 und 3.20 zu ersetzen sind.

§ 4. Algebraische Regularisierung in erster Ordnung

Zunichst werde der Fall A behandelt, bei dem m, — m ist. Dieser Ansatz ist
physikalisch vorzuziehen, da er das Verhalten fiir lange Wellen (Kontinuumstheorie)
exakt beschreibt (sieche Ref. WEIss, MARADUDIN (12)). Die algebraische Regulari-
sierung der interpolierten Clusterentwicklung in erster Ordnung ergibt somit

1 -
7(1) Z, =— ST e 1 = e e N P e A y
(= 4) Va (2= %) " e v 1-¢ l/ A
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wobei « reell + 0 oder oo (siehe § 7) sei. Die Verteilungsdichte kann man durch analy-
tische Fortsetzung auf dem oberen Ufer der reellen Axe finden. Die Nullstellen der
Klammer diskutiert man am besten in der Form (siehe Fig. 1):

/ "
/ H
/ I
>~ ]
[ -7 7
/ / /I
! ./
e — T 0 S B X U
’ X Ko X"+\l<-
=
7
Fd
f
/
/
.’
Ll
i
Figur 1

rechte Seite von Gleichung 4.2 fiire > 0
— — — rechte Seite von Gleichung 4.2 fiir e < 0
rrrrrrrrrrrrr linke Seite von Gleichung 4.2 fiir gfoe > 0

----- linke Seite von Gleichung 4.2 fiir gjoe < 0
q&  xy 4 gy
Tz n == = it 4.2)
Ein Pol der Klammer ist die Nullstelle
e o= 20
1= 7 (4.3)

der rechten Seite von 4.2 fiir e > 0.
Lisst man ¢, ¢ den Wertebereich 3.17, 3.18 durchlaufen, so hat man folgende Null-
stellen zu erwarten:

Fall x>0, ¢>0.

Zwei Nullstellen fiir x < 0, falls g/a geniigend gross. Zwei Nullstellen fiir x € (x,, %),
falls g/o geniigend klein.

Fall g0, e<l,
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Zwel Nullstellen fiir x < 0, falls g/ geniigend gross.

Fall xa<<0, £>0.

Eine Nullstelle xy, fiir x > x;, die fiir kleine — g/a gegen x; strebt.

Fall x<<0, £<0.

Eine Nullstelle x4, fiir x > x,, die fiir kleine — g/ gegen x,, strebt.

Der Fall o > 0 ldsst sich ohne quantitative Diskussion ausschliessen, da fiir
¢ > 0 und g/a geniigend klein die Verteilungsdichte fiir x £ x, negativ wird. Der Fall
a < 0 hingegen ergibt mit Hilfe von 2.6 eine Wahrscheinlichkeitsdichte:

Fall xa<0, >0,
.w]/ % "
- " 1 E 77"":’_
Grundband x € (0, xg): fV(x) = S B Rl 1= 29' ; - inx =% ,
le/x(xo—x) 0 1+i§|/--_;£—_
_ Hyg— %
1/ P
. o el ——
Stérband x e (%, x4, .): fO(x) = — o027 * | 48 ¥V FTH ,
( 1 I+) f ( ) an(x_xo) 20{, X—XO 1 ) -
o =
x sonst: fO(x) =0,
- (4.4)
B i I/”
Grundband x € (0, x,): fD(x) = 1 Rl 1— 29 & _Jn ol ,
nl/x (% — %) oo x— 2%, 1+z€l//_x_
_ Hg— ¥
_ E l/x .
Randband x € (x,, x,.): fP(x) = ,ﬂf 1 — g8 % x¥—% ,
( 0 (H-) f ( ) - ]/21’7(%"- xo) P m— % x
_ Y w—w,
x sonst: ) =G

Wir haben noch die Wahrscheinlichkeitsbedingung zu stellen. Fiir das Stor- bzw.
Randband folgt —1 <o << 0. Um das Vorzeichen von f*'(x) fiir das Grundband zu
priifen, bezeichnen wir den komplexen Ausdruck in der eckigen Klammer mit

u+iv=re?, (4.5)

Wenn x von 0 nach x, zunimmt, wichst » von 1 nach co wihrend ¢ negativ ist und
einerseits fiir ¢ > 0 von 0 nach 0 variiert und dazwischen ein Minimum mit ¢, >
— 7t/2 annimmt, andererseits fiir ¢ << 0 von 0 nach — 7 variiert. Die Wahrscheinlich-
keitsbedingung ist also fiir das Grundband erfiillt, wenn — 1/2 < « < 0 ist, Die



894 W. Schlup H. P.A.

Integrierbarkeit von f)(x) verlangt fiir das Stor- bzw. Randband | « | < 1, fiir das
Grundband hingegen o << 1/2. Sie schrankt also den Bereich fiir a

1
— <<, (+.6)

in dem die Wahrscheinlichkeitsbedingung erfiillt ist, nicht weiter ein.
Im Falle B, fiir den 1/my = (1/m) ist, liegen die Verhdltnisse ganz dhnlich:

l//’ z 1 o
MUIPRP, W S T KT A R (4.7)

Ve (2= 70

2 z—x, 1-2 -
P | § -
g— Xy ]

Die Nullstellen der Klammer folgen aus den Schnittpunkten der beiden Kurven
(siehe Figur 2):

Figur 2

rechte Seite von Gleichung 4.8 fiir e > 0
— — — rechte Seite von Gleichung 4.8 fiir g << 0
rrrrrrrrrrrrr linke Seite von Gleichung 4.8 fiir /o > 0
----- linke Seite von Gleichung 4.8 fiir gfa < 0

- el/-- s
Ge N i—Xy (+.8)

2 (l-8) z2-%  [(1/

R &

(/i 1)

Sie haben die folgende Lage, wenn ¢, ¢ im Bereich 3.17, 3.18 variieren.

Fall x>0, ¢>0.
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Zwei Nullstellen fir x € (x,, ), falls ¢/x geniigend klein.

Fall x>0, £¢<0.
Keine Nullstellen.
[Fall <0, £€>0.

Eine Nullstelle fiir v < 0, falls — g/ geniigend gross. Eine Nullstelle fir x > x, die
fiir kleine — ¢/ gegen x; strebt.

Fall «a<<0, £<0.

Eine Nullstelle fiir x < 0, falls — ¢/a geniigend gross. Eine Nullstelle fiir x > x,, die
fiir kleine — g/o gegen x, strebt.

Der Fall o > 0 befriedigt ebenfalls nicht die Wahrscheinlichkeitsbedingung, da
JW(x) fiir x 2 %, negativ wird. Fiir den Bereich — 1/, < o <C 0 hingegen ist f")(x) eine
Wabhrscheinlichkeitsdichte, die fiir ¢ > 0 aus Grundband und Stoérband, fir ¢ < 0 aus
Grundband und Randband besteht. Ferner kénnen, je nach Wahl der Interpolations-
funktionen ¢, ¢, am unteren Rand des Grundbandes anschliessende (positive!) Spek-
tralanteile auftreten, die formal die Wahrscheinlichkeit einer imagindren Frequenz
angdben und daher unphysikalisch sind. Inwieweit diese Anteile fiir unsere spezielle
Interpolation vorhanden sind, soll nun im Zusammenhang mit dem Rayleigh-Theo-
rem untersucht werden.

§ 5. Anwendung des Rayleigh-Theorems

Das Rayleigh-Theorem, ein Spezialfall des Saxon-Hutner-Luttinger-Theorems
(siehe Ref. SAxon, HUTNER (13), LUTTINGER (14), RAYLEIGH (15)), macht Aussagen
tber den kleinsten Trdger des Frequenzspektrums eines Systems von harmonisch
gekoppelten Massenpunkten. Die maximale Eigenfrequenz ist kleiner oder hichstens
gleich der Maximalfrequenz eines Systems, bei dem alle Massenpunkte mit der
kleinsten, urspriinglich vorkommenden Masse belegt sind. Fiir unser Gitter ergeben
sich also die Schranken

B >0
ehas. (5.1)
l % e<0.

. 1 1
0 < x < Max ( — --—_) -
"y nty
Wir fordern nun, dass unsere Losungen im ganzen Wertebereich mit der speziellen

Interpolation 3.19, 3.20 diesen Schranken geniigen. Der FFall B scheidet daher sofort
aus, da fure < Ound — 1/, < <0

L f-(f*" k= (5.2)

gemacht werden kann (siche Appendix A) und also die Nullstelle x < 0 tatsdchlich
existiert. Im Falle A mit — !/, << o << 0 treten keine negativen Nullstellen auf. Es
bleibt noch zu zeigen, dass auch die obere Schranke von 5.1 eingehalten wird. Wegen
der Symmetrie des Spektrums geniigt es, den Beweis fiir ¢ > 0 zu fithren. Fiir ¢ > 0
existiert ein Storband, dessen Rinder x; bzw. x;, sind. Der untere Rand liegt im
Rayleighbereich, d.h.

SR W .. 1
T T e = i-e 23
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falls die Interpolationsfunktion ¢ die Ungleichung

- _1/el-a
befriedigt. Die spezielle Interpolation 3.20 erfiillt diese Bedingung (siehe Appendix B).
Analog fordert das Rayleigh-Theorem fiir den oberen Rand

Mg, 2 il (5.5)

1-¢’
oder o

q €2 l—g & (1—q) -
—"z?ru_;>]/"1_8g —e. (58]
Diese Bedingung hat fiir alle Interpolationsfunktionen e, ¢, insbesondere im Grenzfall
g - 1 zu gelten. Wegen der Gleichungen 3.13 bis 3.16 wird daher

1 e &
BT T B (3-)
oder 1
o < — PR (5-8)
Zusammen mit 4.6 wird also
1

und daher die regularisierte Verteilung in ihrer algebraischen Form eindeutig aus der
Wabhrscheinlichkeitsbedingung und dem Rayleigh-Theorem festgelegt. Man kann
zeigen (siehe Appendix C), dass o = — 1/, fiir die speziellen Interpolationsfunktionen
¢, ¢ auch hinreichend ist, um 5.6 im ganzen Variabilititsbereich von & und ¢ zu er-
filllen. Ebenso beweist man (siche Appendix D), dass fiir ¢ << 0 und « = — 1/, der
obere Rand x,; des Randbandes den Schranken 5.1 gehorcht.

§ 6. Diskussion der Resultate

Wir haben somit eine Wahrscheinlichkeitsdichte gefunden, die dem Rayleigh-
Theorem gehorcht:

we (0, ) f) = 3 —— D —,

& Y
telf ——
: /’L’D——,’L’

I

(6.1)

Die Gleichungen 3.19, 3.20 geben die spezielle Interpolation an. Unser Resultat be-
sitzt wegen der geeigneten Erginzung von 3.8 ferner fiir kleine x die exakte Form

i) =222 (1 + 0m) (6.2
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der Elastizititstheorie, bei der nur die Massendichte, d.h. die mittlere Masse pro
Volumeinheit eingeht. Der Fall B, den wir bereits ausgeschlossen haben, hitte diese
Eigenschaft nicht besessen.

In Figur 3 sind die Wahrscheinlichkeitsdichten 6.1 fiir ein Massenverhéltnis
m,[my = 2 und einige Konzentrationen aufgetragen. Fiir ¢ > 0 besteht das Spektrum
aus Grund- und Storband; das letztere ist fiir kleine ¢ sehr schmal (Storlinie fiir
g - 0), und verbreitert sich zun4chst mit wachsendem g¢. Fiir ¢ 5 g, = 1/3 verschmi-
lert sich das Storband erneut und ndhert sich dem oberen Rand des Grundbandes,
so dass eine kleine Liicke bestehen bleibt, die fiir ¢ = ¢, verschwindet. Das Spektrum
ist dann identisch mit dem eines periodischen Kristalls mit der Atommasse m, (1 — € g,).
Fiir ¢ % gy verbreitert sich das aus Grundband (0, x,) und Randband (%, x,+) be-
stehende Spektrum weiter, wobei in x, eine Unstetigkeit der Ableitung ist, die erst fiir
g = 1, dem Fall des reinen m,-Kristalls verschwindet. Dieser Verlauf des Spektrums
bleibt qualitativ auch fiir komplizierte Interpolationen bestehen. Entwickelt man in
6.1 den Radikanden nach ¢ und beriicksichtigt nur Glieder 1. Ordnung, so findet man
wegen 3.15 und 3.16 ein von der Interpolation unabhingiges Resultat, das mit der
von Langer (siehe Ref. (5)) durch selektive Summation ermittelten Losung identisch
ist. Diese hat aber den Nachteil, das Rayleigh-Theorem und die Kontinuumsapproxi-
mation nicht zu erfiilllen und ferner am oberen Rand des Grundbandes singuldr zu
sein. Es wire ohne weiteres moglich, die Langersche Losung durch hohere Terme in g
in unserem Sinne zu erganzen. Charakteristisch fiir die Losung ist jedoch ihre alge-
braische Form mit dem Exponenten o« = — 1/,.

h )

)

Figur 3
Frequenzspektren fiir € = 1/, und ¢ = 0 ( b, g=1Ys ———) ¢ =13 (
PR VY SRS B S N o S oy i
57 H.P.A. 36, 7 (1963)

)
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§ 7. Schlussbemerkungen

Die Frage, ob die Wahrscheinlichkeitsbedingung und das Rayleigh-Theorem alle
nicht algebraischen Regularisierungen ausschliessen, bleibt noch offen. Betrachten
wir im Falle A eine allgemeine Regularisierung, so wird das n-te Moment

i A 2 B s
A= 9€dz ey Mtetadtaet -, (7.1)
wobei
o=12%2 % ¥ *"Hh (7.2)

ist. Wenn 7W(z) ein Polynom in p ist, so werden die mehrfachen Pole in x = x; fiir
F®(x) Anlass zu endlich hohen Ableitungen der d-Funktion geben, deren Triger der
Punkt x; bleibt. Die Wahrscheinlichkeitsbedingung fiir ¥ ~ x; verlangt nun, dass
entweder alle ¢, = 0 sind oder eine unendliche Teilfolge ¢, + 0 existiert. Der erste Fall
entspricht der interpolierten Clusterentwicklung und scheidet aus, da fiir x & x,
flx) < 0 wird. Die Wahrscheinlichkeitsbedingung erfordert also eine unendliche
Reihe in p, die (im allgemeinen) zu einem endlichen Tréiger im Stérbereich fiihrt, d.h.
die urspriingliche d-formige Singularitit (Storlinie) der Clusterentwicklung wird zu
einem reguldren Storband (daher die Bezeichnung Regularisierung). Insbesondere
fordert sie ein System von Ungleichungen fiir die Momente, deren einfachste die

positive Varianz x? > x2 verlangt, das heisst es muss

e =2 wd
+ ey — (L — ) g > 0 73]

(1
gelten. 7.3 ist fiir den Wertbereich &, g erfiillt, falls 3/2 < ¢, < oo ist. Entsprechend
ergeben sich fiir die hoheren Koeffizienten kompliziertere Ungleichungen, die die zu-
lassigen Regularisierungen einschrinken; zum Beispiel wire die Funktion ¢? (formal
o = 1/(1 — 2 ¢,) = oo) ausgeschlossen. Das allgemeine Problem der Eindeutigkeit der
Regularisierung mit Wahrscheinlichkeitsbedingung und Rayleigh-Theorem bleibt
ungekldrt, vermutlich existieren fiir endliche Ordnungen mehrere Losungen (siehe
Konfigurationsmittelung).
Zum Schluss seien noch die Momente von 7.1 explizite berechnet:

x" =3 xf, (7.4)
=0

= TELY LI\ n—1 h—1 —l\ 1
X = ¢ x|~ ) ( ) et Y (= 2 pr— T (7.5)
Man verifiziert leicht, dass sie wegen der ¢ abhingigen Interpolationsfunktion &
rationale Funktionen in ¢ sind und im limes ¢ - — oo existieren, wobei die zugehorige

Verteilung

1
(1) x, x ) - OO, = s et e s a oy 7-6
0 3, = 00, g) = (7.6)
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keine 0-formige Singularitit fiir x = 0 aufweist. Sie stimmen in erster Ordnung wegen
der Regularisierung ¢, = ¢, = 1 mit den exakten Momenten iiberein. In diesem Sinne
ist jede unserer interpolierten Losungen der Verteilung des konfigurationsgemittelten

Eigenfrequenzpolynoms unterlegen, da dessen Momente x, x2, x3 sogar exakt sind,
und die héheren Momente Polynome in ¢ (allerdings hdheren Grades) bleiben.

In einer kommenden Arbeit wird gezeigt werden, dass die Konfigurationsmitte-
lung, die eine symmetrische Regularisierung 1. Ordnung ist und dem Rayleigh-
Theorem geniigt (siche Ref. 8), auch die Wahrscheinlichkeitsbedingung befriedigt.

Herrn Prof. A. THELLUNG mochte ich fiir einige kritische Bemerkungen danken.

Diese Arbeit wurde durch finanzielle Unterstiitzung seitens des SCHWEIZERISCHEN
NATIONALFONDS ermdoglicht.

Appendix A
Vor.:
e<<0, —5 <a<O. (A1)
Beh.:
g€ 1
~ TR =y =% 2]
Bew.:

A

—
g “). | (A.3)

Diese Ungleichung, aus der A.2 folgt, gilt fiir ¢ 5 1 bzw. = — oo in einem endlichen ¢
Bereich (0 << ¢ << 1), wie man graphisch leicht einsieht, da die Geradenschar & in
einem ¢(g) Diagramm den ganzen Halbstreifen ¢ < 0, 0 < ¢ < 1 iiberstreicht.

Appendix B
Vor.:
e>0, ¢>0. (B.1)
Beh.:
o l/ - _'gg . (B.2)
Bew.:
e<)e(l—gq). (B.3)

Diese scharfere Ungleichung bedingt die Behauptung, da die rechte Seite in B.2

nach oben konvex ist. B.3 gilt, da e < I/ e (fir ¢ = 0) und das Gleichheitszeichen nur
tiir ¢ << O eintrifft.

Appendix C
Vor.:
e>0, €>0. (C.1)
Beh.:
l-e _1/e(l—yg «
iy < |5 - 2
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Bew.: Es werden die Ungleichungen

I o (loey o, 1ze]/el=0 1=
= (5 £9>sl/1~eq T .

bewiesen, aus denen die Behauptung C.2 folgt. Die linke Ungleichung

og [ LB
P ( . ) 2 1 (C.4)
gilt, da sie fiir ¢ = 0 gilt, und das Gleichheitszeichen nur fiir ¢ = 1 angenommen wird.
Die rechte Ungleichung in C.3

1-¢1/e(l—¢q) = =g
1=~ l/ 1-eq e (C.5)
wird zu
1—6)?2 (1— 1
0 < (18)_8(?9) [; —(1—=q (1 —c¢ 9)] (C.6)

und ist offenbar richtig. Also gilt auch die urspriingliche Ungleichung C.2.

Appendix D

Vor.:
e>0, <0, (D.1)
Beh.:
——, l—¢ e(l—g) -
9 g gl/l——eq £. (D.2)
Bew.: D.2 ist richtig, da sogar die scharfere Ungleichung
5 e 1—{: -
2 i e
qe FAEH < —¢ (D.3)
gilt. D.3 geht iiber in
——gé1—-;-8--:—g(l—a—q(Z—me))gl. (D.4)

D.4 ist richtig, da beide Faktoren dem Betrage nach kleiner als 1 sind.
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