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Die Regularisierung der interpolierten Clusterentwicklung für die
Eigenfrequenzverteilung einer ungeordneten binären Kette

von W. Schlup
Institut für Theoretische Physik der Universität Zürich

(21. VIII. 63)

Zusammenfassung. Die lokal negative Verteilungsdichte /(tu2) der Eigenfrequenzen von
Gitterschwingungen einer isotopen linearen Kette wird in symmetrischer Weise in erster Ordnung in den
beiden Konzentrationen interpoliert und in Form der komplexen Clusterentwicklung algebraisch
regularisiert. Das Resultat wird bis auf die Willkür bei der Interpolation eindeutig aus der
Wahrscheinlichkeitsbedingung /(tu2) > 0 und dem Rayleigh-Thcorem festgelegt.

§ 1. Einleitung

Die verschiedenen Methoden zur analytischen Berechnung der Eigenfrequenzverteilung

eines ungeordneten Gitters lassen sich nach der Form des Ergebnisses in
vier Gruppen zusammenfassen :

I. Exakte Fösungen: Sie sind nur für sehr spezielle Modelle bekannt (siehe Ref.
Dyson (1), Domb et al. (2), Rubin, Zwanzig (3)).

II. Mit Hilfe der Methode der Entkopplung von temperaturabhängigen Green-
funktionen gefundene Näherungslösungen, die ähnlich wie bei der Supraleitung
gewisse wesentliche Singularitäten im Störparameter aufweisen und daher nicht durch
eine analytische Störungstheorie erhalten werden können (siehe Ref. Bonch-Brue-
vich, Tyablikov (4)).

III. Verbesserte Methoden einer analytischen Störungstheorie, bei der für eine

Lösung in 1. Ordnung Terme höherer Ordnungen mitberücksichtigt werden, sofern
sie sich in einfacher Weise summieren lassen. Die Selektion derselben geschieht durch
eine topologische Klasseneinteilung von Graphen, die in eindeutiger Weise den
einzelnen Termen zugeordnet werden (siehe Ref. Langer (5), Takeno (6)). Unter diese

Gruppe fallen auch die Resultate der Konfigurationsmitteilung (siehe Ref. Mahanty
(7), Schlup (8)).

IV. Ferner die Lösungen der einfachen analytischen Störungstheorie, die wegen
ihrer physikalischen Interpretation als Clusterentwicklung bezeichnet wird. Ihr Term
n-ter Ordnung wird durch Beiträge von Clustern aus n, bzw. weniger Störatomen im
reinen Kristall mit Atomen einer geeignet gewählten mittleren Masse m0 bestimmt.
Da die Konvergenz der Clusterentwicklung noch unbewiesen ist, kann man deren
Resultate im Sinne einer asymptotischen Entwicklung, das heisst für sehr kleine
Störparameter verwenden (siehe Ref. Montroll, Potts (9), Lifschitz, Stepanova
(10)).
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In der vorliegenden Arbeit wird versucht, die selektive Summation der
Störungsentwicklung mittels physikalischer Prinzipien aus der Clusterentwicklung zu
bekommen. Wir legen unseren Betrachtungen ein spezielles Modell zu Grunde: Eine
lineare Kette harmonisch an den nächsten Nachbarn gekoppelter Atome, deren Massen
stochastische Grössen sind, die unabhängig vom Gitterplatz die Werte mx (Grundatom)

bzw. m2 (Störatom) mit der Wahrscheinlichkeit px 1 — q bzw. p2— q
annehmen. Wegen des Rayleigh-Theorems (siehe § 5) ist der Träger der
Frequenzverteilungsdichte ffx) fx ca2j4 K, co Frequenz, K Kopplungskonstante) begrenzt. Die
Clusterentwicklung lautet dann

ffx,q)=f0(x)+qfxfx)4-q2f2fx) + ---, (1.1)

wobei wegen der Normierung

jf(x,q)dx=l (1.2)

ist, und daher die Entwicklungskoeffizienten f,(x) den Integralbedingungen

ffofx) dx 1 / /,(*) dx 0 / 1, 2, (1.3)

genügen müssen. Hierbei ist f0(x) eine echte Verteilungsdichte, weil f0fx) > 0 ist,
und kann daher als Wahrscheinlichkeit interpretiert werden. Die Koeffizienten
fifx) für l 1,2... sind verallgemeinerte Funktionen, die als Imaginärteil des
Randwertes einer analytischen Funktion definiert sind. Gleichung 1.1 wird daher nur über
geeignete Testfunktionen gemittelt, das heisst als Distribution, einen Sinn machen.
Aus der Eigenschaft 1.3 folgt, dass f,fx) sowohl positive als auch negative Anteile
besitzt. Das gleiche gilt für fx(x)jf0(x) solange f0fx) A= 0 ist, das heisst im Innern des

Grundbandes. Da, wie wir sehen werden (siehe Gleichung 3.5), fxfx)/f0fx) am oberen
Rand des Grundbandes negativ unendlich wird, ist ffx, q) für noch so kleine q in der
Nähe des oberen Randes negativ und kann nicht mehr als Wahrscheinlichkeit
gedeutet werden. Diese Verteilungsdichte ffx, q) gibt trotzdem alle Momente, welche
Polynome in q sind und die direkt nach der Montroll-Momentenmethode (siehe Ref.
Domb et al. (11)) berechnet werden können, richtig wieder. Es stellt sich nun das

Problem, eine Verteilungsdichte f{1\x, q) mit begrenztem Träger und bezüglich q in
eine Potenzreihe entwickelbarer Momente derart einzuführen, dass ffx, q) und
f{l)fx, q) in den Momenten

x"fq) xl+qxnx + --- + q'yi+ Ofql + 1) (1.4)

in 0(ql+1) übereinstimmen. Genügt f-l)(x, q) ausserdem der Wahrscheinlichkeitsbedingung

Al\x, q) >0 dann bezeichnen wir f^fx, <?) als eme m ^er Ordnung regu-
larisierte Wahrscheinlichkeitsdichte zur Verteilungsdichte ffx, q). Ohne weitere
Bedingungen wird es zu einer Potenzreihe von ffx, q) im allgemeinen unendlich viele
Regularisierungen /-ter Ordnung geben. Mit wachsendem l wird die Forderung
f{l)fx, q) solle nicht negativ sein, eine sehr starke Einschränkung bewirken, die es

praktisch unmöglich macht, höhere Regularisierungen zu finden.
In § 2 wird die Regularisierung mit Hilfe der analytischen momentenerzeugenden

Funktion untersucht. Symmetrieeigenschaften der Frequenzverteilung werden in § 3



888 W. Schlup H. P. A.

verwendet, um die bekannte Clusterentwicklung bezüglich m0 mx so zu interpolieren,

dass sie in erster Ordnung, das heisst bis auf Terme der 0(q2) bzw. der 0((1 — q)2)

unverändert bleibt. In § 4 wird eine algebraische Regularisierung der symmetrisierten
Clusterentwicklung in erster Ordnung durchgeführt, die in § 5 durch das Rayleigh-
Theorem im wesentlichen eindeutig festgelegt wird. In § 6 wird die regularisierte
Frequenzverteilung diskutiert und mit anderen Resultaten verglichen. § 7 enthält
Bemerkungen über eine Ausdehnung der Regularisierung auf nicht algebraische
Funktionen.

§ 2. Regularisierung mittels analytischer Funktionen

Ist f0(x) eine Funktion einer spezielleren Funktionenklasse, z.B. eine stückweise
analytische Funktion (im Reellen), so kann man durch die Forderung, /'''(#, q) solle
derselben angehören, die Regularisierten weiter einschränken. Wegen der
Parameterabhängigkeit der Grenzen der einzelnen Stücke ist es auch dann noch mühsam, eine

Regularisierung (im Reellen) zu finden. Diese Schwierigkeit kann man durch
komplexe Integration umgehen.

Im Hinblick auf die komplexe Form der Clusterentwicklung werde die Regularisierung

mittels einer komplexen Hilfsfunktion ausgeführt. Da x eine positive,
beschränkte, stochastische Variable ist, werden die Momente aller absolut integrierbaren

Verteilungen

x" fx" ffx) dx (2.1)

durch

*" <x"Mf\ffx)\dx (2.2)

begrenzt sein, wobei xM den oberen Rand des Spektrums darstellt. Hieraus folgt, dass
die momentenerzeugende Funktion

x)-è ;; - / 4^ (2-3)
n-n •'

für | z | > xM eine analytische Funktion ist, und daher für die Momente

X" -„ - — <£ z" r(z) dz (2.4)

gilt, wobei der geschlossene Weg ausserhalb \z\ xM herumzuführen ist. Schliesslich

kann man den Weg noch so deformieren, dass er nur die Strecke 0 < x < xu
umfasst. Damit lässt sich das Moment umformen in

XM
1 f r (x + iO)-r (x-i 0) ,„x" x" v —X— dx, 2.5
rt J 2%

ü

wobei ein Vergleich mit 2.1 wegen r*(z) rfz*)

ffx) =-J-rfx + iO) (2.6)
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ergibt. Die Verteilungsdichte ffx) einer beschränkten Variablen kann also immer als

Imaginärteil des Randwertes einer analytischen Funktion rfx) geschrieben werden.
Einfache Pole in rfx) ergeben dabei ö-förmige Singularitäten in ffx), höhere Pole die

entsprechenden Ableitungen der r5-Funktion. In ähnlicher Weise berechnet sich der

Mittelwert epfx) einer ganzen analytischen Funktion in x (z.B. freie Energie,
spezifische Wärme) :

°° — 1 r?(*) E Vn x" YATr V® r& dz ¦ (2-7)
»-0 J

Die Clusterentwicklung in ihrer ursprünglichen Form hat die Gestalt der Gleichung
2.7, wobei r(z) als Potenzreihe nach einem Störparameter q vorliegt. Man kann durch
geeignete Regularisierung von r(z, q) in /-ter Ordnung eine Regularisierte f{l)(x, q)

von ffx, q) finden. Es ist nicht leicht, die Wahrscheinlichkeitsbedingung f-l)fx, q) > 0

in eine notwendige Bedingung für r'l\z, q) umzuwandeln.
Wir werden uns im folgenden nur für die algebraische Regularisierung in erster

Ordnung interessieren und später einige Bermerkungen zu allgemeineren
Regularisierungen machen. Die algebraische Regularisierte

^x-ü(,) (i+1 ;fr p-

stimmt in 1. Ordnung mit rfz, q) überein und ist konvergent, da | qja. yx(z)jy0(z) | < 1

ist für genügend grosse | z | und a 4= 0, co.

§ 3. Invarianzeigenschaften der Frequenzverteilung und
Symmetrisierung der Clusterentwicklung

Wir diskutieren nun einige Eigenschaften der exakten Frequenzverteilung
ffx, xx, s, q), wobei % ljmx, e 1 — mìjm1 und q die Konzentration der w2-Atome
ist.

Aus der Bewegungsgleichung einer Kette

(2 — 4 x mj) ut ul+1 + U[_x (3.1)

und der zyklischen Randbedingnug

ul+N ul (3.2)

folgt, dass das Spektrum der Eigenfrequenzen (für endliche N und im limes N -> oo)
unverändert bleibt, falls man w, durch mtjX fX reell, positiv) und x durch X x ersetzt.
Es gilt also die Homogenitätsrelation

X ffX x, X xx, e, q) r ffx, xx, s, q) (3.3)

Ferner wird durch Vertauschen der beiden Atome und ihrer Konzentrationen die
physikalische Situation nicht geändert, folglich ist ffx) symmetrisch in bezug auf die
Indizes 1 und 2, das heisst es besteht die Funktionalrelation

k' A-A - ~ +^r, 1 - q)= ffx, xx, e, q) (3.4)
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Die Identitäten 3.3 und 3.4, die auch für die momentenerzeugende Funktion rfz)
gelten, sollen im weiteren benützt werden, um die Clusterentwicklung so zu
interpolieren, dass die Resultate in 1. Ordnung sowohl in q als auch in 1 — q exakt bleiben.
Die Clusterentwicklung lautet in 1. Ordnung (siehe Ref. (8)):

[l j. q e -Al _.
1

'z(z-xx) 2 z-xx^¦l) AAfAAA (1+ 2 "Z- r +%2) V (3'5)

:Vj-axl-e

Sie werde in nullter Ordnung auf eine geeignete mittlere Masse m0 fx0 ljm0) mit
m0 — mx 0(q) bezogen, so dass wegen

IrA i ft1-. (l + A0x) + M <3-6>
yz(z-xx) yz(z — x0) \ M* xo> '

3.5 übergeht in

r{z,q)=-=L ll + AAzA» +1* x« —X -+0(?2)\. (3.7)
)/z\z-X(l) \ 2(z-x0)

|

X— Jf,0

Wir wählen .v0 so, dass im Term 1. Ordnung in q entweder A) die Glieder höchster
Ordnung in z oder B) die Glieder höchster Ordnung in Ijz wegfallen.

A) x0 Xlfl + eq + 0fq2)), B) x0 xx (l + ^- q + Ofq2)) (3.8)

Die Glieder 0(^2) können so ergänzt werden, dass x0 symmetrieinvariant wird. Damit
wird

A) x0 T^A- (3.9)l — sq

das heisst m0 entspricht der mittleren Masse m bzw.

B) xn xx(l+ AJL), (3.10)

das heisst l/w0 entspricht der mittleren reziproken Masse (ljm). Diese Wahl wäre
auch ohne die obige Charakterisierung a priori naheliegend gewesen. Die zugehörigen
Clusterentwicklungen werden somit

A) r{~:'l'] ,/"/ \l + A- zZx1 *(*-*0) \ 0
1_£

.* -} 4- 0(q2) (3.11)

V z~xa

B) r(*, <?) -v-1—- 1 + -'- -!X -V—,V- + °(?2) I ¦ f3'12)
Z(.Z Xn -Zi

(1-e) l-efx)
Die Symmetrieinvarianz der Terme erster Ordnung in q ist nur dann gewährleistet,
wenn man q und e durch geeignete Interpolationsfunktionen q(q) und efe, q) ersetzt.
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Sie genügen der Symmetriebedingung

qfq) qfl - q) (3.13)

«(«.?)=«(—ÏZ7' 1'l) (3-14)

und müssen für kleine q in sich übergehen, d.h.

-qfq) q + Ofq2) (3.15)

i(e, <?) e + <%) (3.16)

Ferner sollen sie wegen ihrer späteren physikalischen Deutung höchstens den
Variabilitätsbereich von q und e besitzen :

0<X<1, (3.17)

-oo <e < 1 (3.18)

Die allgemeine Lösung der Funktionalgleichungen 3.13 und 3.14 kann man leicht
angeben; es sind die geraden Funktionen in q — 1/2 und 1/e — 1/2. Wir beschränken
uns auf die polynomiale Lösung niedersten Grades in q :

q qft-q) q-q\ (3.19)

i XI - q) - T~ q e - q -~? ¦ (3-20)

Sie befriedigen offenbar unsere Voraussetzungen (auch 3.18, da s 1 für 0 < q < 1

keine reellen Lösungen in e hat). Eine interessante Eigenschaft der speziellen
Interpolationsfunktion 3.20 ist, dass sie ausser für e 0 auch für ein ungeordnetes Gitter
mit der Störkonzentration q q0 (1 — ê)/(2 — f) verschwindet, d.h. das Spektrum
wäre identisch mit dem eines periodischen Kristalls. Diese Eigenschaft bleibt für
beliebige stetige Interpolationsfunktionen e erhalten, da eine stetige Funktion, die
für zwei Abszissen ein entgegengesetztes Vorzeichen hat, irgendwo dazwischen
mindestens eine Nullstelle besitzt.

Wir werden nun die Regularisierung der Clusterentwicklungen 3.11 und 3.12

durchführen, wobei q und e durch die speziellen Interpolationsfunktionen q und e aus
3.19 und 3.20 zu ersetzen sind.

§ 4. Algebraische Regularisierung in erster Ordnung

Zunächst werde der Fall A behandelt, bei dem m0-= m ist. Dieser Ansatz ist
physikalisch vorzuziehen, da er das Verhalten für lange Wellen (Kontinuumstheorie)
exakt beschreibt (siehe Ref. Weiss, Maradudin (12)). Die algebraische Regularisierung

der interpolierten Clusterentwicklung in erster Ordnung ergibt somit

y(Dl qc h
*,9) —±==, 1 + -ff XX - ~-^r^= (4-1

\/z(z-x0) 2a z~xa
1 _]/ z

z-xn
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wobei a reell 4= 0 oder 00 (siehe § 7) sei. Die Verteilungsdichte kann man durch analytische

Fortsetzung auf dem oberen Ufer der reellen Axe finden. Die Nullstellen der
Klammer diskutiert man am besten in der Form (siehe Fig. 1) :

/

//^y

7-

"""
0

1

i

/

/

/
/

A

x, Xo %o+ ^~"^-_^^

~~^\
/'/

/
/

/'

i

i

Figur 1

rechte Seite von Gleichung 4.2 für ê > 0

rechte Seite von Gleichung 4.2 für ê < 0

linke Seite von Gleichung 4.2 für e ja. > 0

—•—•— linke Seite von Gleichung 4.2 für ë/a < 0

qe x0
2 a z — x0

Ein Pol der Klammer ist die Nullstelle

(4.2)

x\ r~^21 1 -e-
(4.3)

der rechten Seite von 4.2 für èA> 0.

Lässt man q, e den Wertebereich 3.17, 3.18 durchlaufen, so hat man folgende
Nullstellen zu erwarten :

Fall oc> 0, e> 0.

Zwei Nullstellen für x < 0, falls afa. genügend gross. Zwei Nullstellen für x G fxa, xx)

falls qja. genügend klein.

Fall a > 0 e < 0
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Zwei Nullstellen für x < 0, falls qfa. genügend gross.

Fall a < 0 e > 0

Eine Nullstelle xx+ für x > xx, die für kleine — qja. gegen xx strebt.

Fall a < 0 i < 0

Eine Nullstelle x0+ für x > x0, die für kleine — qja gegen x0 strebt.
Der Fall a > 0 lässt sich ohne quantitative Diskussion ausschliessen, da für

e > 0 und qju. genügend klein die Verteilungsdichte für x ^ x0 negativ wird. Der Fall
a < 0 hingegen ergibt mit Hilfe von 2.6 eine Wahrscheinlichkeitsdichte:

Fall

Grundband x e (0, x0) : fmfx)

Störband x e fxv xI+)'- fa)fx)

oc< 0, £ >0.

71 yx (xB — x)

; yx (x — x0)

SR 1 _ AAL. x«
2 a x — x0

\ H~x
1-M ep3F xo~x

-1 qe _x0 _
2 a x— xn

V x~xo

l-e

x sonst:

Fall

Grundband x e (0, x0) : fmfx)

fmfx) 0

a< 0, e < 0,

5R

;)/x (x0-

Randband x e fx0, x0+)

x sonst:

Pfx)
71 y X (X — X0)

Pfx) 0

JA? H
2 a x— x„

1 î x"
2 a x— xn

\ xo~x

l + isV- X

\ xo~x

V x~xo

V x~xo
l-£

(4.4)

Wir haben noch die Wahrscheinlichkeitsbedingung zu stellen. Für das Stör- bzw.
Randband folgt — 1 < a < 0. Um das Vorzeichen von ßl'fx) für das Grundband zu
prüfen, bezeichnen wir den komplexen Ausdruck in der eckigen Klammer mit

u + i v r e"p (4.5)

Wenn x von 0 nach x0 zunimmt, wächst r von 1 nach oo während cp negativ ist und
einerseits für e > 0 von 0 nach 0 variiert und dazwischen ein Minimum mit cpMin >
— nj2 annimmt, andererseits für e < 0 von 0 nach — n variiert. Die Wahrscheinlichkeitsbedingung

ist also für das Grundband erfüllt, wenn — 1/2 < a < 0 ist. Die
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Integrierbarkeit vonf{i)fx) verlangt für das Stör- bzw. Randband | a | < 1, für das
Grundband hingegen a < 1/2. Sie schränkt also den Bereich für a

1

< a< 0

in dem die Wahrscheinlichkeitsbedingung erfüllt ist, nicht weiter ein.

Im Falle B, für den l/w0 (1 jm) ist, liegen die Verhältnisse ganz ähnlich :

(4.6)

rmfz, q)
\/z{z-x„)

1 + V -*» -rX
2 z — x0 1 — e

V

l-e f.
(4.7)

Die Nullstellen der Klammer folgen aus den Schnittpunkten der beiden Kurven
(siehe Figur 2) :

/' //

A
>x

Figur 2

rechte Seite von Gleichung 4.8 für 7- > 0

rechte Seite von Gleichung 4.8 für e < 0

linke Seite von Gleichung 4.8 für 5/a > 0

linke Seite von Gleichung 4.8 für è/a < 0

qe
2 a (1 — e) z — x0

,y_i—i
(XZZ

Sie haben die folgende Lage, wenn q, e im Bereich 3.17, 3.18 variieren.

Fall a > 0 s > 0

(4.8)
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Zwei Nullstellen für x e fx0, xx), falls qja. genügend klein.

Fall a > 0 e < 0

Keine Nullstellen.

Fall oc < 0 e > 0

Eine Nullstelle für x < 0, falls — qja. genügend gross. Eine Nullstelle für x > xh die
für kleine — qja. gegen xl strebt.

Fall a < 0 e < 0

Eine Nullstelle für x < 0, falls — qja. genügend gross. Eine Nullstelle für x > x0, die
für kleine — qja. gegen x0 strebt.

Der Fall a > 0 befriedigt ebenfalls nicht die Wahrscheinlichkeitsbedingung, da
f(1]fx) für x ^> x0 negativ wird. Für den Bereich — 1/2 < a < 0 hingegen ist/(1X) eine

Wahrscheinlichkeitsdichte, die für e > 0 aus Grundband und Störband, für ë < 0 aus
Grundband und Randband besteht. Ferner können, je, nach Wahl der Interpolationsfunktionen

q, e, am unteren Rand des Grundbandes anschliessende (positive!)
Spektralanteile auftreten, die formal die Wahrscheinlichkeit einer imaginären Frequenz
angäben und daher unphysikalisch sind. Inwieweit diese Anteile für unsere spezielle
Interpolation vorhanden sind, soll nun im Zusammenhang mit dem Rayleigh-Theo-
rem untersucht werden.

§ 5. Anwendung des Rayleigh-Theorems
Das Raylcigh-Theorem, ein Spezialfall des Saxon-Hutner-Luttinger-Theorems

(siehe Ref. Saxon, Hutner (13), Luttinger (14), Rayleigh (15)), macht Aussagen
über den kleinsten Träger des Frequenzspektrums eines Systems von harmonisch
gekoppelten Massenpunkten. Die maximale Eigenfrequenz ist kleiner oder höchstens
gleich der Maximalfrequenz eines Systems, bei dem alle Massenpunkte mit der
kleinsten, ursprünglich vorkommenden Masse belegt sind. Für unser Gitter ergeben
sich also die Schranken

X, > 0
0<x<Max(Z —) 1_e (5.1)

V m
s< 0

Wir fordern nun, dass unsere Lösungen im ganzen Wertebereich mit der speziellen
Interpolation 3.19, 3.20 diesen Schranken genügen. Der Fall B scheidet daher sofort
aus, da für e < 0 und — 1j.i < a < 0

11 < - (5 2)
2 a (l-e) - ë

[ >

gemacht werden kann (siehe Appendix A) und also die Nullstelle x < 0 tatsächlich
existiert. Im Falle A mit — 1j2 < a < 0 treten keine negativen Nullstellen auf. Es
bleibt noch zu zeigen, dass auch die obere Schranke von 5.1 eingehalten wird. Wegen
der Symmetrie des Spektrums genügt es, den Beweis für e > 0 zu führen. Für s > 0
existiert ein Störband, dessen Ränder xx bzw. xI+ sind. Der untere Rand liegt im
Rayleighbereich, d.h. x

*1= (l-e2) (l-7q~) -IX (5'3)
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falls die Interpolationsfunktion e die Ungleichung

ë < e (1-g)
1 - e q

H. P. A.

(5.4)

befriedigt. Die spezielle Interpolation 3.20 erfüllt diese Bedingung (siehe Appendix B).
Analog fordert das Rayleigh-Theorem für den oberen Rand

oder
x,^ <

l-e
l-e

q e-

2 A AA - qj
e (!-<?)
1 — e q

(5.5)

(5.6)

Diese Bedingung hat für alle Interpolationsfunktionen f, q, insbesondere im Grenzfall
q -> 1 zu gelten. Wegen der Gleichungen 3.13 bis 3.16 wird daher

2 a 1 — e
¦

l-e '

oder
1

a < ~"2
Zusammen mit 4.6 wird also

1

a _T

(5.7)

(5.8)

(5.9)

und daher die regularisierte Verteilung in ihrer algebraischen Form eindeutig aus der
Wahrscheinlichkeitsbedingung und dem Rayleigh-Theorem festgelegt. Man kann
zeigen (siehe Appendix C), dass a — 1/2 für die speziellen Interpolationsfunktionen
e, q auch hinreichend ist, um 5.6 im ganzen Variabilitätsbereich von e und q zu
erfüllen. Ebenso beweist man (siehe Appendix D), dass für e < 0 und a — 1/2 der
obere Rand x0+ des Randbandes den Schranken 5.1 gehorcht.

§ 6. Diskussion der Resultate

Wir haben somit eine Wahrscheinlichkeitsdichte gefunden, die dem Rayleigh-
Theorem gehorcht :

1

xefO,xa): /<»(*)
SR

l< x(x0-x)-qex0x

' x
Xn X

1-Me

xif0,x0): Pfx)
71

x (xu — x) + q e x0 x

V x~xo

(6.1)

Die Gleichungen 3.19, 3.20 geben die spezielle Interpolation an. Unser Resultat
besitzt wegen der geeigneten Ergänzung von 3.8 ferner für kleine x die exakte Form

ffx)
1 - e q

(1 + 0(*)) (6.2)
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der Elastizitätstheorie, bei der nur die Massendichte, d.h. die mittlere Masse pro
Volumeinheit eingeht. Der Fall B, den wir bereits ausgeschlossen haben, hätte diese

Eigenschaft nicht besessen.

In Figur 3 sind die Wahrscheinlichkeitsdichten 6.1 für ein MassenVerhältnis
mxjm2 2 und einige Konzentrationen aufgetragen. Für e > 0 besteht das Spektrum
aus Grund- und Störband; das letztere ist für kleine q sehr schmal (Störlinie für
q -> 0), und verbreitert sich zunächst mit wachsendem q. Für q ^ q0 1/3 verschmälert

sich das Störband erneut und nähert sich dem oberen Rand des Grundbandes,
so dass eine kleine Lücke bestehen bleibt, die für q q0 verschwindet. Das Spektrum
ist dann identisch mit dem eines periodischen Kristalls mit der Atommasse mxfl — eq0).
Für qA, qa verbreitert sich das aus Grundband (0, x0) und Randband fx0, x0A
bestehende Spektrum weiter, wobei in x0 eine Unstetigkeit der Ableitung ist, diß erst für
q 1, dem Fall des reinen w2-Kristalls verschwindet. Dieser Verlauf des Spektrums
bleibt qualitativ auch für komplizierte Interpolationen bestehen. Entwickelt man in
6.1 den Radikanden nach q und berücksichtigt nur Glieder 1. Ordnung, so findet man
wegen 3.15 und 3.16 ein von der Interpolation unabhängiges Resultat, das mit der
von Langer (siehe Ref. (5)) durch selektive Summation ermittelten Lösung identisch
ist. Diese hat aber den Nachteil, das Rayleigh-Theorem und die Kontinuumsapproxi-
mation nicht zu erfüllen und ferner am oberen Rand des Grundbandes singular zu
sein. Es wäre ohne weiteres möglich, die Langersche Lösung durch höhere Terme in q
in unserem Sinne zu ergänzen. Charakteristisch für die Lösung ist jedoch ihre
algebraische Form mit dem Exponenten a. — x/2.

2X,

Frequenzspektren für e 1/2 und q

Figur 3

0
•-). q 5/6 (-

V. q

),<? !(—
Vi (-

-)•
57 H. P. A. 36, 7 (1963)
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§ 7. Schlussbemerkungen

Die Frage, ob die Wahrscheinlichkeitsbedingung und das Rayleigh-Theorem alle
nicht algebraischen Regularisierungen ausschliessen, bleibt noch offen. Betrachten
wir im Falle A eine allgemeine Regularisierung, so wird das w-te Moment

x" -yy <f dz y-""— Li + Q + c* q* + cs Z + • ¦ ¦], (7.1)
i.711 j yz(z—Xg)

wobei

P
q « xo

l-e

V *-xo
2 z — x0

(7.2)

Z X.,

ist. Wenn r(1,(z) ein Polynom in g ist, so werden die mehrfachen Pole in x xx für
/(1X) Anlass zu endlich hohen Ableitungen der cS-Funktion geben, deren Träger der
Punkt xx bleibt. Die Wahrscheinlichkeitsbedingung für x <~ x1 verlangt nun, dass

entweder alle ct 0 sind oder eine unendliche Teilfolge cl 4= 0 existiert. Der erste Fall
entspricht der interpolierten Clusterentwicklung und scheidet aus, da für x ss x0

f(x) < 0 wird. Die Wahrscheinlichkeitsbedingung erfordert also eine unendliche
Reihe in q, die (im allgemeinen) zu einem endlichen Träger im Störbereich führt, d.h.
die ursprüngliche <5-förmige Singularität (Störlinie) der Clusterentwicklung wird zu
einem regulären Störband (daher die Bezeichnung Regularisierung). Insbesondere
fordert sie ein System von Ungleichungen für die Momente, deren einfachste die

positive Varianz x2 > x2 verlangt, das heisst es muss

2 + A-% - (] - <•> (S > ° <7-3>

gelten. 7.3 ist für den Wertbereich e, q erfüllt, falls 3/2 < c2 < 00 ist. Entsprechend
ergeben sich für die höheren Koeffizienten kompliziertere Ungleichungen, die die
zulässigen Regularisierungen einschränken ; zum Beispiel wäre die Funktion e'- (formal
a 1/(1 — 2 c2) 00) ausgeschlossen. Das allgemeine Problem der Eindeutigkeit der
Regularisierung mit Wahrscheinlichkeitsbedingung und Rayleigh-Theorem bleibt
ungeklärt, vermutlich existieren für endliche Ordnungen mehrere Lösungen (siehe

Konfigurationsmittelung).
Zum Schluss seien noch die Momente von 7.1 explizite berechnet:

n

xn=E*ï. (7-4)
ro

i\ n~l /XX A jc \ 1-1, x-i ,«, / 7, M '

,AA)S. IK*X->" X ZX- <"
-o \ m

Man verifiziert leicht, dass sie wegen der q abhängigen Interpolationsfunktion e

rationale Funktionen in q sind und im limes e -> — 00 existieren, wobei die zugehörige
Verteilung

Pfx, xv -oo,q) - -X_^ (7.6)
tc y x (xx (1-qy- x)
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keine ^-förmige Singularität für x 0 aufweist. Sie stimmen in erster Ordnung wegen
der Regularisierung c0 cx 1 mit den exakten Momenten überein. In diesem Sinne
ist jede unserer interpolierten Lösungen der Verteilung des konfigurationsgemittelten
Eigenfrequenzpolynoms unterlegen, da dessen Momente x, x2, xs sogar exakt sind,
und die höheren Momente Polynome in q (allerdings höheren Grades) bleiben.

In einer kommenden Arbeit wird gezeigt werden, dass die Konfigurationsmittelung,
die eine symmetrische Regularisierung 1. Ordnung ist und dem Rayleigh-

Theorem genügt (siehe Ref. 8), auch die Wahrscheinlichkeitsbedingung befriedigt.
Herrn Prof. A. Thellung möchte ich für einige kritische Bemerkungen danken.

Diese Arbeit wurde durch finanzielle Unterstützung seitens des Schweizerischen
Nationalfonds ermöglicht.

Appendix A
Vor.

Beh.:

e < 0 - \ < a < 0 (A.l)

*£ <Ì. (A.2)
2 a (1 — ë)

-
ê

Bew. :

i+i/i+4~rfj
fi< 1 -XXX. (A.3)

Ka)
Diese Ungleichung, aus der A.2 folgt, gilt für g <> 1 bzw. > — oo in einem endlichen q
Bereich (0 < q < 1), wie man graphisch leicht einsieht, da die Geradenschar e in
einem efq) Diagramm den ganzen Halbstreifen e < 0, 0 < q < 1 überstreicht.

Appendix B
Vor.:

e > 0 e > 0 (B.l)
Beh.:

ZX • we < I/ '

Bew.:

e<i/7(l-?). (B.3)

Diese schärfere Ungleichung bedingt die Behauptung, da die rechte Seite in B.2
nach oben konvex ist. B.3 gilt, da e < y s (für q 0) und das Gleichheitszeichen nur
für q < 0 eintrifft.

Appendix C
Vor.:

e > 0 e > 0 (Cl)
Beh. :

1 - e
2 e (1 - q) ^f-S. (C.2)
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Bew. : Es werden die Ungleichungen

-J- fi2 (^Z)2 < q y ^ 1/ VXX _ i X- (c.3)
1-q \ e I — 2 — e f l-e q e

bewiesen, aus denen die Behauptung C.2 folgt. Die linke Ungleichung

e2(l~-ef<l (CA)

gilt, da sie für q 0 gilt, und das Gleichheitszeichen nur für q 1 angenommen wird.
Die rechte Ungleichung in C.3

l-e ] / e (1 - q) -l-e1- e

wird zu

]X(1-?) -ê-1-* (C.5)
y l-e q e

0 < (l-e)S(l-?) riì_(l-?)(l-c?)] (C.6)1- eq

und ist offenbar richtig. Also gilt auch die ursprüngliche Ungleichung C.2.

Appendix D
Vor.:

e>0, e<0. (D.l)
Beh. :

^t^F-W-*- (D-2)

Bew. : D.2 ist richtig, da sogar die schärfere Ungleichung

gilt. D.3 geht über in
^eA-qJ^^ (D-3)

¦qk \E =-q{l-e-q(2-e))<l. (D.4)

D.4 ist richtig, da beide Faktoren dem Betrage nach kleiner als 1 sind.
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