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‘Statistical Mechanics of Quantum Systems of Particles

by David Ruelle
Institute for Advanced Study, Princeton, New Jersey

(17. V. 63)

Abstract. 1t is shown that methods applied earlier to classical systems may be extended to
quantum systems of particles interacting by a two-body potential. In particular, using the ca-
nonical ensemble, one proves for a large class of potentials the existence of a limit for the free
energy per particle when the system becomes infinite.

Introduction

The aim of this paper is to extend to quantum systems some results established
for classical systems in an earlier paper4) which will from now on be called I.

It 1s first of all necessary to give an unambiguous definition of the hamiltonian H.
This is done in Section 2 using a method due to K. O. FrRIEDRICHS. In Section 1 some
properties of the trace of e ## are established. In Section 3 it is shown, using these
properties, that most results obtained in I for the case of a classical system of particles
interacting through a two-body potential extend naturally to a quantum system. The
reader is referred to I for the proofs which are not reproduced here.

1. Preliminary lemmas on traces

Let A be a self-adjoint operator with domain D, dense in the Hilbert space .
We assume that 4 is bounded from below, i.e. that there exists a constant « such that
¢ ¢ D, implies

(6, 4 ) = o(d, B) . (1)

Lemma 1*). If ¢, e Dy, i=1,...,%n and (§;, ;) = 0;; and if e~ has a finite
trace, then

3 exp [~ (¢ A §)] < Tee ™. @

*) The author is indebted to Dr. A. LENARD who pointed out to him that this property had
been established in 1938 by R. Pe1erLs?2). The following elegant proof is due to R. JosT (private
communication).
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If € is a positive number, one may choose the system (¢;); < ; < , for n big enough such that

Tre™t = Stexp [~ (g A ] < e. 5

Since ¢~4 has a finite trace, its spectrum must be discrete and the multiplicity of each
eigenvalue finite. Let A, 4,, ..., 4, ... be the sequence of these eigenvalues (repeated
according to multiplicity) in non-decreasing order. Let 4, 4,, ..., 4, be the sequence
of the numbers (¢,;, A ¢,) also arranged in non-decreasing order. From the ortho-
normality of the ¢;, we find that

k k
DA <4l k=1,..,n. 4)

The first part of the lemma will be proved if we can show that
Dle i< Y, (5)
i=1 =1

%
Let z5=1, z. = exp (— 2 Ai), k=1,...,n, we have then
et

1

I N T R | (6)
Zp_1 2z
and
F(z D) 2 i S e~ 4i 7
( 1 n) k;;: P ;; ( )
Differentiation with respect to z,, ..., 2, gives
9 Fls W= (3 - %) 20, k=1..,n-1 (8)
ozk 12 »o2 3 Zk Zk_l 3;; = ’ Yy ’
1 - 1
T F G s 5 B} = T > 0. 9)
F is thus an increasing function of z;, ..., z,. According to (4) the z, decrease when the

A; are replaced by the 4; and (5) follows immediately.
The proof of the second part of the lemma is immediate.

Remark. If Tre~4 diverges, equation (2) is trivial and to any positive N one
may choose the system (¢,); < ; <, for » big enough such that

,2: exp [—(¢;, 4 ¢,)] > N. (10)
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We may express equation (1) by writing A >« I. Since 4 + (1 — «) I > I, we may
introduce on D, the new scalar product

(v A+ (1—a)D)g). (11)

D, can be completed with respect to (11) to a Hilbert space L, and the canonical
mapping of L, into § is one to one*).

Suppose that D C D, and that D is dense in L, with respect to (11). We can see
that equation (3) is still satisfied with vectors ¢, ¢ D. Let indeed the vectors y; € Dy,
1 <+ < » be chosen such that (y;, ;) = J,; and

— 2o [ (-4 pi] < 5 (12)

Let the vectors y; ¢ D converge with respect to (11) towards the vectors p,. If the y;
are orthonormalized with respect to the usual metric according to the Schmidt
procedure, it is easy to see that the resulting vectors ¢, Stlll converge with respect to
(11) towards the y, and (3) follows immediately.

We may consider the problem from a different point of view. Let A, be any
symmetric operator, defined on a domain D, dense in § and bounded from below:
Ap > o I. We may introduce on D the new scalar product

(v, (Ap + (1 —a) 1) ¢) (13)

and complete D to a Hilbert space L, with respect to (13). The canonical mapping of
L, into $ is again one to one. Now, according to FRIEDRICHS *), A}, has one and only
one self-adjoint extension (which we call 4) with domain (which we call D,) contained
i L,.

We have thus the situation considered above and (3) holds again. From the above
remarks it is clear that if 4, and 4 are now called 4 and A, respectively, we may
restate our first lemma as follows.

Lemma 2. Let A be a symmelric operator with domain D dense in §. We assume
that 4 1is bounded from below and call A, its Friedrichs self-adjoint extension. Let
b;eD,i=1,...,nand (¢;, ;) = 6;;, then

Zn' exp [—(¢;, A $)] < Tre™ 4. (14)

If Tre 4 is finite and if € is any positive nuwmber, one may choose the system
(1)1 < i < n fOr m big enough such that

re 4 — fexp [—(d; 4 ;)] < e. (15)
i=1

*) See the description of the self-adjoint extension of a symmetric semi-bounded operator by
the method of FriEDRICHS in [3], pp. 326-330.
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If Tre 4t diverges and if N is any positive number, one may choose the system
()1 < i < » for n big enough such that

2, exp[—(f, 4¢)1> N. (16)
i=1
From this we immediately obtain our main results.

Lemma 3. Let the symmetric operators A, and A, be defined on domains D, and D,
dense in $, and 9, respectively, $,C 1, Dy C Dy. We assume that A, and A, are
bounded Sfrom below, that Tr e~ 41 4s finite and that Ay — Ay = ol on Dy Then
Tr e=\431 4s finite and we have

Tre “alr < g% Tr g s (17)

For any system (¢,); < ; <, of vectors in D, with (¢;, ;) = 9,;, we have indeed

_fexp [— (i, A2 d)] < Z exp[— (¢b;, A1 ;)] < e *Tre” (Ao | (18)

Comparison of (18) with (16) shows that Tr e~ 42 cannot diverge and comparison with
(15) shows that (17) holds.

Lemma 4. Let the symmetric operators A’ and A" be defined on the same domain

D dense in §y. We assume that A" and A" are bounded from below and that Tr e},
Tr e~ are finite. Then, if 0 < a’ < 1,a + a" = 1, we have

Tre WA — (10 e 40 (Tr e )™ . (19)

For any system (¢,); < ; <, of vectors in D with (¢;, ¢;) = 9;;, we have indeed

Zexp[ (@' A’ + a" 4") §,)]
- ;1' (exp [— (s, A’ ¢z)])d (exp [— (s, 4" ¢)] )u” (20)
< (Z exp [— (¢ A M)a (2 exp [ (¢, A" M)

by the Hélder inequality.

2. Definition of the Hamiltonian and restrictions on the potential

Let A be a (closed) cube with volume V = 23. We call §; (resp. §;) the Hilbert
space of the measurable square-integrable functions ¢(%,, ..., #,) with support in

(A)" which are symmetric (resp. antisymmetric) with respect to their # vector argu-
ments. The scalar product in $3'4 is defined by

(v, @) =fdx1 e AR PF(%y, o, ®) @(Ry, ., X)) (1)
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A system of » identical particles enclosed in the cube A will be described by the
Hamiltonian

CH-T4+U, 2
() (0 = 3 (= 45) #les 0 ). 3
(U (p) (X) = DT(xlﬂ $5% 3 xn) <P(x1’ R xn) (4)

restricted to 5 or §¢ according to whether the particles are bosons or fermions.
A, is the laplacian for the ¢* variable and U(x) is assumed to be a real measurable
function, symmetric in its arguments and bounded from below, but which may take
the value + oo in a region specified below. The quantum mechanical treatment of the
system requires now that H be defined as a self-adjoint operator in a suitable closed
subspace of $5°4. Let D2(A)" be the space of the functions which are twice con-
tinuously differentiable and have their support in (A)”, let also*)

D" ={¢:deHo, UdeHy- (3)

We first define 7 and U as symmetric operators with domains D?*(A)" 0 §, and D"
respectively.

A symmetric operator 4, defined on a dense subset of a Hilbert space § is called
essentially self-adjoint if it has one and only one self-adjoint extension, this is the
case if and only if its closure is already self-adjoint. 7" is however not essentially self-
adjoint since the quantization of free particles in a box with rigid walls or with
periodic boundary conditions yields two different self-adjoint extensions of 7. We
will choose here the self-adjoint extension of 7" defined by taking as its eigenfunctions
those continuous functions ¢, vanishing on the boundary of (A)* which satisfy a
partial differential equation

- A; .
<Z(_ 2 mf) - Eu) ()bu(xl’ S xn) =0 (6)
1=1

wn the interior of (A)* (box with rigid walls). This self-adjoint extension 7j of T is
simply the Friedrichs extension: 7, = 7 (see Appendix). Its choice may be justified
physically by a limiting process which we will not describe. We call D, the domain
of T,.

For a > 0 we define now the following set
R,={x:xe(A)" and H 4, such that ¢ + j, | &, — &;| < a}. (7)

Let U,(x) =+ occif xe R, U/(x) =0 otherwise. We call §, the subspace of §,
consisting of the functions ¢ which vanish on R, so that we can write U, ¢ = 0. By
definition the operator T + U, has the domain D*A)*N §,. T + U, is again not
essentially self-adjoint but we will show in the Appendix that its Friedrichs extension

*) In what follows we will omit the index S or 4 of 50, D’, D" ...in statements which are
valid both for the symmetric and the antisymmetric case.
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1, = (T + U,),may be interpreted physically as the Hamiltonian of a system of hard
spheres enclosed in a box with rigid walls. We call D, the domain of 7.

We will now restrict our attention to potentials U(x) such that U(x) = + oo for
x e R,, U(x) is finite-valued for x ¢ R, and the domain D3*(A)* n D" of T + U has the
closure §, in §, for some a > 0. Let S be the subset of (A)* formed by the points x
such that U(x) is not square integrable in any neighbourhood of x. S is closed. An
obvious necessary and sufficient condition that D*(A)» N D" = §_ is that S — R, be
of zero measure. If this is the case we define the Hamiltonian as the following self-
adjoint operator in §,

H= (T + U),. (8)

This definition is certainly justified when (T + U), coincides with the closure of
Ty 4+ U (e.g. when U = U, + U’ and U’(x) is bounded). It seems however difficult
to give sufficiently general conditions under which this is true (see Kato [1]). Thus,
since the definition (23) of the Hamiltonian is very convenient for what follows we will
simply stick to it, leaving open the problem of deciding exactly when it is physically
justified.

To conclude this section we will state our assumptions on the potential in the case
of a two-body interaction. These are the assumptions 4 and B already made in the
study of the classical case (see I), supplemented by the conditions obtained above and
which insure that the domain of T + U is dense in §,,.

Conditions on the potential. Owne may wrile
D(x) = Dy () + Dy(x) (9)

where the functions @, (x) and D,(x) depend only on | & | and satisfy the following conditions
AL Dy(%) is measurable with values in the closed interval [0, + oo]. The set
{%: Dy(%) = + oo} is equal to {x: | x| < a}, a = 0. If S is the set of all x such that D,(x)
15 not square-integrable in any neighbourhood of %, then S is the union of {%: |%| < a}
and of a closed set of zero measure.
Ay Dy(%) 15 continuous and integrable. If one writes

By(s) = (2)7 [ dp 2+ By(p) . (10)

QSZ( P) is non-negative and QBZ(O) > 0.
B. There exists a number R > 0 such that ®(x) < 0 for |x| > R.

3. Inequalities for the free energy and statement of results

Since U(x) is bounded from below, our definition (2, 8) of the Hamiltonian and
lemma 3 of Section 1 imply that, if 8 is a positive parameter, Tr e~ ## is finite. This
follows from the well-known fact that Tr e=# 7" is finite (for an explicit evaluation see
below). We may thus interpret e ##/Tr ¢~ #H as the density matrix of our system for
the canonical ensemble at temperature 7 = i~ and define the free energy per particle

J by
g BB AR _ Ty p=FH (1)
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It follows immediately from lemma 3 of Section 1 that f is an increasing function of
the potential. Another simple property of fis the following. If thecubesA,,7 =1, ...,
N, containing 7, particles have mutual distances not smaller than R and if they are
all contained in a cube 4, then,

i=1

(an) f(ﬁ; vy _Z'n) < _Z’ n; (B A, ) | (2)

We will now construct a lower bound for f(§; A, n), n > 0. First of all we know (see I,
Section 1) that under the assumptions 4 on @ we have the following minorization of
U(x) when ,e4,71=1, ..., n:

Ux) > 2 (A > - B) for A > Aq (3)

where 4, B, A, are positive constants.
If @ has a hard core of diameter a > 0 we have thus

1

HB: A,m) > 5 (4 5 — B) + £ A, w) (4)

where f, is the free energy per particle for the hard-sphere problem:

e~ "BlalBsAdm) _ 1y o—BTa (5)
Obviously

folB; A, m) = foBs A, m), fo(Bs A, m) = [(B; A, m) (6)

where 4 and S again refer to systems of fermions or bosons respectively. It is therefore
sufficient to minorize f;. We have

—nﬁf.,(ﬁ 4,7) ; - (g)z ( g‘lkg) (7)

where the summation is over all choices of the vectors ky, ... , k, with strictly positive
integer components, repetition being allowed and order irrelevant. If we put C =
B12m (/A)?, 0 < x < 1, we can write

w8 (B 1Y T T .
e ”5fu (ﬁ’A:“) < x_n an e nﬂf.,(ﬁ,/l,n): x_n H(l o xe-uck)_l- (8)

n =0 k

If now 0 < x << 1/2 we certainly have log (1 — x) > —2 x and therefore

B1o(B; A, m) > logx + *%Zlog (1 —xe %) > logx — %Ze“c‘“z. (9)
k k



796 David Ruelle H.P.A.

Now, since
e} 3 :
_Cr? —cm\ 1 w321 (AN 2Zam\32 ( m |32
Zeora( faee) <L AP () 0
0 W
we have
BIS(B; A, m) > logx — 2 x (—2-’—;1!34)3’z i (11)
If we take x = [(m/2 7 B)32 A3/n + 2]-1, we have 0 < x < 1/2 and therefore
. 3/12 vV
BRB:Am) > —log |(4ag) + +2] -2 (12)
From (4), (6), (12) we obtain finally the inequality
) i) n . m \3/2 V
BIB; A m) > E (A g B) ~ log [(2&5) — 4 2] _2. (13)

On the other hand we have the inequality

%YE-Ck2 b (jodx B—szf 1>3 [% (2)1/2_ 1]3

[ T - )T

Therefore, using the same technique as for the proof of (3.8) in I we get

BB, v) < —3log [(z*:f,;)m (" — R) — 1] (15)
when
W18 > R 4 (_2_;_/;_)1/2_

We conclude this study of inequalities for f by the remark that, as in the classical
case, f is a concave functional of the potential. This follows immediately from the
lemmas 4 and 3 of Section 1.

The properties (2), (13), (15) of f are very similar to those found in the classical
case. In particular (13) and (15) become essentially identical to (2.5) and (3.8) of 1 if
is fixed. On the other hand the proofs of the theorems established in I for the classical
case are based mainly on these properties and can readily be extended to the quantum
case. One exception is the proof of the continuity of the pressure as a function of the
specific volume at constant # for bounded potentials. We will not consider this last
problem further and will simply state now the other theorems in the form which they
take for the quantum case.

Let v, ! be the closest packing density for spheres of diameter a. For the canonical
ensemble we have the following results
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Theorem 1. Let (N,); <; .o be a sequence of positive integers such that N; - oo
and (V)1 <i<oo @ Sequence of positive numbers such that V,[N;, >v > v,. If one de-
notes again by V; the cube with volume V;, the sequence f(B; V;, N;)i =; - oo CONVErges

Im f(B; Vi, N;) = [(B, ) (16)
and ts limit depends only on f§ and v.

Theorem 2. The function B [(f, v), defined for B > 0, v > v,, is continuous with
respect to (B, v), concave in 3, decreasing and convex in v. It satisfies the inequalities

ﬁﬂﬁﬂozz§(§~—lﬂ-—k%[(;fﬁfﬂv+-4-—2, ‘ (17)

ﬂf@ﬂ0<:—3bgﬁzzgymww__Ry—l]im ¢m>«R+(E%Ef”_ (18)

In the study of the grand canonical ensemble we restrict ourselves to the case of

potentials without hard core (a = 0).
Let x = ¢#¢, we define

oo
PV PBxA) E(ﬁ, x: /l) _ Z xn g~ nBIB AN (19)
n=>0
Then, we have

Theorem 3. When V tends to infinity, p(B, x; A) has a limit

thgo p(B, x; A) = p(B, x) = 0<rng)—{{—m ,éi‘_i()ﬁ, v) ‘ (20)
If for some v, .
fww—v%=&
we have
p(pn) =00 _ o (21)

On the other hand the considerations about the zeros of the grand partition function
remain valid.
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Appendix

Let the cube A be defined by 0 < x << 4, ¢ = 1, 2, 3. Let the function ¢,(x), &:
positive integer, be zero for x << 0 and x > 4 and

dp(x) = (-)2:)1/2 sin (%x n) for ‘O < x<A. (A. 1)
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If b = (K, k2, k%), we write

br(%) = () Pra(*?) hya(x®) . (A. 2)

It is possible to order all vectors k with positive integer components into an infinite
sequence. Let us choose once for all such an ordering and for every non-decreasing
sequence k = (ky, ..., k,) write

P (X) = H¢ki(xi) . (A. 3)
1=1
Let now S, be the symmetric group of degree », if 7 ¢ S, we write ¢(7) = 0 when 7 is
even, g(n) =1 when x is odd. Let finally mx = 7@(®y, ..., &,) = (%q) -+ s Spn)-
To any non-decreasing sequence k we associate the function
vilx) = N 2 i (e x) (A. 4)

To any strictly increasing sequence k we associate the function

X)) =N D (- g (mx). (A.5)

ne Gy

The positive number N, is chosen such that g (resp. wi) has the norm 1 in $§ (resp.
9d). We define self-adjoint operators T and T§ on $5 and ¢ respectively by the
following formulae

2 i |
$vi= 55 (5) (2 k?) vi, (A. 6)

Tyt = 5 (})T; k?) yi | (A. 7)

Obviously T is an extension of 7. We will show that 7} coincides with T, by proving
that the vectors g, lie in the Hilbert space L, closure of D?(A)" N §, with respect to
the scalar product (y, T ¢). This scalar product on D?(A)"” N §, reduces to

n 3

(qp,T¢)=--ZLm-fdxl...danZ(B%gu(xl,...,xn)*) (g Bl - %)) (A8

i=1a=1

Let now «(x), j: positive integer, be a sequence of continuously differentiable
functions such that a/(x) = o/ (A — 1), 0 < of(x) < 1, a/(x) =0 for x <0, x >4 and
o;(x) = 1 for 1/j < x < A — 1]j. We write*)

x

&1 (x) = f dy (/21)”2 E2 cos (%’” 7) 0 (y) (A. 9)

-0

In analogy with (A. 2, 3, 4, 5) we construct functions ] (x) and it is readily seen that
the ] (x) converge towards y,(x) in L;. Let us now consider more generally the self-

*) The author is indebted to Dr. T. T. Wu who suggested to him this part of the argument.
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adjoint operator T, = (T + U,);, @ > 0. As in the case of T}, the scalar product
(w, (T 4+ U,) ¢) on D2(A)" n §, reduces to

(v (T+U)d)= 5. ’ (50 w0 -, )%) (17?7 By, ., %)), (A 10)

Let [y, ¢] be its extension to L, v, It is an eigenfunction of (T + U,),,
T,9p—Ey (A. 11)

thenye Ly, . We may write = lim v, where y; ¢ D*(A)" 0 $,and the sequence is
j—o00

convergent in the Hilbert space Ly . According to (A. 10) this means that each first
order derivative of y, converges in L2%(R*"). Since convergence in L*(R3") implies
convergence in the sense of distributions and since derivation of distributions is
continuous, we see that the first order derivatives of v considered as a distribution de-
fined in R3" are square-integrable functions. On the other hand, if ¢ e D¥A)"n §,,
we have

(Ep.¢) =Ty, §] = Jim [p, 4] = Tim (p, (T+ U) ¢) = (v, (T + U) §) (A 12)

and therefore
(y),(T—|-Ua—E)¢):O. (A. 13)

This means that, in the open set ((4)" — R,)°, the interior of (4)" — R,, v satisfies
the partial differential equation

n

t;:(— ?Aﬁn) p=Ewp (A. 14)
in the sense of distributions.

From this follows however that ¢ is analytic in ((A)" — R,)® and satisfies (A. 14)
there in the usual sense (see [5], p. 145). The two properties which we have obtained for
the eigenfunctions y of T, = (T + U,), allow us to consider them as the eigenfunctions
of a system of hard spheres enclosed in a box with rigid walls.
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