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Mécanique quantique quaternionienne et Relativité restreinte II
par Gérard Emch

(Institut de Physique Théorique de l'Université, Genève)

(15. VI. 63)

Abstract. This paper is a continuation of a previous paper which has recently appeared in this
journal, on the implications of group theory for the foundations of Quaternionic Quantum Mechanics.

It is first proved that even in this case a relativistic description is possible. It is then shown
that the elementary systems for the Poincaré group, as they appear in this realization, are in
one-to-one correspondance with those of the usual complex quantum mechanics. The occurence
of charge conjugation related to space reflexion is discussed and some consequences on a TCP-
relativistic theory are explored. The framework of a general relativistic Quaternionic Quantum
Mechanics is then developped and the particular ties that exist between this theory and its complex
analog are emphasized. The possible adequacy of a mixed complex-quaternionic description for
isospin is briefly investigated at the end.

Introduction

On se propose ici d'appliquer au groupe de la relativité restreinte les résultats
obtenus par l'auteur dans «Mécanique quantique quaternionienne et Relativité
restreinte I», article auquel on se référera dans la suite par I.

Lorsqu'on examine le processus de classification des représentations complexes
irréductibles du groupe de la relativité restreinte (voir déjà Wigner, puis surtout la
manière dont Mackey démontre le théorème de Frobenius), on s'aperçoit que celles-ci
sont construites pour ainsi dire autour du fait que ce groupe contient comme sous-

groupe invariant le groupe des translations dans l'espace-temps. Or ce groupe satisfait
aux hypothèses du SNAG (réf. I, Section 4c) et ses représentations quaternioniennes
font donc apparaître un opérateur / unitaire et antihermitien; l'importance de ce

type d'opérateurs dans rétablissements de liens entre le réalisations complexe et
quaternionienne a été déjà remarqué dans I ; on se pose alors naturellement la question
de savoir quelles sont les propriétés de ce J dans le cadre plus large de la théorie des

représentations du groupe de Poincaré. Aussi le premier but de cet article sera-t-il
de voir s'il existe des raisons physiques de croire que les représentations de ce groupe
satisfont aux hypothèses du théorème I. 4.2. / apparaissant dans les représentations
du groupe des translations, le physicien ne s'étonnera pas que ces postulats doivent
être cherchés dans l'interprétation de l'énergie-impulsion. C'est ainsi, qu'après avoir
formulé les postulats 1 et 2, on arrivera au théorème 1 qui permet d'obtenir la réponse
finale au problème posé en montrant l'existence d'une correspondance biunivoque
entre les systèmes élémentaires qui apparaissent dans la réalisation quaternionienne
et ceux de la réalisation complexe ; une alternative de la théorie des types habituelle,
où l'on introduit explicitement une opération de conjugaison de charge qui change de

sous-espace cohérent, est proposée.
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1. Le groupe de Poincaré

Le groupe de Poincaré est constitué par l'ensemble G de toutes les transformations
de la relativité restreinte, c'est-à-dire, par les transformations réelles linéaires qui
laissent invariante la distance dans l'espace-temps de Minkowski; on choisira pour
cet espace la métrique donnée par le tenseur g „ où g00 +1, gi{ —1 pour i 1,2,
3, et enfin g 0 pour// différent de v. L'espace pseudo-euclidien ainsi défini induit
sur G une structure de groupe topologique. Ce groupe est aussi connu sous le nom de

groupe inhomogène étendu de Lorentz.
On appelle groupe propre de Poincaré la composante connexe à l'identité dans G ;

on désignera ce groupe par Ge. Toute transformation appartenant à Ge est le produit
d'une translation par un vecteur réel b fx' x+b) et d'une transformation réelle
homogène fx' — Ax) ne contenant pas de réflexion (la translation est effectuée après
la transformation homogène). Tout élément de Ge peut donc s'écrire comme un couple
fb, A), la loi de composition étant:

fb, A) fb', A') fb", A") ou : b" b + A b' et A" =AA',
A' b étant la translation par le vecteur b' transformé au préalable par A.

Ce groupe est muni d'une structure qui peut être présentée de la manière suivante :

le groupe T4- des translations et le groupe homogène H4- étant localement compacts,
F4 étant de plus abélien, on fait correspondre à chaque élément A de 774 un auto-
morphisme de F4, de telle sorte que cette correspondance soit un homomorphisme
(au sens des groupes topologiques) de 774 dans le groupe des automorphismes de F4.

Désignons par A [...] l'automorphisme correspondant ainsi à A et considérons
l'ensemble de tous les couples fb, A) obtenus lorsque betA décrivent respectivement
F4 et H*; sur celui-ci, on définit une loi de composition interne par:

(b,A) fb'.A') fb A-A[b'], A A')

Muni de plus de la topologie du produit direct des espaces topologiques de F4 et de 774,

cet ensemble (Ge) devient un groupe topologique, localement compact ; F4 est isomorphe
au sous-groupe invariant et fermé, constitué par l'ensemble des éléments de Ge de la
forme fb, 1), alors que H* est isomorphe au sous-groupe fermé, constitué par l'ensemble
des éléments de Ge de la forme (0, A), l'identité dans Ge étant (0, 1). Cette situation est
caractérisée en disant que Ge est produit semi-direct de F4 par 7/4 ; le fait que Ge possède
cette structure est essentiel pour la théorie des représentations.

Enfin, on note que F4 est connexe et simplement connexe alors que 774 est connexe
et doublement connexe, son groupe de revêtement universel étant le groupe des

matrices complexes, unimodulaires, de rang 2, noté SL (2, C).

2. Classification des systèmes élémentaires par rapport au groupe propre
de Poincaré

Ge étant connexe, le système de propositions L de tout système élémentaire (7, 17)

par rapport à Ge est cohérent (voir théorème I. 1.3). U sera donc, dans le cadre des

réalisations qui sont envisagées ici, une représentation projective de Ge, agissant sur
les rayons d'un (et d'un seulement) espace de Hilbert quaternionien §. Considérons
d'abord la restriction F de U au sous-groupe F4 des translations. On a vu (I, Section
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4c) qu'on peut toujours extraire de F une représentation unitaire et continue v de F4

dans 9>, ayant la forme :

vh= eJP"bndafS)

r
où : b fb°, b1, b2, b*) parcourt F4,

T est le groupe des caractères de F4; ses éléments sont des quadrivecteurs
désignés par p (p°, p1, p2, p3) ;

J est un opérateur unitaire et antihermitien qui commute avec chacun des vb;
a(S) est une famille spectrale étalée sur F et déterminée de manière unique par J.

Par les méthodes habituelles de l'analyse fonctionnelle, on peut alors définir les

opérateurs hermitiens P11 tels que :

T Pt*b
vb — eJ f;

afS) n'étant définie de manière unique qu'à J fixe, il en est de même des Pß.

Ainsi qu'on l'a déjà noté (ref. I, section 4c) le lemme 1.4.2 affirme seulement
l'existence d'un J qui satisfasse aux conditions ci-dessus, mais il peut en exister
d'autres, qui y satisfassent encore. Soit /' un opérateur unitaire et antihermitien qui
commute avec chacun des vb ; celui-ci permet d'écrire vb sous la forme :

vb= f erp"bf da'fS)

et on obtient par le même procédé que ci-dessus les opérateurs P'ß tels que:

vb eJ f
En comparant les deux expressions ainsi obtenues pour vb, on déduit que (J' P'1')
doit être égal à (J P*"), ou encore que:

p'» -y fp».
J étant l'opérateur obtenu par la construction effectuée au lemme 1.4.2, il commute
avec tout opérateur qui lui-même commute avec chacun des vb (ceci dans le sous-espace
M; dans N, on supposera sans rien perdre que /' J); par conséquent, / et /'
commutent et satisfont donc à l'hypothèse du lemme 1.4.1. Il existe donc une partition
de 9> en deux sous-espace orthogonaux tels que J et /' sont égaux dans le premier et
opposés par le signe dans le second; cette partition réduit aussi v, ainsi que les Pß et
P'1" ; il en résulte que les P11 et P'11 sont respectivement égaux dans le premier sous-

espace et de signes opposés dans le second. Ainsi, lorsque J' parcourt tous les /
possibles, il apparaît une partition de § en sous-espaces orthogonaux réduisant les P?,
et telle que PM n'est déterminé qu'au signe près dans chacun de ceux-ci. Cette situation
résulte de la non-unicité du SNAG dans un espace de Hilbert quaternionien (réf. I,
section 4c).

On se propose de lever cette ambiguïté sur la base de raisons physiques : la forme

TPfb
vb eJ f

conduit à interpréter Pfl comme les composantes de l'énergie-impulsion. Imposons
alors le postulat :
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Postulat 1 : L'énergie doit être positive définie.

Ce postulat oblige à éliminer les représentations qui ne sont pas susceptibles de

fournir un P° positif défini. Pour celles qui restent, et qui ont donc seules une
interprétation compatible avec le postulat ci-dessus, celui-ci fixe de manière unique le J et

par conséquent la famille spectrale afS) ; avec cette interprétation, les ensembles de

Borel S de F sont des domaines dans l'espace des valeurs possibles de l'énergie
impulsion; le projecteur afS) est alors la réalisation de la proposition: «l'énergie-
impulsion a une valeur contenue dans 5».

Revenons maintenant à la représentation projective U de Ge d'où a été extraite la
représentation v de F4 étudiée jusqu'ici; Ge étant doublement connexe, on peut, en

vertu du théorème 1.3.4, extraire de U une représentation u de Ge, unitaire, fortement
continue, bivaluée ou non, qui, restreinte à F4, n'est autre que v. Pour alléger l'écriture,
identifions respectivement les éléments (0, A) et fb, 1) de Ge à A, élément de 774, et b,

élément de F4. On a alors (même si u est bivaluée) :

UA Ub «X UA[b]

Dans le cas complexe, cette relation est aussi vraie (voir par exemple Wigner1))
et si afS) est la famille spectrale attachée à v par le SNAG complexe, on a nécessairement:

u x afS) uA1 a f[S] A-1)

où l'action de A dans le groupe F des caractères de F4 est définie par ([B] A) (x)

BfA[x]). On exprime l'égalité ci-dessus en disant que afS) est un système d'imprimi-
tivité pour la restriction de u à 774 (voir Mackey2)) ; cette circonstance a une signification

physique évidente lorsqu'on interprète F comme on l'a fait plus haut: elle

exprime que l'énergie-impulsion se transforme correctement sous l'action des

transformations homogènes du groupe propre de Poincaré.
Dans le cas quaternionien, où on ne sait pas déduire cette relation d'imprimitivité,

on l'imposera par un postulat :

Postulat 2: L'énergie-impulsion doit se transformer correctement sous l'action du

groupe homogène propre de Poincaré.
Ceci signifie que, parmi les systèmes élémentaires (7, U) par rapport à Ge, on ne

retient comme physiquement raisonnables que ceux pour lesquels la restriction à F4

de u (représentation extraite de U) conduit à une énergie positive définie (postulat 1)

et est telle que sa famille spectrale a (S), définie alors de manière unique, constitue un
système d'imprimitivité pour la restriction de u à H4-.

En renversant la démonstration que l'on fait dans le cas complexe pour montrer
que le postulat 2 est satisfait, on démontre, dans le cas quaternionien, que si ce

postulat est satisfait, alors on doit avoir que uA commute avec / pour tout A dans 774.

Tout x de Ge peut s'écrire comme produit d'un élément b de F4 par un élément A de H4:

x fb, 1) (0, A) fb, A) ;

par conséquent, J commutant avec chacun des ub et chacun des uA, il commute avec
tous les opérateurs de la représentation u, qui satisfait ainsi à l'hypothèse du théorème
1.4.2.
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Résumons la situation telle qu'elle se présente maintenant : si (7, U) est un système
élémentaire par rapport au groupe propre Ge de Poincaré, alors 7 est nécessairement
un système de propositions cohérent ; dans sa réalisation quaternionienne, U est une
représentation projective de Ge, agissant sur les rayons d'un (et d'un seul) espace de

Hilbert quaternionien §; on a montré qu'on peut toujours extraire de U une
représentation u, unitaire, fortement continue, au plus bivaluée, de Ge dans 9j.
L'interprétation physique des générateurs des translations dans l'espace-temps de
Minkowski conduit à distinguer dans § un opérateur J unitaire et antihermitien,
essentiellement unique. Cet opérateur commute avec tous les opérateurs de la
représentation considérée; il peut donc servir à écrire, sous la forme du SNAG
quaternionien, les sous-groupes à un paramètre de Ge, permettant ainsi de définir les dix
observables PA et Af *', avec lesquelles il commute de plus nécessairement; celles-ci
ont le sens habituel des composantes de l'énergie-impulsion, du moment cinétique, et
du moment centroïdal. J détermine dans 9) une famille d'espaces de Hilbert
complexes 9)f, complets dans 9> et tous invariants sous l'action de chacun des opérateurs
de la représentation considérée, ainsi que sous l'action des opérateurs Pß et Af". On

peut donc considérer la restriction de tous ces opérateurs à l'un quelconque des 9jft.
Ve problème de la détermination de tous les systèmes quaternioniens élémentaires

par rapport à Ge peut donc être ramené à celui (résolu par Wigner1)) de la
détermination de toutes les représentations du groupe propre de Poincaré dans un espace
de Hilbert complexe. Ainsi que les critères d'équivalente de l'appendice le montrent
immédiatement, toutes les représentations complexes irréductibles de Ge qui ont un
sens physique sont de classe 0; le théorème 1.4.2 permet alors d'affirmer que, pour
tous les cas susceptibles d'intéresser la physique, à toute représentation quaternionienne
irréductible de Ge correspond une représentation complexe irréductible de Ge de même
dimension, et réciproquement.

3. Classification des systèmes élémentaires par rapport au groupe (complet)
de Poincaré

Ce groupe comprend 4 composantes connexes contenant respectivement l'identité
(c'est cette composante qui a été étudiée jusqu'ici sous le nom de groupe propre de

Poincaré), la réflexion d'espace s qui à tout quadrivecteur x fx°, x) fait
correspondre s x fx°, —x), la réflexion de temps qui, ax, fait correspondre t x f—x°, x),
et enfin la réflexion d'espace-temps s t, produit de s et de t ; dans G, ces réflexions ne
sont pas reliées continuement à e. Soit alors 7 un système général de propositions qui
admette des symétries Z, T, et 0 qui puissent être respectivement interprétées
comme l'effet de s, t et s t sur le système physique considéré. Ces systèmes ne satisfont
pas à l'hypothèse du théorème 1.1.2, mais, en vertu de la cinquième propriété des

symétries, elles appliquent chaque sous-système cohérent sur un sous-système
cohérent ; ces symétries étant de plus involutives, le système de propositions attaché
à une quelconque description (L, U), irréductible par rapport au groupe (complet) de

Poincaré, comprendra au plus quatre sous-systèmes cohérents distincts (ceci se
démontre de la même manière que le théorème 1.1.2). La théorie habituelle des types
(voir par exemple Wightman8) Nuovo Cimento, suppl. 14, p. 92) suppose que L ne
comporte qu'un seul sous-système cohérent; c'est là un postulat supplémentaire qui
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interdit, en particulier, d'interpréter E comme l'opérateur que les physiciens désignent
habituellement par C P, car cette opération contient la conjugaison de charge qui
intervertit les sous-systèmes cohérents de charge opposée ; une théorie des types ne faisant
pas se postulat sera envisagée à la fin de cette étude ; pour le moment, contentons-nous
de transcrire dans la réalisation quaternionienne une théorie qui postule explicitement
cette restriction. L'auteur s'est senti encouragé dans cette voie par les remarques
suivantes :

«We find it somewhat disappointing that the consideration of the type does not
lead to a more potent distinction between particles. It is not impossible that the
paucity of distinguishing marks between types is characteristic only of the complex
number system, used for the component of vectors in Hilbert space.» (Bargmann,
Wightman et Wigner3)). Et «... the interpretation of reflection operators has
raised a number of difficult questions I should like to mention the possibility of
using a number system for the Hilbert space which is different from the ordinary
complex numbers.» (Wigner3)).

Envisageons maintenant une représentation projective continue U du groupe G

(complet) de Poincaré, agissant sur les rayons d'un seul espace de Hilbert
quaternionien 9) (on se place donc ici dans le cadre restreint d'une théorie sans règles de

supersélection) ; désignons par E, T et 0 les éléments de U qui correspondent
respectivement à s, t et s t. On a vu qu'il est toujours possible d'extraire de U une
représentation u unitaire, continue, au plus bivaluée, du groupe propre Ge;E, T et© étant
par définition des symétries, on peut toujours les représenter par des opérateurs
unitaires de 9>- g, t et # respectivement; on remarquera que cette situation est
différente de celle qu'on rencontre dans le cas complexe où l'on doit choisir entre les

cas unitaire et anti-unitaire, une symétrie ne pouvant pas être représentée
simultanément par un opérateur unitaire et un opérateur anti-unitaire. Désignons par R
un quelconque des E, T ou 0, et par q un représentatif unitaire de R, par r la réflexion
de l'espace de Minkowski représentée par R, et par r[x] la transformation r x r^1 de

Ge; q ux q-1 et ur[x] représentent la même symétrie physique et ne diffèrent donc que
par un facteur scalaire sfx) de norme 1 ; comme ces deux expressions sont linéaires,
celui-ci ne peut être que +1 ou — 1 ; de plus q ux q-1 et wrM sont continues en x ; il en
est donc de même de sfx); or efe) 1 car ue= I; par conséquent efx) +1 pour
tout x de Ge.

On a vu que, réduite à F4, u prend la forme :

X"Wa(S)=ZpX

où J, unitaire antihermitien est fixé de manière essentiellement unique par
l'interprétation des P^ comme les composantes de l'énergie-impulsion; les projecteurs afS)
ont été alors interprétés comme les propositions: «l'énergie-impulsion a une valeur
comprise dans le domaine S». Complétons maintenant le postulat 2 par:

Postulat 2 «renforcé»: L'énergie-impulsion doit se transformer correctement sous
l'action du groupe homogène de Poinca ré.

Ce postulat consiste effectivement à choisir une interprétation de E, T et 0 en
précisant ce qu'est la transformation «correcte» de l'énergie-impulsion sous ces
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symétries : E, qui représente la réflexion d'espace s, doit changer le signe de l'impulsion,
mais laisser fixe l'énergie :

a afS) o--1 E afS) af[S] s) ;

t étant la réflexion de temps, elle doit renverser la direction du mouvement :

t afS) t-1 F afS) af[S] s) ;

s t étant le produit de s par t, on doit avoir :

§ afS) ê"1 0 afS) afS)

En faisant alors du postulat 2 renforcé le même usage que celui a été fait du
postulat 2 initial, on obtient que a commute avec /, alors que t et # anticommutent
avec cet opérateur.

J, a(S), ux étant tous des opérateurs linéaires, ce qui a été démontré ci-dessus pour
a, x et ¦& reste vrai pour n'importe quel autre des représentatifs de E, T ou 0.

Ve théorème 1.4.1 affirme que J, qui est unitaire et antihermitien, permet d'extraire
de §) une famille d'espaces de Hilbert complexes 9jf ; dans la discussion qui suit ce

théorème, il a été remarqué que tout opérateur linéaire de 9j, qui commute avec /,
applique linéairement chacun des 9>f sur lui-même ; c'est le cas de chacun des ux et
de a ; pour t et ¦& qui anticommutent avec J cela n'est plus vrai : ils appliquent linéairement

chacun des 9)G> sur l'espace §>c~ *> correspondant. On aura alors recours à l'artifice

suivant : désignons par A indifféremment F ou 0 ; on vient de montrer que tout
opérateur qui représente A dans § anticommute avec J ; choisissons alors parmi tous
les représentatifs possibles de A un opérateur co-linéaire qui diffère des représentatifs
linéaires de A par un quaternion k, purement imaginaire (et naturellement de norme 1) ;

soient i un quaternion imaginaire, de norme 1, qui anticommute avec k, et §>f
l'espace de Hilbert complexe correspondant. Désignons par a l'opérateur co-linéaire
ainsi choisi ; alors a applique antilinéairement 9)f sur lui-même ; en effet, soient/ et /'
des vecteurs de 9jf, et c(,) x + iy (ou x et y sont réels) un nombre quelconque du

corps de base C(l) de 9}f ; on a :

/ a / — a / / -aî/= — k i k'1 a / i a /, a (/ + /') a / + a /'

car a est co-lineaire

a c{i) f fx + k i k~1 y) a / fx — i y) a /

ce qui prouve notre assertion.
Résumons ce qui a été démontré jusqu'ici:

Théorème 1 : Etant donné une représentation projective continue U du groupe de

Poincaré G, agissant sur les rayons d'un espace de Hilbert quaternionien, et

satisfaisant aux postulats 1 et 2 renforcé, il est toujours possible d'extraire

a) de 9), un espace de Hilbert complexe 9)f complet dans §,
b) de U, une représentation u continue de G dans §, de sorte que u applique 9)f sur

lui-même. Soit alors Al) la restriction de uà 9)f ; celle-ci jouit des propriétés suivantes :
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(i) w(,) est une représentation continue de G dans <?>£> ;

(ii) restreinte au groupe orthochrome, «<*> est unitaire ;

(iii) t(,) et ê'-''1 sont anti-unitaires, r et & représentant respectivement dans § la
réflexion de temps et la réflexion d'espace-temps.

Arrivé à ce point, on a besoin d'une généralisation du théorème 1.4.2 au cas des

co-représentations ; analysons pour cela la situation suivante :

Soient 9) un espace de Hilbert quaternionien, / un opérateur unitaire antihermitien

de 9), G un groupe, r un automorphisme extérieur involutif de G, u une
représentation unitaire de G dans 9>, telle que ux commute avec / pour tout x de G, et enfin
q une transformation de 9) satisfaisant aux conditions suivantes :

(j) qJ -Jq
(ii) qfqf) k q k'1 qf où k est un quaternion imaginaire de norme 1,

(iii) q ux q-1 ur[xi pour tout x de G ;

la démonstration du théorème 1 permet déjà d'affirmer que, si i est un quaternion
imaginaire de norme 1, qui de plus anticommute avec k et si 9)f est l'espace de

Hilbert complexe associé à i par /, alors la restriction X de w à $)f est une
représentation unitaire de G, et q applique antilinéairement 9)f sur lui-même; désignons
par p(t) cette transformation de 9)f.

Si (m(i), q'A est une co-représentation de type I, irréductible de fG, r), avec A*"1 de
classe + 1 ou 0, le théorème 1.4.2 suffit pour établir l'irréductibilité de fu, q). Bornons
donc l'analyse qui suit au cas des co-représentations de type II ou III; (pour une
classification des co-représentations voir l'exposé fait en appendice) ; une légère
modification de la démonstration du théorème 1.4.2 permettra cette analyse:
supposons qu'il existe un projecteur a de § qui commute avec (u, q) ; à partir du commutateur

[a, J] formons l'opérateur:
B k-^-qUi, J]

qui est linéaire; il commute de plus avec / et applique donc linéairement 9)f sur
lui-même; il jouit enfin des propriétés suivantes:

(i) Bux urlx]B,

(ii) Bq= -q B;

tous les opérateurs qui interviennent ici appliquent 9>f sur lui-même; on a donc:

(i) B^uf^ufAB®,
(ii) F<')g<!">= -qMB«\

Il a été démontré, dans l'appendice, que les co-représentations irréductibles de

type II ou III sont de la forme:

9'C) K

où v est une représentation irréductible de G; en remplaçant (mw, gw) par cette forme
dans les relations (i) et (ii), on trouve que si v n'est équivalente ni à v, ni à vr (définie
par fvr)x vrA) alors B est nécessairement nul. Par le même raisonnement que celui
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qui a été utilisé pour établir le théorème 1.4.2, on déduit que fu, g) est irréductible si

ces deux conditions sont satisfaites. Le premier des critères d'équivalence du théorème
de Mackey-Frobenius (voir appendice) indique immédiatement que ces deux
conditions sont effectivement satisfaites pour toutes les co-représentations du groupe
de Poincaré étudiées en appendice ; il en est de même pour les co-représentations du

groupe propre étendu par la réflexion d'espace-temps s t seulement.
Ainsi pour tous les cas susceptibles d'intéresser la physique, à toute représentation

quaternionienne irréductible du groupe propre de Poincaré, étendu par s t seulement,
ou par s et t séparément, correspond une co-représentation complexe irréductible de

même dimension ; réciproquement, toute co-représentation complexe irréductible d'un
de ces groupes étendus peut être plongée dans une représentation quaternionienne
irréductible.

Pour clore il peut être intéressant de discuter brièvement une théorie où le postulat
de cohérence maximum de la théorie des types habituelle est omis; seuls les cas où

l'introduction d'un automorphisme involutif anti-unitaire g «double» la dimension des

représentations entrent en ligne de compte ici. Les co-représentations correspondantes
sont alors de type II ou III et peuvent toujours s'écrire, ainsi qu'on l'a remarqué déjà,
sous la forme suivante :

Q K

(en raison ce ce qui précède, on ne considère que le cas complexe).
Supposons maintenant qu'on a une règle de supersélection entre les sous-espaces

des représentations v et v ; alors q et q' q Q où

\co21

fcox et co2 étant des nombres complexes arbitraires de module 1) représentent la même

opération projective puisqu'on ne peut distinguer les phases relatives entre ces deux

sous-espaces ; posons alors co2 1 et ojx e; q' prend alors la forme :

,-k(A
(dans la suite, pour alléger l'écriture, on omettra le prime) ; on remarque que q2 est
normalisé à + 7.

Supposons maintenant que v soit une représentation (irréductible) du groupe
propre, et que q soit ¦& qui représente la réflexion d'espace-temps ; # change donc de

sous-espace cohérent; interprétons cette opération en disant que ê contient la
«conjugaison de charge», c'est-à-dire que § est l'opération que les physiciens désignent
habituellement par CPT. Va question qui se pose alors est de savoir si une telle
représentation contient P, T ou CP; voyons d'abord le problème de l'inversion de

l'espace représentée a priori par l'opérateur:

a ß

y ô
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comme a est une symétrie, elle applique chaque sous-espace cohérent ou bien sur
lui-même ou bien sur un autre sous-espace cohérent, de sorte qu'on a:

- ou bien : ß y 0,

- ou bien : a ô 0 ;

dans le premier cas, on interprétera a comme P, et dans le second comme CP; de plus
a doit satisfaire à la condition :

a ux a-1 uM
de sorte que :

- ou bien: a vx ar1 vM et ôvx ô"1 vM,

- ou bien: ßvxß~1 vslx] et y vxy~1 vs[xi.

Ces quatre conditions peuvent respectivement s'écrire :

a vx a.-1 vM, ôv.ô-1^ vdx], ß~1vltx]ß vx, y-1 vtlx] y vx.

Trois cas peuvent alors se présenter :

(i) v n'est pas équivalente à vs, et vt n'est pas équivalente à v; la théorie ne possède
alors pas de symétrie pouvant représenter la réflexion d'espace s ;

(ii) v est équivalente à vs; la théorie possède un opérateur a qui peut s'interpréter
comme le P des physiciens;

(iii) vt est équivalente à v; la théorie possède un opérateur a qui peut s'interpréter
comme le CP des physiciens.

On remarque que les cas (ii) et (iii) ne sont pas incompatibles. Un calcul analogue
montre que la condition pour que la théorie possède un opérateur qui représente la
réflexion de temps sans changer de sous-espace cohérent est: vt est équivalente à v;
cette condition est la même que celle de l'existence d'une symétrie CP, ce qui n'est
effectivement pas étonnant puisqu'on a imposé CPT.

En utilisant les critères du théorème de Mackey-Frobenius, on obtient:

1. Les systèmes de masse non-nulle possèdent la symétrie P, ce qui n'est pas le cas

pour les systèmes de masse nulle, à moins que le spin soit aussi nul.
2. CP et F sont des symétries pour les systèmes de masse non-nulle et nulle, et

on a alors respectivement F2 (— I)2s et F2 + 7.

Ces remarques sont valables seulement si C change effectivement de sous-espace
cohérent (ce qui n'est pas le cas pour les systèmes où toutes les charges sont nulles et
on doit alors prendre les résultats de la théorie des types ordinaires).

4. Conclusion

Sous l'hypothèse d'une interprétation cohérente de l'opérateur d'énergie-impulsion,
on a classifié toutes les réalisations quaternioniennes (et complexes, voir appendice)
des systèmes élémentaires par rapport à divers sous-groupes du groupe de Poincaré :

le groupe complet, le groupe propre, le groupe orthochrone, ainsi que le groupe propre
étendu seulement par la réflexion d'espace temps. Il est apparu que les systèmes
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élémentaires ainsi obtenus dans les réalisations complexe et quaternionienne peuvent
être mis en correspondance biunivoque. Ceci a été mis en évidence au moyen d'un
opérateur J unitaire et antihermitien qui commute avec chacun des opérateurs
représentant les transformations du groupe orthochrone, et qui anticommute avec
les opérateurs représentant la réflexion de temps et la réflexion d'espace-temps. Cet

opérateur J joue donc un rôle comparable à l'unité imaginaire de la réalisation
complexe, ainsi qu'à l'opérateur/ introduit par Stueckelberg et collaborateurs dans
la réalisation réelle5). Ce germe d'analogie suggère de pousser plus loin la comparaison ;

appelons charges, des observables (opérateurs linéaires et hermitiens) qui restent
invariantes sous toutes les transformations du groupe propre de Poincaré et qui
commutent avec chacune des composantes de l'énergie-impulsion ; en refaisant ici le
raisonnement effectué à propos du postulat 2, on montre que toutes les charges
commutent avec J et peuvent donc être entièrement déterminées par leur restriction
à un espace de Hilbert complexe choisi arbitrairement dans une famille elle-même
déterminée de manière unique par J. Phénoménologiquement, il semble que toutes
les observables de la physique peuvent être obtenues à partir de ces charges et d'opérateurs

liés au groupe de Poincaré ; s'il en est effectivement ainsi, toutes les observables
commutent avec J et sont donc, à leur tour, complètement déterminées par leur
restriction à l'espace de Hilbert complexe dont il est question ci-dessus.

Ainsi, dans le cadre de cette étude, il n'apparaît aucune raison physique portant à

utiliser la réalisation quaternionienne plutôt que la réalisation complexe de la
mécanique quantique. La situation pourrait évidemment devenir très différente si l'on
changeait un des postulats, ce qui semble toutefois difficile dans l'état actuel de nos
connaissances; en particulier, il est important de remarquer que le groupe de la
relativité restreinte jouit d'une propriété très particulière : le problème de la réduction
de phase admet la même solution dans les réalisations quaternionienne et complexe,
ce qui n'est pas le cas en général ainsi qu'on l'a remarqué dans la troisième section de
la réf. I.

Lors d'une discussion, C. N. Yang4) avait suggéré d'utiliser les quaternions pour
rendre compte des symétries du groupe de l'isospin. Bien que cette question sorte du
cadre du problème qu'on s'est proposé de résoudre ici, il peut être intéressant de

mentionner les faits suivants qui conduisent naturellement à une idée semblant être
contenue, du moins implicitement et peut-être sous une forme un peu différente dans
les travaux de Finkelstein, Jauch, Schiminovich et Speiser6). Tout d'abord, il
faut noter que la troisième composante de l'isospin étant liée aux charges, les espaces

propres de cette observable sont nécessairement séparés par une règle de super-
sélection ; or les autres composantes de l'isospin échangent ces espaces, ce qui n'est pas
possible dans une théorie où on ne considère qu'une suite discrète de sous-espaces
cohérents, car le groupe de l'isospin est connexe (voir théorème I 1.2); ainsi, une
théorie qui admet pour groupe de symétrie le groupe de l'isospin doit contenir une
suite continue de sous-systèmes cohérents; on est donc placé en présence d'un
système admettant une règle de supersélection continue. Le théorème 1.4.1 et les

remarques qui précèdent le théorème 1.4.2 suggèrent un formalisme où une telle
situation pourrait être traitée d'une manière simple et naturelle; cette voie est
d'autant plus tentante que la famile d'espaces de Hilbert complexes, associée à un
opérateur / unitaire et antihermitien, dépend de trois paramètres; cependant en
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essayant de développer plus avant cette spéculation, on s'est heurté à des difficultés
qui ont donné naissance à un sentiment de frustration analogue à celui dont parle
C. N. Yang dans sa remarque.

En bref, si on a quelque peine à tirer des faits nouveaux en faisant jouer au corps
des quaternions le rôle que remplissent habituellement les nombres complexes, on a
néanmoins montré que rien ne s'oppose en principe à une mécanique quantique
relativiste quaternionienne. La voie reste donc ouverte à une réalisation
quaternionienne des théories quantiques relativistes.
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Appendice

Classification des représentations complexes irréductibles du groupe
de Poincaré

On se propose ici de rappeler les faits essentiels de la théorie de la classification
des représentations irréductibles du groupe de Poincaré dans un espace de Hilbert
complexe; ce problème a été complètement résolu par Wigner et collaborateurs1)3);
la plupart des raisonnements présentés dans ces articles originaux sont effectivement
des expressions particulières de théorèmes plus généraux, énoncés par Mackey2) ; ces
théorèmes se rapportent essentiellement à la détermination des classes d'équivalence
des représentations irréductibles (ce qui est précisément le problème que doit résoudre
le physicien) ; il a paru judicieux de présenter ici la théorie sous cette forme concise.

Introduisons au préalable la notion de «représentation induite» qui jouera un rôle
fondamental dans la discussion qui va suivre : Soient G un groupe separable, localement

compact, H un sous-groupe fermé de G, 7 une représentation (unitaire, fortement
continue) de H dans un espace de Hilbert complexe §(7), /u une mesure de Borel
quasi-invariante sur G/77, et enfin §> l'ensemble des applications / de G dans 9jfL) qui
satisfont aux conditions suivantes :

(i) fffx), cf>) est une fonction de Borel en x pour tout cf> de 9>fL) ;

(ii) pour tout x de G, tout h de 77, on doit avoir :

f(hx) Lhffx),
(iii) / \\ffx) [j2 dfi(s) < oo

GjH



782 Gérard Emch H. P. A.

On remarque que l'expression (iii) n'a de sens que si la condition (ii) est postulée au
préalable; cette condition implique en effet que \\ffx) \\2 est constante sur chaque
complexe associé à 77; il en est de même de la fonction fffx), gfx)); celle-ci permet de

définir un produit scalaire dans 9), de telle sorte que celui-ci devienne un espace de

Hilbert complexe :

(/.g)- f fffx), gfx)) d^fs).
G/H

Pour tout / dans §, tout couple d'éléments x et y appartenant tous deux à G,

considérons l'expression :

fuLxf)(y) f(yx)ÌQF)
qx étant la dérivée de Radon-Nikodym dfijdfj., dont la définition précise se trouve
dans les articles de Mackey; il nous suffira de savoir ici que Qxfs) est une fonction de

Borel sur G x G/7/ qui peut être définie de telle sorte que :

Qxyfs) Qxfs) Qy (s x)

quels que soient x et y dans G, et s dans G/H. >'UL constitue alors une représentation
unitaire continue de G dans <r>, dite représentation de G, induite par L. La notion de

représentation induite (introduite d'ailleurs dans ce contexte par Frobenius) prend
une forme évidemment plus simple dans le cas des groupes discrets, car il n'est pas
nécessaire de faire intervenir les raffinements de la théorie de la mesure; pour les

groupes topologiques, satisfaisant aux conditions de la définition ci-dessus, Mackey a

montré que l'indice /u, dans ßUL peut être omis; en effet, la condition de quasi-
invariance imposée à [i détermine cette mesure à une équivalence près, et il apparaît
que deux représentations >"UL et "UL, où les mesures /bt et v sont équivalentes, sont
unitairement équivalentes.

Définissons encore rapidement quelques termes afin de pouvoir énoncer
intelligiblement ce qui sera, pour le but poursuivi ici, le théorème central de Mackey-
Frobenius.

Soit G un produit semi-direct de groupes topologiques T et H, T étant supposé
abélien (pour la définition du produit semi-direct, voir section 1). Dans le cas complexe,
il est commode de remplacer le caractère 8 sur un groupe abélien par l'expression
1 el6, que par abus de langage on désignera systématiquement dans cet appendice
sous le même nom de caractère. On dit que deux caractères x et %' sur F sont équivalents
(par rapport à H) s'il existe un élément yl de 77 tel que pour tout b de F on ait:

X'fb) xfA[b]) ;

on écrira alors x' [%] A. On appelle orbite (sous l'action de H) une classe d'équivalence
de caractères au sens de la définition ci-dessus. Le terme de petit groupe H %, associé à

un caractère x, désigne l'ensemble des éléments A de H qui laissent x invariant, c'est-à-
dire pour lesquels x [%] A. Notons enfin que si x est un caractère sur F et si Af est

une représentation unitaire, fortement continue et irréductible du petit groupe H x
associé à x, alors l'ensemble des opérateurs L*'A, définis par xfb) MA lorsque b et A
parcourent respectivement F et H x, forme une représentation unitaire, fortement
continue et irréductible du sous-groupe de G constitué par le produit semi-direct de F
par 77 x-
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Le théorème suivant est alors valable pour autant qu'une certaine condition de

régularité du produit semi-direct soit satisfaite, ce qui est le cas pour le groupe
de Poincaré. (Dans l'énoncé de ce théorème, on sous-entendra les adjectifs
«unitaire» et «fortement continue» pour les représentations dont il est question.)

Théorème de Mackey -Frobenius: Soit G un groupe obtenu comme produit semi-
direct de groupes séparables, localement compacts T et H, F étant de plus abélien.
Si x est un caractère sur F et si M est une représentation irréductible du petit groupe
H x associéà %, alors la représentation UL de G, induite par la représentation L7'M du
produit semi-direct de F par H x, est irréductible. De plus, toute représentation
irréductible de G peut être obtenue ainsi. Enfin, deux représentations irréductibles de G,

induites respectivement par LX: M et Lx'M ' sont équivalentes si et seulement si x et x'
sont dans la même orbite et si M et M' peuvent être amenées à être équivalentes.

Ainsi, la classification des représentations des groupes qui satisfont à l'hypothèse
de ce théorème peut être obtenue au moyen du programme en cinq points suivant7) :

(i) Déterminer les caractères sur F.
(ii) Déterminer les orbites sur F sous l'action de H.
(iii) Choisir arbitrairement un caractère dans chaque orbite,
(iv) Déterminer les petits groupes associés à chacun des caractères ainsi choisis.

(v) Déterminer les classes d'équivalence des représentations irréductibles de chacun
de ces petits groupes.

En vertu du théorème de Mackey-Frobenius, chaque couple formé par une orbite
et une classe d'équivalence de représentations irréductibles du petit groupe associé à

un caractère choisi arbitrairement dans cette orbite, détermine une classe
d'équivalence de représentations irréductibles de G, et, en effectuant le programme décrit
ci-dessus, on parcourt toutes les classes d'équivalence.

Mettons alors à profit le fait que le groupe propre de Poincaré Ge satisfait aux
hypothèses du théorème de Mackey-Frobenius, le groupe abélien étant le groupe F4

des translations dans l'espace-temps, le second terme du produit semi-direct étant le

groupe des transformations homogènes propres H4 (voir section 1). Notre but n'est

pas ici de recenser toutes les classes d'équivalence de représentations irréductibles de

Ge, mais seulement de rappeler les faits essentiels concernant celles qui conduisent à

une masse réelle, à une énergie positive et à un spin discret; les représentations
appartenant aux autres classes semblent en effet ne pas avoir de rapport avec le
contexte physique dans lequel on s'est placé. Ceci sera suffisant pour permettre de

traiter le problème de la classification des représentations irréductibles du groupe
(complet) de Poincaré, car le théorème de Mackey-Frobenius donne les critères
d'équivalence de manière suffisamment précise pour qu'il ne soit pas nécessaire de

recourir à la forme explicite des représentations. Appliquons alors le programme
proposé ci-dessus :

(i) les caractères sur F4 sont de la forme

Xfb) XX
ou b est le quadrivecteur de la translation considérée, p un quadrivecteur
caractéristique du caractère x< et pß xfl le produit scalaire dans l'espace-
temps de Minkowski;



784 Gérard Emch H. P. A.

(ii) appartiennent à la même orbite tous les caractères tels que le p correspondant
puisse être obtenu à partir d'un p fixe, au moyen d'une transformation homogène

propre; aussi, une orbite sera-t-elle déterminée par la valeur de m2, définie comme
p'1 p/j, et, pour les orbites où m2 >\ 0, par le signe de la composante p° de p;

(iii) pour m2 > 0, les seules orbites qui conduisent à une valeur positive de l'énergie
sont celles qui contiennent un multiple réel positif de p (1, 0, 0, 0) ; pour m 0,
si on excepte l'orbite constituée du point p (0, 0, 0, 0), la condition de positivité
de l'énergie conduit à ne conserver que les orbites qui contiennent un multiple
réel positif de p (1, 0, 0, 1) ;

(iv) en raison de la réponse (dans le cas complexe!) au problème de la réduction de

phase pour le groupe propre de Poincaré, on doit chercher les représentations de

Ge, ainsi que ses représentations bivaluées ; on sait que ce programme peut être
résolu en cherchant toutes les représentations du revêtement universel de Ge

(voir Bargmann8), Wigner1) et aussi Mackey2)); on remplacera alors H* par
son revêtement universel S 7(2, C). Le petit groupe associé à (1, 0, 0, 0) est alors
S U(2, C), revêtement universel du groupe des rotations (propres!) dans l'espace
euclidien à 3 dimensions; un calcul élémentaire montre que le petit groupe
associé à (1, 0, 0, 1) est isomorphe au groupe des transformations propres
inhomogenes dans l'espace euclidien à 2 dimensions; ce groupe est dit groupe
euclidien à 2 dimensions et est noté E2 ;

(v) les représentations de 5 Uf2, C) sont bien connues : elles sont caractérisées par un
paramètre réel s m/2 où n parcourt les nombres entiers positifs ; s est appelé
spin de la représentation considérée. Quant à F2, il satisfait lui-même aux
hypothèses du théorème de Mackey-Frobenius et on peut lui appliquer à son tour le

programme en cinq points énoncés ci-dessus (voir par exemple l'article de

l'auteur7)) ; deux types de représentations apparaissent alors, conduisant respectivement

à des représentations de Ge à spin discret et à des représentations à spin
continu; celles-ci n'ayant pas trouvé d'interprétation physique, on ne retiendra
ici que les premières, auxquelles correspondent des représentations de E2 de la
forme eisß où ß est l'angle de rotation dans R2, et s nj2 avec n parcourant les
nombres entiers.

La classification des représentations de Ge qui admettent une interprétation
physique est ainsi achevée.

En raison de la présence du caractère ^(è), aucune de ces représentations n'est
équivalente à sa conjuguée complexe, car p et —p n'appartiennent jamais à la même
orbite dans ces cas; on obtient que ainsi toutes les représentations du groupe propre
de Poincaré qui ont un sens physique sont de classe 0 de Frobenius et Schur; ce

résultat est d'une grande importance dans la détermination des représentations
quaternioniennes (voir théorème 1.4.2).

Les renseignements obtenus jusqu'ici suffisent pour qu'on puisse entreprendre la
classification des représentations du groupe complet de Poincaré.

Considérons d'abord le groupe orthochrone G\ c'est-à-dire le groupe Ge auquel on a

ajouté la réflexion s de l'espace euclidien à 3 dimensions.
Soit u une représentation irréductible de G^ ; on montre immédiatement (voir par

exemple Wigner1)) que us ux Mr, uixs-i (sans phase arbitraire; l'argument est
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fondé sur le fait qu'il n'existe pas de représentation non triviale du groupe propre de

Poincaré, de dimension 1) ; en faisant usage du postulat de positivité de l'énergie, on
montre alors que u, doit être unitaire. En vertu du théorème de Clifford (voir par
exemple Boerner9)), l'alternative suivante se présente:

- ou bien : u restreinte à Ge est encore irréductible et alors les représentations u et u',
restreintes à Ge, sont équivalentes (où u' est définie à partir de u par la relation
u'x usxs-i pour tout x de Ge; on dit que u' est l'associée de u) ;

- ou bien : u restreinte à Ge est somme directe de deux représentations irréductibles
associées inéquivalentes.

Ainsi, pour construire toutes les représentations irréductibles de G* à partir de
celles de Ge, il suffit de rechercher quelles sont les représentations irréductibles de Ge

équivalentes à leur associée. La réponse à cette question est encore fournie par le
théorème de Mackey-Frobenius. La réflexion s ne changeant ni la longueur d'un
quadrivecteur, ni sa composante temporelle, les caractères x et x' de deux représentations

associées appartiennent toujours à la même orbite, de sorte que la première
condition d'équivalence est satisfaite. Pour les représentations de masse non-nulle,
X et x' sont même identiques; leurs petits groupes sont donc les mêmes; comme la
réflexion s commute avec toutes les rotations, les représentations M et M' sont elles
aussi identiques, et la seconde condition d'équivalence est satisfaite. Pour les représentations

de masse nulle, la situation est à peine moins simple : p et p' s p sont
différents; toutefois ils appartiennent à la même orbite; il existe donc une transformation
A, appartenant au groupe propre, telle que Asp p (ici A est une rotation d'un
angle n) ; considérons alors la représentation u" définie par u"x u'AxA-i qui est
évidemment équivalente à u'; u" et u ont même caractère; donc même petit groupe;
les représentations correspondantes M" et M sont cependant e~,sP et elsf> qui sont
inéquivalentes, à moins que s ne soit nul.

Pour le groupe orthochrone G1, la classification des représentations irréductibles
ayant un sens physique est ainsi terminée: pour les représentations de masse non-
nulle, u, restreinte à Ge, est irréductible ; la situation est la même pour les représentations

de masse nulle et de spin nul ; pour les représentations de masse nulle et de spin
non-nul, u, restreinte à Ge, se décompose en deux représentations irréductibles,
associées et inéquivalentes; on dit couramment dans ce cas que l'introduction de la
réflexion d'espace «double» la dimension de la représentation considérée.

Dans la groupe de Poincaré complet apparaît la réflexion de temps t; les mêmes

arguments que ceux qui conduisent à montrer que la réflexion d'espace doit être
représentée par un opérateur unitaire imposent que l'opérateur qui représente la
réflexion de temps doit être anti-unitaire. On ne peut plus appliquer le théorème de

Clifford, car il faut une théorie où puissent trouver place des opérateurs
antiunitaires; une telle théorie a été créée par Wigner10) sous le nom de théorie des co-

représentations ; celle-ci peut se résumer de la manière suivante :

Soient G un groupe, r un automorphisme extérieur involutif de G, u une représentation

unitaire de G dans un espace de Hilbert complexe §, et enfin q une
transformation anti-unitaire de § telle que:

QUXQ
1

Ur[xi

50 H. P. A. 36, 6 (1963)
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pour tout x de G ; on suppose de plus que la collection d'opérateurs fu, g) est irréductible.

Il résulte de toutes ces conditions que q2 — e I où e +1. Construisons alors

l'opérateur rj K g où K est un opérateur anti-unitaire involutif de § (on dit que K
est une conjugaison de 9>) ; g étant anti-unitaire, r] est unitaire et satisfait en outre à la
condition :

r] ux rf1 K ur[x] K

pour tout x de G ; désignons par u la représentation de G définie par :

Ux= K Ur\x\ K

pour tout x de G ; à cause de sa construction-même, ü est équivalente à u. fu, g) étant
irréductible, deux possibilités seulement peuvent se présenter: ou bien u elle-même
est irréductible, ou bien u est somme directe de deux représentations irréductibles de

G; ce résultat est établi dans un cadre plus général dans la section I. Examinons
séparément ces deux cas :

(i) u est irréductible; u est équivalente à û, c'est-à-dire qu'il existe un opérateur r\
unitaire tel que r\ ux rj-1 ux pour tout x de G ; si on désigne par rj, l'opérateur K rj K,
on a rj rj g2. On dit alors que fu, g) forme une co-représentation de type I de (G, r).

(ii) u n'est pas irréductible; il existe alors un projecteur a de § qui commute avec
chacun des ux et tel que g a g"1 fl — a) ; désignons respectivement par v et w les

restrictions de u aux buts de a et de (7 — a). En utilisant les conditions sur g, on
montre que fu, g) est unitairement équivalente à fu', g'), où:

Z,)—(Z
Deux circonstances peuvent alors se présenter:

a) w et u sont inéquivalentes et on dit alors que fu', g') est une co-représentation de

type III de (G, r) ;

b) » et » sont équivalentes. Il existe alors un opérateur unitaire rj tel que vx

rivxrFx pour tout x de G. fu', g') est alors unitairement équivalente à fu", g"), où:

vj' Q \Ksrj-1

Or, en raison du caractère involutif de l'automorphisme r, l'opérateur rj-1 K rj"1 K
commute avec chacun des opérateurs de la représentation v qui est irréductible par
hypothèse ; en appliquant le lemme de Schur et en faisant usage de l'unitarité de r\,
on obtient que K rj-1 K — + rj.

Ainsi deux cas peuvent se présenter:

- ou bien : K rj-1 K e rj et alors g" K rj I

- ou bien : K rj-1 K — e rj, et alors g" K - 1
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Cependant, dans le premier cas, l'opérateur d'équivalence:

1 (I IM V2\I-I.
amène fu", g") sur la représentation fu'", g'") définie par:

*-*.(\)> e'-KvÇ -i
qui est réductible, contrairement à l'hypothèse. En revanche, dans le deuxième cas,
il est impossible de réduire fu", g") ; aussi seul persiste le cas où fu, g) est équivalente à:

< ^(X j), e* Kr,Ç_1
1

où rj satisfait aux deux relations caractéristiques :

rjvxrj~1 vx et rj7] — —g2

fu, g) est alors dite co-représentation de type II de (G, r). Ceci achève la classification des

co-représentations de (G, r). Ainsi, pour classifier toutes les co-représentations de (G, r)
à partir des représentations unitaires de G, il suffit de savoir répondre aux deux
questions suivantes :

- quelles sont les représentations u de G qui sont équivalentes à leur co-associée v

- pour celles qui le sont, l'opérateur d'équivalence rj satisfait-il à ij rj +g2 ou à

rj rj — g2l

Les représentations équivalentes à leur co-associée fournissent les co-représentations
de type I ou II selon que fj rj est égal ou opposé à g2 ; les représentations inéquivalentes
a leur co-associée fournissent les co-représentations de type III. Si G satisfait aux
conditions du théorème de Mackey-Frobenius, le formalisme décrit ici donne une
réponse satisfaisante à ces deux conditions. Il faut seulement savoir, en plus de ce

qui a été dit ci-dessus, les deux lemmes suivants :

1) Si UL est une représentation induite, alors sa conjuguée complexe UL K UL K
est induite à partir de la conjuguée L K L K de L;

2) Si UL et UM sont des représentations équivalentes, induites à partir de représen¬
tations 7 et Af du même sous-groupe, et si l'opérateur d'équivalence U défini par
U UL U-1 — UM est tel que U U est un multiple scalaire de l'identité dans
l'espace des représentations induites, alors l'opérateur d'équivalence u entre L et
M est tel que ù u est égal au même multiple de l'identité dans l'espace des

représentations induisantes.

Ce n'est alors plus qu'un jeu que d'appliquer ces critères au groupe de Poincaré.
Si on étend le groupe propre de Poincaré par la réflexion d'espace-temps et si on

désigne par e' 7 le carré de l'opérateur anti-unitaire représentant cette réflexion, on
obtient :



788 Gérard Emch H. P. A.

- pour les représentations de masse non-nulle, des co-représentations de type I ou II
selon que s' est égal à (— l)2s ou à (—l)2s+1; la situation est la même pour les

représentations de masse nulle et de spin nul;
- pour les représentations de masse nulle et de spin non-nul, des co-représentations

de type III.
Le groupe complet de Poincaré entre aussi dans le formalisme de la théorie des

co-représentations, car c'est l'extension par l'inversion de temps (représentée par un
opérateur anti-unitaire) du groupe orthochrone (dont tous les éléments peuvent être
représentés par des opérateurs unitaires). Désignons par b I ete' I les carrés respectifs
des opérateurs représentant la réflexion de temps t et la réflexion d'espace-temps s t.

- pour les représentations de masse non-nulle (ainsi que pour les représentations de

masse et de spin nuls), on obtient des co-représentations de type I, II ou III selon

que
£ e'=(-lp; £ £'= (-l)2^1, £=-£',

- pour les représentations de masse nulle et de spin différent de zéro, on obtient des

co-représentations de type I ou II selon que s est égal à (— l)2s ou à (—l)2s+1;
on rappelle que la dimension de ces représentations a déjà été doublée lors du
passage du groupe propre au groupe orthochrone.

On remarquera que les résultats ainsi obtenus recouvrent ceux de la référence 3),

et qu'on y est parvenu sans passer par la forme explicite des représentations, mais en
faisant en revanche un usage systématique des critères qui déterminent les classes

d'équivalence des représentations.
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