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On the Electrical Conductivity of Metals by the Resolvent Method

by Aloysio Janner
Battelle Memorial Institute, Geneva, Switzerland

(10. III. 63)

Synopsis

Using the resolvent method previously developed by Van Hove and the author
for describing dissipative quantum many-body systems, general expressions are
derived for the asymptotic value of the time integral of operators which are diagonal
at initial time (i.e. diagonal with respect to the eigenfunctions of the unperturbed
Hamiltonian).

As illustrative example the formalism is applied to the calculation of the zeroth
order electrical conductivity tensor for spherically symmetric impurity centres.
Electron-electron interactions are however neglected. The result is compared with
that derived by Verboven for the same case, but using time-dependent perturbation.

General agreement is found up to a non-Markoffian term which in fact should
be omitted.

It is finally shown, how the same result can also be obtained from the Markoffian
approximation of the general master equation.

1. Introduction
As Chester and Thellung1) have shown by their calculation on the electrical

conductivity of metals, the evaluation of transport coefficients by means of the Kubo
formula is a relatively easy matter if one knows the solutions of the master equation
describing the time evolution of one of the factors involved in the correlation function.
Actually, such a solution is explicitly known only in the weak coupling case fX -X 0,
t -X oo; X21 finite), for which the non-Markoffian general master equations derived
by Van Hove2) and by the author3) reduce to the Markoffian Pauli master equation.

Higher order effects of various kinds can of course be taken into account by
improving the various approximations made along the basic calculation. It is in this
way, discussed in detail by Chester and Thellung1), that Verboven4) obtained
explicit expressions for the conductivity tensor to zeroth order in the coupling
constant. For getting corrections to higher order than this one, such a procedure is of
course not suitable.
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The aim of the present paper is to give a calculation performed, as far as possible,
to general order in the perturbation, the various contributions being then obtained
directly from the general expressions by power series expansion in the coupling
constant. It was while looking for this goal that a general master equation for the
interference term was derived one year ago3). The general expressions mentioned above
are here given in what we may call their spectral form, and in fact the last integration
is performed only after having made the expansion in powers of X. From this point of
view we have not yet reached our final goal. Even so, there are general questions
which can be discussed to all orders in the perturbation.

The present investigation is based on the fact that the solution of the general
master equation represents a much too detailed information on the system, with
respect to what is really needed, i. e. the asymptotic value (<-> oo) of the time integral
of the solution. As shown in sections 2 to 5, this result can be better obtained directly
from asymptotic equations. As illustrative example wc apply in section 6 the formalism

to the calculation of the zeroth order conductivity tensor for an electron
scattered by spherically symmetric impurity centres. In section 7 the expressions obtained
are compared with those derived by Verboven4), and in the last section we add some

concluding remarks.
We know of other independent efforts5)6) performed along the same pattern of

thoughts with a view to refining, by means of higher order corrections the basic
formula for the conductivity. With the present approach we hope to give a contribution

for a better knowledge of equations of the master type.

2. Outlines of Van Hove's resolvent method

We here briefly recall some general results of Van Hove's2)3) perturbative treatment

based on the resolvent, which allows compact expressions to general order in the
perturbation. The resolvent R, is related to the operator of motion Ut by means of a

complex Fourier transform :

U.= X^ / dle'iu R,, (2.1)
1 2m J '

where

Rt (H0 + X V - I)-1

lis a complex number and y an integration contour encircling counter-clockwise a

sufficient portion of the real axis. X V represents the perturbation of H0, the
unperturbed hamiltonian whose eigenstates [ oc > are known and form a complete set,
normalized (in the limit of an infinite system) to :

<a | a'> <5(oc - a') (2.2)

The matrix elements of an operator At, which for the initial time t 0 is diagonal
in the a-representation, may be written as :

At (cc a') <a [ U_t A Ut [ a'> / da0 Afac0) Zt (a0 a a') (2.3)

where

Zt (oc0 a oc') Pt (a0 a) <5(oc — a') + It (a0 a a') (2.4)
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For A (sen) a smooth function of oc0, P, (oc0 a) is not trivially zero for the systems we
are considering here, and represents a coarse-grained transition probability. It (oc0 a a')
describes interference effects. The Fourier-transformed expressions corresponding to
(2.3) and (2.4) are:

Alr (a a') <oc | Rl A Rt, | a'> / rfoc0/l(oc0) Zu, (oc0ococ') (2.5)

Z v (a0 a a') Xt,, (oc0 a) ó(a — a') + Yl r (a0 a a') (2.6)

Zt (oc0oca') -^ j dl f dl' jX"*'» Ztl, (a0a oc') (2.7)

where
-1

fy and y' as above). Zir obeys a general master equation which can be put into the
following very convenient form :

Zu, (oc0ococ') D,(a0) F>r(ao) |^(ao ~ a) <5(a - «') + Vir K«*1 j

A2 / <*xx IF,,. (a0 oc,) Z,,, (a, a a')
(2.;

which is expressed in terms of Dt (the diagonal part of R,), oi Vu> and of Wu- whose
definitions are:

Dl Rf Dt | oc> | «> D,fa), (2.9)

(2.10)

<a | {(1 - X DA' A- X2 D,V D,V - A (1 - XV Dr V D,. - .)}ind \ a'>

da0A (oc0) Vt v (a0 a a')

{fV-XVDlV+...)AfV-XVDi,V+...)}id\xy=\ûL>fdac0Afûc0)Wli,fai0oc). (2.11)

The suffixes "id" and "ind" mean "irreducible diagonal part" and "irreducible
non-diagonal part" (for definitions, see rf. 3, p. 49). The singularities of Zu> are
represented by cuts along the real axis in the complex / and V planes and by a simple
pseudo-pole (see H2 p. 465) for l E + i0,l' E + i0, and E real, determining the
asymptotic value of Zt, which is given by:

+ 00

lim Zt(a0aa')= / dE Z% (a0 a a'), (2.12)'Et-*± oo

Xt (a0 oc oc') + j lim (I - V) Z,,. (a0 oc a') (2.13)
^ 7% I I ~*h =p iO

/'->¦£ ± «0

Assuming interconnection of states with equal unperturbed energy (implying that
the states | a > are dissipative) and the validity of a generalized microscopic
reversibility fWu- (a a') Wi'i (a' a)), one obtains for Z^ the simple expression

7+1 i\ AE(tx) QE (a a') rA-iAsZf (a0 a a (2.14)
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where QE is defined by:

ßi",i»,är<Ä«H,-^ (2-15)

and AE is its diagonal part. The hypothesis of a generalized microscopic reversibility
is not an essential one, and can be dropped7). In this case, however, one needs a more
elaborated formulation than the one adopted here.

3. Asymptotic time-integrated master equation

We consider the time integral of the operator A t introduced above, and we suppose
the existence of a corresponding asymptotic operator A± :

T

A±= lim I dtA.. (3.1)
T^ -too J

0

This implies that :

lim 4 0 (3.2)
/—*¦ -r oo

and together with (2.5), (2.12) and (2.13), that Au- is a bounded operator in the
complex I, /'-planes. Interchanging the time integration with the complex ones, we

get for A±:

Ì±=r!ì.wWffW^- (3-3)

y y'

The term obtained from the limit t 0 in (3.1) vanishes because A,,- approaches
to zero as \ 11' [_1 when / and /' -x oo, and the integration paths can be deformed to
infinity. Denoting the two partial contours above and below the real axis respectively
by y+ andy^, one verifies that in (3.3) for F > 0 onlyy~ and y'+ give a non-vanishing
contribution; for F < 0 there only remain y+ and y'~.

Using the asymptotic formula:

± 2 n i Ô(E - E') for F -> + oo (3.4)E-E' + t 0

where upper (and lower) signs are taken together, one finally obtains for (3.3) :

+ 0O

A ± (oc oc') ± -, -
q Hm^ j doc0 A («„) / dE ZET {„_ E ± ,-, (a0 a a') (3.5)

The limit r] -X 0 has to be taken only after integration over oc0, because in this limit
Zrt iri,E i- in itself becomes singular.

Let us now look at the formal solution of the general master equation. We introduce

a matrix formalism which allows a much shorter notation. We consider an
"initial state" [| aa') with the following two properties:

<oc0 | 0 11 a a'> 0 (a0 a a') for a general operator 0 (3.6)
and

<oc0 11 a a'> <5(oc0 — oc) <5(a — a') (3.7)
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In particular we have for a two-indice diagonal operator of the type of Xt v :

Xt v (oc0 a a') Xt v (a0 a.) ô (a - a') (3.8)

and for a one-indice diagonal operator of the type Dt:

Dl (oc0 oc oc') D[foc0) (5(oc0 — a) c5(a — a') (3.9)

Multiplication from the left of a general operator by diagonal ones is defined according
to the rules of matrix multiplication. So, for example:

ZIV Dl Dr {1 +VIV+ X2 Wn, Zu,} (3.10)

gives (2.8) for the "final" state <a0 | and the "initial" one || oca')*).
Remembering that :

Dl=fH0-l-X2Gl)-1 (3.11)
where

G, fV - X V D,V + X2 V DiV D,V - ...)„ (3.12)

one finds

n n _ _ E±A1 A-1" (3 13)

For further reference we recall that

lim GE±in KE + ifE (3.14)
0 < tj —> v '

where ]E 4= 0 for a dissipative system. In this case (3.13) gives:

DE + ioDE_l0=A^. (3.13a)

We define an operator QE T_ i in the following way

^E^ir, p + 2 i (X + 4J7
— X -ir) ~ Yj \DE + in — DE _ini WETirj>E±in (3.15)

giving for ij -X 0

#£^•0 JE-nAEWE^{0tE±î0. (3.15a)

The general master equation (3.10) can now be written as:

^fi£T„^i„,£±»,= y, (DE + i„-DE-ir) (1+ VETiPiE±lr). (3.16)

The corresponding formal solution is :

ïTilI,H±tl| ~ V* ^E + ir) 2J
'

E + in l'E -tri) (1 + KEt=( ij,£± ff))

_L 7(0)T ^E T iî i), £ ± iii) '

(3.17)

*) These formal "bra" and "ket" are related to the physical states a0, a and a' in the following
way:

<<x [ [ | a <x'> <-> <a | | a0><a0 1 | a'>
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Z'e)-+ìv,e±iti ls a solution of the homogeneous equation:

^OB^ZETtniE±iv 0. (3.18)

In the following we omit Z{ET t E ± i because it gives a vanishing contribution to A±.
In fact one verifies that :

o|mo401Ti„£±I., CZ±, (3.19)

where c is an arbitrar}/ constant.
For the same reason also, the residueof the pole in l/rj of ZE^ i,,_£± i,, (oc0aa')

vanishes in (3.5) after integration over a0. This pole is related to the existence of a zero eigenvalue

com 0 of QE T irj in the limit of ij -X 0. We assume that there is only one such

vanishing eigenvalue in the spectrum of QF ¥i0. For a dissipative system, the assumption

is physically reasonable as can be seen by looking at the corresponding weak
coupling limit. It then follows that there exists an eigenvector xw, with component
x{1) (a) which fulfil the equation :

o
Hm fd«,' QE + iv (a a') *»(«') oA> *«(«) 0 (3.20)

In fact, using the property :

ydA ß£Ti, (« a') =y^a' ß£±,„ (a' a) J- (3.21)

one finds a solution of (3.20) ; namely,

x»)(a) const. (3.22)

In (3.5), therefore, one may take the limit rj -X 0 before integrating over a0 if one
excludes from QE + i0 ist zero eigenvalue. Indicating this by a tilda, we obtain:

A± (a a') / da.0 Afx0) Z± (a0 a a') (3.23)

where

^± ~" i 2 31 / £ T '°> £ ± »0

±4w I dEQE1ìi0AEfl + VETi0ìE±J

(3.24)

In the following, however, we omit for simplicity the tilda on QE\ i0; of course, the
expressions derived are then only meaningful after integration over a0. The various

contributions to A± are obtained by integration over F of the expansion in X" of

Ze^ìo,e j- i o • The point discussed in section 1 is that we have not been able to perform
the integration over E without expanding first,
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4. Perturbative expansion in powers of X

From now on we restrict our considerations to A + (one easily obtains from it the

corresponding results for A _). Before calculating explicitly the various contributions

toZE _i0E + i0,we indicate for further reference the series expansions in power of X of
the most important operators occurring in (3.17). We introduce first two new types
of functions defined by :

{VAXVA2V...A„ V}id j a> j oc>y <h.x dc2... d<x„ Axfcr.x) A2fa.2) Anfan)

x W (oc, oc2... a„ a)

and

<*\{VA1VA2V...AnV}ind

/ doix doi2 dccn Axf(f.x) A2fcr.2) Anfccn) V (ax oc2 a„ a a')

(4.1)

(4.2)

We call F-irreducible those contributions in which only sums of W and F-functions
respectively occur. By F-reducible are denoted the terms where products of such
functions appear. The term of order X" in the expansion is indicated by the suffix n
put on the corresponding operator.

In particular looking at (3.11) and (3.12) we find for DnA and Gn[ the system of
recurrent relations :

X2 X* n~i
D„,l(<A (-_n2 <Z-2,X) + rE_-ni E Z-m-4,/X) Xj,/(«) + •••, X3)

K ' K ' m-0

XX) da0Dnilfa.0) W (oc0a) - X JJ j <X> **i X - m -1, Xo)
A m= 0 "

X X,,Xi) W fa.0a.xa.)

(4.4)

Ek always means e(v.A and represents the unperturbed energy of the state | oc^). The
F-irreducible contribution to Gn>, is :

r.- n / iw / d«-o drj.x... da W (q0 o^ q„ a)G„» (- X) j (Eo_l)(Si_l)^(en_l)—. (4-5)

From (4.3) and (4.4) the explicit evaluation of the lower terms yields:

A
ex— ID0i1(z) (e-1)-1, Dul(x)=0, D2AA)=X2(e-l)-2fda^f-a)- (4.6)

and

„ f dax IF (a, a) „ - f dcr.x dot2 IV (ax a2 a)
G°«'(a) =J -AAI > Gl» - XJ (ex-l)(e2-l) '

dax dx2 da3 W (otx a2 a3 a) „ f da.x dtx2 W (a2 %x) W (ax a)r t„\ 22/ da-i da2 ««s w («i a2 a3 a) 52/G^] X j lsl-l)(si-l)(si-l) + À J(£j-/) (8,-1) (8,-1)
'

J (^-1)2(8,-I)

(4.7)
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where the second right-hand side term of the last relation represents the F-reducible
contributions to G2l. In the same way one gets from (2.10) the general term VntU>:

K,tf («o*«') -XV fcca.') (X-i.X) d(«o - a') + X-i,r(X <H«o - a)}
JJ-2.

A- X2 £ IV (a0a a') Dn_m_2J(tx.) £>,„,r(a') + / da.x V (ocx a a') I, (4.8)
JM- 0 * ^

x [X-,M-2,Xi) XXa) d(a0 - a') + X-„,-2,r(<X Dm,t'f<*') ^(ao - «)]

and in particular:

VXJl, («. a a') - 2 F (a a') } ^- + ^> j (4.9)

The general term W^ l ;- also looks very similar. We indicate here only the first three
terms :

W0,w K«) Wfc^a),
W (a0 ax a)

X,H< («0«) X / (foe
T W K a»

ir., (an a) A2 / det.*id*2[Vi

I)

W (oc, a2 a0 a) IF (a, oc0 oc2 a)
+

W (a0 a, a2 a
V]

(4.10)

x-l)(H-l) '

(ex-1)(82-1')
' (e1-l')(Ei-l'i

All these are F-irreducible contributions. The development of JE is best obtained
from (3.15a) together with (3.21). We have:

(4.11)

with

and

/oX«) W da.0 ôfs0 - E)W (a0 a)

/i,e(«) =7ij dct0ôfe0- E) WltE_i0jE + i0{ai)a)

AZ«) 75,b(«) + /XW

7S>£(a) jr / c/a0 5(e0 - F) W2E_i0E + i0 (a0 a)

/2,£(oc) Tr / rfa0 Zl2ji(a0) TF (a0 a)

where J^e 1s the F-reducible contribution.
An>E follows directly from Dn E±i0. The first terms are:

A0,Efz)=oEfoò=òfE-E), AhEfA=0
and

^*M /? i 0) ¦
dotx W (a, a)

2ni \[ " " "' J (ex-E-i0)
As operator in an integral over a, A2Eftx) takes the form:

^[{(^IpII-It}/^1^^^^^1^

(4.12)

XZ«

{^-£>}|i}/M^lwM-
(4.12a)
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{ò/òe} is a differential operator due to a partial integration and acts therefore on all
the functions depending on e (and also on a because oc a(e)), in the a-integral, not
included in the other {...} bracket.

It is also useful to consider the F-irreducible contribution to QnE_U):

K,E-io=r«,E-nàEW:<E_i0iE + iQ. (4.13)

The inverse of ü'jlE_i0 obeys the following equations:

(^X-J-1 (ZUZ1 C1 + rcW,Ê_.0)£+i0 (ß;E_i0)x

[i + (ß^-j-1* wE_,a+<j (/X)-1-
(4.14)

One verifies (4.14) by developing üvn,E-io m powers of n ôE W^iE_i0tE + i0. E s

represents an important particular case tor QvE^i0 (a0a). Let us therefore introduce
for it a new symbol Ü.

ß(aoa) ßX0(a0a). (4.15)

Together with
T4> (a, a) n ôfe0 - e) Wl_io,,+i0 (a0 a) (4.16)

and

F(oc) / doL0 W (a0 a) (4.17)

we have

Q r-W (4.18)

so that its inverse obeys the relations :

Q-1 F-1 fl + W Q-1) (1 + Q-1 W) r-1. (4.19)

The following properties have to be noted :

rEôE rôe ; frE)-iôE r-iôË, (4.20)

ndEW"E_i0E + i0òE=WÒE,

&É-ioàE uôE,

fQE_i0A1ôE Û-1ôE. (4.21)

This last relation (4.21) together with (4.14) allows us to write:

(ßXj-o)"1=[l + ß-1^^W/£-jo,£ + jo](/l)-1- (4-22)

Relations (4.15) to (4.22) are of course also true for the respective ^"-component.

5. Zeroth order contributions to the kernel Z+

We consider separately the diagonal contributions X+ and the non-diagonal ones

Y+ to Z+. The first contributions up to the order X°, the second ones up to A-1 only.
In the following we omit the explicit indication that our considerations are restricted
to positive time.

55 H. P.A. 36, 7 (1963)
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(a) Diagonal contributions

H. P. A.

(3.24) yields:

X 2Xl

The lowest order of (5.1) is in X~2. Using (4.21) we get for it:

v — o-1"2 ~ 2 A2 ° "

The next term X_x is readily obtained as:

-^-l — "5~J2" ^o ^i ^o2 A2

(5.1)

(5.2)

(5.3)

The evaluation of A„ is a more elaborate one. The zeroth order terms of XE _ioE + ioare:

-y — 2—2 / O"1 fy O-1^0, E-iO, E + Ì0 — n A t ilS0,E-iOie2,E-i01"sO,E-iO

+ &0,E-it> ["l, E-tO &0,E-io\2 ~ ®0,E-iO XeMj.E-i'O ^' '

+ ti ü~tE.„i0A2iEW Q^E_i0} A0tE + tiX-2 Q0-E_i0A2>E

For clarity, the various contributions to X0 obtained from (5.4) by integration over E
are indicated already in their a-representation. They are :

X>,1 (ao a) — "2-;a
/ <^al ^a2 ^o 1

(ao al) ^2 (al «2) ^o 1
(a2 a) -

A0 2 (a0 a) -^-p-
/ lia, <fa2 da3 (fa4 ô,,"1 (a0 ax) Qx (a, a2)

x û0_1 (a2 a3) Qx (a3 a4) Q^1 (a4 a)

xo,s (ao «) - y J do.x da2 da3 Or1 (a0 o.x) Qr1 (at a)

x KAAy* - *>>+* - «¦> (ZZI ^'••-tX*3' ¦

A0 4 (a0 a) -A¥ j do.x do.2 ü0fe_i0 (a0 a4) A2J<xx) W (a, a2) Qr1 (a2 a)

Aj dixx clot.2 ôfEx - e) -fo- (ß0;Z»o K ai) #o\.(*i) ^K «2)) AZ («2 a)

1
TJ /* rfa, W (a0 a,) ßj,1 (aia) 1 -n /Z 1 1 n-l/ \+ 2- Rey - {eolE _i0)2 + f Re / dcx doc2 dcc3 Q0 (a0 a,)

ji öfs, — e) IF (a, a3) IF (a2 a3) ßj-1 (a3 a)

(5.5)

(5.6)

(5.7)

(5.8)

(e2-es-i0)2

This last result was obtained by using (3.14) and (4.22). Analogously we evaluate the
last contribution :
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-\- CO

X>,5 («0 «) -TJF / dE ^0,E-iO (K0 *) X,£(°0

~ y\ dF (ßo,Xo («o «) K0rE(a.)) ÌE.
1 /* dax ß01 (a0 a,) IF (a, a)

2 „/ (e-f.-JO)2

Now:

dQr^-jj_i0 (a0 cx) r ô

X)£~ - J (ia, (fot2 yr (5(ei - E) -^- fü^E_i0 (a0 a,) TF (a, a2)

x ¦öoTs .-o (a2«) ~y d«.1da.2Q-\_i0 (aoai) fio,X,o («ia) 7ï(5(ê2 - F) -J
ö!F(a2a,)

2

and
Ö/<0;E(a)

_ Re
' rfgl IF («, g)

eJ (ei-ÊA-t)E 0)2

so that for (5.9) we get:

X,5 (*o a)
2 / d<Xl d<X2 ^v1 (a° a^ ^° * (ai a^ à(E2 - ev ()t

l" dcc3 W (a3 a) n f „, d
X / (%-«)/

d IF (a2 a,)
Ô£2

/ jia, ia2 <5(e, - e) -^- (floZ-io (aoai) ^ (ai «2))

)_

e+iO)2x fi'1 (a2 a) F0» - \ Qr1 (a0 a) Rey'-g1
H'(5tl a)

Z t?p [AaAAAAa<> ai)IF K«)
2 ^X (£-£l + 80)2
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(5.9)

(5.10)

(5.11)

(5.12)

(b) Non-diagonal contributions

The lowest order contribution is already of order A-1 :

Y_j (a0 a a')

-rZ F (a a') {[fl"1 (a0 a) - fl"1 (a0 a')] [(^) ~ » » <*(* " «0] } •

(5.13)

The results obtained so far can be applied to a large number of physical cases. We
show how this can be done by using these results for the evaluation of the electrical
conductivity in metals.

6. Electrical conductivity tensor for spherically symmetric
elastic scattering by impurities

The electrical conductivity tensor of metals has already been calculated by
Chester and Thellung1) to the lowest order in the perturbation, and by Verboven4)
to the zeroth one. In both papers time-dependent perturbation has been used. To
illustrate the alternative approach represented by the resolvent method, we apply to
the same problem the formalism developed here, which is better suited for further
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calculations to higher order corrections. Comparison between the results already
published and the present ones is made only in the next section, as it requires some

supplementary calculations.
We start by considering the symmetrized Kubo formula for the conductivity

((2.4 of Chester and Thellung's1) and (2.24) of Verboven's4) papers), which is

already reduced to the one-electron approximation.

tr. Urn jdt\ bYH + foftir^}- Z1)
0

The trace is taken over a complete set of one-electron wave functions. Considered here

are the eigenfunctions | ky of H0, where k is the electron wave vector with energy
sfk). For contributions restricted to a single band, j" is diagonal with respect to j fe>.

In this representation, (6.1) becomes:

cr"* - ì jdk0 dk dk' {f0fk0) jlfk') + #(*) f0fk0)} Z (k0 k fe') -gL {k' k) (6.2)

where Z represents the dynamical and òfjòH 5 the statistical factor.
Clearly the expression (6.2) contains a factor <fe | ky which diverges in the limit

of an infinite system. This is however not a significant difficulty, and it can be

eliminated by an appropriate definition of the trace8) or by using reduced
expressions7)9). In the one-electron case it is sufficient to divide by <fe j ky on the right-
hand side of (6.2).

We consider a1" developed in powers of X:

x2 XX- <+¦¦¦ (6.3)

i. e. we expand the dynamical and the statistical factors respectively. Observing that
to the lowest order two factors are diagonal, whereas to the first order the statistical
factor is non-diagonal, we obtain:

°uv ~ \ fdk.dkdk' {Jlfk0) Jlfk') + f0fk) jlfk0)}

{[X_2 fk0 k) + X_x (fe0 k) + X0 fk0 fe)] S0 fk k) ôfk - fe')

aZ2 (fc0 k) s2 (fe k) ôfk - fe') + y_j (fe0 fe fe') sx fk' fe) + .}/<fe | fe)

(6.4)

With the formula derived in section 5, (6.4) already gives the conductivity tensor
to the zeroth order for the general case of elastic scattering by impurities. For the
particularly simple case of spherically symmetric scattering centres, (6.4) can be

further simplified. From now on we therefore restrict our considerations to this case,
for which we derive first some general relations.

One sees from (4.17) that Ffk) becomes a function of the energy e only and does

not depend more on the direction of fe; the same is true for F1(fe) which is defined by
the relation:

fdk0 f0(k0) w (fe0 fe) fdk0 w fk fe0) /;<(fe0) nfk) f0{k) /» A0fk). (6.5)
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Introducing a general relaxation time xfe) by :

T|-y- 2P[F(e)-F1(£)], (6.6)

together with (6.5) we get:

fdkü fAK) fl (fe0 fe) =Jdk0 fl fk fe0) f0fk0) --^ f0fk) (6.7)

and also :

*

fdk0 ;>(fe0) fl-1 (fe0 fe) =yife0 fl-1 (fe fe0) f'fk0) =2X2 r(e) /g(*) (6.8)

This last equation can be verified, according to (4.18), by expansion of fl-1 in powers
of W and integration over fe0 of its (fe0 fe)-matrix elements. The relations given above
are of course also valid between corresponding A"-terms.

Finally, we note that :

/S(-*) -7o(*) (6-9)

and therefore:

fdk /J(fc) /(e) 0 (6.10)

for every function/(e) independent of the direction of fe. This property, together with
Apfk) AEfe), ensures that

lim jf (fe fe') J dEjdK f0(K) AE(kQ) -fi^ 0 (6.11)

-co J

which is a necessary condition for the existence of (3.1) for At jf.
It is now very easy to write down the various contributions to the conductibility

tensor. To the lowest order, using (5.2) and (6.6), we get the known result:

where

o-Z2 =-jdk T„(e) f0fk) Jlfk) -£ (6.12)

-^- I fe> - t fe>
Ô/

In (6.12), and in the following corrections as well, r„(e) is defined by (6.6) if one
replaces F(e) andF1(e) by the corresponding A"-terms. In the same manner, (5.3) gives
us the first order correction.

aj\ =Jdk xI(e) xx\e) f0fk) Jlfk) H. (6.13)

A number of zero order corrections arises from the various X0v terms. The first three
are directly obtained by putting (5.5), (5.6) and (5.7) in (6.4), and by making use of the
symmetry properties indicated above. We get:

<i =JdkxI(e) xA(e) jlfk) Jl(k) -dl (6.14)

<2 -fdk xlfe) t-2(e) f0(k) Jlfk) -|-, (6.15)
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a'^ 2X^ dkxlfE)j'lfk)Jlfk) df
de

dk0 dkx [( j~jp7tô(e0 - e) + n ô(ex - e) (—!_+-)P]
HF (fe, fe_0) IF (fe0 fe)

th.,

(6.16)

For the next group of terms it is worthwhile to take X0 4 and X0 5 together, i.e. (5.8)
and (5.12). Before indicating the result, we consider the partial contribution:

1 A X dk° dkl dki Jo(feo) àfsx - e) -ó-

x {fl0Z_l0 (feo fei) W (kx fe2) fl-1 (fe2 fe) [K0Jkx) - K0Jk)]}

giving, after Taylor-expansion of K0efe-f) m the neighbourhood of KQe(E), the result

/ 2 A4 f-r^- — (k' fe)
rl(e) rife) ?0(k) (6.17)

(H-EIP de

Making use of (6.17) and regrouping the terms in such a way as to facilitate a
comparison with Verboven's result, we obtain for

¦>'r — a'"" A- nßV A- rr'"' -I- rr'"'
0,(4,5) - "»,( t °o,5 r u0B -t- o0;7

the following contributions :

rf^-^Re dk"llk >irAP- w«)+^i imo) m)+/sw /wi 2(£o-f-jo)2

Ö/
2 A4 Re </fe0 ^fe rffc, T^(e0) /g(fe0) f0fk) -^ Tt ôfe,

W (fe0 fe,) IV (fe, fe)

ds (f,-£-i0)2
d/

J0,6 2 A4 rffe0 rffe T20(e) /£(*) Jl(k) -Z n ôfe - e0
OF

diV(k0k)
de„

J («i-e)p X rffe r0(e) #(*) /J(fe) -g- fa!^?0)1

<;7 - 2 A4 / dk t*(b) rfa) Jlfk) /;(*)
d/ T rffe, óIF(fe,fe)
de J (e1-e)p os

(6.18)

(6.19)

(6.20)

(6.21)

The remaining two zero-order corrections are those related to the higher order terms
of the statistical factor. They have already been indicated by Chester and
Thellung1):

f'A)-f'(c)
Sx fk' k)=XV fk' k)

S2 (fe k)=X2 dk0 <fe j fe> IF (fe0 fe)
/"(«) _ m-f'(s0)}
£-60 (£-£0)2 J'

(6.22)

(6.23)

(6.22) together with (5.13) yield the next correction: only the principal value term
in (5.13) gives a non-vanishing contribution:

/'(8o)-/'(6) / X°-eip
; (6.2-1)

x {/$(*) [Jlfk) + Jlfk0)] x0fE) - jlfk0) [jlfk) + Jlfk0)] r0(e0)}

<8 I A«y *o <* w fk0 fe) zw - / <«>

(_l_)
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The last correction is essentially the same as (6.12) with the only difference that now
S2 fk fe) replaces S0 (fe fe) :

<8 - PfdK dk x0fe) jlfk) Jlfk) W (fe0 fe) {Ä _ //(g"ff }. (6.25)

7. Comparison with Verboven's result

We here consider Verboven's4) calculation of the conductivity tensor as in his

paper he already discussed that of Chester and Thellung. The present comparison
requires some small changes in the notation and a few additional calculations. To
avoid confusion, we label Verboven's equations as in his paper, but with the numbers
in square brackets, and we keep to his notation at least partially.

One immediately verifies that [3.24] and (6.12) represent the same result

[3.24] o-<X> <t% (6.12)

Also [4.6] and (6.13) give the same result:

[4-6] óo-<X' oX (6.13)

and

F'(e) - rife) rxfE) - r\fe) (2 X2 x1(e))-*.

Inspection of [4.8] shows that in fact <5 ajjX has the wrong sign. With the correct one
it gives the same result as (6.24) :

[4-8] - fc0;,1 <;8. (6.24)

There are a number of zero order corrections which are evidently equal and need

no further comments. Fet us only indicate the correspondance :

[4.10] <5C2) <Z (6-25)

[4.12] oof;3' <;2 (6.15)

[4.15] <H°;4) <i' (6.14)

[4.24] òa^f <"3. (6.16)

For the check of this last relation one simply verifies that :

[4.22] X2rfE) JlXk). (4.11)

Further

[5.20] <H°;8) <4. (6.18)

[5.21] Oct'0;9' <;5. (6.19)
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Comparison between the remaining corrections requires some simplifications. We may
write Verboven's definitions of A, F and F in our notation as follows:

[5.6] r*,iF,fefe,)
J {ex-s-z 0)2

[3.12], [3.13] rfE) + iAfE) -if^W{k^w w J (8,-e-iO)
and therefore

[5.7] f(E)4-iA(E) if^^i [*W{*5.J (£,-£-î0)2 J (e2-£-*0)

so that

r(e) +F(s) fA + A*) Im dfe, IF (fe, fe) f dk2 W (fe fe2;

(£,-£-7 0) J (£2-£+i0)2

where Im means imaginary part. In this way we obtain for &r^6':

-2X>roie)fdkl^pk)fdkinôfe2

+ 2X2x0fe)ri(e)Ref^^}.

nv (fe fe2;

r)£.

Observing that :

[3.13] Afe) - Re

for Verboven's A'EfE) we get:

r dkx w (fe, fe)

(£,— £—2 0)

dA(e) „ f dkxW (kxk)
^AA ~ J Ah-A^ì 0)2

dft, dWfJ^ft)
(£,-£)p Ô£

Keeping this result in mind, and adding <5cr'°'6) and SA°A together, we obtain

<H°;6) + Kf] -fdk rm m) -f [^ t0w Re/ £J£$ - 2 a4 t02(ê)

fe, ^jfci_
('i-f)p

(7.1)

(7.2)

(7.3)

*£&*- fdk2 n ôfe, - e) i^M _ 2 A* T2(e) ri(e) /-^ «^},
giving:

[5.9], [5.16] ua/iv r oaßv - a0i 6 -t- a0 (6.20), (6.21)

The comparison shows that the only term missing is the non-Markoffian S crj,0;10'

one, of [5.23]. This is due to the fact that actually only the real part [4.1] goes into the
Kubo formula, and therefore ô o-jf;10' has to be omitted5).
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8. Concluding remarks

By the present calculation we have checked the zeroth-order expression for the
conductivity tensor, previously derived by Verboven 4). It is also possible to evaluate
further higher order corrections with the same formalism. This implies, however, a

non-negligible amount of calculation. In particular, we have not yet been able to
obtain explicit expressions for the general n-th order contributions, because of the
non-trivial integration over F, which is needed for it. Even so, we can discuss the
general nature of such contributions simply by looking at (3.5), (3.23) and (6.2),
respectively. What we found is in agreement with the Balescu theorem, which states
that transport coefficients can always be calculated from a Markoffian Boltzmann-like
equation10). In order to show this in our particular case, we follow a suggestion made
to us by Swenson n) : performing the calculation on the basis of the Markoffian
approximation of the general master equation, one obtains the same result as that
(3.5) which is derived above without such an approximation.

We start by considering the general master equation in the following form :

t

ZE, («oa«') A£>/ («„««') + 2 nX2fdtxfdax wE,t_k M ZE,h (a4 a a') (8.1)

o

where

K,t («o « «') 2S(jr f dl X" F>E+;(a0) F>£_,(a0)

v

x [(5(a0 - a) <5(a - a') + VE + UE_t (a0 a a')]
(8.2)

K'*.. «n«
1

2 n2
dle%lU DE + I(a0) F>E_;(a0) WE+hE_t (a0 a) (8.3)

ZE,t («o « «''
2n2

di è2 ilt ZE + hE_l (a0aa')

and

Zt (a0 a < dE ZEj (a0 a a')

(8.4)

One obtains (8.1) for t #= 0, directly from (2.8) by standard calculation2)3).
The Markoffian approximation of the non-Markoffian master equation (8.1) is

given by:

ZEt (a0 a a') hEt (a0 a a') + 2nX2 \ dty.x dtxwEJi (a0a4) ZE.t («1 a «'!

X, t («o « a') + & DE + ; 0(a0) DE _ ì 0(a0)

X / da.x WE^i0E±i0 (a0 a,) Z^t (a, a a')

(8.5)
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In (8.5) the upper signs stand for t > 0, the lower ones for t < 0. The evaluation of
(3.1) in the Markoffian approximation gives*):

A+ lim / da.0 Afcn0) / dE dt ZEt (a0aa') lim -z— / dcn0 Afa.0)
2'-*±oo J J J r->±oo 2 71 J

dE DE + i0fct.0) DE_i0fa.0) \+ <5(a0 - a) ôfa. - a') ± VE^!0iE t ,-„ (a0aa') (8-6)

r |

+ 2tcX2 j dax WE T {0> £ t ,.0 (a0 a,) / <# Zj£, (a, a a')
o

Looking at (2.8) one easily recognizes that for large F, (S; 0), and after integration
T

over a0, 2n J dtZEt (a0aa') obeys the same equation as + ZETiritE±irj (a0aa') for
o

small rj. Therefore, considering (3.5) we obtain:

Al A± (8.7)

which represents the desired result.
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