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Potential scattering at high energies

by Walter Hunziker
Seminar für theoretische Physik der Eidgenössischen Technischen Hochschule, Zürich*

(23. VII. 63)

Abstract. An asymptotic expansion of the scattering amplitude for Schrödinger- and Dirac -

potential scattering in inverse powers of the wave number k is developed. In both cases the first
few coefficients of this expansion are given cxplicitely in terms of the potential V(x). In order to
simplify the proofs it is assumed that V(x) is infinitely often differentiable and vanishes with all its
derivatives faster than any inverse power of X as x -> oo.

The present work had its roots in a paper of N. N. Khuri and S. B. Treiman1) on
dispersion relations for Dirac potential scattering, where it is claimed that for fixed
momentum transfer the scattering amplitude diverges less rapidly than E2 as E -> oo

(E energy). Searching for a proof, we found a method leading to an asymptotic
expansion of the scattering amplitude in inverse powers of the wave number k. The
main part of this paper is devoted to the development of this expansion both for the
Schrödinger- and the Dirac case. Among the various possible applications we discuss
two which arc related to the original problem : the behaviour of the Dirac scattering
amplitude for fixed real momentum transfer and large complex energies in the physical
sheet Im k > 0, and the determination of the potential from the Dirac scattering
amplitude.

When this work was completed we learned that essentially the same high energy
approximation for the Schrödinger case has been previously derived by others2).
However, it seems that proofs are still desirable.

Finally I would like to thank Prof. R. Jost and Prof. M. Fierz for several
discussions in connection with this work.

1. Potential Scattering

The wave function ip(x) describing the scattering of a particle of initial momentum
fe under the influence of a potential V(x) is a solution of the integral equation

V(*) Vo(*) +] X' G (x-y) Ufy) ffy), (1)

*) Now at Palmer Physical Laboratory, Princeton University, Princeton N.J., USA.
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or, in operator notation, ' "

< •'- •,.

y> ip0 + G U ip
'

where
1 pilfX

G(x) - A- —y ' An x

is the Green's function of A 4 k2 satisfying the outgoing wave boundary condition.
The meaning of k, y>n and U is the following:

a) Schrödinger theory (units % 2 m 1

y>0 X* (incident plane wave) k ¦-- \k\ F1/2 (F energy) U V.

b) Dirac theory (units % c 1)

Here it is convenient to work with yj-functions whose values are 4 X 4-matrices
rather than 4-component spinors1).

y>0 1 e'fcx (1 4 x 4-unit matrix) k | fe | (F2 - m2)112 fm rest mass)

U =2EV - V2-ia.kV,k,
where the aA. are the usual Dirac matrices and V,k dV/dxk. Let us assume that tpfx)
is a continuous and bounded solution of (1). Then - under certain conditions on the
potential which are far more general than our later assumptions (30) - the scattered
wave cp G Uy> has the following asymptotic behaviour as x -> oo:

tpfx) e-'" Tfk', fe) + ofx-1) (2)

F(fe', fe) - Z Jd3 y e-ik'y Ufy) y,fy), (3)

where fe' /e */#. Tfk', fe) is the scattering amplitude. In the Dirac case it is a 4 x 4-

matrix, which is sometimes called the F-matrix. Our aim is to discuss the behaviour
of Tfk', fe) for k -> oo.

2. Formal Developments

Let F(z) be a given function of z. We do not impose precise conditions on Ffz),
since the following developments are only formal and preliminary. We define

.- l.'A|*-s| ik\s-y\
GFG(x,y) (4n)-2 d3z !v -r- Ffzx-z\ Iz~yI '

and we shall now derive an expansion of G F Gfx, y\ in powers of /e_1. First we choose

new cartesian coordinates v instead of z, so that the origin v 0 is at the point
1/2 (* + y) and the positive u3-axis goes through the point *. Then we introduce
elliptic coordinates cp, rj, t with foci x,y fx 4= y) :

vl a t ffi + 2)1'2 (1 - jy2)1'2 coscp 0 < t < oo

v2 a t ft2 + 2)1'2 (1 - r/2)1'2 sin^ -1 < rj < + 1,

vs a ft2 + 1) ij, 0 < cp < 2 Tr,

(4)
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where a 1/2 | x — y j. We note that v is an analytic function of t in a region
containing the positive real t-atds. This is the reason why we introduced t instead of the
usual elliptic coordinate f a (t2 A- 1). It follows from (4) that

| x - z | a ft2 + 1 - rj) | z - y \ a ft2 + 1 + if)

d3z d3v | x — z | | z — y | 2 a t dcp dr] dt,

2ji +1 oo

G F G(«, y) (4 n)-2 e2ika j dcp j dr] f dt 2 a t e2ikai% F ftp, rj, t)

(5)

We assume that F(cp,rj, t), and its derivatives with respect to t, vanish sufficiently
fast for t -> oo. Then we obtain by successive partial integrations

'.V

f dt2ate2ikat' F ftp, rj,t)
1

2* k

d-F
£(4ka)-"Vfn(0) V^??'°)

+ (4 k a) ~N'2 f dt /v (2 k1'2 a1'21) -^* f- fcp, rj, t)

where

Uz) e"**, fnfz) f f„_x(z) dz, fn 1, 2, 3 (6)

The functions fnfz) are uniformly bounded in the quadrant Re z > 0, Im 2 > 0, and
their values at 2 0 are determined in appendix I. In this way we arrive at the
following formal expansion oi G F Gfx, y) :

where

G F Gfx, y) Z|_|l £ k-ni2 Dn[2p{x> y) + k-sß jNit F(x> y) >

2.1 +1

DmFfx, y) /„(0) 2- a'1-'"/2»» | 4? / A, d~ (cp, r,, 0)

0 -1
2.7 +1 00

/n/2 F(*, y) 2- a'1-""2»» /" dp / dr, j dt /„ (2 W a1!2 t) -°£g- {<p> r/, t)

Next we show that, for odd n, Dnj2F(x, y) 0, so that (7) is actually an expansion in

powers of fe-1. It follows from (4) that F fcp, r], —t) F fcp + n, rj, f). Therefore

Dft) F fcp, rj, t)
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is an even function of t and consequently, for odd n, dnDjdt"(t 0) 0. For even n
the numbers /„(0) are given by

/o(0) l, /n(0)-TT3+5--.T»-X (« 2'4-6-)-

For later use we list here the first few coefficients Dnl2F(x, y) expressed in terms of
Ffz). It is to be noted that t 0 is nothing but the straight line joining * and y, so
that the coefficients Dni2F(x,y) are integrals over this line only:

+'

D0Ffx, y) a j dr] F(s)
-1

DxFfx,y)
+ i

if J dri(l-rl2)fAF)fs),
-i

+ i
D2F(x, y) ~Ì. f dn fl-if)2 fAAF)fs),

-i
+ i

- | f dr, (1 - rf) fAF) fs)

-i

(8)

where s 1/2 [(* +y) + rj fx — y)]. This is derived in appendix II. Sometimes we will
find it convenient to introduce the arc length s a fl A-if) measured from the point y,
in place of r]. So we write, for instance,

D0Ffx, y)= f Ffs) ds

3. Formal Expansion of the Resolvent

a) Schrödinger theory

We define two operators A and R by

A GV, 1 + R=(1-A)~1,

and assume R to be an integral operator with a kernel G fz — y) Hfz, y) Vfy). For
Hfz,y) we try an expansion in powers of k'1:

H H0+k-1HxA-k-2H2+ (9)

R has to satisfy the equation A R R — A. Applying the results of section 2, we
obtain a formal expansion of A R in powers of kr1, which we equate to the corresponding
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expansion of R — A :

(2 i k)-1 {D0fV Hn) + k-1 [DX(V H0) + D0(V Hx)}

+ y2 [D2fV H0) + DxfV Hx) + D0fV H2)] + ...}

- 1 + H0 A- k"1 Hx + k-2 H2 +
Comparing coefficients yields

Hx=f2tA1Dtt(VH0),

H2=A2iAADx(VHn) + Dn(VHx)},

Ha (2 i)-1 [XX X,) + XX X) + AX #2)].

H. P. A.

(10)

(11)

We see that each Hp is given in terms of Hn, n < p. Since II0 is known, we can compute
Hp recursively :

X=i

#i=27 / V{s)ds

H
1 / 1

;- 2 \ 2t /k(*)&) + \jdss{l- [x±JV)AVfs),

(12)

(13)

It is worth mentioning that there is another way of obtaining from (10) a recurrence
relation for Hr.

Hu=l + f2ik)~1D0fVH0),

Hx (2 i k)-1 DAY Ha) + (2 i kA1 D0fV Hx)

H2 (2 i k)-1 [D2(V HB) + DX(V Hx)} + (2 * k)-1 D0(V H2)

Recalling the explicit form of D0F(x, y), we see that in general

X

HAx, y) Gpfx, y) + (2 i k)-1 f ds Vfs) Hpfs, y), (14)

where the functions Gp(x, y) are given explicitcly in terms of Hn, n < p. (14) is a

simple one-dimensional integral equation for Hpfx,y). Differentiation with respect
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to *, keeping the direction of x — y fixed, reduces it to an ordinary differential equation,
which has to be solved for the initial value Hp(y, y) Gp(y, y). The solution is

Hpfx, y) Gpfx, y) + (2 * ky1 f ds Vfs) Gpfs, y) e
*'" ¦

'

(15)

By aid of this formula and (8), the functions HJx,y), for p 0, 1, 2, can easily be

calculated. We obtain for H0 and Hx:

ïTk~fV[')ds
Ho(x< y) e y

H1(*,y) G1(*,y) + 0(*-* (16)

x-y\
XjT X'*'0

TT, 2i£ J

AAV(x)e y 0(ä-

It is clear that the Hpfx,y) defined by (13) differ from those defined by (11) and
depend on k, so that (9) is no longer an expansion in powers of k~x in the strict sense.

However, the first expansion is easily reconstructed from the second, if

xp (2ik)~x f V(s)ds

is replaced by its power series.
The expression (16) for Ha clearly shows the connection with the WKB-approxi-

mation. In such an approximation, the resolvent kernel would be given by

i J \'W'-V(a)ds

Gfx-y) HWKBfx, y) - ~ - \x-y\
(17)

where it is assumed that the energy is so high that the classical path from y to x can
be replaced by a straight line. Expansion of the square root yields

1 />(•)*
HWKB(x,y)^e 2!X A-Ofk-3)

b) Dirac theory

We proceed in the same way as in the non-relativistic case. The main difference is
that U depends now lineari}' on E. (This energy-dependence makes the Born series an
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inappropriate tool at high energies, contrary to the Schrödinger case). In order to
make this explicit we write

U 2kW, W=V+k-lQ, Q=fE-k)V-^-fV2 + ia.kV,k). (18)

E — k is of the order of k~x for k -> oo, so that the energy dependence of Q is harmless.
The operators A, R are defined by

A GW, 1 + 2kR= (1 -2k A)-1.

Again the kernel of R is written in the form G fz — y) IIfz, y) Wfy), and for H we try
the expansion

H H0 + k-1 Hx + k-2 H2 +

From 2 k A R =¦- R — A it follows, as before :

H0=l-iD0fVH0),

Hx=-i [DX(V H0) + D0(Q H0)] - i DQ(V HA

H2=-i [D2(V H0) + DAY Hx + Q H0) + D0(Q Hx)] - i D0(V H2)

(19)

(20)

or, in general,

Hp=Gp-iD0(VHp),

where again Gp is determined by all Hn with n < p. This is the same kind of equation
as (14). The solution is

H fx, y) GAx, y)-i ds Vfs) GAs, y) e

i f Visas'

(21)

From this we obtain after some partial integrations :

H0= e y

i f V(.) i

-ifv(s)ds *
Hx= —i e y / Qfs) ds

i X -'/"(•')*- ?iU sr- j dse • J ds \1 + ^j s
- i f Vis) di

AAVfx) e y

(22)

Again H0 can be understood as the high energy limit of a WKB-approximation. If we

neglect the term k~x Q in W for high energies, the WKB-resolvent kernel is given by
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(17), provided V is replaced by 2 k V. Expansion of the square root yields HWKBfx,y)
H0(x,y) + 0(k-1).

Furthermore, since H0 4= 1, the resolvent does not converge to the first Born
approximation as k -> oo, contrary to the Schrödinger case. In fact, a formal
application of (7) to the n'th Born term shows that this term gives a non-vanishing
contribution

/ - \"'

V(s) ds |

to H(x, y) in the limit k -> oo. Summing over these limits, we again obtain (22) for
H0fx,y). However, nothing is known about the convergence of the Born series at
high energies.

4. Proofs

a) Schrödinger theory

Two things are to be proved: first, that for sufficiently high energies the resolvent
(1 — A(k)A1 1 + Rfk) exists, and secondly, that Rfk) admits the asymptotic
expansion (9) (13) derived formally in section 3. (The proof of (11) is completely
analogous.) We start by giving a precise meaning to the operators A, R. For this we
introduce two function spaces C0, Cx, whose elements are complex valued continuous
functions ip(x) normalizable in the following sense :

W e Zj : II V Ilo SUP I ffx) | < °°
X

ipeCx: X li — SUP (1 + x) I v(x) | < °° •

(23)

Obviously Cx C C„ and |[ tp ||0 < || ip |L for all y e Cx. Next we consider an operator A
mapping C0 into Cx and define its norm in the usual way by

XX sup IXvili- (24)
llvll.-i

Let Ax, A2 be two operators of this kind. It follows from ||y|0< ||v||i that
| Ax A21 < | Ax| \A2\. Together with the completeness of Cx this implies

Lemma 1: Let A be an operator mapping C0 into Cx and | A \ < l.Then (1 — ^4)^
1 + R exists. R is an operator mapping C0 into Cx and

it?i^ LU\R\<-i-Aa\-
Now we can explain the idea of the proof. We define an integral operator Rn(k) by
the kernel

n

G (x-y) H")(x, y) V(y), P(», y) ]T lr» Hp(x, y), (25)
£-0
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where the functions Hp(x,y) are explicitely defined by (8), (13), (15) in terms of the
potential. If these functions turn out to be sufficiently regular, so that the formal
calculations leading to (13) can be justified, it is clear that R(n)(k) is a solution of the
equation A R R — A, up to terms of the order of k~"~312. More precisely, we expect

e<»>(Ä) .1 A'f"> - F<"> + .4 (26)

to be an operator mapping C0 into Cx and

| £<"»(*) | yXk-"-3'2, (27)

where X is some constant independent of k. (26) is equivalent to

[1 - A fk)} [1 + RMfk)] 1 - £<">(£) (28)

For sufficiently large k, we have [ rPl)fk) | < 1/2, so that by Lemma 1, (1 — £(M)(£))-1

l + ò{n)(k) exists and | ô{n)fk) \ < 2 X Ir"-3'2. Then we conclude from (28) that
(1 — Afk))-1 exists and is given by

1 + Rfk) [1 -I- RMfk)] [1 + <5'")(ä)]

If | R{n)fk) j turns out to be uniformly bounded for large k, we finally arrive at the
result we are looking for :

[ RWfk) - Rfk) | < const, k-"-3'2 (k -> oo). (29)

Leaving the question of the validity of this result for arbitrary » open, we content
ourselves with the proof for n 2. In order to confirm (27), we have to justify the
formal expansion (7) of G F Gfx, y), to the required order N, where

Ffz) Vfz) Hpfz, y) (p 0, 1, 2)

and to estimate all the coefficients DnFfx,y), InF(x,y) which occur. In order to
simplify these estimations, we assume

V e S (30)

where S denotes the class of infinitely often differentiable functions ffx) which,
together with all its derivatives, tend to zero faster than any negative power of x as

x -> oo. (It should be noticed, however, that this condition is far from being necessary.
For instance, it would be sufficient to assume the existence of a finite number of
derivatives vanishing faster than some finite power of x^1 and x -> oo. Any more
general condition would at least have to ensure the boundedness of the integral
operators with kernels Gfx,y) HP(x,y) Vfy). Between this and (30), there is still a

wide field for possible generalizations.)
Under the assumption (30) the functions HPfx,y) (p 0, 1, 2) have a common

property on which all further estimations will be based, namely :
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For p 0,1,2 Hpfz, y) may be written as HPfz, y) WP fz, \ z — y j, y), where
Wfux uit y) is infinitely often differentiable with respect to ux ui and

1 dkW
'z, \z-y\,y) <C (1+ \z-y\Y, (31)

dux', dui'

C and n depending only on p and kx kt. We shall refer to this property by writing

Hpe%.

Proof: 1. If H e % then by (8) and (30) DnfV H)e% for n 0, 1, 2.

2. If GP e %, then by (15) HP e %.

3. G0 1 e SI, therefore, by (13) and (15) HP e « for p 0, 1, 2.

We know from (4) and (5) that z and \z — y\ are analytic functions of t in a region
containing the positive real i-axis, provided that a 4= 0. It is clear therefore that, for
fixed * 4= y, the formal procedure of section 2 is justified to every order N; since

according to (30) and (31 all the derivatives with respect to t exist and the convergence
of the integrals is ensured by (30). We are left with the estimation of the coefficients
DnF(x, y), I„ F(x,y). The results are collected in the following Lemma:

Lemma 2: We assume Ffz, y) S(z) A (z, y), S e S and A e SU.

Then there exist constants C and m such that

| DnFfx, y)\ < C (1 + y)m n 0, 1, 2

\I„Ffx,y)\ <Cfi-\- y)'", n 0, -i, 1, \,2,
I Xa Afx, y)\<C (1 + y)" (1 + | * - y I-1'2).

We omit the proof of this Lemma because there are too many integrals to be considered
and the method is always the same. An example is given in appendix III. We are now
ready to estimate the norm of the integral operator e(2)(fe), whose kernel is G fx — y)
E(x,y) V(y), where

E Ä~7 [Z,2 fV H0) + Im fV Hx) + Ixl2 fV H2)]. (32)

F e S implies j V(y) | < A (1 + y)~", p arbitrarily large and A depending on p only.
Then it follows from (31) and Lemma 2 that

I e<2>(£) | < const Â-"2 / dy y2 (1 + y)"-P sup [ZX fdQ [| x - y (-1 + | * - y X'2]]
o *

The supremuni can be estimated using the formula

x + y

-— dû f fix - y\) / r f(r) dr
A ti J ' v 'I' 2 xy j 'v '
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and turns out to be bounded by const. (1 +y~3'2). Therefore (27) is proved if we
choose p > m + 3. In the same way it follows from (13) and Lemma 2 that j R{2)(k) \

is uniformly bounded in k. This completes the proof of (29) for n 2.

b) Dirac theory

After a few minor modifications, the foregoing proof also applies to this case.
Since tpfx) is a matrix-valued function, \%p(x) j has to be identified with some reasonable
kind of matrix norm, for instance,

| f |2 sup (xp x, W X) •

y.

where % varies over the unit sphere (%, %) — 1 in four-dimensional unitary spinor space.
Continuity of f(x) can be defined with respect to this norm. The definitions of C0, Cx

and J A j are taken over literally and Lemma 1 remains true as it stands. F(,1)(/j) is

defined by its kernel

G {x-y) //<»>(*, y) W(y), #<»>(*, y) £ y» Hpfx, y) (33)

where the HPfx,y) are the functions determined by (20) and (21). Then we expect

£<»>(£) 2 k A F<"> - F<"> + A (34)

to be an operator mapping C0 into Cx and

\é"\k)\ <Xk-"-V2. (35)

(34) is equivalent to

(l-2kA){l + 2k F<">) 1 - 2 k £<»>(£), (36)

therefore we have to take at least n 1 in order to prove the existence of (1 — A fk))~x
for sufficiently large k. Provided that | R^fk) \ is uniformly bounded for large k, it
follows from (35) and (36) that

| RWfk) - Rfk) | < const /fe-»+!'2 fk -> oo) (37)

In order to prove (35) for n 2, we note that (31) also applies to the Dirac case. The
kernel of e{2,(k) is G (* — y) E(x, y) W(y), where now

F -i Ä-W [/6/2 (V H„) A- Lij2 (QH0+V Hx) + Ixl2 fQHx+V H2)

+ kr* D0fQ H2) + k-1'2 I0fQ H2)]

Using (31) and Lemma 2, the proof of (37) for the case n 2 is completed as in the
Schrödinger case.
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5. The Scattering Amplitude

a) Schrödinger theory

It is clear that the scattering amplitude exists whenever (1 — A)-1 1 + R exists
as an operator on C0, and is given by

Tfk', fe) lim x e~ik* cpfx) (38)

where cp R ip0, and x -a» oo is to be understood in the fixed direction of fe'. On the
other hand, we define

F<3>(fc', fe) lim xe-ik*cpA\x), (39)

where cp{2) F(2) f0. The existence of this limitfollows from (13), (8), (30) and (31).
For the difference F(2) — 7' we obtain, by (29) and | Volo— 1- f°r sufficiently

large k:

F'2'(fe', fe) - Tfk', fe) X 1 lim x e~ik* ftpW(x) - wfx)) I

*—J-OQ

< II <P&) - w Ii < I R&) - R\< C01lst Â""2
(40)

uniformly for all directions of fe' and fe. The explicit form of F(2) is too long to be

reproduced here ; we content ourselves with terms up to order k~2 :

Tfk', fe)
1 /¦_ -'<*'-*>r+î7ï/>M*

aac *y Vfy)

1

16jiA2
d3v e -itjk' -k)y Vfy) j ds s AAVfx) e y ,..+ 0fk-3),

(41)

where s y + s k'jk and 10(Â-3) | < C k~3, C being independent of fe', fe. This follows
from (16) and Lemma 2. An equivalent expansion is obtained either from (12) or by
replacing exp ((2 * k)^1 J V ds) in (41) by its power series:

F(fe', fe) ~ X y>y X(fe'-fc>'F(y)

co / co \ 2 °o

1 + AJjfV^ds + ì(AAlfV^ds) +^JässAV(s) +0(k-3).
0 \ 0 / 0

It is seen that for fe fe', the coefficients of odd powers of k^1 are purely imaginaty,
those of even powers real. By the optical theorem, the total cross section afk) is

given by

a(k) rA. im Tfk, fe).

54 H. P. A. 36, 7 (1963)
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We conclude that cr(fe) admits an asymptotic expansion in powers of E'1. The leading
term is found to be

o-(fc) - ~ /'[dy, dy2 fdy, V(y)f + 0(F~2)

where the y3-axis has been taken along the direction of fe. For a spherically symmetric
potential V V(r) 4= 0, this leading term cannot vanish.

b) Dirac theory

In the same way as in the non-relativistic case, we obtain

| F<2>(fe', fe) - Tfk', fe) j < const k-1'2. (42)

The leading term of the F-matrix is isotropic, i.e. proportional to the 4 X 4-unit
matrix :

oo

-»(fe'-fe)-i f F(»)J»

Tfk', fe) -1 A- I d3y e » Vfy) + 0(k°). (43)

The leading term of the non-isotropic part F — 1 /4 trace T, which is responsible for
the polarisation phenomena at high energies, is found to be

(T - - trace t\ fk', k)

OO

- Uk--k)y-i[ V(,)ds
A^dsve u
An I iV,k(y) + V(y) j V,k(s) ds A- 0(/%-!'2)

(44)

In the derivation of the last result use is made of the fact that trace ak 0 for all k.

6. Further Discussion of the Dirac Scattering Amplitude

a) Complex energies

In the following we discuss only the spherically symmetric case V V(r), so that
the F-matrix can be considered as a function of energy E and momentum transfer
A 1/2 jfe - fe' |. In ref. ») it is claimed that TfE, 1)/F2 -X 0 for E -X oo, uniformly
in the cut plane Im (F2 — m2)1/2 > 0, for fixed real I. For real E this is confirmed by
our result (43) which implies

00

tip A\ 1 r -2'Ay-' f ''Ma's
lim ^ l=-4rr d3ye « V(y)^TJA), (45)

/'. —> oo /- £ 71 J

where s y -\- s n, n being any unit vector perpendicular to A. We shall show now
that this remains true for complex energies, if the potential satisfies the additional
conditions
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/ drear \Vfr) | < oo / dr e" dV
dv < oo

for some a > 0. The precise statement we want to prove is the following :

For any fixed real A, the analytic continuation of TfE, A) to complex E exists in
some region \E\ > MfA) of the cut plane Im k > 0, and satisfies

hm Z!|Z> TJA) (46)

uniformly in all directions.

Proof

1) We introduce the vectors

A ^\fk' -k), n2 1, p i (fe' + fe) p n na 0. (47)

If F becomes complex, so that Im k > 0, A and n remain real andp (F2 — m2 — J2)1/2
is uniquely defined by the requirement Im p > 0.

2) The incident wave 1 etkx is no longer bounded for complex k. For this reason we
consider the transformed scattering equation

V' y'0+G'Uf', (48)

where

tp'fx) =v(») X*"*, y>0(*) ie-«\4*+ «>-*»•*, G'fx.y) Gfx, y) e-««(«-r)

and, instead of C0, the larger space Cœ of all continuous functions tpfx) normalizable
in the following sense :

llvll«= snpe'" \tp(x) | <oo.

For k -> oo, we have p — k x A2j2 k, so that | Im (p — k) | < a for sufficiently large
| E j, and consequently y>'0 e Ca.

3) The whole of sections 3b and 4b applies also to the transformed equation (48), if
G is replaced everywhere by G' and G0 by Ca. R'fk) and R'{n\k) are then defined as

operators mapping Ca into Cx. The functions HP(x,y) remain unchanged. For
sufficiently large | k \ R'fk) exists and

| R'Wfk) - R'fk) \ < const j k X'2 (| k | -> oo, Im k > 0) (49)

4) The definition (38) of the scattering amplitude is no longer appropriate for
complex k; instead we use the integral representation (3). It is then natural to split
the F-matrix into the first Born approximation (which is a linear function of E and
therefore can be trivially continued to complex F) and the contribution TX(E, A) of
the scattered wave. The continuation of TX(E, A) is defined by

TxfE, A) - ~ I'cPx e-iA*-HP-k)n* u^ (f/^ _ (50)
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where cp' 2k R' tp'0. There exists a constant MfA), depending only on A, such that
for I F I > MfA) and Im k > 0 R'fk) exists and | Im fp - k) \ < a. This implies
ij9j e Cx and therefore the integral (50) is absolutely convergent. Moreover, the function
TxfE, A) defined by (50) is known to be analytic in F for | E \ > MfA), Im k > 0 and
continuous for | F | > MfA), Im k > 01)3). If we define T'^fE, A) in the same way,
but with ç/M 2 fe F'C*' ip'0 instead of <//, it follows from (49) that

I F«2)(F, A) - TX(E, A) j < const | k j1'2 (51)

for I E j -x 00, uniformly in the cut plane Im /e > 0.

To prove (46), it is therefore sufficient to deal with

T[2)(E, A) (4 71) 2 / d3x d3y H2\x, y; k)
J ìx~yì (52)

¦ U{X) U(y) e-i^xAy)-HP-U»(x-y)
_

|

where H{2)(x,y; k) is the function defined by (33) and (20).
5) The high energy behaviour of Ti2)(E, 4) is obtained by adapting the method of

section 2. Let F(z) be a given function of z, which is sufficiently regular and vanishes

sufficiently fast aszx 00. We define

T F(y) - A- jdAz — r - F(z)v-" An J \*-y\
In order to obtain an expansion of F F(y) in inverse powers of k we first introduce
new cartesian coordinates v instead of z, with the origin v 0 at the point y, and with
the positive i)3-axis in the direction of n. Then we define parabolic coordinates
cp, rj, t by

I n\ 1I2
vx t (A) coscp 0 < t < 00

/«\i/2
v2 M Z sm^ ' 0 < >/ < 00

^3 2 ('/ - y) ' 0 < c? < 2 jr

It follows, as in section 2, that

Zk-*DnS2F(y)+k-Nl*ImF(y)T F(y)
1

4iA Jl-0
with

DHl2F(y)- 'fj J dcp] d,j°d;n fcp,,,,0),
Ü 0

2 JT co 00

X2 HV) 2-n f dcp f dt, j dt /„ (fe1'2 0 ^Z ((?> ?/> 0,
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where the functions fn(z) are defined by (6) and where again Dnj2 F(y) 0 for odd n.
t — 0 is the ray with origin y, in the direction of n, so that

D0F(y) 2 / ds Ffs) s y + s n (54)

We now apply this to T{2>(E, A). (The justification, which is based on (31), is omitted
here.) From (52) and (53) we find, noticing that û n 0,

9

S° -i f V(s')ds'-Hp-k)s
F<2'(F, /1) - ZX / ^3y g-2.^ F(j) y ds y(g) e + 0(| k |0)

0*

Because p — k x A2j2 k for k -X oo, we can replace exp (— i fp — k) s) by 1 to the
same order of accuracy. Then the integration over s can be carried out, and we obtain

T(2)(E, A) in I d3y y^y Vfy) e o

; y F(s) is
0(1 ah.

Adding the first Born approximation removes the term — 1. Together with (51), this
completes the proof of (46).

b) Determination of the potential

As an application of (45), we show that the potential is uniquely determined by the
high energy limit of the F-matrix, i. e. by the function 7,00(/1 The corresponding result
in the non-relativistic case is well known : lim TfE, A) is equal to the first Born approxi-

E—>oo

mation F0(Zl), which is the Fourier transform of the potential. To compute Vfr) from
T^afA) we write

Vfr) WfA) Fco(d) gft2), (55)

with r=2A. Choosing the y3-axis in the direction of n, we get from (45) :

g(r2) --i Jdyx dy2 c-<(*.* + ™> hfQ2),

-if W(g' + s')ds

hfe2)=jdyse y, W fe2 + y2)

(56)

where t2 x\ + t2 and cf y\ + yl. gfr2) is the two-dimensional Fourier transform
of hfçf), therefore, by Fourier inversion:

hfu) =- dv /0 f]ju v) gfv), (57)

where J0fz) is the usual zero order Bessel function. Next we note that the integral (56)
can be evaluated in closed form, yielding

hfu)
- i f Wiu + s") ds
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Together with (57), this implies

/(«) / W fu + s2) ds i log 1 dv /0 (i/m v) gfv)

H P. A.

(58)

where the logarithm is uniquely defined by the requirement that/(w) be continuous
and vanishes as u -X oo. The calculation of W from/is easily carried out in terms of
the Laplace transforms W and/:

W(t)=('n)lßk)- (59)

(55), (58) and (59) determine the potential Vfr) explicitely in terms of T^fA).

Appendix I
We have to compute

oo oo OO

/„(0) J dzx f dz2... j dzn X«'2 fn 1, 2, 3

0 Z! Z„ _

where all the paths are to be taken along the real axis. We can displace these paths so

that the}' become

2v x,. eJ*l* fxk real, 0 < % < x2 < < xn).
Therefore

oo oo

U0) ein*l*j dxx j dx,... J dxne~W,

and after n — 1 successive partial integrations one arrives at

)«7T/4

w) -&=wj-r j dx xi»-»e-z*12 ein"l* 2((M/2,-1) X»/21-1) V* /
(«-!)! '

For even n this is equal to the result claimed in section 2.

Appendix II
In order to express Dni2 F(x, y) in terms of F(z) and its derivatives with respect

to the cartesian coordinates z, we put

vx Q coscp, v2 q sincp Vn a,
d d ò

012 COS09 -, h smœ ,— 0„ -, -" r dvx r dv, ó dv3

/)"" - 4^ d12 a "A- A.
d"a

A "i2 ~r ppr us ¦

(60)



Vol. 36, 1963 Potential scattering at high energies 855

The functions q(ij, t) and a(r,, I) are given by (4). We add a subscript 0 to a function of
cp, i,, t to denote its values at t 0. The following formulae will prove useful:

(D»F)0 21'2 a (1 - tfA2 (t)x2F)n, (F<2>F)0 2 a r, dsF0,

(ZW)0 =3-2 w a (1 - ,fA2 (dX2F)0, (D*F)0 0

'« '

L\ dcp(òl2F\
o

(d^F)0 (« even)

(61)

(62)

where

I 0 (« odd)

r)2 ô2

X2 ~ a..» 4

Applying this to DxFfx,y), for example, we get

ZZ (Z>;>)2F + £><2>F,

and therefore, by (61) and (62),

2ji +1 +1
I

2

J57I -f- A 4-1 +1

^ y dcp j dv g )o «2 y ^ (1 _ ,/2) (zJi2jF)o + 2 «. y" di, », d3F0

But since v3 ai, for £ 0, we can transform the second integral by partial
Integration and then combine it with the first one. In this way, we obtain the result

ì+f dtp f dr, (°£-)o= a* J dr, (1 - ,f) (AF)0,
o -1 -1

which leads immediately to the expression (8) for Dx Ffx, y). The analogous calculation
of D2Ffx,y) is easily carried out using (61) and (62).

Appendix III
We use the cartesian coordinatesi? introduced in section 2 and define v4 \z — y\.

The connection with the elliptic coordinates is given by (4) and (5). The assumptions
of Lemma 2 imply that

Ffz, y) W(vx... vit x, y),
"" "

(fp. rj, t, x, y)
i < C (1 + z)-<p + ") (1 + v,Y <Cfl + y)p + n (1 + i,4FP

dvA ¦ ¦ ¦ àvA

for all cp, ij, t, x, y, p arbitrarily large. The first inequality follows from (31) and S e S,
the second from l+\z—y\<,l + z+y<fl + z)fl+y). Now we consider as an
example the estimation of /3/2 Ffx,y), where we must majorize

2ji +1 oo
d4F

a-1'2 j dtp J di, j dt | -p- (cp, r], t) I

o-io
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Ò4Fjdt4' is a sum of products of the form

òkW
Pfcp, r,, t) —AAw ' ' dvA ¦ ¦ ¦ dvk'

where P is any product of derivatives of the vk with respect to t of total order 4, e.g.
vi Z» Z"> (v'x)3 X The last of these examples yields, for instance,

Pfcp, i], t) 16 aA cos3cp rj (1 - rj)3'2 t if + l)3 ft2 + 2)~3'2.

In this case, we have to estimate

+ 1 oo

(1 + y)p + n a"2 / dr, \r,\fl- jy)3'2 f dt t ft2 + l)3 ft2 + 2) ~3'2

• [1 + a ft2 + 1 + i])]~p fl + y)p + n Ifa).

To verify the result claimed in Lemma 2, we have to show that Ifa) is uniformly
bounded in 0 < a < oo. If we choose p > 5/2, it is clear that Ifa) exists and is

continuous for 0 < a < oo, so that only the behaviour of Ifa) for a -X 0 and a -X oo
needs further consideration:

oo

a -» 0 : 7(a) < const a7'2 /" <ft * ft2 + l)3'2 [1 + a t2yp,
o

CO

< const a f ds fs + 1 )3/2~p (a < 1).
0

Taking p > 5/2, we have

Ifa) < const a fa -> 0)

a —> oo :

+ 1 oo

/(a) < const a"2 / ^ (1 + i,A2 [1 + a (1 + r,)AF' f dt t ft2 + l)3'2 [1 + a t2]-p\
-i o

oo oo

< const f dr A2 (1 + r)^p> f ds fs + l)3'2-p* fa > 1)

0 0

where px + p2 p. Taking pX2 > 5/2, we have

Ifa) < const fa ->oo)
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