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Can Hidden Variables be Excluded in Quantum Mechanics?

by J. M. Jauch*) and C. Piron**)
Geneva, Switzerland

(8. II. 63)

Abstract. The question of the possible existence of hidden variables is re-examined. It is
shown that hidden variables can exist only if every proposition (ycs-no experiment) is compatible
with every other one. It is further shown that this property is in contradiction with empirical facts.
The theorem which leads to this conclusion is a strengthening of the theorem of von Neumann on
the same subject. The question is raised whether there exist perhaps quantum mechanical systems
which admit approximate dispersion-free states.

I. Introduction

In this paper we shall re-examine an old question in a new context viz. the possibility

of introducing hidden variables in the description of atomic systems.
This question has played an important part in the history of quantum mechanics.

The probabilistic interpretation of the Schroedinger wave function, as it was proposed
by Born and elaborated by the so-called Copenhagen school, is so radically different
from the deterministic behaviour of classical systems that the description of the
atomic systems by Schroedinger wave functions was soon suspected to be incomplete.
If it were incomplete, then this would mean that there exist perhaps additional
variables not accessible to measurements as the usual observables (and therefore not
subject to the restrictions of the uncertainty relations) and such that the system
behaves deterministic with respect to this "complete" set of variables.

The question concerning the existence of such hidden variables received an early
and rather decisive answer in the form of von Neumann's proof on the mathematical
impossibility of such variables in quantum theory1). The method of von Neumann
consisted in showing that hidden variables which do what they are supposed to do are
inconsistent with quantum mechanics. In other words, if such variables existed

quantum mechanics would have to be factually false.
The important consequence of von Neumann's analysis is that the question was

brought from the speculative level to the empirical level, and so the answer does not
have to wait the development of a non-existing theory. Whether quantum mechanics
is false can be verified by observation and so far there is no indication that it is and,
consequently, there is today no more chance than there was thirty years ago to
introduce hidden variables.

University of Geneva and CERN.
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828 J. M. Jauch and C. Piron H. P. A.

There are several reasons why we propose to re-examine here von Neumann's
proof again. First of all there seems to be a renewed interest in a critique of the
foundations of quantum mechanics and some of the recent attempts in this direction
have not always done full justice to von Neumann. Thus for instance de Broglie2)
finds the above-mentioned proof essentially trivial and therefore redundant as soon as

one admits an uncertainty relation3). Böhm in his book4) even goes so far as to accuse
von Neumann of circular reasoning. If this were true, this "proof" would mean, of
course, exactly nothing and would leave all doors open for speculations on a "sub-
quantum mechanical level" and a "deeper reality" so dear to the above-mentioned
authors5)6).

A second reason why we find a remodelling of von Neumann's proof appropriate
at this time is that some of his assumptions concerning the structure of quantum
mechanics are too strong and cannot be justified sufficiently well from the empirical
evidence alone. We mean here especially those which refer to the properties of
observables and states of a physical system. For von Neumann observables are the
self-adjoint operators in a Hilbert space with complex coefficients and states are
additive functionals on the observables (the expectation values of the observables).
In the course of the proof it is used that essentially every projection operator is an
observable. This assumption is very difficult to justify and in systems with super-
selection rules7) it is actually false. It is, however, possible to weaken this assumption
to the bare necessity of the empirically required and yet to carry through a reasoning
which leads essentially to the same conclusions as before.

Concerning states, it is difficult to justify the additivity of the expectation values
on non-compatible observables (especially in the case of continuous spectra). To be

sure all quantum mechanical states are actually of this form ; there are no other states
known. In ordinary quantum mechanics this property of states is a consequence of a
deep theorem of Gleason8) which has been proved only a few years ago. In order to
avoid all possible objections of circular reasoning we shall, however, not assume the
validity of quantum mechanics and therefore we shall not use this additivity property
either.

There is a third reason for our work: von Neumann has shown that quantum
mechanics would have to be objectively false if another description than the statistical
one is possible, but from his result it is not immediately obvious how false it would
have to be. The deviations of quantum mechanics from the "true theory" could be so

minute that ordinary quantum mechanics could still be regarded as a valid approximation

to the "true" laws of microphysics. We shall however show that the hidden
variable interpretation is only possible if the theory is observably wrong. With this
result the hidden variables are empirically refuted.

We emphasize here especially that this result has a range of validity which
transcends ordinary quantum mechanics. It is equally applicable, for instance, in
quaternion quantum mechanics or any other, as yet unknown form of quantum
mechanics.

The important notion is that of compatibility or incompatibility of certain
observations. In ordinary quantum mechanics two observables are incompatible if they do
not commute. We shall show that the notion of incompatibility does not depend on
this particular representation of observables. Moreover, it is an empirically verifiable
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property between certain pairs of observables. Loosely stated the main result is

simply this: if there exist incompatible observables then hidden variables are not
possible.

This result will perhaps suffice to devaluate the reproach that von Neumann's
proof contains circular reasoning. On the contrary we hope that it will serve to underline

the far-reaching implications of von Neumann's analysis at an early stage of the
evolution of quantum mechanics.

We feel this work is today even more relevant than at the time when it was written
since the mounting pressure from high energy physics for a modification of our
conceptual frame should not lead us to lose sight of the foundations which are secure
and on which a future expansion will have to be constructed.

II. The "logic" of quantum mechanics

In ordinary quantum mechanics, observables are represented by self-adjoint linear
operators in an infinite-dimensional Hilbert space. The real spectrum of such an
operator are the possible values of the observable represented by the operator. The
simplest operators of this kind are the projections. Their spectrum consists only of the
two points 0 and 1, and they represent so-called yes-no experiments. These are
observables which can assume only one of two alternatives which we may designate
by 1 or 0, yes or no, true or false. It is easy to exhibit a large number of examples of
such observables and it is equally easy to show that the measurement of any
measurable physical quantity can be reduced to the determination of a series of yes-no
experiments. We shall in the following refer to such yes-no experiments as propositions
of a physical system.

The propositions of any physical system have a structure which is quite independent
of the particular fact that in quantum mechanics they are represented by projection
operators. It is to some extent common with classical mechanics where such a
representation is not possible for instance. This structure property is summarized by the
statement that the propositions form an ortho-complemented lattice.

We shall briefly enumerate in the following the characteristic properties of such
a lattice to the extent that they are used for the purpose of this paper. For a more
detailed discussion of the structure theory of this lattice we refer to the thesis of one
of us9) which will be published in the near future10).

Let AP be the set of all propositions of a physical system. In such a set exists first
of all a partial ordering. We say two propositions a and b are in the relation a Q b if,
whenever a is true, b is also true. This relation is the empirical analogue of the logical
implication in the propositional calculus of ordinary logic. We must remember that it
is ultimately an empirical statement and expresses the fundamental kinematic
structure of the physical system under discussion. This relation satisfies the following
formal properties

1) a Q b and b Q a is equivalent to a b, |

2) a Qb and b Q c implies a Q c \

which characterize a partial ordering of the set of propositions J?. We shall reserve
the notation a Ç b for a C b but not a b,
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To any pair of propositions a and b from J? we can associate two others in J?, which
we may call the greatest lower bound or the least upper bound and which we denote
respectively by a D b and a u b. They are defined by the following properties

1) x A an b is equivalent to x Q a and x Q b, I

2) y D a u b is equivalent to y D a and y D b

The proposition a n b is nothing else than the proposition a 'and' & while a u & is
the proposition a 'or' è. They are obviously also propositions and in fact it is possible
to give an operational description of their measurements if a and b are measurable9).

The formation of least upper bound and greatest lower bound can be extended to
any subset •[«;} fi e /) of propositions and we assert that it is meaningful to define
propositions n at and u a( in J?, with the properties

i i

1) x Q n ai is equivalent to x Ç ai for all i e I -,
I

I TT'
2) y A U «j is equivalent to y D a,- for all i e / [

This implies the existence of the absurd and the trivial propositions cj> and / defined
by

There is a third operation needed to complete the propositional calculus of physical
propositions and that is the negation. To every proposition a we can associate another,
a', denoting the proposition 'non' a. This is the proposition which is false whenever a
is true. It satisfies therefore the following characteristic properties

1) fa')' a,
2) a u a' I, a n a' tf>,

3) faub)'= a'nb'.
Ill

At this point we make a few remarks which will take the place of a fuller elaboration
of the propositional calculus implied by the properties I, II, III.

A lattice of propositions may contain minimal elements in the following sense : if
pe Jr and xQ p implies x — tf> then we say p is a minimal element of J?. We shall
refer to such elements also as points. If every element a e X contains at least one point
we shall call the lattice, atomic. All the usual treatments of quantum mechanics
assume (usually implicitly) that the lattice of propositions is atomic. Actually the
empirical justification for this is quite meager. It was von Neumann who first pointed
out the existence of non-atomic lattices (called continuous geometries) and who
suspected their possible physical significance in a generalized quantum mechanics.

We shall avoid in this paper the use of the assumption that the lattice is atomic.
We observe next that there is nothing in the properties I, II, and III which would

distinguish classical from quantum kinematics. They are so general that they hold for
any physical system which is accessible to observation. In order to distinguish more
detailed features of these systems it is necessary to observe further structural properties

of the lattice of propositions. In the paper by Birkhoff and von Neumann
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already quoted in Reference 10) it is shown that the classical systems are characterized
by the distributive law which may be stated as follows in two equivalent dual forms.

1) a n fb u c) fa n b) u fa n c), ^

2) atj fb n c) fau b) n fau c) I

It was further shown in the same paper that the distributive law is accessible to
empirical verification and that it is in fact false for quantum systems. Further examples
which demonstrate this fact are discussed in Reference 9).

One of the main problems of general quantum mechanics is the discovery of the
appropriate law which replaces the distributive law (D) of the classical systems. This
problem has recently been solved9).

The new axiom can best be expressed by introducing first the concept of compatibility.

Two propositions a and b are said to be compatible if they satisfy the symmetrical
relation

fa D b') u b fb n a') u a (1)

We shall use the shorter notation a <—>b for this relation. The detailed analysis of this
relation shows that it has exactly the properties which one would associate with
measurements which can be performed simultaneously without disturbing each other.
For instance, if the propositions are represented by projection operators in a Hilbert
space, as it is the case for ordinary quantum mechanics, then the relation (1) is

equivalent with the property that the projections commute with one another.
It is a theorem that a lattice is distributive (that is, it is a lattice which satisfies

(D)) if and only if any two propositions are compatible. Since (D) is empirically
contradicted for quantum systems it is thus also empirically established that for such

systems there always exist propositions which are not compatible. This important
point will be essential in the argument to be presented establishing the impossibility
of hidden variables.

The new axiom which replaces (D) for quantum systems can be expressed very
concisely in the following form

a Q b implies «<—»&. (P)

In this form it has an immediate physical interpretation which makes it very plausible
indeed. We shall refer to a lattice which satisfies I, IF, III, and (P), a generalized
proposition system.

The propositions of conventional quantum mechanics of simple systems do satisfy
the axioms I, IF, III, and (P) but these axioms leave room for systems of greater
generality. In particular, such a proposition system may, for instance, admit super-
selection rules. This is very important since such rules are known to exist7). In order
to formulate this property it is convenient to introduce the notion of coherent lattices.

We shall say a proposition xe .S belongs to the centre Soi A? if it is compatible
with every other proposition in J?. The centre always contains the elements cj> and F
A centre which contains no other elements is called trivial. We can now define: a
lattice X is coherent if its centre is trivial.

If the proposition system X has a non-trivial centre we call it reducible and we

say there exist superselection rules,



832 J. M. Jauch and C. Piron H. P. A.

III. The "state" of a system
It is usually assumed that every physical system is in each instant in a definite

"state". This notion belongs to the standard fare of classical mechanics and classical
field theory. The state of a system is supposed to be an objectively given reality
depending only on the history of preparation of the system.

If this notion of state expresses an objectively given condition of the system then
one would expect that identical ways of preparing a state on one and the same system
would give identical results for the outcome of the measurement of observables.

Already in classical mechanics this is true only in a limited sense. For instance, if one
has determined the volume, mass, and temperature of a quantity of an ideal gas then
the state of this system is only determined in a thermodynamic sense. Considered as a
mechanical system it is grossly underdetermined so that almost any quantity may
have a wide range of values.

While thus individually measurable quantities are not entirely determined it makes
sense to ask for the average values of these quantities under the conditions imposed
by the preparation of the state. These averages can be measured and they are
determined by the preparation of the system.

Of course, averages cannot be measured by an observation on a single system. It is

necessary to consider an ensemble of identically prepared system. We can consider a

state only a meaningful concept if it expresses a property of an ensemble of identically
prepared systems. This formulation does not exclude the possibility of a state in the
classical sense of the word, where the average of every observed quantity is identical
with its individual value for each measurement. In classical mechanics of an n particle
system such a state corresponds to a definite value for each of the momenta and
coordinates for all the n particles. We shall call such a state a dispersion-free state, and
we shall characterize it below by a precise mathematical property.

In classical systems the more general definition of a state is in many cases a

practical necessity, simply because the necessary manipulations which would be
needed to prepare a dispersion-free state are in general not feasible. But classical
systems are such that states of this kind are at least possible in principle. This is the
reason why we have become accustomed to attribute to the dispersion-free states an
element of reality, which is independent of the actual observation of such states.
Whether this is a general property of all physical systems is just the question under
discussion and until it is decided it is better to use the general definition of the state,
indicated above, which does not assume that it is dispersion-free.

The upshot of this preliminary discussion is thus the following : a state of a physical
system is the result of a set of manipulations of the system which constitute the
preparation of the state. A state can be measured by determining the probability
distribution of a sufficiently large set of observables. The result of the measurement
can be expressed with a certain function wfa) defined on the set of all the propositions
ae ,X We can and will call this function the state of the system.

This function will have to satisfy certain properties which characterize it as a
generalized probability function. We say generalized because an ordinary probability
function is defined as a normalized, additive set function. The subsets of a set
are always a Boolean lattice. The propositions of microsystems are, as we have pointed
out in the preceding section, not a Boolean lattice and so we must generalize the notion
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of ordinary probability. This generalization must be done in such a way that on every
Boolean sublattice of.J? the function wfa) reduces to an ordinary probability function.
In this way we arrive at the following definition :

a state is a functional wfa) defined on the propositions AP of a physical system
with the following properties

0 < wfa) < 1 (1)

wfè) 0 wfl) 1 (2)

if a <n- b then wfa) + wfb) wfa n b) + wfa u b) (3)

if wfat) 1 then w(0 «,) 1, (4)

if a 4= p then there exists a state w such that wfa) 4= 0 (5)

Some comment may be appropriate about property (4). If a and b are two
propositions, such that for a certain state wfa) w(b) 1, then this means that a
measurement of a and of b will give with certainty the values 1. Axiom (4) says then that
the proposition a 'and' b has in this same state also with certainty the value 1. If a and
b are compatible then this is an easy consequence of (3), since then

wfa) + wfb) 2 w fa U b) + w fa O b)

It follows that w fa u b) 1. Thus wfanb) 1. Thus for an ordinary probability
function on a Boolean lattice the relation

wfa) — wfb) 1 implies w fa D b) 1 (4)°

is always satisfied. However, for the generalized probabilities such as they are needed
for states (4)° is a separate postulate. If it is satisfied it can be generalized by induction
to any finite system of propositions a{. We require it to be valid for an arbitrary
infinite system. With this requirement we have ruled out functions which would not
have any reasonable physical interpretation. This postulate transcends a direct
physical justification since physical observations can only refer to a finite number of
proposition. We shall however show in the last section that this postulate can be

replaced by (4)° if we only wish to derive corollary (3) of theorem I.
The question arises, of course, whether such functions which satisfy conditions (1)

to (4) exist. Our experience with ordinary quantum mechanics gives us plenty of
examples of such functions. It suffices to verify that the quantum mechanical states
do indeed satisfy all four properties.

Postulate (5) is no real restriction, since propositions which are false for every
state are in a sense identical with the absurd proposition cf> and they can be omitted
from all physical questions about the system. Two states are different if there exists a

proposition a such that wxfa) =t= w2fa). If w1 and w2 are two different states then
wfa) Xx wx(a) + X2 w2fa) with Xx > 0, X2 > 0, A, + X2 1 defines a new state which
is different from either one. A state w which can thus be represented with two different
states is called a mixture. A state which is not a mixture is called pure (also called
homogeneous by von Neumann).

The quantity afa) wfa) — w2fa) will be called the dispersion of the state w on the
proposition a. A state is called dispersion-free if afa) — 0 for all ae AP- For such a state
wfa) is either 0 or 1. This means every proposition is either true or false with certainty.
53 H. P. A. 36, 7 (1963)
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If wx and w2 are two different states then there exists a proposition a e Jp such that
wxfa) 4= w2fa). For this a we have then 0 < Xx wxfa) + X2 w2(a) < 1 for any Xx > 0,
X2 > 0, with Xx + X2= 1. It follows that the mixture w Xx wx + X2 w2 must have

dispersion. We have thus proved: a dispersion-free state is necessarily pure. The
converse need not be true.

IV. Dispersion-free states

We shall now ask whether dispersion-free states can exist on a system i? of
propositions. The basic property to be proved is contained in the following

Theorem I : If there exists a dispersion-free state w on a proposition system Jp then
there exists a point p in the centre of ip for which wfp) 1.

Proof: Let X be the subset of all the propositions atfiel) in Jp such that
wfa{) 1, and let a0 n at. By property (4) we have wfa0) 1 ; thus a0 e Jpx.

Let x C «o- then wfx) 0, since otherwise wfx) 1, and thus a0 Q x. Since x is

compatible with x' (for the proof see Reference 9)) we have by properties (3) and (2)

wfx) + wfx') w (x u x') w(I) -= 1.

Thus x' e Jp1; consequently a0 Q x'. It follows

x x n au £ x n x' — p or x p.

We have thus shown that x C a0 implies x <f> which is the same thing as saying that
«0is a point: a0 p.

Next we prove that the point p is compatible with every other proposition in Jp.
Let x be arbitrary. If x e Jpx then p Qx, hence by axiom (P) p <—> x. If on the other
hand x <£ ,ipx then x' e X and so p <—> x'.

Using a theorem proved in Reference 9) it follows from this also p <—> x. This
proves everything.

If Jp is coherent then every proposition which is compatible with every other
proposition is either p or F Thus there exist no non-trivial proposition with this
property, let alone points. We have thus shown

Corollary 1 : There exist no dispersion-free states on a coherent proposition system.

This is the old result of von Neumann, but proved under much weaker assumptions.
When applied to quantum mechanics it says that, in the absence of superselection
rules, every state has dispersion.

We next consider systems with superselection rules. According to corollary 1 they
are the only candidates for dispersion-free states. But according to theorem 1 such

proposition systems must be of a very special kind. We shall now establish the structure
of such systems. Theorem 1 shows that a proposition system Jp which admits
dispersion-free states always contains a point p in the centre .2 of Jp. The existence of a point
in X permits the separation of the lattice X into two classes by placing two elements

xx and x2 into the same class if they satisfy the equivalence relation xxnp — x2n p.
The class which contains the element <f> is itself a sublattice Lx of, {? and one can verify
that every element x e .Jp can be represented either in the form x p u xx or in the
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form x p u xx with xxe L. This means the lattice. i? is a direct union of two lattices
Jp L0 u Lx where L0 consists of the two elements p and p.

Let w be another dispersion-free state on X, and let à{ fi e I) be the elements of
Jpwith the property wfât) 1. Define à0 .D ait so that according to property (4)

w(a0) 1. If w(a0) 0 then it would follow that wfa0) 1 or «0 Ç_ «0 and since a0 is a
point a0 a0. This would imply that w w, contrary to the assumption. Thus
«0 4= a0, and consequently a0 is of the form a0 fp u px) with px e Lx. It follows that
the centre of L, contains a point px, so that we can decompose Lx into a direct union
Lx X U L2, where L'0 consists of the two elements p and px. Continuing in this
fashion by a process of (possibly transfinite) induction we arrive at

Corollary 2: Proposition systems which admit dispersion-free states are all of the

form Jp — K u L, where K is an atomic Boolean lattice. The dispersion-free states are zero

on all propositions of the form ^ux(xeL) where pK is the zero of the lattice K.
Let us now consider a system. j? which admits hidden variables. We define such a

system as one with the property that every state is a mixture of dispersion-free states.
Thus every state may be written in the form

w(«)=2^^Wi(«) with Xi > 0 JAXt l,
i i

and where w'a) is dispersion-free. ;

Because Jp admits dispersion-free states it is, according to corollary 2, of the form
Jp K u L, with K a Boolean sublattice. Let x be an element of Jp of the form x

^ul with |eL, and pK the zero of the lattice K. According to property (5) there
exists a state w such that wfx) 4= 0. Since every state is assumed to be a mixture of
dispersion-free states there exists even a dispersion-free state with this property. But
this is in contradiction with corollary 2 which asserts that every dispersion-free states
vanishes on elements of the form pK u £. Thus we conclude that the lattice L reduces
to zero and consequently AP K. We have thus established the following

Corollary 3 : If a proposition system Jp admits hidden variables then every
proposition of Jp is compatible with every other proposition of Jp.

V. Hidden variables

The corollary 3 of the preceding section reduces the quest for hidden variables to
the property of compatibility for every pair of propositions. It is somewhat unsatis
factory that this result could only be established by using the property (4) of states
which only for a finite number of propositions has an immediate physical
interpretation. In this section we shall show that the statement of corollary 3 holds also
for proposition systems and states which satisfy only the weaker condition (4)°. We

prove first the

Lemma 1 : If a proposition system X admits hidden variables and if w(a) w(b)
for all states then a b.

Proof: Consider the proposition # an(anb)'. lixA-- 0 then according to property
(5) there exists a state such that w(x) 4= 0. Since every state is a mixture of dispersion-
free states in a system which admits hidden variables there must even exist a state
such that w(x) 1. Since an fan b)' Q ait follows wfa) 1 wfb). Thus by property
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(4)° w fa n b) 1 and w ffa n b)') 0. Since an fan b)' Qfa n b)' it follows wfx) 0

which is a contradiction. Thus a n (a n b)' p. Now using the axiom (P) we find

a (an (an b)') U (a O b) a O b

therefore a Q b. By interchanging the rôle of a and b one proves similarly b Q a. The
last two relations imply a b. This proves the Lemma 1.

Lemma 2: If a proposition system Jp admits hidden variables then for any pair of

propositions a, b e ,£ and any state w

wfa) 4 wfb) — w (aub) -\ w (anb)

Proof: Since Jp admits hidden variables every state w is of the form

wfa)=^Xlwlfa) Xt>0 £ X,,- 1

i i

such that all states wt(a) are dispersion-free. From this follows that it suffices to
establish the relation in question for dispersion-free states. Let wfa) be dispersion-free,
so that wfa) is either 0 or 1. There are thus four cases possible

wfa) — wfb) 0 ; wfa) 1, wfb) 0 ; wfa) - 0, wfb) 1 ; w(a) w(b) -== 1.

The last two can be reduced to the first two by replacing a by a' and b by b'. It suffices
to establish the relation for the first two cases.

If wfa) wfb) 0 then w fanb) < wfa) and therefore w fa n b) 0 also. On the
other hand w(a') 1 — w(a) — 1 and wfb') 1. Therefore by axiom f4)° w (a' O b') 1.

It follows that w fa ij b) 1 — w ffa u b)') 1 — w fa' n b') 0. With this the relation

is established for case 1.

Next consider wfa) 1, wfb) 0. It follows that w fa u b) > wfa) 1 ; therefore
w fa u b) 1. Furthermore w (anb) < w(ò) 0; therefore w (a D &) 0. This establishes

the relation in case 2, and the Lemma 2 is proved.

Theorem II: If Jp is a proposition system which admits hidden variables then
a e Zand b e ,pimplies a <—> b.

Remark : This theorem differs from corollary 3 of the preceding section insofar as

for the proof of theorem I we have used condition (4) while for theorem II we require
only the weaker condition (4)°.

Proof: For every state w we have

w ffa n b') Ub) w (an b') + wfb) wfa) A- wfb') — w (aub') + wfb)

wfa) + 1 — w fa u b') — wfa) + w fa' nb) w fa u fa' O b)).

With the preceding lemma 1 this leads to

(a n b') u b a U fa' n b) or a <-> b

This proves the theorem.
This theorem permits the reduction of the question concerning hidden variables to

an empirical one, viz., whether there exist propositions which are not compatible.
Since the lattice operations have a physical interpretation which is accessible to an
empirical verification we can decide the question by examining the actual behaviour
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of specific propositions under observations. To rule out hidden variables it suffices

to exhibit two propositions of a physical system which are not compatible.
It turns out that this is quite easy. In fact, the occurrence of incompatible

propositions leads to gross macroscopic effects which can easily be verified11). With this
result the possible existence of hidden variables is decided in the negative.

In conclusion we add two remarks. In a recent publication one of the authors12)
has raised the question whether hidden variables are perhaps possible in a system
which admits non-commuting supersymmetries. Such a system (mentioned by von
Neumann) are the projection operators in a factor of type II. According to the
foregoing result the answer is negative, since there are non-commuting projections in such

rings.
It is however possible, and this is our second remark, that there exist proposition

systems which admit approximate dispersion-free states13). We could, for instance,
have the following situation. Let afa) wfa) — w2(a) be the dispersion function and
define the over-all dispersion by

a sup a(a)
jj e a J-1

We shall then say the system has approximate dispersion-free states if there exists a

sequence of states wn, such that the corresponding an -> 0 for n -> co.

It is fairly easy to show that such states do not exist in ordinary quantum
mechanics. But nothing is known to us for more general proposition systems. This point
merits further investigation.
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