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Potential scattering at high energies

by Walter Hunziker

Seminar fiir theoretische Physik der Eidgendssischen Technischen Hochschule, Ziirich *)

(23. VII. 63)

Abstract. An asymptotic expansion of the scattering amplitude for Schrédinger- and Dirac-
potential scattering in inverse powers of the fvave number % is developed. In both cases the first
few coefficients of this expansion are given explicitely in terms of the potential ¥ (x). In order to
simplify the proofs it is assumed that V(%) is infinitely often differentiable and vanishes with all its
derivatives faster than any inverse power of x as ¥ —> co. '

The present work had its roots in a paper of N. N. Kuurt and S. B. TREIMAN!) on
dispersion relations for Dirac potential scattering, where it is claimed that for fixed
momentum transfer the scattering amplitude diverges less rapidly than E? as £ - oo
(E=energy). Searching for a proof, we found a method leading to an asymptotic
expansion of the scattering amplitude in inverse powers of the wave number %. The
main part of this paper is devoted to the development of this expansion both for the
Schrédinger- and the Dirac case. Among the various possible applications we discuss
two which are related to the original problem: the behaviour of the Dirac scattering
amplitude for fixed real momentum transfer and large complex energies in the physical
sheet Im £ > 0, and the determination of the potential from the Dirac scattering
amplitude.

When this work was completed we learned that essentially the same high energy
approximation for the Schrédinger case has been previously derived by others?).
However, it seems that proofs are still desirable.

Finally I would like to thank Prof. R. Jost and Prof. M. Fierz for several dis-
cussions in connection with this work.

1. Potential Scattering

The wave function y(#) describing the scattering of a particle of initial momentum
k under the influence of a potential V(#) is a solution of the integral equation

pi®) = vol¥) + [ @ G (5= 3) U) p(y). o

*) Now at Palmer Physicél Laboratory, Princeton University, Princeton N.J., USA.
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or, in operator notation, I ,
| py=4+ Uy,
where T
1  ethe

GE) = — — —

47 x

is the GREEN’s function of A + #? satisfying the outgoing wave boundary condition.
The meaning of %, y, and U is the following:

a) Schriodinger theory (units & = 2m = 1)
= giks (incident plane wave), & = |k| = EY2 (E =energy), U=V.
b) Dirac theory (units & = ¢ = 1)

Here it is convenient to work with y-functions whose values are 4 x 4-matrices
rather than 4-component spinors?).

wo = 1¢** (1 =4 x 4-unit matrix), &= |k|= (E%— m?)'? (yn = rest mass),
U=2EV—-V:_iqV,,

where the «, are the usual Dirac matrices and V,, = 01V//0x;. Let us assume that ()
is a continuous-and bounded solution of (1). Then - under certain conditions on the
potential which are far more general than our later assumptions (30) — the scattered
wave ¢ = G U p has the following asymptotic behaviour as x - co:

plx) =~ T(k', k) + o(x1), (2)
T, k)~ — oo [y e ® U (), 3)

where k' == k x/x. T(k’, k) is the scattering amplitude. In the Dirac case it isa 4 X 4-

matrix, which is sometimes called the T-matrix. Our aim is to discuss the behaviour
of T(k’, k) for £ - co.

2. Formal Developments

Let I'(z) be a given function of z. We do not impose precise conditions on F (),
since the following developments are only formal and preliminary. We define

ik|x—=| Bik]:.fyl

GF Gy =(ta)? jdgz Taozy T

%3

3

Bl
and we shall now derive an expansion of G FF G(x, y) in powers of £~1. First we choose
new cartesian coordinates v instead of z, so that the origin v = 0 is at the point
1/2 (» 4+ y) and the positive vz-axis goes through the point x. Then we introduce
elliptic coordinates ¢, %, ¢ with foci &,y (¥ * y): |

v, = at ({2 4 212 (1 — P2 cosp, 0< t< oo, l
vg=at (4 212 (1 - p?)¥2sing, —-1<<y<+1, (4)
vg=a (> + 1)y, 02 = 2 oy J
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where a = 1/2 | — y|. We note that » is an analytic function of ¢ in a region con-
taining the positive real #-axis. This is the reason why we introduced ¢ instead of the
usual elliptic coordinate & = a (#2 + 1). It follows from (4) that

#—z|=a(®+1-9n), |z-y[=a@+1+7),
dz=dv=|x—2z||2—y|2atdpdydt,

27 +1
GFGmyp:mﬂy%mM]c@ 'm%/ﬁZamm“‘H¢n)
B J

=1

We assume that F(g, , ), and its derivatives with respect to ¢, vanish sufficiently
fast for # > oco. Then we obtain by successive partial integrations

i » o"F
fdthztez”W‘ Flg,nt) = LZ (4 ka)~ "% £,0) A
—-NJ2 > o 5 0N+1F
+ (4 ka) Vi/duygkmamn—3ﬁ4fw%nJ),
where
@) =, @)= [ fualdds,  (1=123..). (6)

The functions f,(z) are uniformly bounded in the quadrant Re 2 >> 0, Im z > 0, and
their values at z = 0 are determined in appendix /. In this way we arrive at the
following formal expansion of G F G(x, y):

GFGlx,y) — 2FY

N
nit | 2 B Dyl 9) + AP Ly Fiw g (D)

where
1

+
d(p / d atn (P’ Tll’ O)
-1

'.'Z

Do F (%, y) = [,(0) 27" alt =)

Gt_\\m

2n 1 0o
O —n ,(1—(n/2)) r 12 g1/2 o"*lF
w2 F(%,9) =27"a /d(p] dn/ att, (2 kY t) ()t"+1 (@, 1, 1) .
0

-1

Next we show that, for odd n, D, ,F (%, y) = 0, so that (7) is actually an expansion in
powers of -1, It follows from (4) that F(p,n, —t) = F (¢ + 7, %, {). Therefore

Ef@F@mﬂ
0
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is an even function of ¢ and consequently, for odd #, d"D/dt"(t = 0) = 0. For even n
the numbers f,(0) are given by

,in/2

BO =1, [0 =155 o7 B=246.).

For later use we list here the first few coefficients D, ,F (%, y) expressed in terms of
F(z). It is to be noted that ¢ = 0 is nothing but the straight line joining ¥ and y, so
that the coefficients D, ,F (%, ) are integrals over this line only:

DF(x,3) =a [y Fs),
% |
1

. g g
DiF(®,y) = S~ [ dn(1—1P) (4F) (5),

a3

+1
DyF(s,y) = — 5, | dy(l—P)?(44F) (s),
-1

— < / df? (1 — %) (4F) (),

where s = 1/2 [(¥ 4+ ¥) + 7 (¥ — ¥)]. This is derived in appendix IT. Sometimes we will
find it convenient to introduce the arc length s = a (1 + #) measured from the point y,
in place of 7. So we write, for instance,

F(x,y)= | F(s)ds
/

3. Formal Expansion of the Resolvent
a) Schrodinger theory
We define two operators 4 and R by
A=GV, 14+ R=(1-A4)"1,

and assume R to be an integral operator with a kernel G (z —y) H(z,y) V(y). For
H(z, ¥) we try an expansion in powers of £71:

H=Hy+ k' H +k2H,+ .... ~(9)

R has to satisfy the equation 4 R = R — A. Applying the results of section 2, we
obtain a formal expansion of A R in powers of 21, which we equate to the corresponding
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expansion of R — A:
(21 R)=1{Do(V Hy) + k=1 [Dy(V H,) + Do(V H,)] ‘
+ k=2 [Dy(V Hy) + Dy(V Hy) + Do(V Hy)] + ...} (10)
=—1+Hy+kYH +h2Hy+ .... J

Comparing coefficients yields
Hy=1,
H,= (2)72Dy(V H,),
Hy,= (27)7*[D(V Hy) + D,(V H,)], (11)
Hy= (27)7Y [Dy(V Hy) + Dy(V Hy) + Do(V H,)],

We see that each H, is given in terms of H,, n < p. Since H is known, we can compute
H, recursively:

Hﬁ — 1 §
oA
H = / V(s) ds,
’ (12)
1 1 J : 1 f 3
Hy= (21. / 7 (s) ds> =3 dss (1 W—}l’)_m/(s)’
G :

It is worth mentioning that there is another way of obtaining from (10) a recurrence
relation for H,:

Hy=1+ (21 k)= Dy(V Hy),

H,—= (2ik)-'D,(V Hy) + (21 k)~ Dy(V H,),

(13)
Hy= (20 k)1 [Dy(V Ho) + Dy(V Hy)] + (27 k)71 Do(V Hy)
Recalling the explicit form of D F (%, y), we see that in general
H,(x,y) = G,x,9) + (27 k)1 / ds V(s) H,(s, y), (14)

y
where the functions G,(#, y) are given explicitely in terms of H,, n < p. (14) is a
simple one-dimensional integral equation for H,(», y). Differentiation with respect
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to ¥, keeping the direction of ¥ — y fixed, reduces it to an ordinary differential equation,
which has to be solved for the initial value H,(y, y) = G,(y, ). The solution i1s

x 1

Hy(5,3) = Gy(x.9) + 2101 [ dsV(s) Gylo,9) ™™

y

/
- [ Vsyds’
¥ ' (15)

By aid of this formula and (8), the functions H,(x, y), for p =0, 1, 2, can easily be
calculated. We obtain for H, and H,:

X
1
o =25 7 9
e fI(s)a‘.s
5 4

»

Ho®y)=e

Hy(%,y) = (%, y) + 0(k?) ¢ (19

X 1 x
1 4 ( vi.fV(s)ds)}
3 fast s alve e ) o,
Y

It is clear that the H,(x,¥) defined by (13) differ from those defined by (11) and
depend on %, so that (9) is no longer an expansion in powers of 21 in the strict sense.
However, the first expansion is easily reconstructed from the second, if

CRp ‘(2»5/@)—1_[ V(s) ds

Y

is replaced by its power series.
The expression (16) for H, clearly shows the connection with the WKB-approxi-
mation. In such an approximation, the resolvent kernel would be given by

X
i [VEE-Vas
1 ey
Gx—y) Hygpl®y) =— o

EE

; (17)

where it is assumed that the energy is so high that the classical path from y to & can
be replaced by a straight line. Expansion of the square root yields

X
1
& -fV(s)ds
Hypp®, y) =e¢ B + 0(k—3) .

b) Dirac theory

We proceed in the same way as in the non-relativistic case. The main difference is -
that U depends now linearly on E. (This energy-dependence makes the Born series an
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inappropriate tool at high energies, contrary to the Schrédinger case). In order to
make this explicit we write

U—2kW, W=V4+k1'Q, Q—=(E-RV——021tiqV,). (I8
2 k k

I — ks of the order of 27! for £ - oo, so that the energy dependence of @ is harmless.
The operators 4, R are defined by

A=GW, 112kR=(1—2kA)

Again the kernel of Ris written in the form G (z — y) H(z, y) W(y), and for I we try
the expansion .
H=H,+rYH,+k2H,+ ... (19)

From 2k A R= R — A it follows, as before:
Hy=1—-:7DyV H,),
Hy = —i [Dy(V Hy) + Dy(Q Hy)] — 2 Dy(V Hy) ,

Hy = —i [Dy(V Hy) + Dy(V Hy + Q Hy) + Do(Q Hy)] — 2 Do(V Hy)

or, in general,

H,=G,—1Dy(V H,),

where again G, is determined by all H, with n <C p. This is the same kind of equation
as (14). The solution is

H,(x, y) = mzfmv )ﬂ!m’. (21)

From this we obtain after some partial integrations:

X

—if Vis) ds

Hf»wey f@ s) ds

+ = fdse s fds 1 P Ll (V(r) e_i:;[ V(s)dS)LZS’

J

Again H, can be understood as the high energy limit of a WKB-approximation. If we
neglect the term £2~1 Q in W for high energies, the WKB-resolvent kernel is given by
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(17), provided V is replaced by 2 £ V. Expansion of the square root yields H g g(#,¥) =
Hy(%,y) + 0(&7).

Furthermore, since Hy + 1, the resolvent does not converge to the first Born
approximation as & -~ oo, contrary to the Schrodinger case. In fact, a formal appli-
cation of (7) to the n’th Born term shows that this term gives a non-vanishing

contribution
1 . "
H(_f,/ V(s) ds)
Y

to H(x, y) in the limit £ > co. Summing over these limits, we again obtain (22) for
Hy(», y). However, nothing is known about the convergence of the Born series at
high energies.

4. Proofs

a) Schridinger theory

Two things are to be proved: first, that for sufficiently high energies the resolvent
(1 —A(R) =1+ R(k) exists, and secondly, that R(k) admits the asymptotic
cxpansion (9) (13) derived formally in section 3. (The proof of (11) is completely
analogous.) We start by giving a precise meaning to the operators 4, K. For this we
introduce two function spaces C,, C;, whose elements are complex valued continuous
functions y(¥) normalizable in the following sense:

peCoi |ylo=sup|p(®) | <oo,

(23)
pely: |yl =sup (1 +2) [pk) | <oo.

Obviously C; C Cyand || ¢ |, < ||y||; for ally € C;. Next we consider an operator 4
mapping C, into C; and define its norm in the usual way by

| 4| = sup | Adypl,. (24)

fyllo=1

Let A,, 4, be two operators of this kind. It follows from |y [, < |w], that
| Ay Ay < | Ay | Ayl Together with the completeness of C, this implies

- Lemmal: Let A be an operator mapping Cyinto C;and| 4 | <1.Then (1—4) 1=
1 + R exists. R is an operator mapping C, into C, and

| 4]
Bl <547
Now we can explain the idea of the proof. We define an integral operator R"(k) by
the kernel

G(x—y) Hx, 9 V(y), HO%,y) = Z k=t H,(%, ), (25)
p=
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where the functions H,(%,y) are explicitely defined by (8), (13), (15) in terms of the
potential. If these functions turn out to be sufficiently regular, so that the formal
calculations leading to (13) can be justified, it is clear that R™(£) is a solution of the
equation 4 R = R — A, up to terms of the order of £~*—32, More precisely, we expect

k) = A .R(”) — R 4 A (26)
to be an operator mapping C, into C; and
|e(k) | < A k-n-o, (27)
where 4 is some constant independent of k. (26) is equivalent to
1— AR)][1+ RME)] =1— (k). (28)

For sufficiently large £, we have | e"(k) | << 1/2, so that by Lemma 1, (1 — ™ (k))~! =
1+ 6"(k) exists and |6"(k)| << 24k 32 Then we conclude from (28) that
(1 — A(k))~! exists and is given by

1+ R(E) = [1 4 R®(k)] [1 4 o0(k)] .

If | R"(k)| turns out to be uniformly bounded for large &, we finally arrive at the
result we are looking for:

| RW(k) — R(k) | < const. k—n—32 (B — c0). (29)

Leaving the question of the validity of this result for arbitrary » open, we content
ourselves with the proof for » = 2. In order to confirm (27), we have to justify the
formal expansion (7) of G F G(x, y), to the required order N, where

Ii(z) = V(z) Hy(z,y) (p=0,172),

and to estimate all the coefficients D F(x,y), [,F(%,y) which occur. In order to
simplify these estimations, we assume

Veg, (30)

where & denotes the class of infinitely often differentiable functions f(¥) which,
together with all its derivatives, tend to zero faster than any negative power of x as
x —> oo. (It should be noticed, however, that this condition is far from being necessary.
For instance, it would be sufficient to assume the existence of a finite number of
derivatives vanishing faster than some finite power of ¥x~! and ¥ - co. Any more
general condition would at least have to ensure the boundedness of the integral
operators with kernels G(x, y) Hp(x,y) V(y). Between this and (30), there is still a
wide field for possible generalizations.)

Under the assumption (30) the functions Hp(x,y) (p = 0,1, 2) have a common
property on which all further estimations will be based, namely:



Vol. 36, 1963 Potential scattering at high energies 847

For p =0,1, 2 Hp(z, y) may be written as Hp(3,y) = W, (3, |2 —y/|,y), where
Wi, ... uy, ») is infinitely often differentiable with respect to #, ... u, and

| oOr W i .
Y vy - G L -y, 31
vl Gl Lk AR ERUR S L ) (31)

C and » depending only on p and &, ... k,. W ¢ shall refer to this property by writing
H,eN.

Proof: 1. If H € U, then by (8) and (30) D(V H) € A for n =0, 1, 2.
2. If Gpe N, then by (15) H, e .
3. Gy = 1A, therefore, by (13) and (15) Hpe A for p =0, 1, 2.

We know from (4) and (5) that z and |z — y| are analytic functions of ¢ in a region
containing the positive real ¢-axis, provided that a + 9. It is clear therefore that, for
fixed & =y, the formal procedure of section 2 is justified to every order N; since
according to (30) and (31) all the derivatives with respect to f exist and the convergence
of the integrals is ensured by (30). We are left with the estimation of the coefficients
D . F(x, ), I, F(x,y). The results are collected in the following Lemma:

Lemma 2: We assume F(z,y) = S(2) 4(z,y), Se S and 4 € .

Then there exist constants C and m such that

|D,F(% 3| <C@A+ym, u=012,

113

|I"Ap(x’y)| gC(l __|__y)m, = O’ 7271 ,"2',2,

[ oo F®,3) | < CQ 4y (1 + |4 —y[-17).

We omit the proof of this Lemuma because there are too many integrals to be considered
and the method is always the same. An example is given in appendix III. We are now
ready to estimate the norm of the integral operator ¢®(k), whose kernel is G (¥ — )
E(x,y) V(y), where

712

k~ ,
E = 23 (L5 (V Hy) + I (V Hy) + Iy (V H,y)]. (32)
Ve S implies | V(y)| << 4 (1 + y)#, p arbitrarily large and 4 depending on p only.
Then it follows from (31) and Lemma 2 that :
(k) | < const 72 [ dy y2 (1 -+ y)n=rsup [LLF [a@ [Jx—y|*+ s —y[-*]].
0 x o
The supremum can be estimated using the formula
-ty

/

j/ v f(r) dr

B

1

= a2t (-] =

2xy
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and turns out to be bounded by const. (1 4 v=32). Therefore (27) is proved if we
choose p > m -+ 3. In the same way it follows from (13) and Lemma 2 that | R®(k) |
is uniformly bounded in %. This completes the proof of (29) for n = 2.

b) Dirac theory

After a few minor modifications, the foregoing proof also applies to this case.
Since y(¥) is a matrix-valued function, | y(#) | has to beidentified with some reasonable
kind of matrix norm, for instance,

lw2P=sup(pz. v,

%

where y varies over the unit sphere (y, ) = 1 in four-dimensional unitary spinor space.
Continuity of y(¥) can be defined with respect to this norm. The definitions of C, C;
and | 4 | are taken over literally and Lemma 1 remains true as it stands. R™(k) is
defined by its kernel

G(x—y) H"*y) W(y), H"x,y) —p;? k=t Hy(%,y), (33)
where the Hp(x, y) are the functions determined by (20) and (21). Then we expect
eMk) =2k A R®W — R™ |- 4 (34)

to be an operator mapping C, into C, and

|en(k) | < Ak—n-12, (35)

(34) is equivalent to
1—2kA)(1+2kR"P) =1—2Fke"R), (36)
therefore we have to take at least # = 1 in order to prove the existence of (1 — A(%))~?

for sufficiently large k. Provided that | R™(k) | is uniformly bounded for large %, it
follows from (35) and (36) that

| RW(k) — R(k) | < const k="+12  (k —»o0) . (37)

In order to prove (35) for n = 2, we note that (31) also applies to the Dirac case. The
kernel of (k) is G (¥ — y) E(x, ¥) W(y), where now

L= —q k502 L 550 (V Hy) + Lyo (Q Hoy+V Hy) + Ly (QH, +V H,)
+ k=12 Dy(Q Hy) + k=12 1 (Q H,)].

Using (31) and Lemma 2, the proof of (37) for the case #» = 2 is completed as in the
Schrodinger case.
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5. The Scattering Amplitude
a) Schridinger theory
It is clear that the scattering amplitude exists whenever (1 — 4)~! = 1 + R exists

as an operator on C,, and is given by

T(k', k) = lim xe i (%), (38)

X—>00

where ¢ = R y,, and x - co is to be understood in the fixed direction of k’. On the
other hand, we define

TOk', k) = lim x e 4% ¢@(x) , (39)
x—>00
where ¢® = R® .. The existence of this limitfollows from (13), (8), (30) and (31).
For the difference 7® — T we obtain, by (29) and |y, ], = 1, for sufficiently
large k:
| TO(R', k) — T (K, k) | = | lim x e=ik* (p@(x) — p(x)) |
¥ — 00

(40)

< 9™ — 9l < | R~ R| < const &,

uniformly for all directions of k' and k. The explicit form of 7® is too long to be
reproduced here; we content ourselves with terms up to order 2—2:

where s =y + sk’[k and |0(k—3) | < C k=3, C being independent of k', k. This follows
from (16) and Lemma 2. An equivalent expansion is obtained either from (12) or by
replacing exp ((2¢ &)~ f V ds) in (41) by its power series:

Tk, ) == [@ye @By

o) o0 2 o
1 . 1 1 : 1
: [1+2ik / V(s) ds+2(m/ V(s) ds) +W/‘ dSSAV(S)] + 0(k=?) .
. 0 0

\ 0

It is seen that for k = k’, the coefficients of odd powers of 2~ are purely imaginaty,
those of even powers real. By the optical theorem, the total cross section o(k) is
given by

o(k) = *7 Tm T(k, k) .

51 H.P.A, 36, 7 (1963)



850 Walter Hunziker H. P. A,

We conclude that o(k) admits an asymptotic expansion in powers of £-1. The leading
term 1s found to be

olk) 4 [ dvidve ([ v, V) + 0(E),

where the y,-axis has been taken along the direction of k. For a spherically symmetric
potential V' = V(r) + 0, this leading term cannot vanish.

b) Dirac theory

In the same way as in the non-relativistic case, we obtain

| TO(k', k) — T(K', k) | < const k112, (42)

The leading term of the 7-matrix is isotropic, i.e. proportional to the 4 x 4-unit
matrix: ‘

oo
P —i(k'~k)—1ﬁf Vieds
T(k', k) =--1,- / d3v e 0 V(y) + 0(k9) . (43)
The leading term of the non-isotropic part 7 — 1/4 trace 7', which is responsible for
the polarisation phenomena at high energies, is found to be

(T - - trace T) (', k)
ottt F o . (44)
5 —4 ~R)y—1 7(s5) ds 4 .
- [ae 0 iV, V) [ V) czs] + Ok
0

In the derivation of the last result use is made of the fact that trace «, = 0 for all %.

6. Further Discussion of the Dirac Scattering Amplitude
a) Complex energies

In the following we discuss only the spherically symmetric case V' = V(#), so that
the 7-matrix can be considered as a function of energy £ and momentum transfer
A=1/2 |k —Fk'|. In ref. 1) it is claimed that 7°(FE, 1)/E? - 0 for I£ > oo, uniformly
in the cut plane Im (£2 — m?)1/? = 0, for fixed real 1. For real E this is confirmed by
our result (43) which implies

- . ~2idy—i [ V(s)ds
. TEL 1 ; . sr<a i
Jim —t = / d3y e V(y) = T.(4), (45)
where s =y | s n, n being any unit vector perpendicular to 4. We shall show now
that this remains true for complex energies, if the potential satisfies the additional
conditions
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e 9]} o0

/‘ dr ¢*” [V (r) | < oo, j dr e*”
0 0

for some « > 0. The precise statement we want to prove is the following:
For any fixed real /1, the analytic continuation of 7°(E, /1) to complex E exists in
some region | £| > M(A) of the cut plane Im & > 0, and satisfies

T(E, A)

Jim TG =T, 40
uniformly in all directions.
Proof
1) We introduce the vectors
1 1 o
4= ;(kK—k, n=1, p=- (K+k=pn, nd=0. ()

If E becomes complex, so that Im & > 0, 4 and n remain real and p = (E% — m? — 12)1]2
is uniquely defined by the requirement Im p > 0. |

2) The incident wave 1 ¢'#% is no longer bounded for complex k. For this reason we
consider the transformed scattering equation

Y=yt G Uy, (48)
where

,wr(x) _ ,w(x) 6»£kux, w['](x) =1 e—iAx-i—i(p—k)nx, (;'(JG, y) — G(x, y) e—ikf(xfy)

and, instead of C, the larger space C_ of all continuous functions y(x) normalizable
in the following sense:

lw]l, = sup e ** |p(®) | < co.

For & - oo, we have p — B & A%2 k, so that | Im (p — k)| < « for sufficiently large
| E|, and consequently y e C,,.

3) The whole of sections 3b and 4b applies also to the transformed equation (48), if
G is replaced everywhere by G’ and C, by C,. R'(k) and R'™(k) are then defined as
operators mapping C, into C;. The functions Hp(#, y) remain unchanged. For suffi-
ciently large | | R'(k) exists and

| R'®(k) — R'(k) | < const | &

—32 (|| =00, Imk > 0). (49)

4) The definition (38) of the scattering amplitude is no longer appropriate for
complex %; instead we use the integral representation (3). It is then natural to split
the 7-matrix into the first Born approximation (which is a linear function of £ and
therefore can be trivially continued to complex E) and the contribution 7'(£, A) of
the scattered wave. The continuation of 1',(E, A) is defined by

TI{E,A) = — 41; /'ciﬂxa"fﬂx-“ﬂf’”” Ul(x) ¢ (%), (50)
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where ¢" = 2 £ R" y,. There exists a constant M (1), depending only on 4, such that
for |E| > M(A) and Im 2 >0 R'(k) exists and |Im (p — &) | < a. This implies
@, € C, and therefore the integral (50) is absolutely convergent. Moreover, the function
T',(E, A) defined by (50) is known to be analytic in E for | E| > M(A), Im & > 0 and
continuous for | E| > M(-1), Im &£ > 01)3). If we define 7"(E, /) in the same way,
but with ¢'™ = 2 & R'™ g instead of ¢’, it follows from (49) that

| TO(E, A) — Ty(E, A) | < const | k|12 (51)

for | E| > oo, uniformly in the cut plane Im & > 0.
To prove (46), it is therefore sufficient to deal with

TR(E, ) — (4 m)2 fdax dy

?«Mlx yl-n(x-y)] l

R < (¢ #
Cx—y| (*, ¥, k) -
- U(x) U(y) gm Aty ilp-Rinx-y) [

where H®(x, y; k&) is the function defined by (33) and (20).

5) The high energy behaviour of 7'®(E, A1) is obtained by adapting the method of
section 2. Let I7(2) be a given function of 2, which is sufficiently regular and vanishes
sufficiently fast as z > oco. We define

[l3—y!-n(z—y)]
TF -—‘f%~Fm.
|z—y]

In order to obtain an expansion of 7" F(y) in inverse powers of £ we first introduce
new cartesian coordinates v instead of z, with the origin v = 0 at the point y, and with
the positive vy-axis in the direction of n. Then we define parabolic coordinates

@, 7, t by
) \1/2 y
vlzt(7) cosQ, 0<t<oo,

n\v2 B}
vzzt(-?) sing , 0 <y <<oo,

1 12
7)3:2(9’/-——), O0<p<<2m.

It follows, as in section 2, that

. N S v
T E(y) = ;) [2 k2 D F(y) + kYR I, F(y)|,
n=0 Y
with
2n

fa(0)
Drtsz(y) - ( / d f d'l‘ ()If" ((p! },’, 0) )

2n
0

2 o] o0
s 1 ' : on+1
LnF(3) = 5 [ dp [ dy [ dth, (80) S (gt
0 0 0
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where the functions f,(z) are defined by (6) and where again D, F(y) = 0 for odd .
t = 0 is the ray with origin y, in the direction of n, so that

o0

D,F(y) = 2 / dsF(s), s—y+sn. (54)

We now apply this to T (E, A). (The justification, which is based on (31), is omitted
here.) From (52) and (53) we find, noticing that 4 n = 0,

5 ) ® —ifV(s’)ds'—i(yb—k)s
TP(E,A) = — oy [y @ V) [ asVis)e 5 + 0(| 2 [
0

Because p — &k &~ A2%/2 k for k - oo, we can replace exp (— ¢ (p — k) s) by 1 to the
same order of accuracy. Then the integration over s can be carried out, and we obtain

_/‘,'7.0

P . V{s)ds }
TE(E, A) = — ?Ejdsy e~ 2AY 7 (y) L 0 — 1|4+ 0(|%]9).

Adding the first Born approximation removes the term — 1. Together with (51), this
completes the proof of (46).

b) Determination of the potential

As an application of (45), we show that the potential is uniquely determined by the
high energy limit of the 7-matrix, i.e. by the function 7,,(A4). The corresponding result
in the non-relativistic caseis wellknown: lim 7(E,A)is equal to the first Born approxi-

E—oc

mation 7y(A), which is the Fourier transform of the potential. To compute V() from
Too(A) we write
Vig=Ww), T.(4) =g, (55)

o0

with 7 = 2 /. Choosing the ys-axis in the direction of n, we get from (45):

E(P) = = 217, f dyy dyy e~ rt T g?)
& - (56)
—i [ W +s)ds
M?) = [dyse W g+ 99,

where 2 = 72 + 72 and 0% = y2 4 12. g(7?) is the two-dimensional Fourier transform
of h(p?), therefore, by Fourier inversion:

h(u) == — ;—f dv J, (Vﬁ) g(v), (57)

where J4(2) is the usual zero order Bessel function. Next we note that the integral (56)
can be evaluated in closed form, yielding |

e

— f W(u+ s*)ds
h(n) = —1 [1 —e -™ .
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Together with (57), this implies
i . . .
flu) = / W (u + s ds = i log [1 + ;—j dv [, (]/u v) g(v) |, (58)
~00 0 ;

where the logarithm is uniquely defined by the requirement that f(#) be continuous
and vanishes as # — oo. The calculation of W from f is easily carried out in terms of
the Laplace transforms W and f :

~ £ A1/2 ~

Wi = () /0. (59)

7

(55), (58) and (59) determine the potential V' (#) explicitely in terms of 7T,,(A).

Appendix 1
We have to compute

(s, 0]

mejm/m“]Mwn n=1,273..),

where all the paths are to be taken along the real axis. We can displace these paths so
that they become

=256, (rpreal, 0 < x < x5 << ... < %,).
Therefore

OO

””’/4/ dr]/ dry... [ dx,e "/

b

and after » — 1 successive partial integrations one arrives at

(\')
cz nmfd

n
———1)!
10 =425 / dx xn=1) g~ P12 _ ginald p((n2)-1) (2
" n—

For even #n this is equal to the result claimed in section 2.

Appendix IT

In order to express D,, F(x,y) in terms of /7(2) and its derivatives with respect
to the cartesian coordinates z, we put

vV, =0COSQ, v,=pSslngp, v;=o0,
015 = COS 70—4— ing 2, 0 _ 0
. 12 — . qj O'U Sln(P ():,)2 1 3 01]3 2 (60)
0" 0"
(n) —
Dt S Ui I e
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The functions o(#, ¢} and o(#, t) are given by (4). We add a subscript O to a function of
@, 1, ¢t to denote its values at ¢ = 0. The following formulae will prove useful:

(DOF), =212 q (1 — j2)12 (0,,F),, (D®F),=2an 0,5,

(61)
(DOF)y=3:-2"12¢g (1 — p?)12 (0,F)y, (DWF),=0,
l [
- 2-n (AWEF),  (neven)
1 . , ’
e / dg (07,F), = I 5 (62)
0
0 (n odd) ,
where
02 0?

e =G + oug -

Applying this to D,F(x, y), for example, we get

2
00712: = (D)2 F 4+ DOF,

and therefore, by (61) and (62),

2n +1 1

4. T
2n / dp ] (h/ (02F) = g / dy (1 — ) (A1 F)g+ 2a / dn 1 0515 .
) -1

But since vg = a % for ¢ = 0, we can transform the second integral by partial Inte-
gration and then combine it with the first one. In this way, we obtain the result

?*r —I'~1 ()F -tl .
an dapq dn( )92”2:1/ dy (1 — 47 (AF),,

which leads immediately to the expression (8) for D; F(«, y). The analogous calculation
of DyF(x,y) is easily carried out using (61) and (62).

Appendix III

We use the cartesian coordinates v introduced in section 2 and definev, = |2 — ¥ |.
The connection with the elliptic coordinates is given by (4) and (5). The assumptions
of Lemma 2 imply that

PURN = W, 0Py ® ¥,
0"]1

e @ E ) SO T (L < C (L) (L)

forall @, ), ¢, x, y, p arbitrarily large. The first inequality follows from (31) and S € &,
the second from 1 + |2 —y| <1+ 2+ v < (1 + 2) (1 + »). Now we consider as an
example the estimation of Ig, F(x, y), where we must majorize

1/?/ d(p] d;/] d S @) |-
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0*F[0t* is a sum of products of the form

Ok W
Plp, n, )

L

k)

where P is any product of derivatives of the v, with respect to ¢ of total order 4, e.g.
vy vy, vy", (vy)® vg. The last of these examples yields, for instance,

Plp, n,t) = 16 at cosdep 5 (1 — n)¥2 ¢ (12 + 1)3 (2 4 2)—32

In this case, we have to estimate
It o
()t ram [ dy ] (=) [ dee (@4 ) (242
0

B |

+a@+14+9] " =0+ Ia).

To verify the result claimed in Lemma 2, we have to show that I(a) i1s uniformly
bounded in 0 < a < co. If we choose p > 5/2, it is clear that I(a) exists and is
continuous for 0 < a <{ oo, so that only the behaviour of I(a) for a =0 and a - oo
needs further consideration:

a—0: I(a) < const a"/? fd.tttz 1)32[1 4 at?]7?,

<< const a/ ds (s + 1)%3-F (a << 1).

Taking p > 5/2, we have

I(a) << const a (a—0).
a—o0:
+1
I(a)gconstoﬂ’z] dy (14 )32 [1+a (1 + %) Plfdtt (2 4 1)32 [1 4 a 2]~ ",
-1

<L0nstfdrr3 (147" / ds (s + 1)*2-F: (g >1),

where p, + p, = p. Taking p, , > 5/2, we have

I(a) < const (a — oc0) .
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