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Mécanique quantique quaternionienne et Relativité restreinte I

par Gérard Emch
(Institut de Physique Théorique de l'Université, Genève)

(15 VI 63)

Abstract. The possibility of a new quantum mechanical description in which the observables
are realized as self-adjoint operators in quaternionic Hilbert spaces is investigated from the point
of view of relativistic invariance. The problem is first formulated in the natural language of
quantum mechanics, i. e. the one of proposition systems. This is followed by the theory of projective
group representation and their reduction to unitary group representations in quaternionic Hilbert
spaces. The general theory is then applied to the group of special relativity which leads to the
classification of elementary systems in this theory. This last step will be carried out in a further
paper to appear in this journal.

Introduction

Appliqué à la mécanique quantique, le groupe de la relativité restreinte a permis de

comprendre dans une seule théorie les concepts de masse, de moment cinétique et de

spin, d'hélicité, d'énergie-impulsion et d'équation de Schroedinger, qui apparaissent
de manière naturelle lors de la classification des représentations irréductibles de ce

groupe dans un espace de Hilbert construit, par habitude, sur le corps des nombres
complexes. Cette présomption en faveur des nombres complexes n'est pas justifiée
a priori par la structure de la mécanique quantique, et celle-ci s'accommoderait tout
aussi bien d'une réalisation dans un espace de Hilbert réel ou quaternionien ainsi

que le faisaient déjà remarquer Birkhoff et von Neumann1).
On peut dès lors se demander si une de ces réalisations hors de convention

permettrait aussi de rendre compte des concepts essentiels mentionnés ci-dessus et
surtout si elle n'en introduirait pas de nouveaux. C'est dans cet esprit qu'on a entrepris

l'étude des représentations du groupe de Poincaré dans la réalisation
quaternionienne. Cette voie a été ouverte par les travaux de Finkelstein, Jauch, Schi-
minovitch et Speiser2)3)4); il convient aussi de rappeler que l'idée d'une théorie
quantique fondée sur une réalisation par un espace de Hilbert réel a été exploitée
par Stueckelberg et ses collaborateurs5), quoique selon une ligne passablement
différente de celle qui est développée ici.

La première démarche consiste à définir ce qu'est un système physique élémentaire

par rapport à un groupe de symétrie, ainsi que les notions qui y sont reliées, et cela
sans recourir à une réalisation particulière de la théorie quantique dans un espace de

Hilbert complexe, réel ou quaternionien; ceci fait l'objet de la première section.
La seconde section donne, des êtres ainsi définis, une réalisation particulière: celle

où l'on décide (et on vérifie qu'on a le droit de le faire!) de représenter les observables
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par des opérateurs hermitiens agissant dans une famille d'espaces hilbertiens
construits sur le corps des quaternions, en opposition à la convention de la mécanique
quantique habituelle qui envisage des espaces de Hilbert complexes; la description
quaternionienne d'un système physique par rapport à un groupe de symétrie G, est
alors déterminée par la donnée d'une famille d'espaces de Hilbert quaternioniens et
d'une application de G dans l'ensemble de toutes les familles d'opérateurs co-unitaires,
définis sur ces espaces; (par définition, un opérateur co-unitaire ne diffère d'un
opérateur unitaire que par un facteur scalaire quaternionien de norme 1).

Dans la troisième section, on indique certaines conditions sur G pour que cette
description puisse être faite en considérant non pas tout l'ensemble des opérateurs
co-unitaires, mais seulement le sous-ensemble des opérateurs unitaires; on note en

particulier que le groupe de Poincaré et ses sous-groupes principaux satisfont à ces

conditions. Cette circonstance sera exploitée dans l'article qui fait suite à celui-ci (et
auquel on se référera en le désignant par II). On arrive ainsi à réduire le problème
posé à un problème de classification de représentations unitaires de groupes dans des

espaces de Hilbert quaternioniens; dans cette réduction, les seules difficultés qui
apparaissent sont d'ordre topologique: elles concernent en effet la continuité. Les
faits généraux se rapportant à ces représentations sont exposés dans la quatrième
section ; le corollaire du lemme de Schur prend dans le cas quaternionien une forme
apparemment très différente de celle à laquelle on est habitué dans le cas complexe ; à

cette occasion, le rôle des opérateurs unitaires antihermitiens dans un espace de

Hilbert quaternionien est mis en évidence, et on indique l'usage qu'on peut espérer
en faire, pour jeter un pont entre les réalisations quaternionienne et complexe de la
mécanique quantique. Cette question sera examinée en détail dans IL Comme première
application, on donnera ici une généralisation au cas quaternionien du célèbre théorème

de Stone-Neumark-Ambrose-Godement.

1. Structure de la physique quantique

Chaque physicien sait intuitivement ce qu'il entend par «système physique
élémentaire»; cependant, il a paru nécessaire de préciser cette notion en se dégageant
en particulier d'une formulation restreinte à la mécanique quantique complexe. Pour
cela, il a d'abord fallu exprimer les postulats essentiels d'une mécanique quantique et
ceci dans un langage aussi proche que possible de la réalité expérimentale. Le but de

cette section est donc de définir, dans ce langage naturel, qui se trouve être celui de la
théorie des treillis, toutes les notions physiques dont on aura besoin ensuite. Une telle
démarche préliminaire est indispensable si on veut pouvoir dépasser la réalisation
complexe sans risquer d'utiliser une traduction liée à certains aspects particuliers de la
réalisation complexe qui pourraient ne pas se retrouver dans la réalisation
quaternionienne.

Le point de départ de cette section est constitué par deux articles6)7) auxquels le

lecteur pourra se référer pour plus de détails.
On constate qu'il existe en physique des expériences particulièrement simples

auxquelles on peut attribuer un rôle fondamental puisque la mesure de n'importe
quelle quantité physique peut être réduite à une suite de telles expériences : ce sont les

questions, expériences dont le résultat s'exprime par «oui» ou «non» et qu'on peut donc
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formuler sous forme d'alternatives; chacun des termes complémentaires d'une
alternative sera appelé proposition, et on dira qu'une proposition est vraie si ce qu'elle
affirme est une prédiction vérifiée à coup sûr lorsqu'on effectue l'expérience
correspondante. Si deux propositions, a et b, sont telles que «a vraie» implique «6 vraie»,
on notera cette circonstance par a Cb; cette relation satisfait à toutes les propriétés
d'une relation d'ordre partiel sur l'ensemble L de toutes les propositions qu'on peut
formuler sur le système physique considéré.

D'après ce qu'on sait de la physique, les quatre propriétés suivantes semblent
devoir être satisfaites par cet ensemble L, muni de la structure d'ordre qu'on vient
d'indiquer; on prendra donc ces propriétés comme axiomes pour définir une structure
mathématique qu'on désignera par le terme de système de propositions :

Axiome 1 : L est un treillis complet
Axiome 2: L est orthocomplémenté
Axiome 3: L est atomique
Axiome 4: Tout segment [a, b] de L hérite canoniquement des axiomes 1, 2 et 3.

Ces axiomes expriment qu'avec toutes propositions a et b, L contient aussi les

propositions «a ou b» (notée a u b), «a et b» (notée a db), «non a» (négation forte de a)
et «non b»; que de plus, il existe des propositions minima, appelées points et notées ici
F, G, c'est-à-dire des propositions telles qu'on ne peut, sans contradiction rien
affirmer de plus sur le système; qu'enfin, sur tout sous-système on peut introduire
canoniquement une structure de système de propositions.

On montre, également dans les références indiquées plus haut, comment
apparaissent dans cette axiomatisation les notions, d'ailleurs liées entre elles, de compatibilité,

de système cohérent et de règles de supersélection.
Dans l'esprit du travail faisant l'objet du présent rapport, ce formalisme présente

en particulier l'avantage de conduire aux concepts de symétrie et de théories
isomorphes, d'une manière qui satisfasse immédiatement l'intuition du physicien.

Soient Llt L2, deux systèmes de propositions ; on appelle morphisme de Lx sur L2
une application bijective m de Lx sur L2 telle qu'on ait :

(i) si dans Lx «a vraie» entraîne «b vraie», alors (dans L2) «m(a) vraie» entraîne
«mfb) vraie» (ce qu'on note: a C b entraîne m aÇmb) et réciproquement,

(ii) l'image par m de «non a» est égale à la négation de l'image par m de a (ce qu'on
note : m Ox a 02 m a, où Ox et 02 désignent respectivement les opérations d'ortho-
complémentation dans Lx et L2).

Ces deux conditions, indépendantes, suffisent7) pour affirmer que tout morphisme
m préserve toutes les relations logiques entre propositions ; d'une manière plus précise,
on a en particulier :

(i) l'image par m de «a ou 6» est identique à la proposition «image de a ou image de
b » (ce qu'on note :mfaub) m au m bet qui peut être généralisée à un ensemble
quelconque de propositions de Lx) ; il en est de même pour <ta et b».

(ii) si a et è sont des propositions compatibles de Llt il en est de même pour les pro¬
positions m(a) et m(b) de L2, et réciproquement,

(iii) si F est un point de Lx, m(F) est un point de L2 et réciproquement,
(iv) un morphisme est complètement déterminé par sa restriction aux points.
(v) l'image par m d'un sous-système cohérent est un sous-système cohérent.
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Une symétrie d'un système de propositions L peut alors être définie comme un
morphisme de L sur lui-même. Nous avons vérifié7) que cette définition recouvre ce

qu'on désigne habituellement par ce terme, voir par exemple Wigner8) (Appendix
to Chapter 20) ; en particulier, dans la réalisation d'un système de proposition par
l'ensemble des projecteurs sur un espace de Hilbert construit sur le corps des nombres

complexes, nous avons retrouvé le théorème de Wigner affirmant que toute
symétrie peut toujours être représentée par une transformation unitaire ou antiunitaire
de l'espace de Hilbert considéré. Une extension de ce théorème sera utilisée par la
suite.

On peut enfin introduire7)9) les notions d'état physique, d'état pur, de transformation

des états sous l'effet d'une symétrie.
Un état sur un système de propositions L est défini comme une fonction ayant L

pour source, l'intervalle réel fermé [0,1] pour but, et telle que:

(i) les bornes 0 et 1 sont toujours atteintes pour tout état E en particulier par ses

valeurs sur les propositions absurde et triviale respectivement.
(ii) a et è étant compatibles, on a nécessairement: E fa) + Efb) E fa Lib) + E fa Db).
(iii) si E fa) Efb) 1, on a aussi E fa M b) 1

(iv) si a n'est pas la proposition absurde, il existe au moins un état E tel que E fa) soit
différent de zéro.

On remarque que l'état est ainsi une généralisation de la notion de probabilité.
On dira qu'un état E est pur s'il existe dans L un point F tel que EfF) 1 ; si G

est un autre point de L, E(G) sera dite probabilité de transition de F kG. Un état qui
n'est pas pur sera appelé mélange.

Après avoir décidé de ce qu'on voulait entendre par symétrie sur un système de

propositions L, on peut fixer l'action de chaque symétrie sur l'ensemble des états sur
L: m étant une symétrie de L, on appellera «transformée par m de l'état F» la fonction
Em définie par Em(a) E (m-1 a) ; cette fonction satisfait à tous les axiomes sur les

états de L, et on vérifie que E et Em ne peuvent être des états purs que simultanément.

Théorème 1.1 : L'ensemble M des symétries sur un système quelconque de propositions
L peut être muni d'une structure de groupe topologique.

En effet, M possède manifestement une structure de groupe abstrait pour la loi de

composition (m1 m2) a mx (m2 a) ; l'identité dans M est évidemment la symétrie e

qui applique toute proposition a de L sur elle-même.
Pour tout e positif et pour tout état E sur L, on définit un voisinage Nfe) de

l'identité dans M comme l'ensemble de tous les éléments m de M tels que | Emfa) —

Efa) | < e pour tout a de L.
Ainsi, en ayant recours à la notion d'état, on a déterminé un système de voisinage

D de l'identité dans M ; on vérifie que M et D satisfont aux conditions du théorème
10 de Pontrjagin10), de sorte que M est maintenant muni d'une structure de groupe
topologique. Ceci achève la démonstration du théorème.

C'est muni de cette structure, qu'on désignera M sous le nom de groupe des

symétries de L. En termes physiques intuitifs, la condition par laquelle on a défini les

voisinages dans M signifie que deux symétries sont voisines si les transformations
qu'elles induisent sur les états du système sont voisines.
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Théorème 1.2: Si L est union directe discrète de plusieurs sous-systèmes de

propositions cohérents Lit alors toute symétrie m, connexe à l'identité, applique chacun
des Li sur lui-même.

On sait déjà (cf. conséquence (v) de la définition d'une symétrie) que m étant une
symétrie, l'image par m d'un sous-système cohérent Lt est un sous-système cohérent

Lj ; on veut démontrer que i=j. Chaque L,- étant lui-même un système de propositions,
il possède un élément maximum ut ; alors mfut) uy Choisissons un quelconque des Lt
et désignons-le par Lv Par définition de l'union directe de sous-systèmes cohérents,
les ui sont tous compatibles entre eux; par conséquent, pour tout état E sur L, on a:

E(ux) A- E(ut) E fux u U{) A- E fuxn u{)

Considérons alors un état particulier Ex tel que Exfux) 1. Il résulte de l'égalité ci-
dessus que Ex(u) 0 pour i différent de 1. Pour e positif suffisamment petit,
considérons alors le voisinage Nxfé), défini comme l'ensemble des éléments m de M tels

que | E™(a) — Ex(a) | < e pour tout a de L. Appliquons cette inégalité à ux; alors:
j Ex (m-1 ux) — Ex(ux) | < s. Or w"1 est une symétrie, donc m-1 ux est égal à l'un des ut ;

mais on a vu que Ex(u{) 0 à moins que i soit égal à 1. L'inégalité ci-dessus entraîne
donc m-1 ux ux, c'est-à-dire mux ux et par conséquent mLx Lx.

Ainsi toute symétrie appartenant à Nx(e) applique Lx sur lui-même; en faisant

usage du théorème 15 de Pontrjagin10), on voit qu'il en est de même pour toute
symétrie connexe à l'identité. L'indice 1 ayant été choisi arbitrairement, cette
démonstration s'applique à tout sous-système cohérent. Le théorème 1.2 est donc
démontré.

Une notion importante dans le contexte où ce travail est placé reste encore à

définir: celle de représentation projective d'un groupe G. On dira que le système de

propositions L admet, pour groupe de symétrie, un groupe topologique G, s'il existe
un homomorphisme (au sens topologique aussi!) U de G dans M, groupe des symétries
de L. Cet homomorphisme sera appelé représentation projective (continue) de G dans M
deL.

Le théorème 1.2 admet alors le corollaire suivant:

Corollaire: Si un système de propositions L, union directe discrète de sous-systèmes
cohérents, admet pour groupe de symétrie un groupe topologique G connexe, alors pour
tout x de G, Ux, image de x par U, applique chaque sous-système cohérent de L sur lui-
même.

Pour démontrer cela, il suffit de voir que U applique G dans la composante
connexe de l'identité dans M ; or ceci se montre de manière analoque à la remarque E
du paragraphe 12 de Pontrjagin10).

Avec le concept de groupe de symétrie, s'introduisent alors naturellement quelques
notions complémentaires dont on aura besoin dans la suite.

Se donner une représentation projective U de G dans M de L, c'est spécifier la
manière dont G agit sur L ; et c'est en partie la donnée de U qui permettra d'interpréter

physiquement les^léments de L, considéré a priori comme structure abstraite;
dans la mécanique quantique habituelle, cette manière de faire est bien connue : c'est
ce chemin qu'on suit effectivement (quoique dans une réalisation particulière)
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lorsqu'on interprète comme l'énergie le générateur de l'opérateur d'évolution au
cours du temps, comme composantes du moment cinétique les générateurs des

rotations, etc. La donnée de LetdeU semble donc bien mériter le nom de description d'un
système physique par rapport au groupe de symétrie G.

On dira que (L(1), Um) et (L(2), C7<2)) forment deux descriptions équivalentes par
rapport à un groupe de symétrie G si :

(i) Ua) et c7<2> sont des homomorphismes de G respectivement dans M(1) et Af<2>,

groupes de symétrie respectifs de L(1) et L(2).

(ii) il existe un morphisme m de L(1) sur L{2) qui satisfait à la relation m lAA m-1
X2> pour tout x de G.

Cela revient à dire qu'il existe une correspondance bijective entre les propositions de
Lm et de L(2) et que, sous l'action de G, ces propositions se transforment conformément
à cette correspondance.

On dira enfin que (L, U) est une description irréductible fou un système élémentaire)

par rapport au groupe G, si U ne laisse invariante aucune des propositions de L hormis
les propositions absurde et triviale, ce qu'on peut noter « Uxa a pour tout x de G,

entraîne a 0 ou I» (0 et I sont ces deux propositions particulières).

Théorème 1.3: Le système de propositions L d'un système élémentaire (L, U) par
rapport à un groupe de symétrie G connexe est nécessairement cohérent.

En effet, supposons que L soit union directe discrète de sous-systèmes cohérents

L, ; le corollaire du théorème 1.2 affirme alors que pour tout x de G, on a : UxLi Li ;

par conséquent, Ux laisse invariant l'élément maximum de chacun des Lt; ceci est

contraire à l'hypothèse d'irréductibilité de (L, U), à moins que tous les Lit sauf un, se

réduisent à zéro, ce qui signifie précisément que L est cohérent. Ceci achève la
démonstration du théorème 1.3, où l'hypothèse de connexité de G est essentielle.

Envisageons maintenant la situation suivante, dont la solution pourra être
considérée comme une généralisation du théorème de Clifford (voir par exemple
Boerner11)). Soient G un groupe, r un automorphisme involutif de G et (U, R) tuie
représentation projective irréductible de fG, r) dans le groupe M des symétries d'un
système de propositions L. (U, R) étant irréductible, ce n'est pas nécessairement le

cas pour U; supposons qu'il existe un élément a de L (différent de la proposition
absurde!) tel que Uxa a pour tout élément x de G; désignons par a' l'élément de L
défini par a' R-1 a ; on a :

LT a' Ux R1 a= R-1 R Ux R-1 a R1 Ur[x] a R-1 a a' ;

ainsi pour tout x de G, Ux a' a' ; Ux et R étant des symétries de L et i? étant de plus
involutive, on a, pour tout x de G :

Ux (a u a') a u a', Ux (a n a') a n a',

R (a U a') a u a', R (a O a') a n a'

or U, R) est supposée irréductible ; par conséquent, a U a' est la proposition triviale
de L et a O a' est, soit la proposition absurde, soit la proposition triviale de L ; dans le

premier cas, a' et le complément de a dans L ; dans le second cas, a et a' sont toutes
deux égales à la proposition triviale de L.
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Montrons encore que s'il existe une proposition a (qui ne soit ni la proposition
absurde ni la proposition triviale) telle que Uxa a pour tout x de G, alors toute
proposition qui satisfait aux mêmes conditions est identique à a ou à R a ; soit b une
telle proposition; désignons par c la proposition a n b et supposons d'abord que c est
différente de la proposition absurde; Ux étant une symétrie, il résulte des propriétés
de a et b que Ux c c pour tout x de G ; en appliquant alors à c la démonstration faite
plus haut pour a, on obtient que cui?c /etcni?c 0;orcest contenue dans a et
est donc compatible avec elle ; on vérifie aisément, en écrivant la relation de compatibilité

de a et c et en utilisant ce qui a été démontré ci-dessus, que c ne peut alors être
autre que a; par conséquent, a est contenue dans b; en refaisant ce raisonnement avec
b au lieu de a, on trouve que b est contenue dans a; a et ô sont donc identiques. Si

maintenant, contrairement à l'hypothèse auxiliaire introduite ci-dessus, a n b est la
proposition absurde, il ne peut en être de même de a' O b, et la démonstration qui
précède peut être refaite en remplaçant a par a'. On a donc effectivement démontré

que b est nécessairement, ou bien égale à a, ou bien à a'. Cette circonstance a pour
conséquence immédiate le théorème suivant.

Théorème 1.4 : Soit G un groupe, et soit r un automorphisme involutif de G. Si U, R)
est une représentation projective irréductible de (G, r) dans le groupe des symétries d'un
système de propositions L, alors (L, U) contient au plus deux systèmes élémentaires par
rapport à G.

La classification de toutes les descriptions élémentaires par rapport à (G, r) peut
donc être faite en effectuant le programme ci-dessous :

(i) chercher toutes les descriptions élémentaires fLG, V) par rapport à G.

(ii) pour chacune de celles-ci, déterminer si le groupe M des symétries de LG contient
un élément R tel que R Vx R-1 Vr[xl pour tout x de G.

(iii) si c'est le cas, (LG; V, R) est une description irréductible par rapport à (G, r).
(iv) si au contraire il n'existe pas dans MG une symétrie R qui satisfasse à la condition

(ii), former le système de propositions L LGU LG où LG est isomorphe à LG;
dans L, former Ux (Vx, Vj.x) pour tout x de G; LG et L0 étant isomorphes, il
existe un morphisme A de LG sur L'G ; r peut alors être représenté par 7? (A, A^1)
qui interchange LG et LG; (L; U, R) forme alors une description irréductible par
rapport à (G, r).

On peut évidemment imposer des conditions supplémentaires à i?; il faudra
évidemment modifier le programme en conséquence. A titre d'illustration, remarquons
que si on étudie les réalisations complexes de L, et qu'on impose à ux et à o, représentatifs

respectifs (voir section 3) de Ux et R, d'être unitaires, à u d'être une représentation
ordinaire de G, alors le programme ci-dessus est exactement celui que fournit le

théorème de Clifford; en revanche, toujours dans cette réalisation, si l'on impose
à q d'être anti-unitaire, une légère modification de ce programme conduit à la théorie
des coreprésentations de Wigner (voir réf. 8, chap. 26).

2. Réalisation quaternionienne

En lisant la section précédente, le lecteur aura sans doute remarqué que les notions
qui y sont exposées trouvent leur réalisation mathématique habituelle lorsqu'on
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prend pour réalisation du système de propositions l'ensemble des sous-espaces fermés
d'un espace de Hilbert complexe. Dans ce qui suit, on propose une autre réalisation,
à savoir de remplacer les espaces de Hilbert complexes habituels par des espaces
hilbertiens construits sur le corps des quaternions ; ce corps se distingue de celui des

nombres complexes par plusieurs traits essentiels : il contient trois unités imaginaires
au lieu d'une seule, il n'est pas commutatif, la conjugaison complexe n'est pas un
automorphisme de ce corps, et enfin l'ensemble des automorphismes de ce corps est

identique à l'ensemble des automorphismes intérieurs et est isomorphe au groupe
connexe des rotations dans un espace euclidien à trois dimensions ; on rappelle que le

groupe des automorphismes du corps des nombres complexes est beaucoup moins
riche: il est constitué par deux éléments seulement, l'identité et la conjugaison
complexe. Ces circonstances se reflètent évidemment sur les propriétés des espaces hilbertiens

construits sur ces corps, et sur les opérateurs qui agissent dans ces espaces.
Le but de cette section est de préciser cette remarque et de montrer explicitement

quelle est la réalisation quaternionienne des êtres physiques dont il a été question dans
la section précédente.

a) Le corps Q des quaternions

Considérons le groupe S Uf2, C) des matrices (à coefficients complexes) unitaires,
unimodulaires et de rang 2 ; toute matrice appartenant à ce groupe est de la forme :

co fcnm) où c22 cfx, c2x — cf2, cn c22 — c12 c21 1, et peut donc s'écrire: co

a A- b ex A- c e2 + d e3, les et étant les matrices — i at où ax, a2 et a3 sont les trois
matrices de Pauli ; les coefficients a, b, c et d sont des nombres réels et satisfont à la
relation a2 + b2 -r c2 + d2 1 ; de plus on a : e'j — 1 et ei e- — e, ei ek où i, j, k
sont une permutation circulaire des indices 1, 2, 3. Considérons alors l'ensemble Q de

toutes les formes linéaires à coefficients réels des symboles 1, ex, e2, e3, on peut alors
munir Q d'une structure de corps topologique, où les opérations suivantes sont définies

par la correspondance 1 -> /, et -> — i at :

(i) une addition et une multiplication
(ii) une conjugaison (notée *) définie par la conjugaison hermitienne des matrices

correspondantes
(iii) une norme, notée | q [et définie par: + (q q*A2; on vérifie que \q\2 a2 A- b2 A-

c2 A- d2.

Considéré comme être abstrait, Q, muni des structures algébrique et topologique ci-
dessus, est désigné par le nom de corps des quaternions (et l'on précise parfois: à

coefficients réels). Le sous-ensemble Ü de Q, constitué par les quaternions de norme 1,

est alors un groupe topologique, isomorphe à S [7(2, C) ; on note que Q est stable par
rapport à la multiplication et à la conjugaison, et que pour tout co de Q, on a : co*

co'1. Le centre de Q est Z2, groupe cyclique d'ordre 2. On peut montrer que tout
automorphisme A de Q est intérieur et peut donc être écrit sous la forme: A[q] co q a>*,

où q parcourt Q et co est un élément de Q, défini par A à un élément z de Z2 près. Enfin,
si {X} est une famille continue d'automorphismes de Q (ou de Q), on peut choisir une
famille continue {co,} d'éléments de Q de telle sorte qu'on ait : A t[q] cotq co? ; ainsi le

groupe des automorphismes de Q (ou deß) est isomorphe au groupe 0+ S [7(2, C)jZ2.
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b) L'espace de Hilbert quaternionien

L'espace de Hilbert quaternionien est une généralisation au corps des quaternions
de la notion d'espace de Hilbert abstrait définie pour les corps réel et complexe (Cf

par exemple Riesz et Nagy12)). Ainsi, §e est un espace vectoriel (de dimension finie
ou dénombrablement infinie) à gauche sur le corps Q des quaternions. (On aurait tout
aussi bien pu prendre un espace vectoriel à droite; toutefois, lorsqu'on travaille avec
des opérateurs semi-linéaires, la notation d'espace vectoriel à gauche se révèle plus
pratique; la convention opposée a été choisie par les membres du «Quaternion-
Club»2)3).) §>q est muni d'une norme (notée || |j) dérivant d'un produit scalaire qui,
à tout couple de vecteurs / et g, associe un élément (/, g) de Q de telle sorte que :

(i) fqf.i) <?(/, g).

(ii) (/ + g, h) (f, h) A- (g, h)

(iii) (A g)* ={g,f),
(iv) || / Ü2 (/. /) > 0 pour tout / 4= 0 et

||/||2 =0 pour / 0.
La complitude, les convergences faible et forte y sont définies comme dans le cas

habituel12). Les axiomes énoncés ci-dessus ont pour conséquences:

fqf,pg) qff,g)P*. |(/,g)|< Il/Il lk!|, !l/ + g||<||/I + ||g||-

Les inégalités de Schwartz et de Minkowski se démontrent d'ailleurs de la même
manière que dans le cas complexe.

La notion de transformation linéaire admet une généralisation : on appelle
transformation co-linéaire une application t de §3 (ou au moins d'une partie de <r>y) dans
lui-même satisfaisant aux conditions suivantes partout où elle est définie :

(i) tff+g) tf+tg,
(ii) t fqf) A'[q] tf pour tout q de Q, A' étant un automorphisme de Q, attaché à la

transformation t.

Une transformation co-linéaire u est dite co-unitaire, si elle est définie sur §y entier
et satisfait à la condition supplémentaire:

fm)fuf,ug) A-[ff,g)]
Une transformation co-linéaire t, pour laquelle l'automorphisme A' est l'identité,

est dite linéaire; si de plus elle satisfait à la condition (iii), elle est dite unitaire.
On appelle rayon attaché à un vecteur/ de norme 1, la famille F des vecteurs

obtenus à partir de / par la multiplication par des quaternions de norme 1 :

F — {co f | cü eß},
On remarque que tous les vecteurs de F sont aussi de norme 1 et que F peut être
obtenue à partir de chacun de ses membres en utilisant la définition ci-dessus.

Si t est une transformation co-linéaire, on désignera par T la famille de toutes les

transformations co-linéaires qui ne diffèrent de t que par un multiple scalaire de

norme 1 :

T {co t \ oj e Q}.
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Il existe toujours dans T deux (et seulement deux) transformations linéaires, qui
d'ailleurs ne diffèrent entre elles que par (— 1). On dénotera par II la famille des
transformations co-linéaires qui ne diffèrent de l'identité que par un quaternion de norme
1. Enfin si u est co-unitaire, il en est encore ainsi de tous les membres de la famille U
a laquelle il appartient. Il est essentiel de remarquer que les U peuvent être considérés

comme des opérateurs agissant dans l'espace des rayons.
Un produit scalaire peut être défini sur l'ensemble des rayons d'un espace de

Hilbert quaternionien par F ¦ G \ff,g)\, on f et g sont des vecteurs quelconques
appartenant respectivement à F et à G; la valeur de ce produit scalaire ne dépend
effectivement pas d'un choix particulier de / et g. On appelle distance de deux rayons
la distance minimum entre les vecteurs d'un rayon et ceux de l'autre: dfF,G) est
ainsi le minimum de l'expression |/ — g || lorsque f et g parcourent respectivement
F et G.

Fondés sur les propriétés qui précèdent, et en particulier sur les inégalités de

Schwartz et de Minkowski, les quatre lemmes qui suivent sont d'une démonstration
fastidieuse; ces lemmes étant aussi valables dans le cas complexe, leurs démonstrations

ne diffèrent effectivement que par des détails de celles qu'a données Barg-
mann13), aussi ne seront-elles pas reproduites ici:

Lemme 2.1 : d(F, G) [2 (1 - F ¦ G)]1'2.

Lemme 2.2: d(F, G) 0 entraine F G.

Lemme 2.3: Le produit scalaire des rayons est continu en chacun de ses facteurs, dans

la métrique induite par la distance des rayons.

Si t0 est une transformation linéaire de l'espace de Hilbert quaternionien, son

adjointe est définie, comme dans le cas complexe, par:

(W,gX(/X*g);
pour étendre la définition de l'adjointe au cas des transformations co-linéaires, on
utilisera le fait que t peut s'écrire sous la forme co t0 où co est un quaternion de norme 1 ;

on obtient ainsi:
(t f, g) AAffA* g)],

où A ' est l'automorphisme associé à t ; si tx et t2 sont deux transformations co-linéaires,
on a encore: (tx t2)* t$ tf ; de la définition de l'adjointe, on déduit immédiatement

que toute transformation co-unitaire satisfait aux relations u m* u* u 1.

Comme dans un espace de Hilbert complexe, un projecteur est une transformation
linéaire, hermitienne et égale à son carré. La transformée par un projecteur a d'un
rayon F sera par définition la famille a F de vecteurs af où /parcourt F; ces vecteurs
ne diffèrent donc entre eux que par un quaternion de norme 1 (en général a F n'est pas
un rayon).

Soit u une transformation co-unitaire ; considérons l'opération qui à tout projecteur
a fait correspondre l'opérateur uau*; cet opérateur ne dépendant pas du choix de u
dans la famille U d'opérateurs co-unitaires à laquelle u appartient, on le notera U a.
On remarque que U a est aussi un projecteur et que U (I — a) I — U a; que, de plus,
si a et ô sont deux projecteurs qui satisfont à la relation ab b a a, alors (U a) (U b)

(U b) (U a) U a. Cette remarque jouera un rôle important pour la réalisation quater-
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nionienne de la mécanique quantique; on verra dans le paragraphe suivant que sa

réciproque est aussi vraie et constitue la transposition au cas quaternionien du célèbre
théorème de Wigner sur la représentation des symétries d'un système physique.

c) Mécanique quantique quaternionienne

L'ensemble L des projecteurs dans un espace de Hilbert quaternionien peut être
muni d'une structure de système cohérent de propositions, et en forme ainsi une
réalisation. Les projecteurs étant en correspondance bijective avec les sous-espaces
fermés sur lesquels ils projettent respectivement l'espace tout entier, la relation
d'inclusion des ensembles, définie sur les sous-espaces fermés, induit naturellement
sur L une relation d'ordre partiel; l'orthocomplément d'un projecteur quelconque sera

par définition le projecteur (I — a) où J est l'application identique dans l'espace de

Hilbert considéré; l'intersection est définie par anb lim (a b)" et l'union par
n--yoo

a u b [7 — (I — a) n (I — b)]. On vérifie que si deux projecteurs commutent, ils
sont compatibles et réciproquement.

A tout rayon F de l'espace de Hilbert, on peut associer la fonction EF définie par :

Epfa) F ¦ a F

cette expression étant définie, par analogie au produit scalaire des rayons, comme
(/, af) où / est un vecteur quelconque du rayon F. On vérifie immédiatement que EF
satisfait à tous les axiomes définissant un état sur L, et même que EF est un état pur.
Un état général quelconque sur L est alors réalisé par une combinaison linéaire
convexe d'états purs:

X«) =Exi X,-(«) avec x, > 0 et £ xi•= 1
¦

i i

Va démonstration de cette affirmation devient très facile si l'on connaît le théorème
de Gleason14) sur la matrice de densité; toutefois, ce théorème n'est pas indispensable
et la démonstration peut être donnée même dans le langage abstrait des systèmes de

propositions15).
Toutes ces notions peuvent être étendues au cas général d'une réalisation

quaternionienne d'un système de propositions quelconques, en considérant non pas un, mais
une famille d'espaces de Hilbert quaternioniens. On remarquera enfin que dans la
réalisation habituelle de la mécanique quantique on fait tous les pas qui précèdent,
mais en partant d'un espace de Hilbert complexe.

Le concept de symétrie ayant été introduit plus haut à partir de sa formulation
physique intuitive, il s'agit maintenant d'en trouver l'expression dans la réalisation de
la mécanique quantique étudiée ici; la réponse à cette question peut être obtenue à

partir du premier théorème fondamental de la géométrie projective et s'énonce ainsi:
si l'espace de Hilbert quaternionien est de dimension au moins égale à 3, toute
symétrie m, définie sur le système de propositions L constitué par l'ensemble des

projecteurs de l'espace de Hilbert considéré, peut être représentée par une
transformation unitaire u de cet espace; toute transformation co-unitaire, qui ne diffère
de u que par un quaternion de norme 1 en facteur, représente la même symétrie; ce
théorème est l'équivalent quaternionien du théorème bien connu que Wigner8) a
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découvert dans le cas complexe ; une démonstration générale qui englobe en particulier
les réalisations complexe et quaternionienne, fondée sur le formalisme développé plus
haut ayant été donnée récemment par l'auteur et C. Piron7), celle-ci ne sera plus
reprise ici. On obtient ainsi, de manière unique, une famille U de transformations co-
unitaires qui induisent le même symétrie; U peut d'ailleurs être considérée comme une
opération dans l'espace des rayons et satisfait alors à la relation :

U F ¦ U F' F ¦ F'

quels que soient les rayons F et F' de l'espace considéré. Les sous-espaces étant
transformés par u, la transformée par la symétrie m d'un projecteur a quelconque est
donnée par u au* ; a étant linéaire, cet opérateur n'est pas changé si l'on remplace u
par co u oh co est un quaternion de norme 1. On peut donc écrire ma= Va. En vertu
de sa définition, Em(a) devient Em(a) EfU'1 a); en particulier, si E est un état pur et
F le rayon correspondant :

EmPfa) F ¦ fU-^-a) F= EUF(a).

On a donc établi une correspondance bijective entre les symétries m de L et les

opérateurs U (familles d'opérateurs co-unitaires agissant sur l'espace de Hilbert et
ne différant entre eux que par un quaternion de norme 1) qui agissent sur les rayons de

l'espace de Hilbert quaternionien envisagé. On peut donc considérer l'ensemble de

ces opérateurs, muni de la structure de groupe topologique induite par M, comme la
réalisation quaternionienne de M.

Précédemment (section 1), on a utilisé le symbole U pour désigner l'homomorphisme
du groupe topologique G (groupe de symétrie de L) dans M (groupe des symétries
dei).

Par l'abus de langage suivant, on confondra dorénavant les notions définies sur
(L, M), considérée comme structure abstraite, et celles qui sont définies sur sa
réalisation : Ux, qui désignera la symétrie de L correspondant à l'élément x de G, sera un
opérateur sur les rayons de l'espace de Hilbert; l'effet de cette symétrie s'écrira:

- pour les projecteurs: a -> Uxa,

- pour les états: E fa) -> E'(a) E (U"1 a).

En utilisant les lemmes énoncés plus haut, (section 2b), on vérifie que la condition
pour que U soit un homomorphisme de G dans le groupe des symétries de L peut
s'écrire de plusieurs manières :

(i) pour tout e positif, tout état E sur L et tout élément y de G, il existe dans G un
voisinage Nfy) de y tel que :

[ E'fa) - E» fa) \ < e

quels que soient les projecteurs a de L et les éléments x de Nfy).
(ii) pour tout e positif et tout état E sur L, il existe un voisinage Nfe) de l'identité dans

G, tel que:
| E*(a) — E (a) | < e

quels que soient a dans L et x dans Nfe).
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(iii) pour tout e positif et tout rayon F, il existe un voisinage Nfe) de l'identité dans G,

tel que:H
| F ¦ F' - F • [7 F' | < e

quels que soient le rayon F' et l'élément x de Nfe).
(iv) pour tout e positif et tout rayon F il existe un voisinage Ar(f3) de l'identité dans G,

tel que:
dfF, Ux.F)<e

quel que soit l'élément x de Nfe).
(v) pour tout e positif et tout rayon F il existe un voisinage Nfe) de l'identité dans G,

tel que:H F • [7 F > 1 - e

quel que soit x dans N(e).

Si U satisfait à l'une quelconque de ces conditions, elle sera dite représentation
projective du groupe topologique G, agissant sur les rayons de l'espace de Hilbert
considéré.

On peut alors se poser la question suivante: «Etant donné une représentation
projective d'un groupe topologique G dans un espace de Hilbert quaternionien,
est-il possible d'extraire de chaque famille Ux un opérateur unitaire ux de telle sorte

que ux soit une représentation fortement continue de G dans l'espace considéré?»
On remarquera que les notions dont il est question ici apparaissent de la même

manière dans le cas complexe. Le problème posé ci-dessus porte alors le nom de
«réduction de phase». La solution de ce problème dans le cas quaternionien fait
l'objet de la section suivante; les résultats obtenus dans les réalisations complexe et

quaternionienne seront comparés.

3. Réduction de Phage

a) Relèvements locaux

Cette notion a été introduite par Bargmann13) sous le nom de «choix de représentatifs

locaux». Le but de ce paragraphe est de démontrer le théorème 3.2 qui est

l'analogue du théorème 1.1 de Bargmann, dans le cas où l'espace de Hilbert est
construit sur le corps Q des quaternions ; au départ la méthode est essentiellement la
même que celle qu'a développée Bargmann; toutefois, le fait que Q n'est pas com-
mutatif nécessite quelques précautions, aussi la démonstration sera-t-elle transcrite
dans sa totalité ci-dessous.

Par les hypothèses beaucoup faibles qu'il requiert, le théorème 3.2 diffère
profondément de son analogue complexe; dans la démonstration qui en est donnée ici,
on voit apparaître un raccourci inattendu, propre au cas quaternionien et impraticable
dans le cas complexe. La raison de cette situation doit être cherchée dans une
différence de structure essentielle des corps complexe et quaternionien. Celle-ci est mise en
évidence lorsqu'on reprend la démonstration de Bargmann en la généralisant un peu
de manière à pouvoir traiter parallèlement les deux réalisations en question ici ; à cette
occasion, l'auteur s'est permis de présenter le remarquable travail de Bargmann en
insistant plus spécialement sur les propriétés fonctorielles des processus d'extension.
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Soient U une représentation projective d'un groupe topologique G dans un espace
de Hilbert quaternionien §, N0(e) un voisinage de l'identité dans G, et ux le choix
d'un membre de chaque famille Ux pour tout x dans N0(e). Si pour tout e positif, tout
vecteur/de § et tout x de N0fe), il existe un voisinage N(x) de x, contenu dans N0(e)

et tel que: IK / - Ai / Il < Ê

quel que soit y dans N(x) (c'est-à-dire si ux est fortement continue dans N0fe)), alors

ux est dit relèvement local de G. Notre premier but sera de montrer qu'il existe toujours
un voisinage de l'identité dans G dans lequel on peut construire un relèvement local.

Soit F un rayon quelconque de §. En vertu de la continuité de U, il existe un
voisinage Nfe) de l'identité e dans G, tel que

F • Ux F > 1 - s

quel que soit x dans N(e); la fonction réelle Rfx) F- UXF est donc continue au
voisinage de e et on a R fe) 1, car Ue II par définition; soit alors c un nombre
contenu dans l'intervalle ouvert (0,1); il est alors possible de trouver un voisinage
AT0(e) tel que Rfx) reste strictement supérieur à c. Choisisons alors un vecteur /
quelconque appartenant au rayon F et u'x un membre arbitraire de la famille Ux ; formons
rfx) (/, u'xf) ; Rfx) est la norme de rfx), de sorte que ux R(x)~x rfx) u'x appartient
encore à la famille Ux; on vérifie que ux satisfait à la condition (/, uxf) Rfx), car le

produit scalaire est pris, par définition, antilinéaire dans son second terme. Cette
condition détermine de manière unique le choix d'un membre ux de chaque famille Ux

pour tout x dans N0fe),f étant arbitraire, mais fixe. Montrons que ce choix constitue
un relèvement local de G. Soit H un rayon quelconque de § et formons les expressions
suivantes définies seulement lorsque x et y appartiennent à N0fe) (h est un vecteur qui
parcourt H, et ux est le choix effectué ci-dessus) :

DxJh) dfUx H, Uy H) sxJh) K h, uy h) zxJh) uyh- sxJh)* ux h

On vérifie immédiatement que le vecteur z yfh) est orthogonal à ux h, et en utilisant le
lemme 2.1, on obtient:

\\zxJh)^=l-\sxJh)\2<DxJh)2.
Montrons tout d'abord que ux est continu sur le vecteur/ utilisé pour le définir;
construisons pour cela:

(/. **,(/)) Rfy) - R(A sxJf)

qu'on peut récrire sous la forme:

1 - \y(f) aaa (*(*) - Rw) + m (/• x,(/))

d'où l'on tire, en utilisant pour le second terme l'inégalité de Schwartz :

I 1 - sxJf) | < -~{\ Rfx) - Rfy) | + j| zxJf) J[}.

En remplaçant sx (f) par sa définition, on vérifie que le premier membre de cette
inégalité majore

2
II «j, / - «X il ;
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d'autre part, si on remplace Rfx) par sa définition et si on fait usage de la propriété que
Il zx,yff) || est majoré par Dx ff), il apparaît que le second membre de l'inégalité ci-
dessus est majoré par 2 D (f)jRfx). Ainsi obtient-on:

\\UXJ-Uyf\< --Zy DxJf)

Or R(x) est limité inférieurement par c fixe et strictement positif; par conséquent:

Hf-uyf\\<4DxJf)lc.
En vertu de la continuité de la représentation projective U, pour tout e positif, il
existe un voisinage N(x) de x dans G tel que Dxyff) est inférieur à e quel que soit y dans

Nfx). On obtient ainsi:
hx/ -uyf\\ <e' =4 ejc

Ainsi est démontrée la continuité de ux sur /. On remarque que ux étant a priori co-
linéaire, on ne sait encore rien sur la continuité de l'automorphisme de Q associé à ux,
et par conséquent de la continuité de ux sur un membre/' appartenant à la famille F
de /; ceci viendra ensuite. Considérons d'abord un vecteur h norme et orthogonal af;
on montre par un procédé analogue à celui qui vient d'être utilisé pour montrer la
continuité de ux sur/ (usage de zXtVfh) et des identités et inégalités quiy sont attachées)

que ux est continu sur le vecteur h' 2-1'2 ff + h); h étant une combinaison linéaire à

coefficients réels de/et de h', on déduit la continuité de u,. sur h de celle sur/et sur h'.
Or h, étant orthogonal à /, l'est aussi à tout autre membre /' du rayon F auquel
appartient /; partant alors de la continuité de ux sur h, on peut montrer par le même
artifice que ci-dessus la continuité de ux surf ; tout vecteur de § pouvant être obtenu
comme combinaison linéaire finie, à coefficients réels, de tels vecteurs, on en déduit
immédiatement que ux est continu sur tout vecteur de §; ceci achève la
démonstration du

Lemme 3.1 : Soit U une représentation projective d'un groupe topologique G dans un
espace de Hilbert quaternionien; il existe alors toujours un voisinage N0fe) de l'identité
dans G pour lequel on peut construire un relèvement local de G fau sens défini au début de

cette section).

En vertu des propriétés de groupe, ce lemme peut être transporté de e sur un
élément x quelconque de G.

On se propose maintenant d'exploiter la continuité forte de ux pour montrer que
l'automorphisme Ax de Q, attaché à ux. est continu en x; considérons pour cela un
vecteur norme / quelconque dans § et un quaternion co de norme 1 ; formons f' cof
et calculons fux — uy)f ; cette expression est égale à :

(4M - XM) ux f a- Ay[co] K -Uy)f;
par conséquent :

(XM - XM) ux f=fux- uy) f - Ay[co] fux -uy)f.
En prenant la norme des deux membres, en faisant usage de l'inégalité de Minkowski
et en remarquant que | uxf\\ 1 et | A [co] j 1 on obtient:

14M -* XM 1 < Il K - **„) /' Il + il K - uy) t II •

48 H. P. A. 36, 6 (1963)
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Cette inégalité permet de déduire du lemme précédent le

Lemme 3.2: Si u est un relèvement local de G pour un voisinage N0fe) de l'identité
dans G, alors l'automorphisme Ax, attaché à chaque ux de ce relèvement, est continu en x
partout ou il est défini.

Soient u un relèvement local de G pour un voisinage N0fe) et p une fonction
continue, définie sur N0fe) et prenant ses valeurs dans l'ensemble Q des quaternions
de norme 1 ; alors u' p-u est encore un relèvement local de G pour N0fe) ; en effet,
pour tout vecteur norme/de §, on a:

il « - u'y) f || Il {Pfx) ux - pfy) ux + pfy) ux - pfy) uy} / |

qui est majoré par:
\Pfx)-pfy)\ + || («,-«,)/1 -

Or on sait que tout opérateur co-unitaire u peut s'écrire: u a> u°, où u° est un
opérateur unitaire et co un quaternion de norme 1 ; co engendre l'automorphisme de Q
attaché à u, c'est-à-dire que, pour tout quaternion q,

-iufqf) A[q]u f avec A [q] co q co

Appliquons cela au relèvement local ux du lemme 3.1 ; Ax étant continu dans N0(e) en
vertu du lemme 3.2, il est toujours possible de choisir cofx), parmi les deux possibilités
+ cofx) de telle sorte que cofx) soit une fonction continue de x dans N0fe); il en est
alors de même de cofx)-1. En utilisant alors la remarque précédente et après avoir posé

pfx) cofx)-1, on obtient que u\ est fortement continue; par conséquent, le lemme 3.1

peut être renforcé et énoncé sous la forme suivante :

Théorème 3.1 : Soit U une représentationprojective d'un groupe topologique G dans un
espace de Hilbert quaternionien; il est alors toujours possible de trouver un voisinage
Na(e) de l'identité dans G pour lequel on peut construire un relèvement local linéaire de G.

Lorsque Nfe) est un voisinage de l'identité dans G, on notera par Nfe)2 l'ensemble
des éléments de G obtenus comme produits de deux éléments de Nfe). Soient alors u
un relèvement local de G pour un voisinage N0fe), U la représentation projective
correspondante, et Nfe) un voisinage de l'identité dans G tel que Nfe)2 soit contenu
dans N0fe) ; alors, pour tout couple fx, y) d'éléments de Nfe), ux, u et uxy sont définis;
U étant une représentation projective, on a: UxUy [7 ; par conséquent, il existe
nécessairement un quaternion de norme 1, noté cofx,y) tel que:

uxuy cofx,y) uxy;

cette fonction co est dite facteur local du relèvement local considéré.
On vérifie aisément que tout facteur local jouit des propriétés suivantes, si on

pose ue /, ce qui est toujours possible:

(i) cofx, e) cofe, x) 1 pour tout x dans N0fe)

(ii) si x, y et z sont tels qu'avec eux xy, y z et xy z appartiennent encore à N0(e), alors:
cofx, y) co fxy, z) Ax[cofy, z)] co fx, y z)

(iii) cofx, y) est une fonction continue de chacun de ses arguments.
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Si de plus u est le relèvement local linéaire dont l'existence est assurée par le
théorème 3.1, ux, uy et uxy ne peuvent être simultanément linéaires que si cofx, y)
commute avec tout quaternion q de Q; ceci signifie que cofx,y) doit être réel. Par
construction, cofx, y) doit être de norme 1, de sorte que cofx, y) ne peut être que + 1.

Les propriétés (i) à (iii) ci-dessus devant enfin être satisfaites, le cas — 1 est éliminé et
il reste ux uy uxy, ce qu'on exprime par le

Théorème 3.2: De toute représentation projective U d'un groupe topologique G

quelconque dans un espace de Hilbert quaternionien, on peut toujours extraire, pour un
certain voisinage de l'identité dans G, une représentation unitaire fortement continue.

Ce théorème est spécifique de la réalisation quaternionienne de la mécanique
quantique ; il est faux dans sa réalisation complexe et Bargmann 13) en exhibe des

contre-exemples importants parmi lesquels le physicien ne manquera pas de remarquer
le groupe de Galilée (groupe des transformations non-relativistes dans l'espace-
temps). On peut chercher une raison plus profonde à cette circonstance inattendue.
A cet effet, il convient d'essayer de traiter parallèlement les deux réalisations en question

et de voir en quoi elles diffèrent si essentiellement ; reprenons pour cela la méthode
de Bargmann à l'endroit où nous l'avons laissée. On a vu que de toute représentation
projective on peut toujours extraire un relèvement local et que ce relèvement n'est
pas unique; en fait, toute représentation projective détermine une classe d'équivalence
de relèvements locaux: deux relèvements locaux sont dits équivalents si, dans le

voisinage commun où ils sont définis, ils ne diffèrent que par une fonction continue
définie sur ce voisinage et prenant ses valeurs dans Q. On a déjà noté que tout relèvement

local détermine un facteur local; deux facteurs locaux co et co' sont dits
équivalents s'ils proviennent de relèvements locaux u et u' équivalents, ce qui a pour
conséquence que, partout où chacun de ses termes est défini, la relation suivante est
valable :

co fx, y) pfx) A'x[pfy)] cofx, y) p fx y)*

pfx) étant la fonction liant u'x à ux. Ainsi, toute représentation projective détermine
une classe d'équivalence de facteurs locaux. Bargmann considère alors le groupe H"
(qu'il appelle groupe local attaché au relèvement local u) constitué par l'ensemble des

couples fco, x) d'éléments appartenant respectivement aß et à N0fe), muni:

- d'une structure d'espace topologique: c'est le produit direct des espaces topolo¬
giques Q et N0(e), voisinage de l'identité dans G pour lequel est défini le relèvement
local considéré ;

- d'une structure de groupe (local) donnée par la loi de composition :

fcox, xx) (co2, x2) ¦¦ (cox A^[co2] a>(xx, x2), xx x2)

issue de l'égalité:
w, uXi co2 uH cox AuXi[oj2] co(xx, x2) uXA

Possédant simultanément ces deux structures, H" est un groupe de Lie local si Q et G

sont des groupes de Lie ; Ü est respectivement S [7(2, C) et S1 dans les réalisations
quaternionienne et complexe; pour cette dernière une formule analogue à celle que
nous venons de donner peut être trouvée dans l'article de Bargmann déjà cité; Barg-
mann travaille avec des exposants locaux à la place de nos facteurs locaux, mais cela
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est une différence sans importance; on remarquera enfin que le théorème 3.2 obtenu
ci-dessus ne faisait pas usage de l'hypothèse que G soit un groupe de Lie. Le fait,
affirmé plus haut, que H" soit un groupe de Lie local découle directement de la solution
du cinquième problème de Hilbert, qu'on trouve exposée par exemple p. 184 du
livre de Montgomery et Zippin 16). H" devient ainsi une extension locale de G par Q
et deux groupes locaux H" et H" attachés à des relèvements locaux équivalents
constituent des extensions locales équivalentes de G par Q. (Pour les notions
d'extension et d'extensions équivalentes, définies pour tout espèce d'objets et en

particulier pour les groupes et algèbres de Lie, voir le livre de Cartan et Eilen-
berg17).) Ainsi, chaque représentation projective détermine une classe
d'équivalence d'extensions locales de G par Ü. La recherche de toutes les classes
d'équivalences des extensions de l'algèbre de Lie g de G par l'algèbre de Lie s de Q
permet de résoudre le problème consistant à trouver toutes les classes d'équivalence
d'extensions locales de G par û; ce passage se fait aisément au moyen des théorèmes
généraux sur les groupes de Lie locaux et leur algèbre de Lie (voir par exemple les

chapitres VI et IX de Pontrjagin10)). A ce point intervient le fait suivant, qu'on
obtient comme conséquence directe du corollaire 1 page 72 de Bourbaki18) : toute
extension d'une algèbre de Lie par une algèbre de Lie semi-simple est triviale. En
remontant la chaîne des relations fonctorielles décrite ci-dessus, il résulte de ceci qu'il
n'y a qu'une seule classe d'équivalence de facteurs locaux de G si l'algèbre de Lie s de
Q est semi-simple ; cette classe ne peut évidemment qu'être celle des facteurs locaux
équivalents au facteur local trivial co fx, y) 1. C'est cette circonstance qui permet de

mettre en évidence la différence essentielle entre les réalisations quaternionienne et
complexe: l'algèbre de Lie du groupe SU(2, C) des quaternions de norme 1 est simple,
donc a fortiori semi-simple, ce qui n'est pas le cas de l'algèbre de Lie du groupe S1 des

nombres complexes de module 1 (ce groupe est abélien L'exposé ci-dessus correspond
à la méthode de Bargmann (bien que dans un langage peut-être un peu différent) et

on montre aisément, à partir du formalisme exposé ici, certains résultats de Barg-
mann; par exemple, en faisant usage du corollaire 3 que Bourbaki18) donne au
théorème de Lévi-Malcev (à savoir: si g est une algèbre de Lie semi-simple, alors
toute extension deg est inessentielle), on déduit immédiatement qu'il n'existe qu'une
seule classe de facteurs locaux pour tout groupe de Lie G admettant une algèbre de

Lie semi-simple ; cette classe ne peut être que celle des facteurs locaux équivalents au
facteur local trivial. C'est le théorème 7.1 de Bargmann.

b) Relèvements globaux

La question qui se pose maintenant de manière naturelle est de savoir dans quelle
mesure il est possible d'étendre au groupe tout entier les résultats obtenus jusqu'ici.
C'est ce problème qui sera traité dans ce paragraphe. La réponse pour les groupes
simplements connexes est fournie par le théorème 3.3; le lemme 3.3 permet de passer
de ce théorème au théorème 3.4 qui donne la solution pour les groupes doublement
connexes.

Soit U une représentation projective d'un groupe topologique G; on appelle
relèvement global de G un relèvement (au sens du paragraphe précédent) défini dans G

entier ; un relèvement global qui satisfait à la relation ux uy ux pour tout x et y de G
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est dit représentation fortement continue de G dans l'espace de Hilbert considéré. Le
but à atteindre maintenant est de savoir quand et comment on peut extraire d'une
représentation projective donnée un relèvement global. Le premier pas vers la solution
est le théorème suivant :

Théorème 3.3: Soit G un groupe topologique simplement connexe; alors de toute

représentation projective U de G dans un espace de Hilbert quaternionien §, on peut
extraire un relèvement global linéaire u de G; de plus, u est une représentation unitaire
fortement continue de G dans §.

Ce théorème s'obtient comme conséquence du théorème 3.2 ci-dessus et du théorème

15 de Pontrjagin 10) : G étant connexe, tout élément x de G peut s'écrire comme
produit d'un nombre fini d'éléments appartenant à un voisinage Nfe) arbitraire de

l'identité dans G. Prenons alors pour Nfe) le voisinage N0fe) dans lequel est définie la
représentation locale, unitaire et fortement continue du théorème 3.2; formons
alors pour tout x de G :

», flUH
»-i

où tous les xi appartiennent à N0(e) (de sorte que chacun des ux. soit défini) et sont
tels qu'ils constituent une décomposition de x :

n

X JJXi
i-1

Les ux. appartenant à une représentation unitaire locale de G, et G étant simplement

connexe, les ux sont définis de manière unique et forment ainsi une représentation
unitaire, fortement continue de G entier. Ceci achève l'esquisse de la démonstration du
théorème 3.3; la démonstration peut être transposée sans difficultés au cas
quaternionien à partir de celle que Bargmann a donnée pour le cas complexe (13) section 3b) ;

la seule différence significative est que Bargmann doit considérer comme un cas particulier

le résultat du théorème 3.2 qui n'est pas vrai en général dans les complexes,
ainsi qu'on l'a vu au cours du paragraphe précédent.

Considérons maintenant le cas où G est un groupe topologique connexe ; s'il satisfait

de plus à certaines conditions (voir Pontrjagin10), paragraphe 47A) qui sont
très généralement vérifiées pour les groupes de la physique, et en particulier pour tout
groupe de Lie connexe, il existe un groupe topologique G*, simplement connexe,
localement isomorphe à G, et tel que G soit isomorphe au groupe quotient de G* par un
de ses sous-groupes invariants et discrets, noté D. On désignera par h l'homomorphisme
naturel de G* sur G qui, à tout élément x* de G*, fait correspondre l'élément x de G,

défini comme le complexe associé de D contenant x*. Montrons alors le lemme
suivant :

Lemme 3.3: La condition nécessaire et suffisante pour qu'une représentation
projective U* de G* soit aussi une représentation projective de G est que U* II pour tout
élément d de D, où II est la transformation identique dans l'espace des rayons.

Soit U une représentation projective de G ; désignons par x un élément qui parcourt
G; pour tout élément x* de G*, définissons U*, Uh{xt); h étant un homomorphisme,
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U* est une représentation projective de G* ; de plus, comme h(d) e, identité de G,

on a pour tout d dans D : U* Ue IL Réciproquement, soit [7* une représentation
projective de G* telle que U* II pour tout d de 73; pour tout * de G, désignons par
h~xfx) l'ensemble des éléments x* de G* tels que h(x*) x; si %* et y* sont deux
éléments de G* appartenant au même complexe associé de D, c'est-à-dire s'il existe

un élément d de D tel que y* d x*, alors:

U*. U*x y

car U* II par hypothèse; pour tout x dans G définissons alors:

qui a un sens en vertu de la remarque précédente; cT. est une représentation projective
de G, ce qui achève la démonstration du lemme.

Soient U* une représentation projective de G* et u* la représentation unitaire
fortement continue dont l'existence est affirmée par le théorème 3.3, puisque G* est,

par définition, simplement connexe; la condition U* II implique que u* cofd) I
où cofd) est un quaternion de norme 1 et où I est la transformation identique dans
l'espace des vecteurs; or «* est linéaire, donc cofd) ne peut être que +1 ou — 1.

Considérons maintenant le cas particulier où G est doublement connexe; son

groupe fondamental est alors Z2 et 7) est isomorphe à Z2 ; désignons par e et — e les

éléments de Z2, e étant simultanément l'identité de G. On peut toujours choisir u de

telle sorte que ue I; il ne reste donc que deux possibilités: (of—e) 1 et ojf—e)
— 1. Dans le premier cas, si x* et y* sont tels que h(x*) hfy*), alors on a nécessairement:

car u* I ; on peut définir pour tout x de G :

«, Uh-H*)

qui est une représentation unitaire fortement continue de G. En revanche, dans le
deuxième cas, à savoir co(—e) — 1, le procédé ci-dessus ne définit ux qu'à un signe
près ; ainsi, à tout élément x de G correspondent deux opérateurs ux et — ux ; on dira
dans ce cas que u est une représentation unitaire, fortement continue, bivaluée de G.

On obtient ainsi le théorème :

Théorème 3.4: Soit G un groupe topologique doublement connexe; alors de toute

représentation projective U de G dans un espace de Hilbert quaternionien 9), on peut
extraire un relèvement global udeG qui soit linéaire ; deux cas distincts, et seulement deux,

peuvent alors se présenter: ou bien u est une représentation unitaire, fortement continue de

G dans $), ou bien u est une représentation unitaire, bivaluée, fortement continue de G

dans §.

Les theorems 3.3 et 3.4, établis dans cette section, suffiront à la poursuite de

l'étude entreprise ici; ils permettent de ramener le problème de la détermination de

tous les systèmes élémentaires, par rapport aux groupes de symétrie envisagés (voir
section suivante, ainsi que II), à celui de la détermination des représentations
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unitaires, irréductibles fortement continues de ces groupes (ou, s'il y a lieu, de leur
revêtement universel) dans l'espace de Hilbert quaternionien dont les projecteurs
réalisent les propositions sur le système physique étudié.

4. Théorie des Représentations

Les groupes étudiés dans cette section seront supposés connexes, simplement ou au
plus doublement connexes; on pourra donc toujours extraire de chacune de leurs
représentations projectives un relèvement global linéaire, ceci en vertu des théorèmes
3.3 et 3.4 de la section précédente. L'hypothèse de connexité aura de plus comme
conséquence que les descriptions irréductibles se feront toujours dans des systèmes
de propositions cohérents L (théorème 1.4) ; ainsi chaque L sera réalisé par les

projecteurs d'un seul espace de Hilbert quaternionien (voir section 2c). La condition
d'irréductibilité d'une description (L, U) s'exprimera alors comme la condition
habituelle d'irréductibilité d'une représentation ordinaire: si u est le relèvement global

linéaire extrait de U, (L, U) sera irréductible si et seulement si: uxaux1 a pour
tout x de G entraîne a 0 ou I. Néanmoins, des différences apparaissent dès le début
entre les réalisations quaternionienne et complexe ; en particulier, le lemme de Schur
et son corollaire doivent être reformulés séparément pour le cas quaternionien :

a) Lemme de Schur

Enoncé: Soient §(1) et §(2) des espaces de Hilbert quaternioniens de dimensions

quelconques (voire infinies), G un groupe, w(1) et u{2) des représentations unitaires de G

dans §(1) et §(2) respectivement, et enfin t une application co-linéaire et bornée de §(1)

<7a«s§(2) telle que t ux{1) uxi2) t pour tout x de G. Alors si u{1) et u{2) sont irréductibles,
t ne peut être que nulle ou bijective.

Sous les conditions énoncées ici, la démonstration du lemme de Schur peut être
faite de manière analogue à celle qui est présentée habituellement dans le cas
complexe, aussi ne sera-t-elle pas reproduite ici. On sait que la condition que um et w(2)

soient des représentations d'un groupe n'est pas essentielle et peut être considérablement

affaiblie; la formulation ci-dessus a été choisie parce que c'est elle qui sera
utilisée dans la suite.

Corollaire au lemme de Schur: Soit u une représentation unitaire irréductible d'un
groupe G dans un espace de Hilbert quaternionien §; alors tout opérateur t, linéaire
et borné de § tel que uxt t ux pour tout x de G est nécessairement de la forme : t

rlA-sf,oùrets sont des nombres réels, I l'identité dans § et Jun opérateur unitaire
anti-hermitien de §.

Dans le cas où t est de plus hermitien, on sait2)3) qu'il existe une famille spectrale
ar, étalée sur la droite réelle, et dont tous les membres commutent avec chaque
opérateur commutant avec <; on a de plus :

t r dar.

Ainsi les ar, qui sont des projecteurs, commutent avec chacun des ux; or u est
irréductible par hypothèse; par conséquent, les ar ne peuvent prendre que les valeurs 0
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ou I ; comme ils forment une suite monotone croissante, t est un multiple réel de
l'identité. Ramenons le cas général à ce cas particulier. Soit t* l'adjoint de t; construisons

alors les deux opérateurs

(t+t*) (t-t*)Â -2— et 7--y-.
Ces deux opérateurs sont linéaires et bornés, le premier étant hermitien, le second
anti-hermitien ; de plus, ils commutent tous deux avec chacun des ux. En vertu de la
remarque précédente, h r I; il reste donc à déterminer la forme dey. L'argumentation

développée jusqu'ici ne diffère pas essentiellement de celle qu'on pratique
habituellement dans le cas complexe. Toutefois, arrivé à ce point, on ne peut plus
procéder parallèlement dans les réalisations complexe et quaternionienne. En effet,
dans le cas complexe, il suffit de poser g — ij où i est l'unité imaginaire des nombres
complexes; g est alors hermitien et on peut lui appliquer le même raisonnement qu'à
h; on obtient ainsi directement j s il où s est un nombre réel, d'où t — c I, c étant
alors un nombre complexe quelconque; en revanche, ce procédé n'est pas applicable
dans le cas quaternionien, car (—ij) n'est pas linéaire, mais co-linéaire; le problème
est donc de voir si l'on peut construire un opérateur linéaire qui puisse, dans le cas
quaternionien, jouer le rôle de l'opérateur (i I) qui apparaît dans le cas complexe. Cette
construction va occuper la fin de ce paragraphe. On a remarqué que y est un opérateur
linéaire borné qui commute avec chacun des ux ; en vertu du lemme de Schur, ou bien

j 0, ou bien j'1 existe ; la première possibilité ne nous intéresse pas : elle signifie en
effet que t est hermitien et ce cas est déjà traité. On peut donc supposer, sans
restreindre la généralité, que_/'_1 existe; par conséquent, si/est un vecteur quelconque
de£>:jf= 0 entraîne/= 0, et de même: j*f 0 entraîne/= 0; d'où j* jf 0 entraîne
à son tour/ 0. Vniinj* j est un opérateur positif ; en effet, par définition de l'adjoint :

(j* jf,f) fjf, j f) qui est positif; en vertu de ce qui précède fjf, jf) 0 ne peut être
réalisé que pour/= 0. Récapitulons: on a construit un opérateur j* j linéaire, borné,
hermitien et strictement positif. On peut alors appliquer à cet opérateur le théorème
suivant, dont on peut trouver la preuve p. 262-263 du livre de Riesz et Nagy12),
et dont la démonstration s'applique mot pour mot au cas où l'espace complexe de
Riesz et Nagy est remplacé par un espace quaternionien: «Chaque transformation A,
linéaire, hermitienne, bornée et positive admet une racine carrée linéaire, hermitienne,
bornée et positive, et une seule, qui sera désignée par B A112; celle-ci peut être
représentée comme limite au sens fort d'une suite de polynômes à coefficients réels,
de A et est, par conséquent, commutable avec toutes les transformations qui commutent

avec ^4». Posons donc B fj*j)112; j* j étant bijective, il en est de même de B
qui admet donc une inverse. Posons donc / j B-1, c'est-à-dire y / B. En vertu du
théorème de Riesz et Nagy cité ci-dessus, B commute avec toute transformation qui
commute avec j* j ; par conséquent B commute avec j* j elle-même ; commet est anti-
hermitienne, j commute avec j* j et donc aussi avec B. En combinant toutes ces

indications, on déduit aisément que J2 — I et J* —J, c'est-à-dire que J est une
transformation unitaire et anti-hermitienne. Enfin, B est hermitienne et commute
avec chacun des ux; par conséquent, B est un multiple réel de l'identité; il en résulte

que j est un multiple réel de J, ce qui achève la démonstration du corollaire au lemme
de Schur. On peut même ajouter que la décomposition t r I A- s J ainsi obtenue
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est unique, en vertu de l'unicité de B affirmée par le théorème de Riesz et Nagy cité
ci-dessus.

La forme de ce corollaire semble très différente de celle qu'il prend dans le cas

complexe. Toutefois, un opérateur tel que / jouit de propriétés tout à fait
remarquables, aussi le paragraphe suivant sera-t-il consacré à cette classe d'opérateurs.

c) Les opérateurs unitaires et anti-hermitiens

On désignera par / de tels opérateurs qui satisfont donc aux deux conditions
suivantes :

JJ*=J*J=I, /* -/,
étant entendu que ces opérateurs sont linéaires ; on a alors J2 — I.

Montrons tout d'abord que si J admet une valeur propre, celle-ci est nécessairement

un quaternion imaginaire de norme 1. Considérons à cet effet l'équation aux
valeurs propres // qf où / est un vecteur non nul de l'espace de Hilbert
quaternionien § considéré ; on a alors d'une part :

?(/./) fqf.f) (//,/) -(/,//) -(/,?/) -(/./) q*

d'où q —q* car (/, /) est réel non nul ; d'autre part

/ -/2x-/x =-<?// =-?2/
d'où q2 — 1. Ainsi q* — — q et q2 — 1, ce qui prouve notre assertion.

Montrons ensuite que tout quaternion imaginaire i, de norme 1, est valeur propre
de J; formons l'opérateur Tf'1'* égal à (7 — i J)j2; soit/un vecteur non nul de § qui
ne soit pas vecteur propre de J pour la valeur (— i) ; un tel vecteur existe toujours,
sans quoi J serait égal à (— i I) ce qui est impossible car / est supposé linéaire.
Appliquons alors l'opérateur 7C(i) à un tel vecteur; on a:

/ Ä»/ - / (7 -i/)/« \ (/ + »¦/)/ i KVf,
donc KM fest vecteur propre de J pour la valeur propre i choisie, ce qui prouve notre
seconde assertion.

Désignons maintenant par C(,) l'ensemble des quaternions qui commutent avec
un quaternion imaginaire i, de norme 1, choisi arbitrairement, mais fixe:

C(i) {q 6 Q | q i i q).

On notera par §£' l'ensemble des vecteurs propres de J pour cette valeur propre i:

$$={fe$\Jf if}.
On vérifie alors aisément que C(i), muni de la structure de corps induite naturellement

par celle de Q, est isomorphe au corps des nombres complexes, le rôle de l'unité
imaginaire de celui-ci étant joué par le quaternion i choisi; de même, il est immédiat
que §Z muni de la structure d'espace vectoriel induite naturellement par celle de §,
est un espace vectoriel sur C(,). De plus, si/et g sont des éléments de §£', alors (/, g),
produit scalaire dans § des vecteurs / et g, est un élément de C(i) ; en effet, on a

iff, g) fif, g) (//. g) X/. /g) -(A ig) (A g) *"•
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Enfin, si {/„} est une suite d'éléments de §£' telle que ||/„ —/„J tende vers zéro

lorsque n et m tendent vers l'infini, il existe un élément /* de § tel que Jj /„ — /* jj

tende vers zéro pour n tendant vers l'infini, car § est complet ; /* appartient encore à

§<•» ; en effet, „ „il//* -//„11 !,/* -/.I
car J est unitiare; donc Jf* est la limite de {//„}, c'est-à-dire la limite de {//„}; par
conséquent //* est égal à if*. Ainsi $£' est complet par rapport à sa norme.

Tous les éléments sont alors réunis pour qu'on puisse affirmer que la structure
d'espace de Hilbert quaternionien de § induit naturellement sur §£> une structure
d'espace de Hilbert complexe dont le corps de base est Cl'\

On remarque enfin que les vecteurs de <?)£' forment un système complet dans § ;

considérons un vecteur/de §, quelconque, et un quaternion imaginaire y, de norme 1,

anticommutant avec i; formons les vecteurs

/± |(X»7)/ et /; -//_;
/+ et f'+ appartiennent alors à §£"> et on a

f f+ + if'+;
ainsi tout vecteur de § peut s'écrire comme combinaison linéaire, à coefficients dans Q,
de deux vecteurs de 9y(G], ce qui suffit à prouver que §£> est complet dans §.

Résumons ces résultats sous forme d'un théorème :

Théorème 4.1: Chaque opérateur f, unitaire et antihermitien, défini sur un espace de

Hilbert quaternionien §, permet d'extraire de §> une famille d'espaces de Hilbert
complexes ; chaque membre §£' de cette famille est constitué par l'ensemble des vecteurs

propres de J correspondant à une même valeur propre i, les valeurs propres de J
parcourant l'ensemble des quaternions imaginaires de norme 1.

On remarquera que ce théorème indique un processus pour extraire un espace de

Hilbert complexe de l'espace de Hilbert quaternionien ; on verra dans la suite que
ce processus suffit dans bien des cas (voir par exemple le théorème 4.2) pour obtenir
des renseignements très complets sur ce qui se passe dans l'espace quaternionien tout
entier ; on notera aussi que cette manière de faire diffère de celle qui est suggérée par
Finkelstein et alA) sous le nom de représentation symplectique ; physiquement, il est

particulièrement important que l'extraction dont il est question ici ne double pas le

nombre de dimensions de l'espace dans lequel on travaille, ce qui est au contraire le

cas pour la représentation symplectique.
Dans la suite de cette étude, on aura besoin du résultat suivant que nous allons

rapidement établir:

Lemme 4.1 : Soient f et /' deux opérateurs unitaires et antihermitiens, définis dans le

même espace de Hilbert quaternionien §. Si J et J' commutent, il existe une partition
de § en deux sous-espaces orthogonaux tels que f et f soient égaux dans le premier et

opposés par le signe dans le second.

Construisons les opérateurs :

K J J' et K±=\(I + K);
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ceux-ci jouissent des propriétés suivantes:

(i) K est un opérateur unitaire, hermitien et donc involutif,
(ii) K± sont des projecteurs orthogonaux et supplémentaires,
fiii)J'K±=±JK±.
On vérifie alors aisément que les sous-espaces dont parle le lemme sont obtenus comme
les buts respectifs des projecteurs K+ et K^. On notera enfin que, si / est vecteur
propre de / (ou de ]'), il en est de même pour K±f, et ceci avec la même valeur propre
(à moins bien entendu que K±f soit nul).

D'une manière générale, si t est une transformation linéaire qui commute avec J,
alors t applique chaque §£' sur lui-même ; on peut donc considérer la restriction /;(i) de t
à §Z Réciproquement, si t{i) est une transformation linéaire de §Z on peut définir un
prolongement linéaire (unique) t de V-l) dans § par les conditions :

(i) t est linéaire,
(ii) tf= «m/pour tout/de §«.

On remarque que t{'l est la restriction à $<£) de son prolongement t dans §. Par
exemple, i I est la restriction à $$) dejetj est le prolongement linéaire dans § de la
transformation i I définie dans §$.

Les propriétés suivantes se déduisent alors sans peine des définitions ci-dessus:

a) Soit t une transformation linéaire qui commute avec J ; si t est unitaire, ou her¬

mitienne ou si c'est un projecteur, il en est de même de chacune de ses restrictions
b) Si t et t' sont deux transformations linéaires qui commutent entre elles et avec le

même /, alors leurs restrictions t{i) et t'{i) commutent dans l'espace §{? dans lequel
elles sont toutes deux définies.

c) Si {tn} est une suite de transformations linéaires qui commutent avec J et tendent
fortement vers une limite t, alors fà s lim fjj>.

Ces propriétés ont pour conséquence le

Théorème: 4.2: Soit u une représentation unitaire fortement continue d'un groupe
topologique G dans un espace de Hilbert quaternionien 9>, telle que chacun des ux
commute avec un même J. Alors:

(i) l'ensemble des Al} pour un même i forme une représentation unitaire fortement
continue «<¦> de G dans l'espace de Hilbert complexe §£',

(ii) si u est irréductible, w(i) l'est aussi fquel que soit i),
(iii) si w<!'> est une représentation irréductible de classe A- 1 ou 0 selon Frobenius et

Schur, u est aussi irréductible.

Va première partie se déduit immédiatement des propriétés dont l'énoncé précède
le théorème.

La seconde partie se démontre de la manière suivante: soit a(i) un projecteur de

§£' qui commute avec chacun des «<?> ; le prolongement linéaire a de a('> est alors un
projecteur de § qui commute avec chacun des ux; comme u est irréductible, a ne peut
être que 0 ou 7 et il en est donc de même de sa restriction a(i). Par conséquent, «(!') est
irréductible.
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La démonstration de la troisième partie est un peu plus délicate : Supposons qu'il
existe un projecteur a de § qui commute avec chacun des ux; le commutateur [a, J],
de a et /, jouit des propriétés suivantes

1) il est hermitien, car a et J sont linéaires et respectivement hermitien et anti-
hermitien ;

2) il commute avec chacun des ux, car il en est ainsi de a et J séparément ;

3) il anticommute avec /;
Cette troisième propriété entraîne que [a, J] applique linéairement §^J sur §£rs) ;

considérons alors l'opérateur co-linéaire k I défini sur §, où k est un quaternion
imaginaire, de norme 1, et qui anticommute avec i; cet opérateur applique antilinéai-
rement <r>M sur 9>{rl) ; il permet de définir une transformation de §>, A k[a, J], qui
applique antilinéairement §£' sur lui-même et qui commute avec chacun des ux; la
restriction A*-') de A à <r)£' commute alors évidemment avec chacun des uA. Soit K
une conjugaison de §Z c'est-à-dire une transformation antiunitaire et involutive de

§<Z désignons par ù(i) la représentation conjuguée de u{i\ définie par:

pour tout x de G ; considérons enfin l'opérateur

£<>•) AW K

qui est alors une transformation linéaire de §JJ' qui de plus satisfait à la condition :

4) B® Ùf uf B<<> pour tout x de G.

Trois cas, et ceux-là seulement, peuvent alors se présenter, correspondant à la
classification de Schur et Frobentus (pour un exposé de cette classification, voir par
exemple Wigner8), page 285) :

ou bien: m<!'> est équivalente à ù(e> et u(V) est dite de classe + /, si la transformation
unitaire d'équivalence C, définie par «W — ç-i UM ç pour tout x de G, satisfait

à la relation C K C K + I;
ou bien : u(i) est équivalente à m(" et u(i) est dite de classe — 1, si C KC K —I;
ou bien : «W est inéquivalente à ÙA1 et w('> est dite de classe 0.

Supposons tout d'abord que M(i) soit de classe 0: ùA est inéquivalente à u(i) et par
conséquent 7?(!) doit être nulle; comme K est antiunitaire, A{l> doit aussi être nulle;
enfin §£' étant complet dans § A est aussi nulle ; or A ne diffère de [a, /] que par
l'opérateur k I on k est un quaternion non nul; par conséquent [a, J] est nul. La
restriction a(,) de a à §£' est alors un projecteur de $£>; a commutant par hypothèse
avec chacun des ux, a(l) commute avec chacun des «X or ux{) est irréductible, d'où
a{t) ne peut être que 0(,) ou 7(l) dont les prolongements dans § sont respectivement O

ou 7; w est donc irréductible.
Supposons maintenant que M(t) est de classe A-1 ou — 1 : on a donc w £' C-1 «<?' C ;

or B{l) satisfait à la relation 4) ci-dessus ; en comparant ces deux égalités et en faisant
usage du corollaire du lemme de Schur (dans sa réalisation complexe!) on trouve que
7?(,) doit être un multiple de C : B{l) c C où c est élément de C(i), corps de base de
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§Z En remplaçant B[i) par cette valeur dans A{i), on obtient fA^)2 rfcc c* I, selon

que A'ï est de classe + 1. En reprenant la définition de A et en remarquant que k est
un quaternion imaginaire de norme 1, on obtient ^42 — [a, J]2. Or on se souvient que
[a, J] est un opérateur linéaire hermitien; par conséquent, A2 est un opérateur
négatif défini, ce qui n'est compatible avec la forme ci-dessus que si u{i) est de classe
— 1. Par conséquent, si ww est de classe +1, A doit être nulle; en appliquant le
raisonnement fait plus haut dans le cas où u^] était de classe 0, on obtient de même que
si u{l) est de classe +1, u doit être irréductible. La démonstration de la troisième
partie de notre théorème est donc achevée.

Dans le cas où u{l) est une représentation par des matrices dans un espace de

dimension finie, Finkelstein et alA) trouvent aussi ce résultat, bien que dans une
formulation un peu différente. Ils affirment même qu'il suffit que u(ï) soit de classe
— 1 pour que u soit réductible. N'ayant pas besoin de cela dans la suite, on n'alourdira
pas plus cet exposé par l'étude de cette circonstance.

c) Les représentations des groupes abêliens

Ces représentations seront étudiées dans ce paragraphe dans le but de formuler
l'équivalent quaternionien du théorème de Stone-Neumark-Ambrose-Godement
auquel on se référera dans la suite en le désignant par le sigle: SNAG.

Montrons tout d'abord que toute représentation unitaire et irréductible u d'un
groupe abélien G est nécessairement de dimension 1. G étant abélien, chacun des ux
commute avec tous les autres et peut donc s'écrire sous la forme ux rfx) I + sfx) Jfx),
en vertu du corollaire du lemme de Schur démontré plus haut; les Jfx) ainsi obtenus
commutent encore tous entre eux; de sorte que les opérateurs Kfx,y) — Jfx) Jfy)
sont tous hermitiens et commutent de plus avec chacun des ux; en appliquant à

nouveau le corollaire au lemme de Schur dans le cas particulier où l'opérateur
considéré est hermitien, on déduit que Kfx, y) efx, y) I où sfx, y) est réel; tous les Jfx)
sont donc des multiples réels de l'un d'eux ; on peut par conséquent écrire :

ux rfx) I + sfx) J.

On a vu que J possède nécessairement au moins un vecteur propre; il existe donc

toujours dans l'espace de représentation de u au moins un sous-espace de dimension 1

qui est laissé invariant par / et donc par u elle-même. Or u est irréductible par
hypothèse; 9) se réduit donc à ce sous-espace invariant de dimension 1, ce qui prouve notre
assertion: toute représentation unitaire et irréductible u d'un groupe abélien G est
nécessairement de dimension 1. Les ux étant unitaires, on a

rfx)2 + s(x)2 1

et on peut donc poser rfx) coso (a;) et sfx) sinö(^) ; remarquant encore que / est
borné et de carré égal à — 7 on écrira ux sous la forme

notation symbolique définie par son développement habituel en série infinie.
On vérifie alors aisément que u étant une représentation unitaire fortement

continue de G, la fonction 8 définie ci-dessus est un caractère sur G, c'est-à-dire, suivant
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Pontrjagin10), un homomorphisme de G sur le groupe quotient S1 de la droite réelle
7? par un groupe 7Y isomorphe à celui des nombres entiers. L'ensemble des caractères
sur un groupe abélien G forme un groupe, noté F et dit groupe des caractères de G; si G

est localement compact, F, muni de sa structure topologique canonique (voir Pontrjagin,

§ 30) est aussi localement compact.
En particulier, si G 7?, tout caractère sur G est de la forme

8(x) p x (mod 2 n)

où p est un nombre réel quelconque ; si G est le groupe des translations dans l'espace-
temps de Minkowski, le théorème 36 de Pontrjagin sur les caractères d'un produit
direct de groupes abéliens permet d'affirmer que tout caractère sur G est de la forme:

Bfx) p • x (mod 2 n)

fp et x étant des quadrivecteurs dans l'espace de Minkowski, leur produit scalaire

p-x est donné par: gflvp1'xv, où gßv est la métrique dans cet espace).
Dans le cas quaternionien, auquel nous nous intéressons ici, il existe une correspondance

bijective entre l'ensemble des caractères sur G et l'ensemble des classes
d'équivalence des représentations irréductibles de G. En effet, d'une part, deux représentations

irréductibles équivalentes ont même caractère, et ne diffèrent que par leur /,
et d'autre part, deux représentations irréductibles, qui ont même caractère et ne
diffèrent que par leur /, sont équivalentes.

Ainsi le problème de la recherche de toutes les classes d'équivalence de représentations

irréductibles quaternioniennes de G peut être ramené à celui de la détermination
des caractères sur G.

Etablissons maintenant le lemme suivant :

Lemme 4.2 : Soient G un groupe abélien et u une représentation unitaire de G dans un
espace de Hilbert quaternionien § ; il existe alors au moins une transformation f de §,
unitaire et antihermitienne, qui commute avec chacun des ux.

On remarque d'emblée que ce lemme n'a rien à voir avec les propriétés topologiques
de G : G est muni seulement d'une structure de groupe abélien abstrait, et u est un
homomorphisme (au sens de la théorie des groupes abstraits de G dans l'ensemble des

transformations unitaires de §>.

A moins que u soit triviale dans §, il existe au moins un élément x0 de G tel que
u2a soit différent de l'identité 7 dans ir>; soit alors N0 le sous-espace (proprement
contenu dans 9>) formé des éléments/de § tels que u\J /:

A>o {/e§|</ /}.

Soit M0 le complément orthogonal de N0 dans 5). Cette décomposition de § en somme
directe de M0 et N0 réduit u; en effet, soit /un élément de N0; formons pour x
quelconque dans G :

< K /) ux < / Ux /

puisque / appartient à N0; donc uxf appartient aussi à N0; ainsi chaque ux applique
JV0 dans lui-même; de plus u est unitaire; par conséquent il résulte de l'assertion
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précédente que ux applique M0 dans lui-même. Il y aura donc un sens à parler des

restrictions de u à M0 et à N0. Formons maintenant l'opérateur antihermitien

i K - <)
qui jouit de plus de la propriété suivante: si / est un vecteur non-nul de M0, jf est

toujours différent de zéro. Désignons par u° et j0 les restrictions à M0 de u et de j.
En vertu de ce qui précède on a:

(i) u° est une représentation unitaire de G dans M0.
(ii) yo est une transformation bornée, injective et antihermitienne de M0.

(iii) yo commute avec chacun des ux.

On a déjà rencontré un opérateur qui satisfait aux conditions (ii) et (iii) en
démontrant le corollaire au lemme de Schur; on déduit alors immédiatement (par un
raisonnement semblable à celui qui avait été fait à cette occasion) qu'il existe dans M0

un opérateur J0 unitaire et antihermitien qui commute avec chaque opérateur qui
commute avec chacun des u\.

On peut répéter dans N0 la construction précédente (effectuée dans §), définir un
sous-espace Mx de N0 au moyen d'un élément xx convenablement choisi dans G, puis
construire un opérateur Jx qui soit l'analogue dans Mx de l'opérateur J0 de M0; par
itération de ce procédé, on couvrira ainsi tout le sous-espace M, complémentaire du

sous-espace N défini par :

N — {fe$>\uxf — f Pour tout x de G} ¦

En faisant la somme directe des Ji ainsi obtenus, on obtient une transformation JM de

M, unitaire et antihermitienne qui commute avec toute transformation de M
commutant elle-même avec chacun des opérateurs de la restriction de m à M.

Dans N, u est la représentation triviale; on peut ainsi définir un opérateur /A.

agissant dans N et auquel on n'impose que d'être unitaire et antihermitien.
En effectuant alors la somme directe de JM et JN on obtient une transformation

/ de l'espace tout entier, unitaire et antihermitienne et qui, de plus, commute avec
chacun des ux. Le lemme 4.2 est ainsi complètement démontré.

En vertu des arguments développés au § 2 (voir en particulier les théorèmes 4.1

et 4.2 fi)), il existe alors dans jr> une famille d'espaces de Hilbert complexes §£',
complets dans 9> et invariants sous u; restreinte à un quelconque de ces §)G, u forme
une représentation unitaire uM du groupe abélien G considéré.

Enfin, on remarque que si le sous-espace N (apparaissant dans la démonstration
du lemme ci-dessus) est nul, alors /, non seulement commute avec chacun des ux, mais
commute encore avec chaque opérateur qui, lui-même, commute avec chacun des ux.

Considérons maintenant un groupe topologique G, abélien, localement compact,
connexe et simplement connexe. Le théorème 3.3 affirme que, de toute représentation
projective de G définie sur les rayons d'un espace de Hilbert quaternionien 9), on peut
extraire une représentation unitaire u, continue, de G dans §. G étant abélien, on peut
appliquer à m le lemme 4.2, de sorte que u satisfait aux conditions du théorème 4.2.
On peut appliquer le SNAG (voir, par example, Riesz et Nagy12), pp. 387 et suiv.) à

l'une quelconque des représentations complexes ul) issues de u: il existe une famille
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spectrale a^fS) étalée sur le groupe 7^ des caractères de G, et une seule, pour laquelle
on ait:

y= I eiB(x) da^fS);

on sait de plus que a{1)(S) commute avec tout opérateur qui commute lui-même avec
chacun des uf.

Par le processus canonique de prolongement, décrit précédemment (voir § 2), on
obtient alors Y équivalent quaternionien du SNAG: il existe une famille spectrale a(S)
étalée sur le groupe F des caractères de G pour laquelle on ait :

JOix) dafS) ;

de plus, a(S) commute avec tout opérateur qui commute avec chacun des ux. Toutefois,

le problème de l'unicité, de cette famille spectrale reste à élucider. Pour un J
donné et à i fixe, la famille spectrale est unique, car le processus de prolongement
canonique est unique. Montrons maintenant que pour un / donné, la famille spectrale
ne dépend pas du choix de i ; pour cela, construisons les espaces §£' et §>f correspondant

respectivement à deux quaternions imaginaires i et j de norme 1 ; formons
l'opérateur v k I où k est un quaternion imaginaire, de norme 1, tel que k i k* j
(un tel quaternion existe toujours, quels que soient i et j) ; on remarque d'emblée que
v est un opérateur co-unitaire qui commute avec n'importe quel opérateur linéaire;
de plus, v applique 9)f sur §W ; en effet, si/est un vecteur de 9>f, J fvf) j fvf), et si

/' est un vecteur de 9)'c> J XV) * X1/') '• enfin, si t est un opérateur linéaire qui
commute avec /, ses restrictions respectivement à §0' et à 9)c] sont liées par la relation
iß) v t^ f-1. Soit alors u une représentation (unitaire, donc linéaire!) de G dans 9>;

appliquons le SNAG à ses restrictions complexes w(,) et A'1 :

uf f e'0[x) da^(S), uf f Xw dbW(S)

r r
Or uf v uf v1, d'où il résulte que v a(A[S) v-1 satisfait aux mêmes conditions que
i(î)(S). Le SNAG complexe affirmant l'unicité de la famille spectrale, on en déduit que
&ZS) v a^fS) v-1 et donc:

b(S) =va(S)v-1.
Or a(S) est linéaire et commute par conséquent avec v, d'où il résulte que b(S) a(S),
ce qui prouve l'unicité de la famille spectrale à / fixe. / lui-même n'est pas unique,
ainsi que le montre déjà sa construction dans le lemme 4.2; a(S) ne peut évidemment

pas ne pas dépendre de J. Ainsi, le choix de / fixe uniquement la famille spectrale a(S).

5. Conclusions

Toutes les notions physiques ont été introduites dès la première section (« Structure
de la Physique Quantique ») dans le langage naturel des opérations sur les systèmes de

propositions; à côté de son intérêt didactique, cette généralisation présente l'avantage
de permettre un traitement indépendant des divers modèles mathématiques qui en
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constituent une réalisation; cette circonstance est essentielle si on veut pouvoir
discuter l'opportunité d'une réalisation non-conventionnelle de la théorie - ici la
forme quaternionienne de la mécanique quantique. Les sections suivantes ont été

consacrées à établir les faits mathématiques généraux propres à la réalisation
considérée. Le problème de la réduction de phase est résolu, pour nombre de cas physiquement

intéressants, par les théorèmes 3.2, 3.3 et 3.4 ; le théorème 3.2 n'a pas d'équivalent
aussi général dans le cas complexe. La théorie des representations des groupes par des

opérateurs unitaires agissant dans un espace de Hilbert quaternionien a été
développée dans la dernière section. Le cas des groupes abéliens a été traité plus
particulièrement en raison de l'intérêt qu'il présente pour un prochain article à paraître
dans ce journal(II) ; l'opérateur J qui apparaît dans le cas abélien jouera en effet un
rôle capital dans l'établissement des liens entre les formes complexes et quaternio-
niennes de la mécanique quantique relativiste ; cette étape sera essentiellement fondée

sur les théorèmes 4.1 et 4.2.
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