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Non-relativistic Thermodynamics 1V

(Sign Questions and Onsager Symmetry Relations in
Phenomenological Theory)

by E. C. G. Stueckelberg de Breidenbach

(Universities of Geneva and Lausanne)

(13. VIII. 63)

Abstract. The signs of thermodynamical state functions are defined in terms of the sign of
absolute tempevature T. 1) The 2nd Law’s principle of evolution determines the signs of the (sym-
melvised) phenomenological coefficients Lyp). 2) The 2nd Law's principle of (cinetic) equilibrium
determines the signs of the vemaining state functions (mass densities of the chemical componenis A in
a C(=> T)-component fluid, its elastic modulus, and other state functions appearing in the coupled
linearised equations of motion). These sign conditions show that the solutions of these equations
are damped waves existing only in the future. It is remarkable, that the phenomenological
coefficients satisfv Onsager’s symmetry velation I 4 p = L p 4 for the diffusion of substances 4 B ... =
12 ... C, if both principles are applied.

§ 1. Introduction and Conclusion

The aim of this article, in which the author wishes to express his admiration to
Prof. W. HEITLER’s work, is twofold: It is a complement to a previous paper on the
questions of sign of certain local thermodynamical state functions f[s ...] = f (% {) in 7.
(= relativistic) phenomenological theory of a one component fluid 111%). We investigate
the analogous questions for the n.r. (= non-relativistic) case, postulating Galile:-
covariance, for a fluid composed of C chemical components, numbered by A B ... =
12 ... C. The symbols A B ... are also used to denote the unites of mass (A = mass of
the mole of 4). We deduce a the symmetry condition on the Onsager phenomenological
coefficients L 4 p defined as linear relations between the densities of conduction-(diffusion-)

currents }A (% £) of A (including the conductive entropy (S) - flow }5 (x #)) and the «thermo-
dynamical forcesy — grad T (x #) and — grad p (x ) *):

— —_—

—r -

ja——Lysgrad T — X, L, pgrad py . (1.1,)

Among the local state variables s (x t) and n, (x t) (densities of entropy S and of
quantity N, of component A) figures, in the non static case the d(=3) wvelocity
components of the fluid v (x t) (v = {vi}; x = {x'}; ¢k...=12...d; d = 3). In order

*) T and u4 are the local absolute temperature and the local chemical potential of component 4.
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to avoid additional local state variables, 7(x) has to be defined as the (local) velocity of
the centre of mass in a volume element dV (x) = g dat dx?® ... dx?%*),
This implies a first vestriction (see (2.27)) on the L p’s.

ZAA};!(;”:O: (1.2)
Y AL, ,(xt)=0. (1.3)

From the 2nd law (principle of evolution: S (1) = O for a closed system) follows that
the coefficients in (1.1)
Lty U ¥ g |
| 777 Fss sn| %) =0 (1.4) *x%)

IT_1 Lias) T71 Ly B)l

forms a non-negative quadratic form.
The 2nd law’s principle of equilibrium (S = maximum, for a closed system in
cinetic equilibrium) leads to a relation symmetric to (1.3)

’ Z, L, () B=0. (1.5)

In phenomenological theory, the masses A B ... C are arbitrary constante. Therefore,
the Onsager relations

Lyp (" t) =Lp, b = L(A B) (;C t) (16)**)

follow from phenomenological theory.

(The Onsager relations are L, , = L ﬁa = L, 5 ***) (if no magnetic field is present)
Jor all phenomenological coefficients, relating «thermodynamical currents» J, to «thermo-
dynamical forces» X, (], =245 L, ; X g). They follow only from statistical thermodynamics
(see 1)2)3)). However, the Onsager relations for diffusion of substance are alveady conse-
quences of phenomenological theory.

Further consequences of the principle of evolution apply to the transversal and
longitudinal viscosities n and &

(T-19) (x#) =0; (T-18) (x#) =0 (1.7)

and to the bilinear form formed from longitudinal viscosity & = d=2 Ly, and the Onsager
coefficients of local reaction rates L,,, L, and L,, refering to the 7 possible chemical
reactions a b ... =12 ...7 given by the stochiometric coefficients »,; (= pos. and
neg. integers):

2w, q A=10, (1.8)

*) @ is a constant scalar density (= |det (g )|, if a metric g;; is assumed (see § 2)).
**) From (1.3) and (1.5) follows, for arbitrary mass valucs A B ... C: Ly = A L 4. This can
be seen by the following argument: Given the L4 pg's, (1.3) determines the unknown A’s up to a
common factor 4, (4 >4, 4, B> 4, B, ...). The A’s (or B’s) must also satisfy (1.5). Therefore
we must have Ly p = 4, Lp 4. Applied to L4 4, A, must be = 1. Thus (1.6) follows.
***) Indices in round brackets (A4 B), (i &), ... imply symmetry. Square brackets [A B], [ik],
... Signify antisymmetry.
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IT_I Lo, T L(ob)]

7)) >0. (1.9) *¥)
lTWlLaﬂ)’ -1 L(ab)l

(The index |, applies to the longitudinal viscosity).
The principle of equilibrium (fluid with constant translational and angular
velocity) requires conditions on mass density m and metric g,

{(T-2m) (xt) g} ={(T- 2, An, (x8) g} =0, (1.10)
on the elastic modulus

als..ony...]=(2u, ,+2sX, n,u +Z' Zgnyng Wy ng) (1.11) %)

(T-1a) (xt) =0, (1.12)
on the heat capucity per unit volume c
cl(xt) = (T *T)[s...0n4...]1 >0 (1.13) %)

and on other bilinear forms (see (3.12)) of local state variables.

There is no loss of generality, if the metric is assumed positive**) (1.10), and the A’s
are assumed positive masses. Thus mass, elastic modulus, viscosities and all other
state functions (the L, ,'s) have a well defined sign in terms of 7. This leads to
coupled equations of motion for

0,s (% B Oi, (;c ) and 0,0 (;c t) (8ee LIL%1®)) ,

which lead, in the linear approximation, to damped waves, which exist only for t =0
(if the initial state is given for ¢ = 0).

We apologize for deducing several well known results (see 2)). However, making
extensive use of Galilei-covariance, we prepare the way for an article on the 7. C (>1)-
component flurd, based on Lorentz-covariance, where several difficulties occur, which
we failed to see, when writing 14).

§ 2. The Equations of Motion
(Continuity Egs. Following from the 1st and 2nd Law)

We denote by V the volume, the interior part of space x inside the time dependent
closed surface C (y t) = 0 and by do; (v ) the covariant surface element (= g dy! ...
@yt 1 dyt e | iy ),

A capital letter F(¢) is an extensive quantity (with the exception of T (x#)) and
f(xt)=Ff[s(xt),...] the correspondmg density (= local state function). The time
variation of I(¢) f @av
14

() = / @V 0, (&t) + Pldo,v' ) (1) 2.1)
4 174

) U (8. B o] 5= DU[B Y o ] DS Uy == SR [...] = 0%u[...]]0s OnA;unAnBz

)
**) As g;;. is constant, we may use euclidian metric g;;, = dfg.
*) See eq (2.46).
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v! (y t) is the velocity of the surface C (y¢) = 0. The cause of this variation is due
1) to a source density o5 (¥ ¢) and 2) to an nflux —ji. (v ¢) through C (...) = 0:

F) = [(@Ven) 0~ fdo i) 1) 2.2

Assuming these two relations for all possible C (...) = 0’s Gauss’s theorem leads to the
inhomogenous continuity eq.:

(0.f + 0xlv% [ +73)) (8 2) = op (6 1) - (2.3)

The current density of F is separated in a convective v* f and a conductive (= diffusion)
part j%.
The 7st law expresses the conservation of energy H, momentum [I; and of the C

quantities of substance N,. In the continuity equation for H, we separate the conductive
flow in heat flow ¢, flow of work a’ and flow of chemical energy ci

| (0 + 0,(0% ki + g* + @k + 9) (7)) =0, (W0) — (1 k) (D), | (298]
where k; (x t) is the density of (external) volume force. For IT,, we write j},, = — 1%,
(= — stress tensor)
(0,7; + OplvF o, — %)) (% 8) = k; (x 1) (2.917))
and for N,
(OtM'A + ()k(vk H’A + jfl)) (92 ‘t) - QA (;C t) = Za vﬂA W, (;6 t) ) (29‘?\{‘1)

where w, (¥ ¢) is the local reaction rate of the at* reaction (1.7). (2.911;) is connected with
the homogeneity of space {x'}. If space is isotropic (metric x; = g;, #*, g;, = const.), the
Istlaw contains the conservation of angular momentum M, = M, = de (%; 70, — %, 7T;)

(Ot(xi T — X 7;) + Ol(vl (x; mp — x5 71y)
= . (2.9M;,)
— (2, T — 2, 7)) (K1) = (0 Ry — 2 k) (0 0)

(2.911,) and (2.9M,,) imply the symmetry (0x* = 0})

(v e — 7o) (¥ 8) = (v, — 7)) (% 8) - (2.10)
The integral forms of the 1st law (2.2) are
H(t) = Py(t) + Palt) + Polt)
~(~ P o g) GO+ [ @ ko) GO+ P o7 v) (9

( 33 ) ( V] [35 ) - (2.11H)

+-(—§3wmcﬂ<§a),

v
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I — Ki(t) = | @V k) (F8) + P (do, ) (71) (2.1111,)
/ i
Ni) = [ @V g0) G0 = b (o) G), (211N,
Vv 14
‘M’ik(t) = Dik(t)
(2.11M;,)

= [ k= 5 k)) G0+ b (do, vt 3 T) G

where P, etc. are the powers of heat (), work A and chemical energy C. K; and D, =
Dy; 4 are the fotal force and its total momentum.

The 2nd law states the principle of evolution for the entropy S. In its equation of
continuity

(0 + 040" s + %) (F8) =i () >0, (2.12)

the source density 7 (x f) (= density of irreversibility) is non negative. The integral
form is
_t oo .(interior) o .(axterior) -— N\ (e *<ﬁ ik »t ,
S(t) = Stimerion(p)  Steserion 1 Vf @) G = P G4 (5134
with Stinterior) = (),
We add now Newton’s axiom, defining mass density m (% £), in the form

-

m,(xt) =m (xt)v, (xt), (2.14)

which implies the metric g;,. The continuity equation (2.9//,) takes the form
((v; (0m + 0wk m)) + m v, — 0,7%,) (x8) = &, (x 1), (2.15)

where v, is the substantial acceleration, defined as the substantial time derivative of any
local function f(x t):

@0 = (0f + 05 0,1) (59). (2.16)

We remark that any continuity eq. (2.3) may be written as

(F + 00k + 04g%) (1) = 05 (%8). (2.17)

We now turn to Galilei-covariance. The Galilel transformation

’

=l —vht, t=1t41, (2.18)

(with constants v and ¢,) defines Galilei-covariant tensors

r]u'k...lmm (152 't) _ fikmlm... (x f,) . (2_.19)

*) On account of (2.39) we have
S() > — ¢ (do; T2 %) (5 1) . (2.13%)
v
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The velocity field ‘vi ('x 'f) = vt (% £) — v} is not covariant. However vi, 0% and
0,0% = div 7 are covariant. The same is true for f*=,,  defined by (2.16), if
f%,,. is Galilei-covariant. Thus, if 7%, and k, in (2.15) are Galilei-covariant, the
strong continuity eq. for mass M = f (dV m) (x £) holds:

14

fe=0, o0y=0, (0m+ 0 vkm))(xt)=0, (2.20)

M@ =0, (2.21)

expressing the strong conservation of mass M. The equations of motion (2.20) and
Newton's law

(m ) (£ 0) = (m (00 + 0% 0, v)) (3 )

. (2.22)
= (0, + ki) (£ 0

replace (2.911)).

If we chose as independent local state variables, the d + 1 + C variables {v,, s, n A} (x 1),
we have to satisfy the d + 1 4 C + 2 eqs. of motion: (2.22) for 0,,, (2.12) for 0,s,
(2.9Ny) for 0m,, (2.9H) for 0,4, and (2.20) for 0,m. This implies that m = m [... v; ...
S...ty...] and A=h[...v;...5...my...] are given state functions: Their 2 eqs.
of motion must be consequences of the d + 1 + C eqs. of motion for the independent
variables 0,v;, 0,5 and 0. Galilei-covariance for m reduces m to m [s... n, ...].
The 2 eqs. for 0,m and 0,4 lead to 2 different expressions for the Galilei-covariant
entropy source ¢ (¥ £). As the form ¢ (¥ ) resulting from 0 (2.20) can not be made
non negative, a simple consideration leads to the result that the derivatives 0/0n,
of m:
Mg v | =2 lE B [sa:] =2 Uy (2,23)

W L5 5] = U5 my [

must be C constants: 4 B ... C, the molar masses. Thus we have

ml..n,..]=2 An, (x1). (2.24)

No constant of integration can appear, on account of (2.20). However, (2.9N,)
implies

on=2,40,x8)=0, (2.25)

which combined with the 2nd eq. (2.9N,) leads to Lavoisier’s law (1.8) stating the

conservation of mass in every chemical reaction a b ...r*). The condition 7, = 0 (2.20)
implies

(0m) (Xt) =2, A (ny 0+, (x8) =2, A (n,0,) (x8), (2.27)

*) Lavoisier’s law is thus a consequence of Galilei-covariance in n.r. theory. It is interesting to
note that no corresponding conservation law holds in r. theory (see III%)). In order to obtain
correspondance, continuity eqs. for

ng (>iG@);y={"}af...=12...0n;n =d+1)

must be postulated. This is a further proof that Galilei-transformations ave not the limit of Loventz-
transformations.
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where v, (¥ £) is the velocity of component A. (2.24) and (2.27) define v (¥ ¢) as the
velocity of the local centre of mass. (1.2) and (1.3) are its consequences.

We now consider 0,4 (2.9H), using thed + 1 + C egs. of motion (2.22), (2.12) and
(2.9N,):

Oh = Niop, +h,0,s+h,, 0mn,,

n A

= — 00k p ok by gk Zy By )+ R

(2.28)
+vi(s0h,+ 2 ny, (),hnA — h¥ 0v,) + B om—1 0Tk,
+ (bt + 75 0.k, + 2, 1Y Oy + 2yl 04) 5
with the abreviations 4/ = (0h[...v;...s...ny ...][0v;) (% £) and
PLotyensintty]=(sh+Zynyh, —h (7). (2.29)

The 2nd member of (2.28) must be transformed in such a way as giving rise to the
divergence 0,(v* & -+ ...) in (2.9H) plus the source term g, = v¢ k;,. But, this 2nd term
of (2.9H) appears only, if we identify in the 2nd term of (2.28) with g:

(i m— = vi) (x 8), (2.30)
from which results, by integration
B Lo By o 8 woym Mg 554) = ; W s Mg 555 ] B2 00 [8 o os By ] (2.51)*)

The integration «constant» u [...] being the density of interior energy
U— /(dV u) (7).
v

Furthermore (2.29) becomes the Galilei-invariant scalar pression

>

pls...omy..]=(su,+2,n, Uy | — w) (x ). (2.32)

The factor of v’ in the 3rd term is its gradiant

1

0:p (x8) = (s 0,h, + 2, n, Oihy, — B0 [ov;osomy ],
= (s 0, + X yn, 0;uy) [S. .ty 0]

the second equality deriving from (2.31) and (2.23). It is function of the scalar state
variables [s ... n, ...] and their 1st space derivatives[d;s, ... 0;n4 ...]. Decomposing
the stress tensor 7# in an elastic (¢) and a frictional (f) part

Tik = gike) L gik) — _gik f L ik (2.34)

*) Itis remarkable that in the cinetic energy density term, which one would expect to have the
form

1 — > > 1 > -+ ¢
24 5 A na vy = %m v+2gAng(vg—v,0v) + 2--2A Anyg|lvg—v|?
(the 2nd term disappears on account of (2.27)), the Galilei-covariant last term (= 12X A ng71| j4|%)

is missing. This is due to the fact, that we do not consider the j4’s (or EA’S) as being among the
d+ 1+ C state variables. Physically, it means neglecting the cinetic energy of diffusion (sec?)).

56 H.P.A. 36, 7 (1963)
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the 2nd and 3rd term in (2.28) can, due to (2.30), be written as

vl (0 + 0,7%) = — 0y (=" vi) — v, T, (2.35)
where
20 (x t) = (00 + 040y (x )= 2v,p (2.36)

is the symmetric, Galilei-covariant, velocity gradient. Its appearence is due to the
syminetry

ik = ik

resulting from conservation of angular momentum (2.10) and Newton’s axiom (2.14).
The first term of (2.35) may be combined with p ¢* in the divergence in (2.28)
giving rise to the flow of work

ak = —1k, vt. (2.38)

The other terms (aside from /4 v%) in this divergence are the heat flow

gk =h, 1% =u % =Tk (2.39)

and the flow of chemical energy

k=2 h i = Z,4 Un, fa =Zypqdly (2.40)%)

where the absolute temperature 1" and the C chemical potentials u, are the local state
functions

Twt)=ugls.comy )]s py B =, [s.omyg..] (2.41)

The 2nd term in (2.35) adds to the last term of (2.28) defining the density of irre-
versibility as

ikt =T"1(x¢t) [(Za w, H, + :l Al v‘:)
(2.42)

(5 (- 0T) + 2y (- 0a)) + @500 08)] 20,

where

W= ey Vo g hgi "BHuwws=1,8:0.7 | (2.43)

is the «thermodynamical force» of reaction a. i and v\ are the trace-less irreducible

parts of symmetric tensors: ,
1
0 i
Uy = Vi — PRI (2.44)

*) g and ¢ are Galilei-covariant vectors, the dependence on ¢2in hy = (1/2) A ©* + uy , drops out
in the sum on account of (1.2).
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Thus (74) (x¢) is a sum of products of (r + 1) 4 (1 + C) + 1 unknown «thermo-
dynamacal currents» J, (i ... =12 ... (r + C + 3)) with the corresponding «thermo-
dynamical forces» X, separating into scalars (w,, 7", vectors (%, ) and an irre-
ducible tensor t¢4/)(0 Furthermore, (7 1) (¥ £) must be a Galilei-covariant scalar. The
«forcesy X, (= (ug, d o), (—0,T, —0,u,) and oY) being Galilei-covariant, the
Onsager coefficients L,; (¥¢) in [, = 2y L,, X, must be Galilei-covariant state
functions, satisfying

(T-1Lp}[s.ony..] =0, (2.45)

which may however depend on space-derivatives 0; ;s (% ¢) ... If we neglect these
space derivatives, i.e. if we assume them to be local state variables, the L, ﬁ’s must be
scalars. This leads to

1 - 1
Tgm = Lo d vé + 2*17 Loa My, .= Ly d ”E + Zb Ly o (2.46)

for the scalar «currents», to (1.1) for the vector «currents» and to
TN O — 2 g yi kO) (2.47)

for the tensor «current». The signes are defined in terms of T (¥ £) by (1.9), (1.4) and
(L:d)

§ 3. The State of Cinetical Equilibrium
The most general equilibrium is given by the maximum of the entropy-functional
S5 )] = f (@V s) (%), with the constraints on the functionals of the 1st law:
H [ ="} Hglowg) =45y Myula]= M.

If chemical reactions are possible, no constraints are imposed on the C N, [...]’s, but
on the quantities of the I chemical elements Np[...]= N (P,Q...=12... [ =
H,D, He, ..., U, Pu,...) (where P, () ... symbolise also the masses of the atom-gram,).
We have the relations

which apply also to the mass values and are the stochiometric relations (1.8) (v4p =
pos. integers, v, 4 = — 1) for complete dissociation of A. Further we have evidently
Nplooitiy.] =2, Pf(dv 1) ) . (3.2)

The necessary and sufficient condition for equilibviwm, is, as we have shown in III
(annex)?):

-

Hlhawd)oos() a e gl ) ool 2/‘(dV1p[...vi...s...%A ) ()
(3:3)

= (S +9H -1, — ; w* M, — Xy Bp Np) [...] = maximum.
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D, 0, o'* = l# and Bp are Lagrange multiplyers. The 1st variation OV [...] =0
18 the extremum condition. It yelds (see I1114)):

pix) =9dmvi —m ({4 1, 0F) =0, (3.4%)
w@) =1+du —=1+9TEF =0, (3.4,)
TJZ

V’nA(%) =¥ (A 5T MnA) — A+ o) v, — 2Zpvpfp=0. (3-4nA)

(3.4%) implies a translation + rotation with constant linear and angular velocity of the
fluid:

o) = (€ + [@ AF]) 91, (3.5)

(3.4,) shows that T(¥) = — 91 is independent of space. (3.4, ) gives the chemical
potentials the form '

—

i) = a(0) + 5 A 02H), (3.6)

pa(0) = 2pv,p 81 Bp(=2pv,p up(0) . (3.7)

On account of (3.1), this implies local chemical equilibrium with vespect to total disso-
ctation

(Zpvapp T Vaqy) & () = . (3.84)%)

As all other 7 reactions a can be combined from the C reactions (3.14) and
(3.84), chemical equilibrium is thus assured at every point %, i.e. (2.43) gives

(%) = 0. (3.9)

As from (3.5) follows v, (x) = 0, the irreversibility 7(x) (2.42) disappears for the scalar
and tensorial terms.

We have now to verify that the equations of motion ((2.22), (2.9N,) and (2.12) with
k,(x) = 0) are satisfied. As 7?4/} disappears on account of v,, = 0 and u, = 0 ((2.46),
(2.47)). (2.22) reduces to (on account of 7" = const. (2.33), (2.41), (2.24) and (3.6)):

(m 'U‘i +0:p) (%) = (mv* O, + Xy my Ouy) =224 A (ny vFvy,) (;C) =0. (3.10)

The Equations (2.12) for s and (2. 9N‘4) for n,, written in the Galilei-covariant form

(2 7), are satistied, if div g y s = div 74 = 0: p4 disappears on account of (2.46), because
P e gy == ), I‘urthermor(, z(x) vanishes now for all 3 terms. Thus, as 7" is constant,

the condition div 75 = div j4, = 0 implies
gy i g I3 =10 (3.11)

and necessitates (1.5). (div g;aa Uy = Bdiv @Tﬂ v2[2 % 0).
Thus (2.12) and (2.9N,) lead to

s(x)=0; n,(x) =0. (3.12)

*) On account ot (2.25), which implies (1.8), where 4 are now the molar masses.
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Or, substantial time derivatives f of scalar state functions disappear for (3.5). It is
remarkable, that the eqs. of motion for a one-component fluid (in r. and n.r. (see 1I1%))
theory) are identically satisfied. For a C(>1)-component flurd, we have however the
vestrictions (1.5) and (3.11) on the Onsager coefficients in n.r. theory*).

The 2nd variation 6@ [...] < 0 is a necessary condition (see IIT%), annex).
It implies

lw‘”ﬂ vl ¥,
v Yoo W, @) <0, (3.12)
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which implies (see (3.4))

{—yit=—ome=(7) @ g”‘}20, (315
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—w,mA == Aﬁ%snA = ( TA) (JC) ’ (313m4)
— 9 — (Mmame ) Gt =0 3.13
_TpnAnB - %n/‘ ng \ T (.%) =0. ( = "A"B)

(3.13) has for consequence that a) the metric must be euclidien {gi*} > 0*¥) and that
the mass density and therefore A n (% t) have the sign of T. (3.13 and ) give
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to the elastic modulus (1.11) the sign of T.

The sign condition on the Onsager coefficients (2.45) resulting from the 2nd law’s
principle of evolution and on the s (3.13) from the 2nd law’s principle of equilibrium
have as a consequence that the solution of the linearised coupled equations for v?, s and
n4 ((2.22), (2.9 N,) and (2.12)) are damped waves existing only in the future t > 0, if the
initial local states are given for all x at ¢ = III4)3).
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