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Mécanique quantique quaternionienne et Relativité restreinte I

par Gérard Emch
(Institut de Physique Théorique de 1’Université, Genéve)

(15 VI 63)

Abstract. The possibility of a new quantum mechanical description in which the observables
are realized as self-adjoint operators in quaternionic HILBERT spaces is investigated from the point
of view of relativistic invariance. The problem is first formulated in the natural language of
quantum mechanics, i. e. the one of proposition systems. This is followed by the theory of projective
group representation and their reduction to unitary group representations in quaternionic HILBERT
spaces. The general theory is then applied to the group of special relativity which leads to the
classification of elementary systems in this theory. This last step will be carried out in a further
paper to appear in this journal.

Introduction

Appliqué a la mécanique quantique, le groupe de la relativité restreinte a permis de
comprendre dans une seule théorie les concepts de masse, de moment cinétique et de
spin, d’hélicité, d’énergie-impulsion et d’équation de SCHROEDINGER, qui apparaissent
de maniére naturelle lors de la classification des représentations irréductibles de ce
groupe dans un espace de HILBERT construit, par habitude, sur le corps des nombres
complexes. Cette présomption en faveur des nombres complexes n’est pas justifiée
a priori par la structure de la mécanique quantique, et celle-ci s’accommoderait tout
aussi bien d’une réalisation dans un espace de HILBERT réel ou quaternlonlen ainsi
que le faisaient déja remarquer BIRKHOFF et VON NEUMANN1). '

On peut dés lors se demander si une de ces réalisations hors de conventlon per—
mettrait aussi de rendre compte des concepts essentiels mentionnés ci-dessus et
surtout si elle n’en introduirait pas de nouveaux. C’est dans cet esprit qu’on a entre-
pris I'étude des représentations du groupe de PoINCARE dans la réalisation quater-
nionienne. Cette voie a été ouverte par les travaux de FINKELSTEIN, JAUCH, SCHI-
MINOVITCH et SPEISER2)%)Y); il convient aussi de rappeler que l'idée d'une theéorie
quantique fondée sur une réalisation par un espace de HILBERT réel a été exploitée
par STUECKELBERG et ses collaborateurs®), quoique selon une ligne passablement
différente de celle qui est développée ici.

La premiére démarche consiste 4 définir ce qu’est un systéme physique élémentaire
par rapport a un groupe de symétrie, ainsi que les notions qui y sont reliées, et cela
sans recourir a une réalisation particuliére de la théorie quantique dans un espace de
HILBERT complexe, réel ou quaternionien; ceci fait I'objet de la premiere section.

La seconde section donne, des étres ainsi définis, une réalisation particuliére: celle
ol I'on décide (et on vérifie qu’on a le droit de le faire!) de représenter les observables
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par des opérateurs hermitiens agissant dans une famille d’espaces hilbertiens con-
struits sur le corps des quaternions, en opposition a la convention de la mécanique
quantique habituelle qui envisage des espaces de HILBERT complexes; la description
quaternionienne d’un systéme physique par rapport & un groupe de symétrie G, est
alors déterminée par la donnée d’une famille d’espaces de HILBERT quaternioniens et
d’une application de G dans I’ensemble de toutes les familles d’opérateurs co-unitaires,
définis sur ces espaces; (par définition, un opérateur co-unitaire ne différe d'un
opérateur unitaire que par un facteur scalaire quaternionien de norme 1).

Dans la troisiéme section, on indique certaines conditions sur G pour que cette
description puisse étre faite en considérant non pas tout l'ensemble des opérateurs
co-unitaires, mais seulement le sous-ensemble des opérateurs unitaires; on note en
particulier que le groupe de POINCARE et ses sous-groupes principaux satisfont a ces
conditions. Cette circonstance sera exploitée dans I'article qui fait suite & celui-ci (et
auquel on se réferera en le désignant par II). On arrive ainsi a réduire le probléme
posé & un probléme de classification de représentations unitaires de groupes dans des
espaces de HILBERT quaternioniens; dans cette réduction, les seules difficultés qui
apparaissent sont d’ordre topologique: elles concernent en effet la continuité. Les
faits généraux se rapportant A ces représentations sont exposés dans la quatriéme
section; le corollaire du lemme de ScHUR prend dans le cas quaternionien une forme
apparemment tres différente de celle a laquelle on est habitué dans le cas complexe; a
cette occasion, le rdle des opérateurs unitaires antihermitiens dans un espace de
HILBERT quaternionien est mis en évidence, et on indique l'usage qu’on peut espérer
en faire, pour jeter un pont entre les réalisations quaternionienne et complexe de la
mécanique quantique. Cette question sera examinée en détail dans IT. Comme premiére
application, on donnera ici une généralisation au cas quaternionien du célébre théo-
réme de STONE-NEUMARK-AMBROSE-GODEMENT.

1. Structure de la physique quantique

Chaque physicien sait intuitivement ce qu’il entend par «systéme physique
élémentaire»; cependant, il a paru nécessaire de préciser cette notion en se dégageant
en particulier d’'une formulation restreinte a la mécanique quantique complexe. Pour
cela, il a d’abord fallu exprimer les postulats essentiels d'une mécanique quantique et
ceci dans un langage aussi proche que possible de la réalité expérimentale. Le but de
cette section est donc de définir, dans ce langage naturel, qui se trouve étre celui de la
théorie des treillis, toutes les notions physiques dont on aura besoin ensuite. Une telle
démarche préliminaire est indispensable si on veut pouvoir dépasser la réalisation
complexe sans risquer d’utiliser une traduction liée 4 certains aspects particuliers de la
réalisation complexe qui pourraient ne pas se retrouver dans la réalisation quater-
nionienne.

Le point de départ de cette section est constitué par deux articles®)?) auxquels le
lecteur pourra se référer pour plus de détails.

On constate qu’il existe en physique des expériences particuliérement simples
auxquelles on peut attribuer un réle fondamental puisque la mesure de n'importe
quelle quantité physique peut étre réduite a une suite de telles expériences: ce sont les
guestions, expériences dont le résultat s’exprime par «oui» ou «non» et qu’on peut donc
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formuler sous forme d’alternatives; chacun des termes complémentaires d’une
alternative sera appelé proposition, et on dira qu'une proposition est vraze si ce qu’elle
affirme est une prédiction vérifiée & coup sir lorsqu’on effectue I'expérience corres-
pondante. Si deux propositions, a et b, sont telles que «a vraie» implique «b vraiey,
on notera cette circonstance par a C b; cette relation satisfait a toutes les propriétés
d'une relation d’ordre partiel sur I'ensemble L de toutes les propositions qu’on peut
formuler sur le systéme physique considéré.

D’aprés ce qu'on sait de la physique, les quatre propriétés sulvantes semblent
devoir étre satisfaites par cet ensemble L, muni de la structure d’ordre qu’on vient
d’indiquer; on prendra donc ces propriétés comme axiomes pour définir une structure
mathématique qu’'on désignera par le terme de systéme de propositions:

Axiome T: L est un treillis complet

Axiome 2: L est orthocomplémenté

Axiome 3: L est atomique

Axiome 4: Tout segment [a, b] de L hérite canoniquement des axiomes 1, 2 et 3.

Ces axiomes expriment qu’avec toutes propositions a et b, L contient aussi les
propositions «a ou b» (notée a U b), «a et b» (notée a N b), «non a» (négation forte de a)
et «non b»; que de plus, il existe des propositions minima, appelées points et notées ici
F, G, ..., c'est-a-dire des propositions telles qu'on ne peut, sans contradiction rien
affirmer de plus sur le systéme; qu’enfin, sur tout sous-systéme on peut introduire
canoniquement une structure de systéme de propositions.

On montre, également dans les références indiquées plus haut, comment appa-
raissent dans cette axiomatisation les notions, d’ailleurs liées entre elles, de compati-
bilité, de systéme cohérent et de régles de supersélection.

Dans I'esprit du travail faisant ’objet du présent rapport, ce formalisme présente
en particulier I'avantage de conduire aux concepts de symétrie et de théories iso-
morphes, d'une maniére qui satisfasse immédiatement l'intuition du physicien.

Soient L,, L,, deux systémes de propositions; on appelle morphisme de L, sur L,
une application bijective m de L, sur L, telle qu’on ait:

(1) si dans L; «a vraie» entraine «b vraie», alors (dans L,) «m(a) vraie» entraine
«m(b) vraie» (ce qu'on note: a C b entraine m a C m b) et réciproquement.

(ii) l'image par » de «non a» est égale 4 la négation de 'image par m de @ (ce qu’'on
note: m O, a = Oy m a, ou O, et O, désignent respectivement les opérations d’ortho-
complementatlon dans L, et L,).

Ces deux conditions, indépendantes, suffisent?) pour affirmer que tout morphisme
m préserve toutes les relations logiques entre propositions; d’une maniére plus précise,
on a en particulier:

(i) I'image par m de «a ou by est identique & la proposition «image de @ ou image de
b» (ce qu'onnote: m (a U b) = m a U m b et qui peut étre généralisée & un ensemble
quelconque de propositions de L,); il en est de méme pour «a et b».

(1) sia et b sont des propositions compatibles de L,, il en est de méme pour les pro-
positions m(a) et m(b) de L,, et réciproquement.

(ii1) s1 F est un point de L,, m(F) est un point de L, et réciproquement,

(iv) un morphisme est complétement déterminé par sa restriction aux points.

(v) I'image par s d’'un sous-systéme cohérent est un sous-systéme cohérent,
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Une symétrie d'un systéme de propositions L peut alors étre définie comme un
morphisme de L sur lui-méme. Nous avons vérifié?) que cette définition recouvre ce
qu’on désigne habituellement par ce terme, voir par exemple WIGNER®) (Appendix
to Chapter 20); en particulier, dans la réalisation d'un systéme de proposition par
I'ensemble des projecteurs sur un espace de HILBERT construit sur le corps des nom-
bres complexes, nous avons retrouve le théoreme de WIGNER affirmant que toute
symétrie peut toujours étre représentée par une transformation unitaire ou antiunitaire
de I'espace de HILBERT considéré. Une extension de ce théoréme sera utilisée par la
suite.

On peut enfin introduire?)?) les notions d’état physique, d’état pur, de transfor-
mation des états sous l'effet d’'une symétrie.

Un état sur un systéme de propositions L est défini comme une fonction ayant L
pour source, 'intervalle réel fermé [0,1] pour but, et telle que:

(i) les bornes O et 1 sont toujours atteintes pour tout état E en particulier par ses
valeurs sur les propositions absurde et triviale respectivement.

(ii) a et b étant compatibles, on a nécessairement: E(a) + E(b) = E (aub) + E (anb).

(1) si E(a) = E(b) =1, onaaussi E (anb) =1

(1v) si a n’est pas la proposition absurde, il existe au moins un ¢tat £ tel que E(a) soit
différent de zéro.

On remarque que l’état est ainsi une généralisation de la notion de probabilité.

On dira qu'un état E est pur s’il existe dans L un point I tel que E(F) =1;s1G
est un autre point de L, E(G) sera dite probabilité de transition de F a G. Un état qui
n'est pas pur sera appelé mélange.

Apreés avoir décidé de ce qu’'on voulait entendre par symétrie sur un systeme de
propositions L, on peut fixer 'action de chaque symétrie sur I'ensemble des états sur
L: m étant une symétrie de L, on appellera «transformée par m de 1'é¢tat E» la fonction
Em définie par E™(a) = E (m~1a); cette fonction satisfait a tous les axiomes sur les
états de L, et on vérifie que E et E™ ne peuvent étre des états purs que simultanément.

Théoréme 1.1: L'ensemble M des symétries sur un systéme quelconque de propositions
L peut étre muns d’'une structure de groupe topologique.

En effet, M posséde manifestement une structure de groupe abstrait pour la loi de
composition (m, m,) a = m, (my a); I'identité dans M est évidemment la symétrie e
qui applique toute proposition @ de L sur elle-méme.

Pour tout ¢ positif et pour tout état E sur L, on définit un voisinage N(e) de
I'identité dans M comme l'ensemble de tous les éléments m de M tels que | E™(a) —
E(a)| < & pour tout a de L.

Ainsi, en ayant recours a la notion d’état, on a déterminé un systeme de voisinage
D de 'identité dans M ; on vérifie que M et D satisfont aux conditions du théoréme
10 de PONTRJAGINY), de sorte que M est maintenant muni d’une structure de groupe
topologique. Ceci achéve la démonstration du théoréme.

C’est muni de cette structure, qu’'on désignera M sous le nom de groupe des
symétries de L. En termes physiques intuitifs, la condition par laquelle on a défini les
voisinages dans M signifie que deux symétries sont voisines si les transformations
qu’elles induisent sur les états du systéme sont voisines.
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Théoréme 1.2: St L est union divecte discréte de plusieurs sous-systémes de pro-
positions cohérents L,, alors toute symétrie m, connexe a Uidentité, applique chacun
des L; sur lui-méme.

On sait déja (cf. conséquence (v) de la définition d’'une symétrie) que m étant une
symétrie, I'image par m d’un sous-systéme cohérent L; est un sous-systéme cohérent
L;;onveut démontrer que ¢ = j. Chaque L, étant lui-méme un systéme de propositions,
il posséde un élément maximum #;; alors m(u;) = u,. Choisissons un quelconque des L,
et désignons-le par L,. Par définition de 'union directe de sous-systémes cohérents,
les «; sont tous compatibles entre eux; par conséquent, pour tout état E sur L, .on a:

E(w) + E(u;) = E (U ;) + E (uy O 1y)

Considérons alors un état particulier E; tel que Eq(%,) = 1. Il résulte de 1'égalité ci-
dessus que E,(#;) = 0 pour ¢ différent de 1. Pour ¢ positif suffisamment petit, con-
sidérons alors le voisinage N,(e), défini comme 'ensemble des éléments m de M tels
que | ET(a) — E(a) | < & pour tout a de L. Appliquons cette inégalité a u,; alors:
| Ey (m Y uy) — Ej(4y) | < e. Or m—! est une symétrie, donc m—1 u, est égal a I'un des u,;
mais on a vu que E,(%#;) = 0 & moins que ¢ soit égal a 1. I’inégalité ci-dessus entraine
donc m~1u, = u,, c’est-a-dire m u, = u, et par conséquent m L, = L,.

Ainsi toute symétrie appartenant & N,(e) applique L, sur lui-méme; en faisant
usage du théoréme 15 de PONTRJAGIN'?), on voit qu’il en est de méme pour toute
symetrie connexe a l'identité. L’indice 1 ayant été choisi arbitrairement, cette dé-
monstration s’applique a tout sous-systéme cohérent. Le théoréme 1.2 est donc
démontré.

Une notion importante dans le contexte ot ce travail est placé reste encore a
définir: celle de représentation projective d'un groupe G. On dira que le systéme de
propositions L admet, pour groupe de symétrie, un groupe topologique G, s’1l existe
un homomorphisme (au sens topologique aussi!) U de G dans M, groupe des symétries
de L. Cet homomorphisme sera appelé représentation projective (continue) de G dans M
de L.

Le théoreme 1.2 admet alors le corol'aire suivant:

Corollaire: St un systéme de propositions L, union directe discréte de sous-systémes
cohérents, admet pour groupe de symétrie un groupe topologique G connexe, alors pour
tout x de G, U,, tmage de x par U, applique chaque sous-systéme cohérent de L sur lui-
méme.

Pour démontrer cela, il suffit de voir que U applique G dans la composante
connexe de I'identité dans M ; or ceci se montre de maniére analoque a la remarque £
du paragraphe 12 de PONTRJAGIN10), ‘

Avec le concept de groupe de symétrie, s'introduisent alors naturellement quelques
notions complémentaires dont on aura besoin dans la suite.

Se donner une représentation projective U de G dans M de L, c’est spécifier la
maniere dont G agit sur L; et c’est en partie la donnée de U qui permettra d’inter-
préter physiquement les:}éléments de L, considéré a priori comme structure abstraite;
dans la mécanique quantique habituelle, cette maniére de faire est bien connue: c’est
ce chemin qu'on suit effectivement (quoique dans une réalisation particuliere)
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lorsqu’on interpréte comme I'énergie le générateur de l'opérateur d’évolution au
cours du temps, comme composantes du moment cinétique les générateurs des rota-
tions, etc. La donnée de L et de U semble donc bien mériter le nom de description d’un
systéme physique par rapport au groupe de symétrie G.

On dira que (LW, UW) et (L@, U®) forment deux descriptions équivalentes par
rapport a un groupe de symétrie G si:

(i) UD et U@ sont des homomorphismes de G respectivement dans MW et M®,
groupes de symétrie respectifs de LM et L@,

(ii) il existe un morphisme m de L® sur L® qui satisfait & la relation m U m~! =
U2 pour tout x de G.

Cela revient a dire qu’il existe une correspondance bijective entre les propositions de
LW et de L® et que, sous 'action de G, ces propositions se transforment conformément
a cette correspondance.

On dira enfin que (L, U) est une description wrréductible (ow un systeme élémentaire)
par rapport au groupe G, si U ne laisse invariante aucune des propositions de L hormis
les propositions absurde et triviale, ce qu’'on peut noter «Ua = a pour tout x de G,
entraine a = 0 ou I» (0 et [ sont ces deux propositions particuliéres).

Théoréme 1.3: Le systéme de propositions L d’un systéme élémentaive (L, U) par
rapport a un groupe de symétrie G connexe est nécessarrement cohérent.

En effet, supposons que L soit union directe discréte de sous-systémes cohérents
L.; le corollaire du théoréme 1.2 affirme alors que pour tout x deG,ona: U, L, = L;;
par conséquent, U, laisse invariant 1'élément maximum de chacun des L;; ceci est
contraire a ’hypothése d’irréductibilité de (L, U), a moins que tous les L;, sauf un, se
réduisent a zéro, ce qui signifie précisément que L est cohérent. Ceci achéve la dé-
monstration du théoréeme 1.3, ol I'hypothése de connexité de G est essentielle.

Envisageons maintenant la situation suivante, dont la solution pourra étre con-
sidérée comme une généralisation du théoréme de CLIFFORD (voir par exemple
BoERNER)). Soient G un groupe, » un automorphisme involutif de & et (U, R) une
représentation projective irréductible de (G, 7) dans le groupe M des symétries d'un
systéme de propositions L. (U, R) étant irréductible, ce n’est pas nécessairement le
cas pour U; supposons qu’'il existe un élément a de L (différent de la proposition
absurde!) tel que U, a = a pour tout élément x de G; désignons par a’ I'élément de L
détini par ¢’ = R~1a; on a:

Ua=URla=R'RUR''a=R'U,ya=R1a=a;
ainsi pour tout x de G, U, a4’ = a’; U, et R étant des symétries de L et R étant de plus
involutive, on a, pour tout x de G:
U@ua)=ava, Ul@ana)=ana,
Rava)=ava, R@na)=ana
or (U, R) est supposée irréductible; par conséquent, a U a’ est la proposition triviale
de L et a 0 a’ est, soit la proposition absurde, soit la proposition triviale de L ; dans le

premier cas, a’ et le complément de a dans L; dans le second cas, a et a’ sont toutes
deux égales a la proposition triviale de L.
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Montrons encore que s’il existe une proposition a (qui ne soit ni la proposition
absurde ni la proposition triviale) telle que U, 2 = a pour tout x de G, alors toute
proposition qui satisfait aux mémes conditions est identique a @ ou a R a; soit b une
telle proposition; désignons par ¢ la proposition a N b et supposons d’abord que ¢ est
différente de la proposition absurde; U, étant une symétrie, il résulte des propriétés
de a et b que U, ¢ = ¢ pour tout x de &; en appliquant alors a ¢ la démonstration faite
plus haut pour a, on obtient que cU R¢ = [ et c R¢ = 0; or ¢ est contenue dans a et
est donc compatible avec elle; on vérifie aisément, en écrivant la relation de compati-
bilité de a et ¢ et en utilisant ce qui a été démontré ci-dessus, que ¢ ne peut alors étre
autre que a; par conséquent, a est contenue dans b; en refaisant ce raisonnement avec
b au lieu de a, on trouve que b est contenue dans a; a et b sont donc identiques. Si
maintenant, contrairement a I’hypothése auxiliaire introduite ci-dessus, a N b est la
proposition absurde, il ne peut en étre de méme de a’ N b, et la démonstration qui
précéde peut étre refaite en remplacant a par 4’. On a donc effectivement démontré
que b est nécessairement, ou bien égale a a, ou bien a a’. Cette circonstance a pour
conséquence immeédiate le théoréme suivant.

Théoréme 1.4: Soit G un groupe, et sott v un automorphisme involutif deG. Si (U, R)
est une représentation projective irréductible de (G, r) dans le groupe des symétries d’un
systéme de propositions L, alors (L, U) contient au plus deux systemes élémentaires par
rapport a G.

La classification de toutes les descriptions élémentaires par rapport a (G, 7) peut
donc étre faite en effectuant le programme ci-dessous:

(i) chercher toutes les descriptions élémentaires (L;, V) par rapport a G.

(ii) pour chacune de celles-ci, déterminer si le groupe M des symétries de L, contient
un élément R tel que R V, R-! = I/, pour tout x de G.

(iii) si c’est le cas, (Lg; V, R) est une description irréductible par rapport a (G, 7).

(iv) si au contraire il n’existe pas dans M, une symétrie R qui satisfasse a la condition
(ii), former le systéme de propositions L = L; U L. ol L/ est isomorphe a Lg;
dans L, former U, = (V,, V) pour tout » de G; L; et L; étant isomorphes, il
existe un morphisme A de L. sur L;; 7 peut alors étre représenté par R = (4, A1)
qui interchange L. et L/; (L; U, R) forme alors une description irréductible par
rapport a (G, 7).

On peut évidemment imposer des conditions supplémentaires a R; il faudra
¢videmment modifier le programme en conséquence. A titre d'illustration, remarquons
que si on étudie les réalisations complexes de L, et qu'on impose a u, et & g, représenta-
tifs respectifs (voir section 3) de U, et R, d’étre unitaires, 4 # d’étre une représentation
ordinaire de G, alors le programme ci-dessus est exactement celui que fournit le
théoréme de CLIFFORD; en revanche, toujours dans cette réalisation, si I'on impose
a p d’étre anti-unitaire, une légére modification de ce programme conduit a la théorie
des coreprésentations de WIGNER (voir réf. 8, chap. 26).

2. Réalisation quaternionienne

En lisant la section précédente, le lecteur aura sans doute remarqué que les notions
qui y sont exposées trouvent leur réalisation mathématique habituelle lorsqu’on
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prend pour réalisation du systéme de propositions 'ensemble des sous-espaces fermés
d’'un espace de HILBERT complexe. Dans ce qui suit, on propose une autre réalisation,
a savolr de remplacer les espaces de HILBERT complexes habituels par des espaces
hilbertiens construits sur le corps des quaternions; ce corps se distingue de celui des
nombres complexes par plusieurs traits essentiels: il contient trois unités imaginaires
au lieu d’une seule, il n’est pas commutatif, la conjugaison complexe n’est pas un
automorphisme de ce corps, et enfin I'ensemble des automorphismes de ce corps est
identique a I'ensemble des automorphismes intérieurs et est isomorphe au groupe
connexe des rotations dans un espace euclidien a trois dimensions; on rappelle que le
groupe des automorphismes du corps des nombres complexes est beaucoup moins
riche: il est constitué par deux éléments seulement, 'identité et la conjugaison com-
plexe. Ces circonstances se refletent évidemment sur les propriétés des espaces hilber-
tiens construits sur ces corps, et sur les opérateurs qui agissent dans ces espaces.

Le but de cette section est de préciser cette remarque et de montrer explicitement
quelle est la réalisation quaternionienne des étres physiques dont il a été question dans
la section précédente.

a) Le corps Q des quaternions

Considérons le groupe S U(2, C) des matrices (a coefficients complexes) unitaires,
unimodulaires et de rang 2; toute matrice appartenant a ce groupe est de la forme:
® = () OU Cog = CF, Cay = —CFy, €1y Cas — C12Coy = 1, et peut donc s’écrire: w =
a+be + ce,+ dey, les e; étant les matrices — ¢ g; ou oy, 0, et a5 sont les trois
matrices de PAuL1; les coefficients a, &, ¢ et d sont des nombres réels et satisfont a la
relation a®? + b2+ 2+ d*=1; de plus ona:ef = —lete,¢; = —¢; 6, = ¢, 0014, 7, k
sont une permutation circulaire des indices 1, 2, 3. Considérons alors I'ensemble () de
toutes les formes linéaires & coefficients #éels des symboles 1, ¢;, ¢,, e5; on peut alors
munir () d'une structure de corps topologique, ol les opérations suivantes sont définies
par la correspondance 1 - I, e; > —1 0;:

(1) une addition et une multiplication

(1) une conjugaison (notée *) définie par la conjugaison hermitienne des matrices
correspondantes

(ii1) une norme, notée |g| et définie par: 4 (g ¢*)¥/%; on vérifie que |g|*> = a? + b% +
¢ + d2.

Considéré comme étre abstrait, (), muni des structures algébrique et topologique ci-
dessus, est désigné par le nom de corps des quaternions (et 'on précise parfois: a
coefficients réels). Le sous-ensemble £2 de @, constitué par les quaternions de norme 1,
est alors un groupe topologique, isomorphe a S U(2, C); on note que £2 est stable par
rapport a la multiplication et & la conjugaison, et que pour tout @ de 2, on a : w* =
w~L. Le centre de {2 est Z,, groupe cyclique d’ordre 2. On peut montrer que tout auto-
morphisme 4 de Q est intérieur et peut donc étre écrit sous la forme: A[g] = w g w*,
ot ¢ parcourt () et w est un élément de 2, défini par 4 a un élément z de Z, prés. Enfin,
si {4,} est une famille continue d’automorphismes de  (ou de £2), on peut choisir une
famille continue {w,} d’éléments de £2 de telle sorte qu’on ait: 4,[¢g] = w, ¢ w}¥; ainsi le
groupe des automorphismes de ) (ou de £2) est isomorphe au groupe 05 = S U(2, C)/Z,.
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b) L'espace de HILBERT quaternionien

L’espace de HILBERT quaternionien est une généralisation au corps des quaternions
de la notion d’espace de HILBERT abstrait définie pour les corps réel et complexe (Cf
par exemple RiEsz et Nacy12)). Ainsi, §, est un espace vectoriel (de dimension finie
ou dénombrablement infinie) & gauche sur le corps Q des quaternions. (On aurait tout
aussi bien pu prendre un espace vectoriel & droite; toutefois, lorsqu’on travaille avec
des opérateurs semi-linéaires, la notation d’espace vectoriel a gauche se révéle plus
pratique; la convention opposée a été choisie par les membres du «Quaternion-
Club»2)3).) §, est muni d'une norme (notée | ... |) dérivant d’un produit scalaire qui,
a tout couple de vecteurs f et g, associe un élément (f, g) de Q de telle sorte que:

W) (¢/.8 =4q(.9,

() (f+gn)=(h+(gh,

(i) (£, &)* =11,

(iv) || /]2 = (f,f) > 0 pour tout f + 0 et
I 712 =0 pour f=0.

La complitude, les convergences faible et forte y sont définies comme dans le cas
habituel?). Les axiomes énoncés ci-dessus ont pour conséquences:

@hee)=at.0p*. |Hal<lfllel, Ir+el<Ifl+lel.

Les inégalités de SCHWARTZ et de MINKOWSKI se démontrent d’ailleurs de la méme
maniére que dans le cas complexe.

La notion de transformation linéaire admet une généralisation: on appelle frans-
formation co-linéaire une application ¢ de §, (ou au moins d'une partie de §,) dans
lui-méme satisfaisant aux conditions suivantes partout ou elle est définie:

M) t(f+e=tf+1tg,
(ii) ¢ (g f) = A'[q] ¢ f pour tout ¢ de Q, A* étant un automorphisme de Q, attaché a la
transformation ¢.

Une transformation co-linéaire u est dite co-unitaire, si elle est définie sur §, entier
et satisfait a la condition supplémentaire:

(i11) (2 f,  g) = A*((f, 8)]

Une transformation co-linéaire ¢, pour laquelle 'automorphisme A¢ est I'identité,
est dite linéaire; si de plus elle satisfait & la condition (iii), elle est dite unitaire.

On appelle rayon attaché & un vecteur f de norme 1, la famille /¥ des vecteurs
obtenus a partir de f par la multiplication par des quaternions de norme 1:

F={wf|lwef}.

On remarque que tous les vecteurs de F sont aussi de norme 1 et que £ peut étre
obtenue a partir de chacun de ses membres en utilisant la définition ci-dessus.

Sit est une transformation co-linéaire, on désignera par 7 la famille de toutes les
transformations co-linéaires qui ne différent de ¢ que par un multiple scalaire de
norme 1:

T={wt|wef}.
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Il existe toujours dans 7 deux (et seulement deux) transformations linéaires, qui
d’ailleurs ne different entre elles que par (— 1). On dénotera par II la famille des trans-
formations co-linéaires qui ne différent de 'identité que par un quaternion de norme
1. Enfin si # est co-unitaire, il en est encore ainsi de tous les membres de la famille U
a laquelle il appartient. Il est essentiel de remarquer que les U peuvent étre considérés
comme des opérateurs agissant dans ’espace des rayons.

Un produit scalaire peut étre défini sur I'ensemble des rayons d'un espace de
HILBERT quaternionien par I' - G = | (f, g) |, ol f et g sont des vecteurs quelconques
appartenant respectivement a I' et a G; la valeur de ce produit scalaire ne dépend
effectivement pas d’un choix particulier de f et g. On appelle distance de deux rayons
la distance minimum entre les vecteurs d'un rayon et ceux de l'autre: d(I, G) est
ainsi le minimum de 'expression || f — g | lorsque f et g parcourent respectivement
FetG.

Fondés sur les propriétés qui précedent, et en particulier sur les inégalités de
SCHWARTZ et de MINKOWSKI, les quatre lemmes qui suivent sont d'une démonstration
fastidieuse; ces lemmes étant aussi valables dans le cas complexe, leurs démonstra-
tions ne différent effectivement que par des détails de celles qu'a données BARG-
MANN13) aussi ne seront-elles pas reproduites ici:

Lemme 2.1: d(F,G) = [2(1 — F - G)]'~2,
Lemme 2.2: d(I', G) = 0 entraine I' = G.

Lemme 2.3: Le produit scalaive des rayons est continu en chacun de ses facteurs, dans
la métrique induite par la distance des rayons.

Si ¢, est une transformation linéaire de 1'espace de HILBERT quaternionien, son
adjointe est définie, comme dans le cas complexe, par:

Gl 8= (18,

pour étendre la définition de ’adjointe au cas des transformations co-linéaires, on
utilisera le fait que ¢ peut s’écrire sous la forme o ¢, ou @ est un quaternion de norme 1;
on obtient ainsi:

(/. g} = A [(f. t* g)],

ou A*est 'automorphisme associé a ¢; si ¢, et £, sont deux transformations co-linéaires,
on a encore: (f; t,)*¥ = if t¥; de la définition de I’adjointe, on déduit immédiatement
que toute transformation co-unitaire satisfait aux relations » u* = u* u = 1.

Comme dans un espace de HILBERT complexe, un projecteur est une transformation
linéaire, hermitienne et égale a son carré. La transformée par un projecteur @ d'un
rayon I sera par définition la famille @ F¥ de vecteurs a f ol f parcourt F ; ces vecteurs
ne difféerent donc entre eux que par un quaternion de norme 1 (en général a I n’est pas
un rayon).

Soit » une transformation co-unitaire ; considérons I'opération qui a tout projecteur
a fait correspondre 'opérateur u a u*; cet opérateur ne dépendant pas du choix de u
dans la famille U d’opérateurs co-unitaires a laquelle # appartient, on le notera U a.
On remarque que U a est aussi un projecteur et que U (I — a) = I — U a; que, de plus,
sia et bsont deux projecteurs quisatisfont alarelationa b = b a = a, alors (U a) (U b) =
(U b) (Ua) = U a. Cette remarque jouera un réle important pour la réalisation quater-
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nionienne de la mécanique quantique; on verra dans le paragraphe suivant que sa
réciproque est aussi vraie et constitue la transposition au cas quaternionien du célébre
théoréme de WIGNER sur la représentation des symétries d'un systéme physique.

c) Mécanique quantique quaternionienne

L’ensemble L des projecteurs dans un espace de HILBERT quaternionien peut étre
muni d’'une structure de systéme cohérent de propositions, et en forme ainsi une
réalisation. Les projecteurs étant en correspondance bijective avec les sous-espaces
fermés sur lesquels ils projettent respectivement l'espace tout entier, la relation
d’inclusion des ensembles, définie sur les sous-espaces fermés, induit naturellement
sur L une relation d’ordre partiel; I’orthocomplément d'un projecteur quelconque sera
par définition le projecteur (I — a) ot [ est 'application identique dans l'espace de
HILBERT considéré; llntersectlon est définie par anbd = lim (ab)" et 'union par

n—>00Q

avb=[I—(I—a)n(I—>)]. On vérifie que si deux projecteurs commutent, ils
sont compatibles et réciproquement.
A tout rayon F de I'espace de HILBERT, on peut associer la fonction I définie par:

Eplg) = & - a.df

cette expression étant définie, par analogie au produit scalaire des rayons, comme
(f, af)ou f est un vecteur quelconque du rayon F. On vérifie immédiatement que E
satisfait a tous les axiomes définissant un état sur L, et méme que E est un état pur.
Un état général quelconque sur L est alors réalisé par une combinaison linéaire
convexe d’états purs:

ZZ-’Q Ep(a) avec x; > 0 et sz, =

La démonstration de cette affirmation devient trés facile si I'on connait le théoréme
de GLEASON14) sur la matrice de densité; toutefois, ce théoréme n’est pas indispensable
et la démonstration peut étre donnée méme dans le langage abstrait des systémes de
propositions?!s).

Toutes ces notions peuvent étre étendues au cas général d’une réalisation quater-
nionienne d’un systéme de propositions quelconques, en considérant non pas un, mais
une famille d’espaces de HILBERT quaternioniens. On remarquera enfin que dans la
réalisation habituelle de la mécanique quantique on fait tous les pas qu1 précedent,
mais en partant d'un espace de HILBERT complexe.

Le concept de symétrie ayant été introduit plus haut a partir de sa formulation
physique intuitive, il s’agit maintenant d’en trouver I'expression dans la réalisation de
la mécanique quantique étudiée ici; la réponse a cette question peut étre obtenue a
partir du premier théoréme fondamental de la géométrie projective et s’énonce ainsi:
si I'espace de HILBERT quaternionien est de dimension au moins égale 4 3, toute
symétrie m, définie sur le systéme de propositions L constitué par l'ensemble des
projecteurs de I'espace de HILBERT considéré, peut étre représentée par une trans-
formation unitaire u de cet espace; toute transformation co-unitaire, qui ne différe
de # que par un quaternion de norme 1 en facteur, représente la méme symétrie; ce
théoréme est I'équivalent quaternionien du théoréme bien connu que WIGNERS®) a
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découvert dans le cas complexe ; une démonstration générale qui englobe en particulier
les réalisations complexe et quaternionienne, fondée sur le formalisme développé plus
haut ayant été donnée récemment par l'auteur et C. PIRoN7?), celle-ci ne sera plus
reprise ici. On obtient ainsi, de maniére unique, une famille U de transformations co-
unitaires qui induisent le méme symétrie; U peut d’ailleurs étre considérée comme une
opération dans I'espace des rayons et satisfait alors a la relation:

UF:UF =F:F

quels que soient les rayons I et I’ de 'espace considéré. Les sous-espaces étant trans-
formés par », la transformée par la symétrie m d’un projecteur a quelconque est
donnée par u a u*; a étant linéaire, cet opérateur n’est pas changé si 'on remplace «
par @ # olt @ est un quaternion de norme 1. On peut donc écrire m a = U a. En vertu
de sa définition, E™(a) devient E™(a) = E(U-' a); en particulier, si E est un état puret
F le rayon correspondant : ‘

ERa) = F - (U-1a) F = Ey4la) .

On a donc établi une correspondance bijective entre les symétries m de L et les
opérateurs U (familles d’opérateurs co-unitaires agissant sur 'espace de HILBERT et
ne différant entre eux que par un quaternion de norme 1) qui agissent sur les rayons de
I'espace de HILBERT quaternionien envisagé. On peut donc considérer 'ensemble de
ces opérateurs, muni de la structure de groupe topologique induite par M, comme la
réalisation quaternionienne de M.

Précédemment (section 1), on a utilisé le symbole U pour désigner '’homomorphisme
du groupe topologique G (groupe de symétrie de L) dans M (groupe des symétries
de L).

Par I'abus de langage suivant, on confondra dorénavant les notions définies sur
(L, M), considérée comme structure abstraite, et celles qui sont définies sur sa réali-
sation: U, qui désignera la symétrie de L correspondant a 'élément x de G, sera un
opérateur sur les rayons de 'espace de HILBERT; l'effet de cette symétrie s’écrira:

— pour les projecteurs: a > U, a,
— pour les états: E(a) - E*(a) = E (U 1a).

x

En utilisant les lemmes énoncés plus haut, (section 2b), on vérifie que la condition
pour que U soit un homomorphisme de G dans le groupe des symétries de L peut
s’écrire de plusieurs maniéres:

(1) pour tout e positif, tout état E sur L et tout élément y de G, il existe dans G un
voisinage N(y) de v tel que:

| E¥(a) — E¥(a) | < &

quels que soient les projecteurs a de L et les éléments x de N(v).
(i) pour tout ¢ positif et tout état E sur L, il existe un voisinage N (e) de 'identité dans
G, tel que:
| E*(a) — E(a) | < &

quels que sotent a dans L et x dans N(e).
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(iii) pour tout ¢ positif et tout rayon F, il existe un voisinage N(e) de I'identité dans G,
tel que:
|F-FF—F-UF|<e
quels que soilent le rayon I’ et I’élément x de N(e).
(iv) pour tout ¢ positif et tout rayon F il existe un voisinage N (¢) de 'identité dans G,
tel que:
d(F,U F) <e¢
quel que soit I'élément x de N(e).
(v) pour tout e positif et tout rayon F il existe un voisinage N (e) de I'identité dans G,
tel que: .
F-UF>1-—¢
quel que soit x dans N(e).

Si U satisfait a 'une quelconque de ces conditions, elle sera dite représentation pro-
jective du groupe topologique G, agissant sur les rayons de l'espace de HILBERT
considéré.

On peut alors se poser la question suivante: «Etant donné une représentation
projective d'un groupe topologique G dans un espace de HILBERT quaternionien,
est-il possible d’extraire de chaque famille U, un opérateur unitaire #, de telle sorte
que %, soit une représentation fortement continue de G dans l'espace considére?»

On remarquera que les notions dont il est question ici apparaissent de la méme
maniére dans le cas complexe. Le probléme posé ci-dessus porte alors le nom de
«réduction de phase». La solution de ce probléme dans le cas quaternionien fait
I'objet de la section suivante; les résultats obtenus dans les réalisations complexe et
quaternionienne seront comparés.

3. Réduction de Phase

a) Relevements locaux

Cette notion a été introduite par BARGMANN13) sous le nom de «choix de représen-
tatifs locaux». Le but de ce paragraphe est de démontrer le théoréme 3.2 qui est
I'analogue du théoréme 1.1 de BARGMANN, dans le cas ou l'espace de HILBERT est
construit sur le corps Q des quaternions; au départ la méthode est essentiellement la
méme que celle qu’a développée BARGMANN; toutefois, le fait que () n'est pas com-
mutatif nécessite quelques précautions, aussi la démonstration sera-t-elle transcrite
dans sa totalité ci-dessous.

Par les hypothéses beaucoup faibles qu’il requiert, le théoréme 3.2 différe pro-
fondément de son analogue complexe; dans la démonstration qui en est donnée ici,
on voit apparaitre un raccourci inattendu, propre au cas quaternionien et impraticable
dans le cas complexe. La raison de cette situation doit étre cherchée dans une diffé-
rence de structure essentielle des corps complexe et quaternionien. Celle-ci est mise en
évidence lorsqu’on reprend la démonstration de BARGMANN en la généralisant un peu
de maniere a pouvoir traiter parallélement les deux réalisations en question ici; a cette
occasion, 'auteur s’est permis de présenter le remarquable travail de BARGMANN en
insistant plus spécialement sur les propriétés fonctorielles des processus d’extension.
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Soient U une représentation projective d'un groupe topologique G dans un espace
de HILBERT quaternionien $), Ny(e) un voisinage de l'identité dans G, et u, le choix
d’'un membre de chaque famille U, pour tout x dans N,(e). Si pour tout ¢ positif, tout
vecteur f de § et tout x de Ny(e), il existe un voisinage N(x) de x, contenu dans Ny(e)
et tel que:
lwf—u,f] <e
quel que soit y dans N(x) (c’est-a-dire si #, est fortement continue dans Ny(e)), alors
u, est dit relevement local de G. Notre premier but sera de montrer qu’il existe toujours
un voisinage de 'identité dans G dans lequel on peut construire un relevement local.

Soit I un rayon quelconque de §. En vertu de la continuité de U, il existe un
voisinage N(e) de I'identité e dans G, tel que

F-UF>1—¢

quel que soit x dans N(e); la fonction réelle R(x) = F - U, F est donc continue au
voisinage de ¢ et on a R(e) = 1, car U, = II par définition; soit alors ¢ un nombre
contenu dans l'intervalle ouvert (0,1); il est alors possible de trouver un voisinage
Ny(e) tel que R(x) reste strictement supérieur a c¢. Choisisons alors un vecteur f quel-
conque appartenant au rayon F et #, un membre arbitraire de la famille U, ; formons
r(x) = (f, u. f); R(x) est la norme de 7(x), de sorte que u, = R(x)~ r(x) u, appartient
encore a la famille U, ; on vérifie que #, satisfait a la condition (f, u, f) = R(x), car le
produit scalaire est pris, par définition, antilinéaire dans son second terme. Cette
condition détermine de maniére unique le choix d’'un membre #, de chaque famille U,
pour tout x dans N,(e), f étant arbitraire, mais fixe. Montrons que ce choix constitue
un relévement local de G. Soit H un rayon quelconque de § et formons les expressions
suivantes définies seulement lorsque x et v appartiennent a Ny(e) (% est un vecteur qui
parcourt H, et u, est le choix effectué ci-dessus):

D, () —dU.H, U H), s, ()= @huh), z

x,y(

h) =u, b — s, ,(B)* u,h.

On vérifie immédiatement que le vecteur z, (%) est orthogonal a u, A, et en utilisant le
lemme 2.1, on obtient:

|2y 0h) 2= 1= |5,,(8) P < D, ()2

‘ Sx!y

Montrons tout d’abord que #, est continu sur le vecteur f utilisé pour le définir; cons-
truisons pour cela:
(f: zx,y(f)) - R(y) o R(x) Sx,y(f)

qu’on peut récrire sous la forme:
1 1
1= 5,,(0) = 7 (RE) — RO)) + gy (7 20(0)
d’ou l'on tire, en utilisant pour le second terme 'inégalité de SCHWARTZ:
1
11—s,,00] < ’Ie(i’)i{t R(x) — R(y) | + | 2,,H |[}-

En remplagant s, (f) par sa définition, on vérifie que le premier membre de cette
inégalité majore 1

, .
2 H%xf—— M’ny! )
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d’autre part, si on remplace R(x) par sa définition et si on fait usage de la propriété que
| z,,,(f) | est majoré par D, (f), il apparait que le second membre de I'inégalité ci-

Xy

dessus est majoré par 2 D, ,(f)/R(x). Ainsi obtient-on:

4
H uxf_ uyf“ g Ew Dx,y(]‘) Z
Or R(x) est limité inférieurement par ¢ fixe et strictement positif; par conséquent:

o f—u, | < 4D, ,(N]e.

En vertu de la continuité de la représentation projective U, pour tout & positif, il
existe un voisinage N(x) de x dans G tel que D, ,(f) est inférieur a & quel que soit y dans
N(x). On obtient ainsi: Vo, f—u f]| < & =4 efe.
Ainsi est démontrée la continuité de #, sur f. On remarque que #, étant a priori co-
linéaire, on ne sait encore rien sur la continuité de 'automorphisme de Q associé a #«,,
et par conséquent de la continuité de %, sur un membre f’ appartenant a la famille I
de f; ceci viendra ensuite. Considérons d’abord un vecteur 2 normé et orthogonal a f;
on montre par un procédé analogue a celui qui vient d’étre utilisé pour montrer la
continuité de u, sur f (usage de z, (%) et des identités et inégalités qui y sont attachees)
que %, est continu sur le vecteur 2" = 2712 (f + A); h étant une combinaison linéaire a
coefficients réels de fet de 4’, on déduit la continuité de u, sur % de celle sur f et sur 4'.
Or A, etant orthogonal a f, I'est aussi & tout autre membre f’ du rayon F auquel
appartient f; partant alors de la continuité de «, sur 4, on peut montrer par le méme
artifice que ci-dessus la continuité de %, sur f’; tout vecteur de § pouvant étre obtenu
comme combinaison linéaire finie, & coefficients réels, de tels vecteurs, on en déduit
immédiatement que %, est continu sur tout vecteur de §; ceci achéve la démon-
stration du

Lemme 3.1: Soit U une représentation projective d’un groupe topologique G dans un
espace de HILBERT quaternionien ; 1l existe alors toujours un voisinage Ny(e) de I'identité
dans G pour lequel on peut construire un relévement local de G (au sens défini au début de
cette section).

En vertu des propriétés de groupe, ce lemme peut étre transporté de e sur un
élément x quelconque de G.

On se propose maintenant d’exploiter la continuité forte de », pour montrer que
I'automorphisme 4, de Q, attaché a «,. est continu en x; considérons pour cela un
vecteur normé f quelconque dans §) et un quaternion @ de norme 1; formons f' = w f
et calculons (u, — u,) f'; cette expression est égale a:

(4 [w] — Ayw]) u, |+ A,[0] (4, —u,) f;
par conséquent:

(Ax[a)] - Ay[w]) %xf = (%x - %y) ]U - Ay[w] (Mx - uy) f'

En prenant la norme des deux membres, en faisant usage de I'inégalité de MINKOWSKI
et en remarquant que |u, f|| = 1 et | 4,[w]| = 1 on obtient:

48 H. P. A. 36, 6 (1963)
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Cette inégalité permet de déduire du lemme précédent le

Lemme 3.2: St u est un relevement local de G pour un voisinage Ny(e) de I'identité
dans G, alors I'automorphisme A, attaché @ chaque u, de ce relévement, est continu en x
partout ou 1l est défini.

Soient # un relévement local de G pour un voisinage N,(e) et p une fonction
continue, définie sur Ny(e) et prenant ses valeurs dans I’ensemble £ des quaternions
de norme 1; alors 4’ = p-u est encore un relévement local de G pour Ny(e); en effet,
pour tout vecteur normé f de ), on a:

[ (e — ) £l = [[{p(x) . — pO) 1, + pO) 0, — p(¥) w} £ |
qui est majoré par:
|2(x) — p) | + || (w, — u,) £] .

Or on sait que tout opérateur co-unitaire % peut s’écrire: # = w %, ol #° est un
opérateur unitaire et w un quaternion de norme 1; w engendre 'automorphisme de
attache a u, c’est-a-dire que, pour tout quaternion g,

u(gf)=Algluj avec Algl=wqgo’.

Appliquons cela au relévement local #, du lemme 3.1; A, étant continu dans Ny(e) en
vertu du lemme 3.2, il est toujours possible de choisir w(x), parmi les deux possibilités
+ w(x) de telle sorte que w(x) soit une fonction continue de x dans Ny(e); il en est
alors de méme de w(x)~1. En utilisant alors la remarque précédente et aprés avoir posé
p(x) = w(x)~1, on obtient que «? est fortement continue; par conséquent, le lemme 3.1
peut étre renforcé et énoncé sous la forme suivante:

Théoréme 3.1: Soit U unereprésentation projective d’ un groupe topologique G dans un
espace de HILBERT quaternionien ; il est alors toujours possible de trouver un voisinage
Ny(e) de I'rdentité dans G pour lequel on peut construive un relévement local linéaire de G.

Lorsque N (e) est un voisinage de l'identité dans G, on notera par N(¢)? ’ensemble
des éléments de G obtenus comme produits de deux éléments de N(e). Soient alors »
un relévement local de G pour un voisinage Ny(e), U la représentation projective
correspondante, et N(e) un voisinage de l'identité dans G tel que N(e)? soit contenu
dans Ny(e) ; alors, pour tout couple (x, y) d’éléments de N(e), u,, u, et u,, sont définis;
U étant une représentation projective, on a: U, U, = U,,; par conséquent, il existe
nécessairement un quaternion de norme 1, noté w(x, y) tel que:

u, U, = w(x, y) Uy

cette fonction w est dite facteur local du relévement local considéré.
On vérifie aisément que tout facteur local jouit des propriétés suivantes, si on
pose u, = I, ce qui est toujours possible:

(i) w(x, e) = w(e, x) = 1 pour tout x dans Ny(e)

(i) six, v et zsont telsqu’aveceux xy, v 2z et x y z appartiennent encore a Ny(e), alors:
wlx,y) oy, 2) = 4oy, 2)] o (%, 2)

(iil) w(x, v) est une fonction continue de chacun de ses arguments.
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Si de plus # est le relévement local linéaire dont l'existence est assurée par le
théoréme 3.1, u,, u, et u,, ne peuvent étre simultanément linéaires que si w(x, y)
commute avec tout quaternion ¢ de Q; ceci signifie que w(x, y) doit étre réel. Par
construction, m(x, y) doit étre de norme 1, de sorte que w(x, v) ne peut étre que + 1.
Les propriétés (i) a (iii) ci-dessus devant enfin étre satisfaites, le cas — 1 est éliminé et

il reste u, %, = u,,, ce qu'on exprime par le

Théoréme 3.2: De toute rveprésentation projective U d'un groupe topologique G quel-
conque dans un espace de HILBERT quaternionien, on peut toujours extraive, pour un
certarn voisinage de l'identité dans G, une représentation unitaive fortement continue.

Ce théoréme est spécifique de la réalisation gquaternionienne de la mécanique
quantique; il est faux dans sa réalisation complexe et BARGMANN13) en exhibe des
contre-exemples importants parmi lesquels le physicien ne manquera pas de remarquer
le groupe de GALILEE (groupe des transformations non-relativistes dans l'espace-
temps). On peut chercher une raison plus profonde & cette circonstance inattendue.
A cet effet, il convient d’essayer de traiter parallélement les deux réalisations en ques-
tion et de voir en quoi elles différent si essentiellement ; reprenons pour cela la méthode
de BARGMANN a I'endroit ol nous 1'avons laissée. On a vu que de toute représentation
projective on peut toujours extraire un relévement local et que ce relévement n’est
pas unique; en fait, toute représentation projective détermine une classe d’équivalence
de relévements locaux: deux relévements locaux sont dits équivalents si, dans le
voisinage commun ou ils sont définis, ils ne différent que par une fonction continue
définie sur ce voisinage et prenant ses valeurs dans £2. On a déja noté que tout reléve-
ment local détermine un facteur local; deux facteurs locaux w et @’ sont dits équi-
valents s’ils proviennent de relévements locaux # et ' équivalents, ce qui a pour
conséquence que, partout ot chacun de ses termes est défini, la relation suivante est

valable: ,
w'(x, y) = plx) AP w(x,¥) p (xy)*,

p(x) étant la fonction liant %, & u,. Ainsi, toute représentation projective détermine
une classe d’équivalence de facteurs locaux. BARGMANN considére alors le groupe H*
(qu’il appelle groupe local attaché au relévement local #) constitué par I'ensemble des
couples (w, x) d’éléments appartenant respectivement a 2 et & Ny(e), muni:

— d’une structure d’espace topologique: c’est le produit direct des espaces topolo-
giques £ et Ny(e), voisinage de I'identité dans G pour lequel est défini le relévement
local considéré;

— d’une structure de groupe (local) donnée par la loi de composition:

(0, 21) (g, X9) = {0y A;[ﬂ)ﬂ (%1, %), X1 Xp)

issue de I'égalité:
_ u
Wy uxl Wy M’xg = W Axl[wz} w(xl’ x2) %xlxz .

Possédant simultanément ces deux structures, H* est un groupe de LIiE local si 2 et G
sont des groupes de LIE; £2 est respectivement S U(2, C) et S dans les réalisations
quaternionienne et complexe; pour cette derniére une formule analogue a celle que
nous venons de donner peut étre trouvée dans 'article de BARGMANN déja cité; BARG-
MANN travaille avec des exposants locaux a la place de nos facteurs locaux, mais cela
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est une différence sans importance; on remarquera enfin que le théoréme 3.2 obtenu
ci-dessus ne faisait pas usage de I’hypotheése que G soit un groupe de Lik. Le fait,
affirmé plus haut, que H* soit un groupe de LIE local découle directement de la solution
du cinquiéme probléme de HILBERT, qu'on trouve exposée par exemple p. 184 du
livre de MONTGOMERY et ZIPPIN18), H* devient ainsi une extension locale de G par
et deux groupes locaux H* et H* attachés a4 des relévements locaux équivalents
constituent des extensions locales équivalentes de G par £2. (Pour les notions
d’extension et d’extensions équivalentes, définies pour tout espéce d’objets et en
particulier pour les groupes et algébres de LiE, voir le livre de CARTAN et EILEN-
BERG!?).) Ainsi, chaque représentation projective détermine une classe d’eéqui-
valence d’extensions locales de G par 2. La recherche de toutes les classes d’équi-
valences des extensions de l'algébre de LIE g de G par l'algébre de LiE s de £2
permet de résoudre le probléme consistant a trouver toutes les classes d’équivalence
d’extensions locales de G par £; ce passage se fait aisément au moyen des théorémes
généraux sur les groupes de LIE locaux et leur algébre de LIE (voir par exemple les
chapitres VI et IX de PONTRJAGIN?)). A ce point intervient le fait suivant, qu’on
obtient comme conséquence directe du corollaire 1 page 72 de BoURBAKI!®): toute
extension d’une algébre de LIE par une algébre de LIE semi-simple est triviale. En
remontant la chaine des relations fonctorielles décrite ci-dessus, il résulte de ceci qu’il
n'y a qu'une seule classe d’équivalence de facteurs locaux de G si 'algébre de LIE s de
{2 est semi-simple; cette classe ne peut évidemment qu’étre celle des facteurs locaux
équivalents au facteur local trivial w (x, v) = 1. C’est cette circonstance qui permet de
mettre en évidence la différence essentielle entre les réalisations quaternionienne et
complexe: I'algébre de LiE du groupe SU(2, C) des quaternions de norme 1 est simple,
donc a fortiori semi-simple, ce qui n’est pas le cas de 1'algébre de LiE du groupe St des
nombres complexes de module 1 (ce groupe est abélien!). L’exposé ci-dessus correspond
a la méthode de BARGMANN (bien que dans un langage peut-étre un peu différent) et
on montre ais¢ment, a partir du formalisme exposé¢ ici, certains résultats de BARG-
MANN; par exemple, en faisant usage du corollaire 3 que BourBAKI!®) donne au
théoréeme de LEVI-MALCEV (a savoir: si g est une algébre de L1E semi-simple, alors
toute extension de g est inessentielle), on déduit immédiatement qu’il n’existe qu'une
seule classe de facteurs locaux pour tout groupe de LIE G admettant une algébre de
L1E semi-simple; cette classe ne peut étre que celle des facteurs locaux équivalents au
facteur local trivial. C’est le théoréme 7.1 de BARGMANN.

b) Relévements globaux

La question qui se pose maintenant de maniére naturelle est de savoir dans quelle
mesure il est possible d’étendre au groupe tout entier les résultats obtenus jusqu'’ici.
C’est ce probléme qui sera traité dans ce paragraphe. La réponse pour les groupes
simplements connexes est fournie par le théoréme 3.3; le lemme 3.3 permet de passer
de ce théoréme au théoréeme 3.4 qui donne la solution pour les groupes doublement
connexes.

Soit U une représentation projective d’un groupe topologique G; on appelle
relévement global de G un relévement (au sens du paragraphe précédent) défini dans G
entier; un relevement global qui satisfait a la relation %, %, = u,, pour tout x et y de G
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est dit représentation fortement continue de G dans 'espace de HILBERT considéré. Le
but a atteindre maintenant est de savoir quand et comment on peut extraire d'une
représentation projective donnée un relévement global. Le premier pas vers la solution
est le théoréme suivant:

Théoréme 3.3: Soit G un groupe topologique simplement connexe; alors de toute
représentation projective U de G dans un espace de HILBERT quaternionien §), on peut
extraive un velévement global linéaire w de G; de plus, u est une veprésentation unitarre
fortement continue de G dans $.

Ce théoréme s’obtient comme conséquence du théoréme 3.2 ci-dessus et du théo-
réme 15 de PONTRJAGIN10): G étant connexe, tout élément x de G peut s’écrire comme
produit d'un nombre fini d’éléments appartenant a un voisinage N(e) arbitraire de
l'identité dans G. Prenons alors pour N (e) le voisinage Ny(¢) dans lequel est définie la
représentation locale, unitaire et fortement continue du théoréme 3.2; formons
alors pour tout x de G: "

u, = H’Mﬁ

i=1

ol tous les x; appartiennent & Ny(e) (de sorte que chacun des #, soit defini) et sont
tels qu’ils constituent une décomposition de x:

n
g=1

Les u, appartenant 4 une représentation unitaire locale de G, et G étant simplement

connexe, les #, sont définis de maniére unique et forment ainsi une représentation
unitaire, fortement continue de G entier. Ceci achéve I'esquisse de la démonstration du
théoréme 3.3; la démonstration peut étre transposée sans difficultés au cas quater-
nionien & partir de celle que BARGMANN a donnée pour le cas complexe (13) section 3b);
la seule différence significative est que BARGMANN doit considérer comme un cas parti-
culier le résultat du théoréme 3.2 qui n’est pas vrai en général dans les complexes,
ainsi qu’on I'a vu au cours du paragraphe précédent.

Considérons maintenant le cas ol G est un groupe topologique connexe; s'il satis-
fait de plus a certaines conditions (voir PONTRJAGIN10), paragraphe 47A) qui sont
trés généralement vérifiées pour les groupes de la physique, et en particulier pour tout
groupe de LIE connexe, il existe un groupe topologique G*, simplement connexe,
localement isomorphe a G, et tel que G soit isomorphe au groupe quotient de G* par un
de ses sous-groupes invariants et discrets, noté D. On désignera par #1’homomorphisme
naturel de G* sur G qui, & tout élément x* de G*, fait correspondre I'élément x de G,
défini comme le complexe associé de D contenant x*. Montrons alors le lemme
suivant:

Lemme 3.3: La condition nécessaive et suffisante pour qu’une représentation pro-
jective U* de G* soit aussi une représentation projective de G est que Uy = 11 pour tout
élément d de D, on 11 est la transformation identique dans U'espace des rayons.

Soit U une représentation projective de G ; désignons par x un élément qui parcourt
G; pour tout élément x* de G*, définissons U} = Uy, ; # étant un homomorphisme,
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5

U* est une représentation projective de G*; de plus, comme k(d) = ¢, identité de G,
on a pour tout d dans D: U} = U, = I1. Réciproquement, soit U* une représentation
projective de G* telle que U¥ = II pour tout d de D; pour tout x de G, désignons par
h=1(x) I'ensemble des éléments x* de G* tels que h(x*) = x; si #* et y* sont deux
éléments de G* appartenant au méme complexe associé de D, c’est-a-dire s’il existe
un élément d de D tel que v* = d x*, alors:

U;k* = U;:* »
car UF = II par hypothese; pour tout x dans G définissons alors:
Ux = U?;‘I(x)

qui a un sens en vertu de la remarque précédente; U, est une représentation projective
de G, ce qui achéve la démonstration du lemme.

Soient U* une représentation projective de G* et »* la représentation unitaire
fortement continue dont I'existence est affirmée par le théoréme 3.3, puisque G* est,
par définition, simplement connexe; la condition UF = IT implique que u} = w(d) I
ou m(d) est un quaternion de norme 1 et o1 I est la transformation identique dans
I'espace des vecteurs; or «} est linéaire, donc w(d) ne peut étre que +1 ou — 1.

Considérons maintenant le cas particulier ot G est doublement connexe; son
groupe fondamental est alors Z, et D est isomorphe a Z,; désignons par e et — e les
¢léments de Z,, e étant simultanément I'identité de G. On peut toujours choisir « de
telle sorte que #, = I; il ne reste donc que deux possibilités: w(—e) = 1 et w(—e) =
— 1. Dans le premier cas, si x* et v* sont tels que A(x*) = A(y*), alors on a nécessaire-
ment:

%;c* = u;c*

car #) = I; on peut définir pour tout x de G:

qul est une représentation unitaire fortement continue de G. En revanche, dans le
deuxieéme cas, & savoir m(—e) = —1, le procédé ci-dessus ne définit #, qu’a un signe
pres; ainsi, a tout élément x de G correspondent deux opérateurs u, et —u,; on dira

dans ce cas que # est une représentation unitaire, fortement continue, bivaluée de G.
On obtient ainsi le théoréme:

Théoréme 3.4: Soit G un groupe topologique doublement connexe; alors de toute
représentation projective U de G dans un espace de HILBERT quaternionien §y, on peut
extraire un rvelevement global u de G qui soit linéaire ; deux cas distincts, et seulement deux,
peuvent alors se présenter: ou bien u est une représentation unitaive, fortement continue de
G dans $, ou bien u est une représentation unitaive, bivaluée, fortement continue de G
dans $).

Les théoréems 3.3 et 3.4, établis dans cette section, suffiront & la poursuite de
I'étude entreprise ici; ils permettent de ramener le probléme de la détermination de
tous les systémes élémentaires, par rapport aux groupes de symétrie envisagés (voir
section suivante, ainsi que II), a celui de la détermination des représentations
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unitaires, irréductibles fortement continues de ces groupes (ou, s’il y a lieu, de leur
revétement universel) dans 1'espace de HILBERT quaternionien dont les projecteurs
réalisent les propositions sur le systéme physique étudié.

4. Théorie des Représentations

Les groupes étudiés dans cette section seront supposés connexes, simplement ou au
plus doublement connexes; on pourra donc toujours extraire de chacune de leurs
représentations projectives un relévement global linéaire, ceci en vertu des théorémes
3.3 et 3.4 de la section précédente. L'hypothése de connexité aura de plus comme
conséquence que les descriptions irréductibles se feront toujours dans des systémes
de propositions cohérents L (théoréme 1.4); ainsi chaque L sera réalisé par les pro-
jecteurs d’un seul espace de HILBERT quaternionien (voir section 2c). La condition
d’irréductibilité d'une description (L, U) s’exprimera alors comme la condition
habituelle d’irréductibilité d’une représentation ordinaire: si # est le relévement glo-
bal linéaire extrait de U, (L, U) sera irréductible si et seulement si: #,au;! = a pour
tout x de G entraine a = 0 ou /. Néanmoins, des différences apparaissent dés le début
entre les réalisations quaternionienne et complexe; en particulier, le lemme de SCHUR

et son corollaire doivent étre reformulés séparément pour le cas quaternionien:

a) Lemme de SCHUR

Enoncé: Soient HO et $H des espaces de HILBERT quaternioniens de dimensions
quelconques (voire infinies), G un groupe, u et u® des représentations unitaires de G
dans HV et H@ respectivement, et enfin t une application co-linéaive et bornée de HV
dans H® telle que t u®O=u,® ¢ pour tout x de G. Alors st uV) et u® sont vrréductibles,
t ne peut étre que nulle ou bijective.

Sous les conditions énoncées ici, la démonstration du lemme de SCHUR peut étre
faite de maniére analogue a celle qui est présentée habituellement dans le cas com-
plexe, aussi ne sera-t-elle pas reproduite ici. On sait que la condition que #® et #®
soient des représentations d’un groupe n’est pas essentielle et peut étre considérable-
ment affaiblie; la formulation ci-dessus a été choisie parce que c’est elle qui sera
utilisée dans la suite.

Corollaire au lemme de Scaur: Soit u une représentation unitaive irréductible d'un
groupe G dans un espace de HILBERT quaternionien $; alors tout opérateur t, linéaire
et borné de $ tel que u,t =t u, pour tout x de G est nécessairement de la forme: t =
rI+ s J,ourets sont des nombres véels, I I'identité dans § et | un opérateur unitaire
anti-hermitien de ).

Dans le cas ol ¢ est de plus hermitien, on sait?)?) qu'il existe une famille spectrale
a,, étalée sur la droite réelle, et dont tous les membres commutent avec chaque
opérateur commutant avec ¢; on a de plus:

~

t:/rdar.

Ainsi les a,, qui sont des projecteurs, commutent avec chacun des u,; or u est irré-
ductible par hypothése; par conséquent, les @, ne peuvent prendre que les valeurs 0
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ou I; comme ils forment une suite monotone croissante, ¢ est un multiple réel de
I'identité. Ramenons le cas général a ce cas particulier. Soit #* I’adjoint de ¢; construi-
sons alors les deux opérateurs

L I L)

Ces deux opérateurs sont linéaires et bornés, le premier étant hermitien, le second
anti-hermitien; de plus, ils commutent tous deux avec chacun des #,. En vertu de la
remarque précédente, 4 = 7 I; il reste donc & déterminer la forme de 5. L’argumenta-
tion développée jusqu’ici ne différe pas essentiellement de celle qu'on pratique
habituellement dans le cas complexe. Toutefois, arrivé a ce point, on ne peut plus
procéder paralléelement dans les réalisations complexe et quaternionienne. En effet,
dans le cas complexe, il suffit de poser g = — 7 ol 7 est 'unité imaginaire des nombres
complexes; g est alors hermitien et on peut lui appliquer le méme raisonnement qu’a
h; on obtient ainsi directement j = s 2 I ol s est un nombre réel, d'ou ¢ = ¢ I, ¢ étant
alors un nombre complexe quelconque; en revanche, ce procédé n'est pas applicable
dans le cas quaternionien, car (—¢4) n’est pas linéaire, mais co-linéaire; le probléme
est donc de voir si 'on peut construire un opérateur linéaire qui puisse, dans le cas
quaternionien, jouer le role de I'opérateur (7 I) qui apparait dans le cas complexe. Cette
construction va occuper la fin de ce paragraphe. On a remarqué que 7 est un opérateur
linéaire borné qui commute avec chacun des «,; en vertu du lemme de SCHUR, ou bien
7 = 0, ou bien ;7! existe; la premiére possibilité ne nous intéresse pas: elle signifie en
effet que ¢ est hermitien et ce cas est déja traité. On peut donc supposer, sans re-
streindre la généralité, que j~! existe; par conséquent, si f est un vecteur quelconque
de :7f=0entraine f=0, et de méme: j* f = 0 entraine f= 0; d’ol1 j* j f = 0 entraine
a son tour f = 0. Enfin 7* j est un opérateur positif; en effet, par définition de 'adjoint:
(7%7 /. f) = (4, 7f) qui est positif; en vertu de ce qui précéde (7 f, 7 f) = O ne peut étre
réalisé que pour f = 0. Récapitulons: on a construit un opérateur j* 5 linéaire, borné,
hermitien et strictement positif. On peut alors appliquer a cet opérateur le théoréme
suivant, dont on peut trouver la preuve p.262-263 du livre de RiEsz et Nagy?1?),
et dont la démonstration s’applique mot pour mot au cas ol I'espace complexe de
RIESz et NAGY est remplacé par un espace quaternionien: «Chaque transformation A,
linéaire, hermitienne, bornée et positive admet une racine carrée linéaire, hermitienne,
bornée et positive, et une seule, qui sera désignée par B = A12; celle-ci peut étre
représentée comme limite au sens fort d'une suite de polynémes a coefficients réels,
de A et est, par conséquent, commutable avec toutes les transformations qui commu-
tent avec A». Posons donc B = (7*7)1/2; 5% 5 étant bijective, il en est de méme de B
qui admet donc une inverse. Posons donc | = j B!, c’est-a-dire j = J B. En vertu du
théoréme de RIESZ et NAGY cité ci-dessus, B commute avec toute transformation qui
commute avec j* 7; par conséquent B commute avec 7* 7 elle-méme; comme 7 est anti-
hermitienne, ; commute avec j*j et donc aussi avec B. En combinant toutes ces
indications, on déduit aisément que J? = — [ et J* = — J, c’est-a-dire que J est une
transformation unitaire et anti-hermitienne. Enfin, B est hermitienne et commute
avec chacun des u,; par conséquent, B est un multiple réel de 'identité; il en résulte
que j est un multiple réel de J, ce qui achéve la démonstration du corollaire au lemme
de ScHUR. On peut méme ajouter que la décomposition ¢ =7 I + s J ainsi obtenue
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est unique, en vertu de l'unicité de B affirmée par le théoréme de RiEsz et NAGY cité
cil-dessus.

La forme de ce corollaire semble trés différente de celle qu’il prend dans le cas
complexe. Toutefois, un opérateur tel que J jouit de propriétés tout a fait remar-
quables, aussi le paragraphe suivant sera-t-il consacré a cette classe d’opérateurs.

c) Les opérateurs unitaives et anti-hermitiens

On désignera par J de tels opérateurs qui satisfont donc aux deux conditions

suivantes:
JI=Jj=1, J*=-],

étant entendu que ces opérateurs sont linéaires; on a alors J2 = —I.

Montrons tout d’abord que si J admet une valeur propre, celle-ci est nécessaire-
ment un quaternion imaginaire de norme 1. Considérons a cet effet I'équation aux
valeurs propres | f = g f ou f est un vecteur non nul de l'espace de HILBERT quater-
nionien §) considéré; on a alors d’une part:

9N =0hh=ULN=-0LTNh=—Uaeh=—-U1He

d’ou ¢ = —g¢* car (f, f) est réel non nul; d’autre part
f==t=—-Jqi=—9]f=—¢1
d’ou ¢ = — 1. Ainsi ¢* = — g et ¢> = —1, ce qui prouve notre assertion.

Montrons ensuite que tout quaternion imaginaire ¢, de norme 1, est valeur propre
de J; formons I'opérateur K@ égal a (I — i J)/2; soit f un vecteur non nul de § qui
ne soit pas vecteur propre de J pour la valeur (—7); un tel vecteur existe toujours,
sans quoi J serait égal & (—¢ /) ce qui est impossible car | est supposé linéaire.
Appliquons alors I'opérateur K & un tel vecteur; on a:

JEOf= 5 JU—i])f=5 (J+il)[=iKOf,

donc KW fest vecteur propre de J pour la valeur propre ¢ choisie, ce qui prouve notre
seconde assertion,

Désignons maintenant par C® I'ensemble des quaternions qui commutent avec
un quaternion imaginaire 7, de norme 1, choisi arbitrairement, mais fixe:

€O~ {geQ|qi=ig).

On notera par ${¥' 'ensemble des vecteurs propres de J pour cette valeur propre ¢:

9 ={fep|Jf=if}.

On vérifie alors aisément que C®, muni de la structure de corps induite naturelle-
ment par celle de (), est isomorphe au corps des nombres complexes, le role de I'unité
imaginaire de celui-ci étant joué par le quaternion 7 choisi; de méme, il est immédiat
que $¥, muni de la structure d’espace vectoriel induite naturellement par celle de $,
est un espace vectoriel sur C%. De plus, si f et g sont des éléments de ${¥, alors (7, g),
produit scalaire dans §) des vecteurs f et g, est un élément de C®; en effet, on a

g =(lhe=0Uhe=—0hJe=—(ig={Fg:1.
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Enfin, si {/,} est une suite d’éléments de H telle que |f, — f,. | tende vers zéro
lorsque # et m tendent vers l'infini, il existe un élément f* de § tel que | f, — f*|
tende vers zéro pour # tendant vers l'infini, car §) est complet; f* appartient encore a

(¢) - ffet, ‘ ’ (‘
50 en eff VT Ty

car J est unitiare; donc J f* est la limite de {J f,}, c’est-a-dire la limite de {z f,}; par
conséquent J f* est égal a ¢ f*. Ainsi §{¥ est complet par rapport 4 sa norme.

Tous les éléments sont alors réunis pour qu’on puisse affirmer que la structure
d’espace de HILBERT quaternionien de § induit naturellement sur $¥ une structure
d’espace de HILBERT complexe dont le corps de base est C9.

On remarque enfin que les vecteurs de ¥ forment un systéme complet dans §;
considérons un vecteur f de §, quelconque, et un quaternion imaginaire 7, de norme 1,
anticommutant avec 7; formons les vecteurs

1 . , .
fom ST D et frm—if s
f. et f, appartiennent alors 4 ¥ et on a
f=f+71f;

ainsl tout vecteur de §) peut s’écrire comme combinaison linéaire, a coefficients dans Q,
(3) - 4 8 i ;
de deux vecteurs de $H{, ce qui suffit & prouver que H¥' est complet dans $.
Résumons ces résultats sous forme d'un théoréme:

Théoréme 4.1: Chaque opérateur |, unitaire et antihermitien, défini sur un espace de
HILBERT quaternionien $), permet d’extraive de § une famille d’espaces de HILBERT
complexes; chaque membre V) de cette famille est constitué par I'ensemble des vecteurs
propres de | corvespondant @ une méme valeur propre i, les valeurs propres de | par-
courant I'ensemble des quaternions imaginaires de norme 1.

On remarquera que ce théoréme indique un processus pour extraive un espace de
HiLBERT complexe de I'espace de HILBERT quaternionien; on verra dans la suite que
ce processus suffit dans bien des cas (voir par exemple le théoréme 4.2) pour obtenir
des renseignements trés complets sur ce qui se passe dans 1'espace quaternionien tout
entier; on notera aussi que cette maniere de faire différe de celle qui est suggérée par
FINKELSTEIN ef al.3) sous le nom de représentation symplectique; physiquement, il est
particuliérement important que I'extraction dont il est question ici ne double pas le
nombre de dimensions de I'espace dans lequel on travaille, ce qui est au contraire le
cas pour la représentation symplectique.

Dans la suite de cette étude, on aura besoin du résultat suivant que nous allons
rapidement établir:

Lemme 4.1: Sotent | et |’ deux opérateurs unitaives et antihermaitiens, définis dans le
méme espace de HILBERT quaternionten . St [ et |' commutent, il existe une partition
de © en deux sous-espaces orthogonaux tels que | et ' soient égaux dans le premier et
opposés par le signe dans le second.

Construisons les opérateurs:

K=J] et Ke= 5 (IF K);
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ceux-ci joulssent des propriétés suivantes:

(i) K est un opérateur unitaire, hermitien et donc involutif,
(ii) K. sont des projecteurs orthogonaux et supplémentaires,

(iii) J' Ky = + J K.

On verifie alors aisément que les sous-espaces dont parle le lemme sont obtenus comme
les buts respectifs des projecteurs K, et K_. On notera enfin que, si f est vecteur
propre de J (oude J'), il en est de méme pour K. f, et ceci avec la méme valeur propre
(a2 moins bien entendu que K. f soit nul).

D’une maniére générale, si ¢ est une transformation linéaire qui commute avec [,
alors £ applique chaque $? sur lui-méme; on peut donc considérer la zestriction {9 de ¢
a H¥. Réciproquement, si #9 est une transformation linéaire de ${”, on peut définir un
prolongement linéairve (unique) ¢ de #9 dans § par les conditions:

(i) ¢ est linéaire,
(ii) 2 f = @ f pour tout f de H.

On remarque que #9 est la restriction a $¥ de son prolongement ¢ dans §. Par
exemple, ¢ [ est la restriction a §{¥ de J et J est le prolongement linéaire dans § de la
transformation 4 I définie dans §{¥).

Les propriétés suivantes se déduisent alors sans peine des définitions ci-dessus:

a) Soit ¢ une transformation linéaire qui commute avec J; si ¢ est unitaire, ou her-
mitienne ou si c’est un projecteur, il en est de méme de chacune de ses restrictions

b) Sitet# sont deux transformations linéaires qui commutent entre elles et avec le
méme [, alors leurs restrictions #? et #'» commutent dans I'espace ¥ dans lequel
elles sont toutes deux définies.

c) Si{Z,} est une suite de transformations linéaires qui commutent avec J et tendent
fortement vers une limite ¢, alors #? = s lim #{*).
Ces propriétés ont pour conséquence le

Théoréme: 4.2: Soit u une représentation unitaive fortement continue d'un groupe
topologique G dans un espace de HILBERT quaternionien $), telle que chacun des u,
commute avec un méme J. Alors:

(i) Censemble des ul)) pour un méme i forme ume veprésentation wunitaive fortement
continue u® de G dans Uespace de HILBERT complexe H,

(1) si u est drréductible, u? Uest aussi (quel que soit 1),

(111) st D est une représentation trréductible de classe + 1 ou O selon FROBENIUS et
SCHUR, u est ausst 1rréductible.

La premiére partie se déduit immédiatement des propriétés dont I'énoncé précede
le théoréme.

La seconde partie se démontre de la maniére suivante: soit al un projecteur de
H¥ qui commute avec chacun des #{; le prolongement linéaire a de a® est alors un
projecteur de § qui commute avec chacun des %, ; comme # est irréductible, a ne peut
étre que 0 ou I et il en est donc de méme de sa restriction a”. Par conséquent, (9 est
irréductible.
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La démonstration de la troisiéme partie est un peu plus délicate: Supposons qu’il
existe un projecteur a de § qui commute avec chacun des #,; le commutateur [a, [],
de a et J, jouit des propriétés suivantes

1) il est hermitien, car a et J sont linéaires et respectivement hermitien et anti-
hermitien;

2) il commute avec chacun des %, car il en est ainsi de a et | séparément;

3) il anticommute avec J;

(%ette troisiéme propriété entraine que [a, J] applique linéairement ${ sur $-9;
considérons alors l'opérateur co-linéaire k& I défini sur §, ou k est un quaternion
imaginaire, de norme 1, et qui anticommute avec ; cet opérateur applique antilinéai-
rement HW sur HL-¥; il permet de définir une transformation de $, 4 = k[a, /], qui
applique antilinéairement ¥ sur lui-méme et qui commute avec chacun des u,; la
restriction A® de 4 4 §¥ commute alors évidemment avec chacun des »{. Soit K
une conjugaison de $, c’est-a-dire une transformation antiunitaire et involutive de
H1; désignons par #( la représentation conjuguée de 9, définie par:

) = Ku K
pour tout x de G; considérons enfin 'opérateur
B = A0 K
qui est alors une transformation linéaire de $% qui de plus satisfait 4 la condition:
4) BO 4" — 49 B pour tout x de G.

Trois cas, et ceux-la seulement, peuvent alors se présenter, correspondant a la
classification de SCHUR et FROBENIUS (pour un exposé de cette classification, voir par
exemple WIGNER?®), page 285):

ou bien: #® est équivalente a #(? et u® est dite de classe -+ 7, si la transformation
unitaire d’équivalence C, définie par () = C-1 4\ C pour tout x de G, satis-
fait a la relation C K C K = + I;

ou bien: % est équivalente a #® et u® est dite de classe — 7, si CKCK = —1I;

ou bien: #® est inéquivalente & u( et u® est dite de classe 0.

Supposons tout d’abord que #® soit de classe 0: #® est inéquivalente a4 »® et par
conséquent B doit étre nulle; comme K est antiunitaire, 4% doit aussi étre nulle;
enfin §{ étant complet dans § A est aussi nulle; or 4 ne différe de [a, J] que par
l'opérateur £ I ol & est un quaternion non nul; par conséquent [a, J] est nul. La
restriction a4 de a & H¥ est alors un projecteur de H{?; 4 commutant par hypothése
avec chacun des #,, ) commute avec chacun des #{?; or u{¥ est irréductible, d’olt
a" ne peut étre que 0% ou I'Y) dont les prolongements dans §) sont respectivement O
ou I; u est donc irréductible.

Supposons maintenant que #' est de classe +1ou —1: on a doncu'? = C1 ul C;
or B satisfait 4 la relation 4) ci-dessus; en comparant ces deux égalités et en faisant
usage du corollaire du lemme de SCHUR (dans sa réalisation complexe!) on trouve que
B doit étre un multiple de C: B® = ¢ C ou ¢ est élément de C'”, corps de base de
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H¥. En remplagant B par cette valeur dans 4, on obtient (4®)2 = 4 ¢ ¢* I, selon
que ™ est de classe 4+ 1. En reprenant la définition de A et en remarquant que % est
un quaternion imaginaire de norme 1, on obtient A2 = —[a, J]2. Or on se souvient que
[a, J] est un opérateur linéaire hermitien; par conséquent, A% est un opérateur
négatif défini, ce qui n’est compatible avec la forme ci-dessus que si #( est de classe
—1. Par conséquent, si »(¥ est de classe +1, A doit étre nulle; en appliquant le
raisonnement fait plus haut dans le cas ot " était de classe 0, on obtient de méme que
si 4 est de classe +1, u doit étre irréductible. La démonstration de la troisiéme
partie de notre théoréme est donc achevée.

Dans le cas ot %9 est une représentation par des matrices dans un espace de
dimension finie, FINKELSTEIN ef al.%) trouvent aussi ce résultat, bien que dans une
formulation un peu différente. Ils affirment méme qu’il suffit que #{* soit de classe
— 1 pour que % soit réductible. N'ayant pas besoin de cela dans la suite, on n’alourdira
pas plus cet exposé par I'étude de cette circonstance.

c) Les représentations des groupes abéliens

Ces représentations seront étudiées dans ce paragraphe dansle but de formuler
I'équivalent quaternionien du théoréme de STONE-NEUMARK-AMBROSE-GODEMENT
auquel on se référera dans la suite en le désignant par le sigle: SNAG.

Montrons tout d’abord que toute représentation unitaire et irréductible # d'un
groupe abélien G est nécessairement de dimension 1. G étant abélien, chacun des #,
commute avec tous les autres et peut donc s’écrire sous la forme u, = r(x) I + s(x) J(x),
en vertu du corollaire du lemme de SCHUR démontré plus haut; les J(x) ainsi obtenus
commutent encore tous entre eux; de sorte que les opérateurs K(x, y) = J(x) J(v)
sont tous hermitiens et commutent de plus avec chacun des #,; en appliquant a
nouveau le corollaire au lemme de ScHUR dans le cas particulier ot 'opérateur con-
sidéré est hermitien, on déduit que K(x, y) = e(x, ¥) I oit &(x, y) est réel; tous les J(x)
sont donc des multiples réels de I'un d’eux; on peut par conséquent écrire:

wy=1(x) I +s(x) J.

On a vu que J posséde nécessairement au moins un vecteur propre; il existe donc
toujours dans l'espace de représentation de # au moins un sous-espace de dimension 1
qui est laissé invariant par J et donc par # elle-méme. Or % est irréductible par hypo-
thése; §) se réduit donc a ce sous-espace invariant de dimension 1, ce qui prouve notre
assertion: toute représentation unitaire et irréductible # d’'un groupe abélien G est
nécessairement de dimension 1. Les #, étant unitaires, on a

r(x)2 + s(x)2=1
et on peut donc poser 7(x) = cosf(x) et s(x) = sinfl(x); remarquant encore que J est

borné et de carré égal & — I on écrira #, sous la forme

6
u, = ¢l
notation symbolique définie par son développement habituel en série infinie.

On vérifie alors aisément que » étant une représentation unitaire fortement con-
tinue de G, la fonction 0 définie ci-dessus est un caractére sur G, c’est-a-dire, suivant
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PONTRJAGIN?), un homomorphisme de G sur le groupe quotient S* de la droite réelle
R par un groupe N isomorphe a celui des nombres entiers. I.’ensemble des caracteres
sur un groupe abélien G forme un groupe, noté I et dit groupe des caractéres de G; si G
est localement compact, /", muni de sa structure topologique canonique (voir PONTR-
JAGIN, § 30) est aussi localement compact.

En particulier, si G = R, tout caractére sur G est de la forme

6(x) = p x (mod 2 )

ou p est un nombre réel quelconque; si & est le groupe des translations dans I'espace-
temps de MiNKOWSKI, le théoréme 36 de PONTRJAGIN sur les caractéres d’un produit
direct de groupes abéliens permet d’affirmer que tout caractére sur G est de la forme:

O(x) = p + x (mod 2 n)

(p et x étant des quadrivecteurs dans 'espace de MINKOWSKI, leur produit scalaire
px est donné par: g, p* x*, ou1 g,,, est la métrique dans cet espace).

Dans le cas quaternionien, auquel nous nous intéressons ici, il existe une correspon-
dance bijective entre '’ensemble des caractéres sur G et I'ensemble des classes d’équi-
valence des représentations irréductibles de G. En effet, d’'une part, deux représenta-
tions irréductibles équivalentes ont méme caracteére, et ne différent que par leur J,
et d’autre part, deux représentations irréductibles, qui ont méme caractére et ne
différent que par leur J, sont équivalentes.

Ainsi le probléme de la recherche de toutes les classes d’équivalence de représenta-
tions irréductibles quaternioniennes de G peut étre ramené a celui de la détermination
des caractéres sur G.

Etablissons maintenant le lemme suivant:

Lemme 4.2: Sotent G un groupe abélien et u une représentation unitaive de G dans un
espace de HILBERT quaternionien §); il existe alors au moins une transformation [ de 9,
unitaire et antthermatienne, qui commute avec chacun des u..

On remarque d’emblée que ce lemme n’a rien a voir avec les propriétés topologiques
de G : G est muni seulement d’une structure de groupe abélien abstrait, et # est un
homomorphisme (au sens de la théorie des groupes abstraits!) de ¢ dans I'ensemble des
transformations unitaires de $. -

A moins que # soit triviale dans §), il existe au moins un élément x, de G tel que
ui soit différent de l'identité I dans §; soit alors N, le sous-espace (proprement

X

contenu dans §) formé des éléments f de § tels que u} f = f:

No={fe$|uf=1}.

Soit M, le complément orthogonal de N, dans §. Cette décomposition de § en somme
directe de M, et N, réduit u; en effet, soit f un élément de N,; formons pour x quel-
conque dans G

WE (1, ) = w02 [ =, ]

puisque f appartient a N,;; donc u, f appartient aussi a N,; ainsi chaque #, applique
N, dans lui-méme; de plus » est unitaire; par conséquent il résulte de ’assertion
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précédente que u, applique M, dans lui-méme. Il y aura donc un sens a parler des
restrictions de # a M, et & N,. Formons maintenant 1'opérateur antihermitien

7- = (uxo - ’M;:D)

qui jouit de plus de la propriété suivante: si f est un vecteur non-nul de M,, j f est
toujours différent de zéro. Désignons par u° et j, les restrictions a M, de « et de j.
En vertu de ce qui précéde on a:

(i) u° est une représentation unitaire de G dans M,,.
(ii) 7, est une transformation bornée, injective et antihermitienne de M,,.
(iii) 7, commute avec chacun des .

On a déja rencontré un opérateur qui satisfait aux conditions (ii) et (ii1) en dé-
montrant le corollaire au lemme de ScHUR; on déduit alors immédiatement (par un
raisonnement semblable a celui qui avait été fait 4 cette occasion) qu’il existe dans M
un opérateur J, unitaire et antihermitien qui commute avec chaque opérateur qui
commute avec chacun des #.

On peut répéter dans N, la construction précédente (effectuée dans §), définir un
sous-espace M, de N, au moyen d’un élément x, convenablement choisi dans G, puis
construire un opérateur J; qui soit I'analogue dans M, de l'opérateur [, de M,; par
itération de ce procédé, on couvrira ainsi tout le sous-espace M, complémentaire du
sous-espace N défini par:

N={fe$|u,f=/] pour tout v de G}.

En faisant la somme directe des [/, ainsi obtenus, on obtient une transformation [, de
M, unitaire et antihermitienne qui commute avec toute transformation de M com-
mutant elle-méme avec chacun des opérateurs de la restriction de » a M.

Dans N, u est la représentation triviale; on peut ainsi définir un opérateur Jy
agissant dans N et auquel on n'impose que d’étre unitaire et antihermitien.

En effectuant alors la somme directe de [, et [y on obtient une transformation
J de l'espace tout entier, unitaire et antihermitienne et qui, de plus, commute avec
chacun des u,. Le lemme 4.2 est ainsi complétement démontré.

En vertu des arguments développés au § 2 (voir en particulier les théorémes 4.1
et 4.2 (7)), il existe alors dans $ une famille d’espaces de HILBERT complexes §?,
complets dans § et invariants sous «; restreinte & un quelconque de ces § 2, » forme
une représentation unitaire #* du groupe abélien G considéré.

Enfin, on remarque que si le sous-espace N (apparaissant dans la démonstration
du lemme ci-dessus) est nul, alors /, non seulement commute avec chacun des #,, mais
commute encore avec chaque opérateur qui, lui-méme, commute avec chacun des «,.

Considérons maintenant un groupe topologique G, abélien, localement compact,
connexe et simplement connexe. Le théoréme 3.3 affirme que, de toute représentation
projective de G définie sur les rayons d'un espace de HILBERT quaternionien §), on peut
extraire une représentation unitaire «, continue, de G dans §. G étant abélien, on peut
appliquer a « le lemme 4.2, de sorte que # satisfait aux conditions du théoreme 4.2.
On peut appliquer le SNAG (voir, par example, RiEsz et NAGy12), pp. 387 et suiv.) a
I'une quelconque des représentations complexes u™ issues de u: il existe une famille
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spectrale a'”(S) étalée sur le groupe I" des caractéres de G, et une seule, pour laquelle
on ait:
ul? = / et da(S);
b

on sait de plus que a'(S) commute avec tout opérateur qui commute lui-méme avec
chacun des (.

Par le processus canonique de prolongement, décrit précédemment (voir § 2), on
obtient alors I'équivalent quaternionien du SNAG: il existe une famille spectrale a(S)
¢talée sur le groupe I des caractéres de G pour laquelle on ait:

u, = f e/ " da(S) ;

Ir

de plus, a(S) commute avec tout opérateur qui commute avec chacun des u,. Toute-
fois, le probléme de 1'unicité, de cette famille spectrale reste a élucider. Pour un J
donné et a ¢ fixe, la famille spectrale est unique, car le processus de prolongement
canonique est unique. Montrons maintenant que pour un J donné, la famille spectrale
ne dépend pas du choix de 7; pour cela, construisons les espaces H¥ et H correspon-
dant respectivement a deux quaternions imaginaires 7 et j de norme 1; formons
I'opérateur v = k& I ol k est un quaternion imaginaire, de norme 1, tel que 27 k* = j
(un tel quaternion existe toujours, quels que soient ¢ et 7); on remarque d’emblée que
v est un opérateur co-unitaire qui commute avec n'importe quel opérateur linéaire;
de plus, v applique H sur $; en effet, si fest un vecteur de H, J (vf) =7 (v f), et si
f" est un vecteur de ', J (v f') =i (v f’); enfin, si ¢ est un opérateur linéaire qui
commute avec ], ses restrictions respectivement a §{ et & I’ sont liées par la relation
{9 = v ) p=1, Soit alors u une représentation (unitaire, donc linéaire!) de G dans §;
appliquons le SNAG & ses restrictions complexes u() et 20/

~

. . . . - i
ul = / e dai(S), ul) = / el %® gpi)(S) .

r

Or u) = v 4/ v=1, d’ot1 il résulte que v a'¥(S) v~! satisfait aux mémes conditions que
b"(S). Le SNAG complexe affirmant 1'unicité de la famille spectrale, on en déduit que
bi)(S) = v a¥(S) v~ et donc:

b(S) =wva(S)vt.

Or a(S) est linéaire et commute par conséquent avec v, d’ou il résulte que b(S) = a(5),
ce qui prouve l'unicité de la famille spectrale a J fixe. J lui-méme n’est pas unique,
ainsi que le montre déja sa construction dans le lemme 4.2; a(S) ne peut évidemment
pas ne pas dépendre de J. Ainsi, le choix de [ fixe uniquement la famille spectrale a(S).

5. Conclusions

Toutes les notions physiques ont été introduites dés la premiere section (« Structure
de la Physique Quantique») dans le langage naturel des opérations sur les systémes de
propositions; a c6té de son intérét didactique, cette généralisation présente I'avantage
de permettre un traitement indépendant des divers modéles mathématiques qui en
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constituent une réalisation; cette circonstance est essentielle si on veut pouvoir
discuter I'opportunité d’une réalisation non-conventionnelle de la théorie — ici la
forme quaternionienne de la mécanique quantique. Les sections suivantes ont été
consacrées 4 établir les faits mathématiques généraux propres 2 la réalisation consi-
dérée. Le probléme de la réduction de phase est résolu, pour nombre de cas physique-
ment intéressants, par les théorémes 3.2, 3.3 et 3.4; le théoréme 3.2 n’a pasd’équivalent
aussl général dans le cas complexe. La théorie des répresentations des groupes par des
opérateurs unitaires agissant dans un espace de HILBERT quaternionien a été déve-
loppée dans la derniére section. Le cas des groupes abéliens a été traité plus parti-
culiérement en raison de I'intérét qu’il présente pour un prochain article 4 paraitre
dans ce journal™; 'opérateur J qui apparait dans le cas abélien jouera en effet un
role capital dans 'établissement des liens entre les formes complexes et quaternio-
niennes de la mécanique quantique relativiste; cette étape sera essentiellement fondée
sur les théorémes 4.1 et 4.2.
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