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Non-relativistic Thermodynamics IV
(Sign Questions and Onsager Symmetry Relations in

Phenomenological Theory)

by E. C. G. Stueckelberg de Breidenbach
(Universities of Geneva and Lausanne)

(13. VIII. 63)

Abstract. The signs of thermodynamical state functions are defined in terms of the sign of
absolute temperature T. 1) The 2nd Law's principle of evolution determines the signs of the
(symmetrised) phenomenological coefficients Liaß). 2) The 2nd Law's principle of (cinetic) equilibrium
determines the signs of the remaining state functions (mass densities of the chemical components A in
a C(> 1)-component fluid, its elastic modulus, and other state functions appearing in the coupled
linearised equations of motion). These sign conditions show that the solutions of these equations
are damped waves existing only in the future. It is remarkable, that the phenomenological
coefficients satisfy Onsager's symmetry relation La b LßA Ior the diffusion of substances AB...—
12 C, if both principles are applied.

§ 1. Introduction and Conclusion

The aim of this article, in which the author wishes to express his admiration to
Prof. W. Heitler's work, is twofold : It is a complement to a previous paper on the
questions of sign of certain local thermodynamical state functions f[s ...] f(xt) in r.
f= relativistic) phenomenological theory of a one component fluid III4). We investigate
the analogous questions for the n.r. non-relativistic) case, postulating Galilei-
covariance, for a fluid composed of C chemical components, numbered by A B
12 C. The symbols AB... are also used to denote the unites of mass fA mass of
the mole of A). We deduce a the symmetry condition on the Onsager phenomenological
coefficients LA B defined as linear relations between the densities of'conduction-{diffusion-)
currents jA fx t) oiA (including the conductive entropy (S) -flow js (x t)) and the
«thermodynamical forces» - grad F fx t) and - grad ptA fx t) *):

h - Lss grad T - Zb lsb grad Fb XZ)

Ìa - las Srad T - Sb la b Srad Pb ¦ XZ)
Among the local state variables s fx t) and nA fx t) (densities of entropy S and of

quantity NA of component A) figures, in the non static case the df=3) velocity
components of the fluid v' fx t) fv {v'}; x {x'}; i k 12 d; d 3). In order

T and fiA are the local absolute temperature and the local chemical potential of component A.
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to avoid additional local state variables, vfx) has to be defined as the (local) velocity of
the centre of mass in a volume element dVfx) g dx1 dx2 dxd*).

This implies a first restriction (see (2.27)) on the LAB's.

ZA A jA Çx t) 0

EAALABfxt) 0

(1.2)

(1.3)

From the 2nd law (principle of evolution: S ft) > 0 for a closed system) follows that
the coefficients in (1.1)

(T-1^ T-1 L [s b;

T-l T T-l T1 **(A S) > L ^(A B) |

fxt)>0 (1.4)'

forms a non-negative quadratic form.
The 2nd law's principle of equilibrium (S maximum, for a closed system in

cinetic equilibrium) leads to a relation symmetric to (1.3)

ZBLABfxt)B 0, (1.5)

In phenomenological theory, the masses A B C are arbitrary constante. Therefore,
the Onsager relations

(xt) LBAf...)=--L (AB) fxt) (1.6)'

follow from phenomenological theory.
(The Onsager relations are Lx » Lnx F(a « ***) (if no magnetic field is present)

for all phenomenological coefficients, relating «thermodynamical currents)) Ja to
«thermodynamicalforces » Xa fja EßLag Xg). They follow only from statistical thermodynamics
(see :)2)3)). However, the Onsager relations for diffusion of substance are already
consequences of phenomenological theory.

Further consequences of the principle of evolution apply to the transversal

longitudinal viscosities rj and |
fT-1rj)fxt)>0; fT-^)fxt)>0 (1.7)

and to the bilinear form formed from longitudinal viscosity £ — d~2 F00 and the Onsager
coefficients of local reaction rates L0a, LaQ and Lab refering to the r possible chemical
reactions ab — 12 ...r given by the stochiometric coefficients vaA pos. and

neg. integers) :

(1.8)Za Ka a 0,

*) g is a constant scalar density | det (g J |, if a metric gik is assumed (see § 2)).
**) From (1.3) and (1.5) follows, for arbitrary mass values A B C: Lab — à. Ï-BA- This can

be seen by the following argument: Given the LA g's, (1.3) determines the unknown A's up to a

common factor Xx (A ->- Aj A, B -> Ax B, The A's (or B's) must also satisfy (1-5). Therefore
we must have LA B A2 LBA. Applied to LAA, A2 must be 1. Thus (1.6) follows.

***) Indices in round brackets (A B), (i k), imply symmetry. Square brackets \_A B], [ik],
signify antisymmetry.
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(Xt)>0. (1.9)***)
\T Xo> F F(om

\T~ F((l0), T-1 L(ab)

(The index 0 applies to the longitudinal viscosity).
The principle of equilibrium (fluid with constant translational and angular

velocity) requires conditions on mass density m and metric gik

{fT^m) (xt) glk} {(F-1 ZA A nA fit) gik} > 0, (1.10)

on the elastic modulus

a [s nA ...] fs2 uss + 2 s ZA nA us + SA EB nA nB u (1.11) *\
A

fT-1a)fxt)>0, (1.12)

on the heat capucity per unit volume c

c-1 fx t) - (F-1 F) [s nA ...] > 0 (1.13) *)

and on other bilinear forms (see (3.12)) of local state variables.
There is no loss of generality, if the metric is assumedpositive**) (1.10), and them's

are assumed positive masses. Thus mass, elastic modulus, viscosities and all other
state functions (the Lx^'s) have a well defined sign in terms of F. This leads to
coupled equations of motion for

dts fx t), dtnA fx t) and dtv> fx t) (see III4)5)),

which lead, in the linear approximation, to damped waves, which exist only for t > 0

(if the initial state is given for t 0).
We apologize for deducing several well known results (see 2)). However, making

extensive use of Galilei-covariance, we prepare the way for an article on the r. C (> 1)-

component fluid, based on Lorentz-covariance, where several difficulties occur, which
we failed to sec, when writing I4).

§ 2. The Equations of Motion
(Continuity Eqs. Following from the 1st and 2nd Law)

We denote by V the volume, the interior part of space x inside the time dependent
closed surface C fy t) 0 and by dai fy f) the covariant surface element + g dy1...
dy'-1 dyi + 1 dyd).

A capital letter Fft) is an extensive quantity (with the exception of F fx t)) and

f fx t) f [s (x t), ...] the corresponding density f= local state function). The time
variation of Fft) J fdV f) fx t) is:

v

Fft) f fdV dj) Çx t) + j (dai v- f) fy t), (2.1)

v v

***\

*) us[s ...nA ...] du[s...nA ...]/ôs; u$s= ...;usnA [...] ô2m[...]/os dnA;unAnB--
As gt jc is constant, we may use euclidian metric giìc ò\.
See eq (2.46).
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v' (y t) is the velocity of the surface C fy t) — 0. The cause of this variation is due
1) to a source density gF fx t) and 2) to an influx —jF fy t) through C 0:

(2.2)

Assuming these two relations for all possible C 0'sGauss's theorem leads to the
tous continuity eq. :

Fft) - ffdVqF) fxt)-cjjfda{fF)fyt).
V V

fdtf+dkfvkf + jkF))fxt) Qpfxt) (2.3)

The current density of F is separated in a convective vkf and a conductive diffusion)
partfp.

The 1st law expresses the conservation of energy H, momentum Tl,- and of the C

quantities ofsubstance NA. In the continuity equation for H, we separate the conductive
flow in heat flow q', flow of work a1 and flow of chemical energy c'

fdth 4- dkfvk h + qk + a" + ck)) fx t) qh fx t) fvl k,) fx t) (2.9//)

where ki (xt) is the density of (external) volume force. For /7\, we write jhn —xki
—stress tensor)

(2.977,.)

and for NA

fdtn{ + dkfvk i))fxt) kifxt)

{dtnA + dkfvk nA + ;*)) fx t) -- qa fx t) =-- Sa vaA coa fx t) (2.9.VJ

where toa (x t) is the local reaction rate of the a"1 reaction (1.7). (2.977,-) is connected with
the homogeneity of space fx'}. If space is isotropic (metric x{ gik xk, gik const.), the
7 st law contains the conservation ofangular momentum Mik M[ik] — jdV fx{nk — xkni)\

(2-9Mik)
{dtfx,7ik--xkn{) -|- difv'fXiTtt-x^jtf)

- fxix\ - xkx't))) (xt) fXi K -- xk kf) fx t)

(2.977;) and f2.9Mn) imply the symmetry fd{xk

(vt Kk - tiki Â t) X Xi - rkt) (x t) (2.10)

The integral forms of the 1st law (2.2) are

Hft) PQft) A PAft) + Pc(t)

j> (do, q1) G t)\ + (J (dV k, V) (x t) + j fdaK xk, V) (y t)

v I \v v

(da^)Cyt)\,

(2.11/7)
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ntft) KM f fdV k() fx t) + S> fdak xk,) fy t)

879

(2.1177,-)

(2.112V,)

f2.11Mik)

where Pq etc. are the powers of heat Q, work A and chemical energy C. K{ and Dik
D[ik] are the total force and its total momentum.

The 2nd law states the principle of evolution for the entropy 5. In its equation of

continuity
(2.12)

NAft) j fdvQA)fxt)-&jfdaA'A)(yt),
v v

Mikft) Dikft),

f (dV fxi kk - xk k,)) fxt) + (£ fdat (y, x'k - yk x\)) fy t)

fdts + dkfvk s + /*) )fxt)=i(xt)>0,
the source density i fx t) density of irreversibility) is non negative. The integral
form is

(2.13)'
Sft) s(i'"eri°r>ft) + s<ex""°r\t) / fdV i) fx t) - (t fdak j"s) fy t),

v v
with S<-interior) > 0.

We add now Newton's axiom, defining mass density m fxt), in the form

n{ fx t) m (x t) vt fx t), (2.14)

ffxt)=fdtf + vkdkf)fxt).

We remark that any continuity eq. (2.3) may be written as

ff + fdkvk+dkjF)fxt)=QlAxf)

which implies the metric gik. The continuity equation (2.977,) takes the form

f(vt fdtm + dkfvk m)) + m vi - dk xkA fx t) k( fx t) (2.15)

where v{ is the substantial acceleration, defined as the substantial time derivative of any
local function f (x t):

(2.16)

(2.17)

(2.18)

(2.19)

(2.13*)

We now turn to Galilei-covariance. The Galilei transformation

V xl — vit, 't tA-t0,

(with constants i>* and t0) defines Galilei-covariant tensors

'r-im...f'x't) r-tm...fxt).

*) On account of (2.39) we have

S(t) > - j> (dot T-i q{) (y t)
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The velocity field V f'x 't) v'1 (x t) — v'0 is not covariant. However v', dpk and

dkvk div v are covariant. The same is true for f defined by (2.16), if

f '"in,,., is Galilei-covariant. Thus, if Tfc,- and £,• in (2.15) are Galilei-covariant, the
strong continuity eq. for mass M J (dV m) fx t) holds:

?Z 0, QM 0, fdtm+dkfvkm))fxt) 0:

M ft) 0

(2.20)

(2.21)

expressing the strong conservation of mass M. The equations of motion (2.20) and
Newton's law

fm v't) fx t) — fm fdpi + vk dk vt)) fx t)

fdkxk, + *,) fx t)
(2.22)

replace (2.977,).
If we chose as independent local state variables, the d A-1 + C variables {v{, s, nA fx t),

we have to satisfy the d + 1 + C + 2 eqs. of motion: (2.22) for dtv{, (2.12) for dts,

f2.9NA) tor dtnA, (2.9/7) for dth, and (2.20) for dtm. This implies that m m[...vi...
and h h [. .] are given state functions: Their 2 eqs.

of motion must be consequences of the d + 1 + C eqs. of motion for the independent
variables dtvit dts and dtnA. Galilei-covariance for m reduces m to m [s... nA ...].
The 2 eqs. for dtm and d,h lead to 2 different expressions for the Galilei-covariant
entropy source i fxt). As the form i fx t) resulting from dtm (2.20) can not be made
non negative, a simple consideration leads to the result that the derivatives djd)iA
of m:

mv, [...] (); m„A[...nA...] A; »,[...] 0, (2.23)

must be C constants: A B C, the molar masses. Thus we have

m[...nA...]=IAAnAfxl). (2.24)

No constant of integration can appear, on account of (2.20). However, (2.9NA)

implies

Qu ZAAQAfxt)=0, (2.25)

which combined with the 2nd eq. (2.9NA) leads to Lavoisier's law (1.8) stating the

conservation of mass in every chemical reaction ab r*). The condition jM 0 (2.20)
implies

(v m) fx t) ZA AfnAv + jA) fx t)=ZAA fnA vA) fx t) (2.27)

*) Lavoisier's law is thus a consequence of Galilei-covariance in n.r. theory. It is interesting to
note that no corresponding conservation law holds in r. theory (see HI4)). In order to obtain
correspondance, continuity eqs. for

«X->i»;* i>aX£. 12 d + 1)

must be postulated. This is a further proof that Galilei-transformations are not the limit of Lorentz-
trans formations.
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where vA (x t) is the velocity of component A. (2.24) and (2.27) define v fx t) as the
velocity of the local centre of mass. (1.2) and (1.3) are its consequences.

We now consider dth (2.9/7), using the d + 1 + C eqs. of motion (2.22), (2.12) and
(2.9NA):

dth ¥ dtvt + hs dt s + h dtnA

- dkfvk h + pvkA- hs Jl + ZA h„A jA) + ¥ m-1 k(

+ v* fs djt5 + IA nA d,h„A - hk dtvk) + ¥ m-1 dkxki

+ A » + fs àA + Za Fa àAA + ?a Ka Qa) •

with the abréviations ¥ (dh [... v{... s nA .]/<X) fx t) and

p[...vt...s ...nA...] fshs + EAnA h„A - h) fx t).

(2.28)

(2.29)

The 2nd member of (2.28) must be transformed in such a way as giving rise to the
divergence dkfvk h + in (2.9//) plus the source term qh v' /e,-. But, this 2nd term
of (2.9//) appears only, if we identify in the 2nd term of (2.28) with qu:

f¥ mr1 v') fx fj

from which results, by integration

h[...vi...s...nA ...] — m [... nA ...] v2 + u [s nA ...]

The integration « constant » it [...] being the density of interior energy

U f fdV u) fx t)

v
Furthermore (2.29) becomes the Galilei-invariant scalar pression

p [s nA ...] (s us A- EA nA u„A - u) fx t)

The factor of v> in the 3rd term is its gradiant

dip (x t) (s dA + SA nA di h„A - hk diVk) [...vi...s...nA...]
(s à{us + ZA nA d{uA) [s nA ]

(2.30)

(2.31)*)

(2.32)

(2.33)

the second equality deriving from (2.31) and (2.23). It is function of the scalar state
variables [s nA ...] and their 1st space derivatives [dts, d{nA ...]. Decomposing
the stress tensor x'k in an elastic fe) and a frictional (/) part

r> He) A un .gikp A Uf) (2.34)

form
It is remarkable that in the cinetic energy density term, which one would expect to have the

SA -5- A nA vA -5- m v2 +ZA A nA (vA - v, i) A- „ ZAA nA\vA-v [2

(the 2nd term disappears on account of (2.27)), the Galilei-covariant last term lj2EAnA~x \jA |2)

is missing. This is due to the fact, that we do not consider the jA's (or vA's) as being among the
dA-1 A C state variables. Physically, it means neglecting the cinetic energy of diffusion (see2)).

56 H.P.A. 36. 7 (1963)
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the 2nd and 3rd term in (2.28) can, due to (2.30), be written as

v* fdiP + àkx\) - dk f- tX X - vik x' *</),

2vikfxt) fdivk+dkvi) fxt) 2vUk)

where

H. P. A.

(2.35)

(2.36)

is the symmetric, Galilei-covariant, velocity gradient. Its appearence is due to the

symmetry
ri k — T(i k)

resulting from conservation of angular momentum (2.10) and Newton's axiom (2.14).
The first term of (2.35) may be combined with p vk in the divergence in (2.28)

giving rise to the flow of work

ak — xk, v'.

The other terms (aside from h vk) in this divergence are the heat flow

qk hAÏ uAksrTj

(2.38)

(2.39)

and the flow of chemical energy

o — LA hn fA — 2JA "nAlA X Pa 1a • (2.40) '

where the absolute temperature F and the C chemical potentials /lia are the local state
functions

F fx t) us [s nA ...] ; fiA fx t) u [s nA ...]. (2.41)

The 2nd term in (2.35) adds to the last term of (2.28) defining the density of
irreversibility as

(2.42)

i fx t) -T^fxt) [{ZamalAa+ ^XX£)

+ {fs f-d,T) + EA fA f-diPtA)) + (T'«"« »ft»)] > 0,

where

f*a -^AvaAH-A' ab... - l,2...r :.43)

is the «thermodynamical force» of reaction a. xik(ti) and vfl are the trace-less irreducible
parts of symmetric tensors :

„(o)
h ~ Vik j Sik vl (2.44)

*) q and c are Galilei-covariant vectors, the dependence on v'1 in hn (1/2) A v'1 + un drops out
in the sum on account of (1.2).
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Thus (Ft) (xt) is a sum of products of fr + 1) + (1 + C) + 1 unknown
«thermodynamical currents» Ja(cnß 12 fr A- C + 3)) with the corresponding
«thermodynamical forces» Xa, separating into scalars fcoa, T;W), vectors fjs,fA) and an
irreducible tensor -r<M/)(o)^ Furthermore, (F i) fx t) must be a Galilei-covariant scalar. The
«forces» Xa f/[ia, d'1 vkk); f—diT,—difiA) and vfk]) being Galilei-covariant, the
Onsager coefficients La « fx t) in Ja Eg Lao Xß must be Galilei-covariant state
functions, satisfying

{T-1L(aß)}[s...nA...]>0, (2.45)

which may however depend on space-derivatives d"^A s fxt) If we neglect these

space derivatives, i. e. if we assume them to be local state variables, the Fa/S's must be
scalars. This leads to

X' 7-00 j v\ + Eb Lob/j,b, coa La0 d
v\ + EbLab/ib (2.46)

for the scalar «currents», to (1.1) for the vector «currents» and to

Ti*(/Ho) 2r]vim (2.47)

for the tensor «current». The signes are defined in terms of F (x t) by (1.9), (1.4) and
(1.7).

§ 3. The State of Cinetical Equilibrium
The most general equilibrium is given by the maximum of the entropy-functional

S [s )] / (dV s) fx), with the constraints on the functionals of the 1st law:

H [...] H'; 77,. [...]= 77- Mlk [...] M'ik.

If chemical reactions are possible, no constraints are imposed on the C NA [.. .]'s, but
on the quantities of the 7 chemical elements NF [...] N'P fP, Q 12 I
H, D, He, ,U, Pu, (where P,Q symbolise also the masses of the atom-gram).
We have the relations

ZpVAPP -A=sEPvAPP + vAAA 0 (3.L4)

which apply also to the mass values and are the stochiometric relations (1.8) fvAP

pos. integers, vAA — 1) for complete dissociation of A. Further we have evidently

NP[...nA...] EAvAPffdVnA)(x). (3.2)

The necessary and sufficient condition for equilibrium, is, as we have shown in III
(annex)4) :

W[...vif)...sf)...nA()...]=jfdVv[...vi...s...nA...])fx)

(s + êH -Ç< 77,- - l2 wikMik- Ep ßP Np) [...] maximum.
(3.3)
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9, A, m'k co[ik] and ßP are Lagrange multiplyers. The 1st variation ôil)lF [...] 0

is the extremum condition. It yelds (see III*)):

Yfx) & m v' — ni fÇ' + xk coki) 0 (3.4!)

xpsfx) 1 + ti us 1 + & Tfx) 0 (3.4,)

WnA(x) & (A
2 +unA)-AfA + xkcok')Vi-EPvAPßP^0. (3.4„J

(3.4') implies a translation + rotation with constant linear and angular velocity of the
fluid:

v(x) (Ça- [w Ax]) ti-1. (3.5)

(3.4S) shows that Tfx) — &~l is independent of space. (3.4 gives the chemical

potentials the form

fX)=/X0)+ 2
Av2®> (3-6)

^(0) EP vAP & -1 ßP f Ep vAP fiP(0)) (3.7)

On account of (3.1), this implies local chemical equilibrium with respect to total
dissociation

fEPvAP[iP + vAAliA)(x)^0. (3.84)*)

As all other r reactions a can be combined from the C reactions (3AA) and

(3.8A), chemical equilibrium is thus assured at every point x, i.e. (2.43) gives

HaÇx) 0 (3.9)

As from (3.5) follows vik(x) 0, the irreversibility ifx) (2.42) disappears for the scalar
and tensorial terms.

We have now to verify that the equations of motion ((2.22), (2.9NA) and (2.12) with
kjfx) 0) are satisfied. As zikl-f> disappears on account of vik 0 and fca 0 ((2.46),
(2.47)). (2.22) reduces to (on account of F const. (2.33), (2.41), (2.24) and (3.6)):

(m Vi + dtp) (x) fm vk dkVi + EA nA d,/tA) 2 EA A fnA vk vki) fx) 0 (3.10)

The Equations (2.12) for s and (2.9NA) tor nA, written in the Galilei-covariant form

(2.7), are satisfied, if div js div jA 0: qa disappears on account of (2.46), because
v\ fjta 0. Furthermore ifx) vanishes now for all 3 terms. Thus, as F is constant,
the condition div /s div jA 0 implies

EBLSBB 0 (3.11)

and necessitates (1.5). (div grad ftB B div grad v2j2 #= 0).
Thus (2.12) and (2.9NA) lead to

s'(î)=0; nAfx)-0. (3.12)

*) On account of (2.25), which implies (1.8), where A are now the molar masses.
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Or, substantial time derivatives/ of scalar state functions disappear for (3.5). It is

remarkable, that the eqs. of motion for a one-component fluid (in r. and n.r. (see III4))
theory) are identically satisfied. For a Cf>l)-component fluid, we have however the

restrictions (1.5) and (3.11) on the Onsager coefficients in n.r. theory*).
The 2nd variation (5<2)'F [...] < 0 is a necessary condition (see III4), annex).

It implies
1p,k, vi. vZ

X fss. 1
nB

WnA V>»A> ' V"A "B

fx) < 0, (3.12)

which implies (see (3.4))

11A|—tpl * — ¦& m g' * lì fx) g-

)(*).

>0

-du. (x)>0

¦un A

T

eunAnB
'"A
f=5-) fxx) >0.

(3.13''*)

(3.13,,)

(3-13s„J

(3.13...J

(3.13) has for consequence that a) ffee metric must be euclidien {gik} > 0**) and that
the mass density and therefore A nAfx t) have the sign of T. (3.13,,, and „4„B) give
to the elastic modulus (1.11) the sign of T.

The sign condition on the Onsager coefficients (2.45) resulting from the 2nd law's
principle of evolution and on they,s (3.13) from the 2nd law's principle of equilibrium
have as a consequence that the solution of the linearised coupled equations for v\ s and
hA ((2.22), (2.9 NA) and (2.12)) are damped waves existing only in the future t>0, ii the
initial local states are given for all x at <=III4)5).
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