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Eine störungstheoretische Methode zur Lösung der
Dyson -Schmidt -Gleichung

von Werner A. Schlup
Institut für theoretische Physik der Universität Zürich

(22. XII. 62)

Zusammenfassung: Die Dyson-Schmidt-Gleichung für die Auslenkungsquotienten- und
Frequenzverteilung der Gitterschwingungen in einer isotopisch ungeordneten linearen Kette
wird für den binären Kristall durch eine Störungsentwicklung gelöst. Die Lösung stimmt mit
der Clusterentwicklung überein.

§ 1. Einleitung

In einem isotopisch ungeordneten Kristall sind die geometrischen Gitterplätze
von gewissen Atomsorten mit gewissen Wahrscheinlichkeiten besetzt, wobei im
allgemeinen die Massen als stochastische Grössen mit einer gegebenen Verteilung und
die Gitterkräfte als fest angenommen werden. Um die Verteilung der Eigenfrequenzen

der Gitterschwingungen in einem solcher Art ungeordneten Kristall zu ermitteln,

kann man verschieden vorgehen.
A) Montroll, Potts1) und Lifschitz, Stepanova2) benützen zur Berechnung

von Mittelwerten additiver Funktionen (zum Beispiel freie Energie, Entropie,
spezifische Wärme) einen funktionentheoretischen Satz, der im Prinzip direkt die
Bestimmung der Verteilung erlaubt. Allerdings muss man sich schon für sehr einfache
Ensembles wie zum Beispiel den binären Kristall mit störungstheoretischen
Entwicklungen nach der Konzentration der seltenen Komponente begnügen. Die
einzelnen Terme dieser Entwicklung lassen sich in Analogie zur Virialentwicklung als

Beiträge gewisser Störatomcluster interpretieren, weshalb man auch von einer
Clusterentwicklung spricht.

B) Anderseits kann man aus den Frequenzmomenten Aufschluss über die Verteilung

bekommen. Domb, Maradudin, Montroll, Weiss3) haben diese Momentenmethode

(Montroll4)) benützt, um aus den ersten zehn Momenten von co2 durch
einen geeigneten Polynomialansatz die Verteilung numerisch zu ermitteln. In
ähnlicher Weise wurde diese Methode von Hori5) verwendet. Im Sinne einer
Potenzreihenapproximation wurde von Pirenne6) die Verteilung für kleine Massenabwei-
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chung, von Schlup7) für kleine Störkonzentrationen aus den Momenten berechnet.
Die Ergebnisse stimmen mit der Clusterentwicklung überein. Die numerische
Anpassung von endlich vielen Momenten gibt im allgemeinen nur Aufschluss über den
globalen Verlauf des Frequenzspektrums.

C) Um eine quantitative Einsicht in den lokalen Verlauf zu erhalten, wurde von
Dean, Martin8) die Verteilung durch Auszählen der Eigenwerte einer guten
Ensemblestichprobe ermittelt. Insbesondere für den Störbereich ergibt sich eine sehr
differenzierte Bänderstruktur, die sich bereits in der Störlinienstruktur der
Clusterentwicklung andeutet.

D) Die bisherigen Methoden konzentrierten sich ausschliesslich auf das
Frequenzspektrum. Für gewisse physikalische Eigenschaften benötigt man aber auch
Information über die Verteilung der Gitteratomauslenkungen. Wallis, Maradudin9)

bestimmten die durch das Gesamtdipolmoment gegebene Infrarotabsorption
der Gitterschwingungen bei Anwesenheit von Störatomen, indem sie den Einfluss
von ein bzw. zwei Störzentren in einem reinen linearen Kristall direkt (das heisst
ohne WahrscheinlichkeitsVoraussetzungen) diskutierten. Die Ergebnisse waren dabei

von der Wahl der Randbedingungen abhängig.
Eine von den Auslenkungen abhängige Grösse, die in linearen Ketten mit

Wechselwirkung nächster Nachbarn eine Rolle spielt, ist der Auslenkungsquotient.
Schmidt10) hat für dessen Verteilungsfunktion eine inhomogene Integralgleichung
mit asymmetrischem, singulärem Kern aufgestellt, die für binäre Kristalle in eine

inhomogene Funktionalgleichung, die Dyson-Schmidt-Gleichung übergeht. Ihre
Lösung bietet sowohl die Verteilung des Auslenkungsquotienten tief im Innern der
Kette als auch die Frequenzverteilung. Trotzdem man sich nur für die
Frequenzverteilung interessiert, ist es dennoch nötig, zur Lösung der Funktionalgleichung die
Auslenkungsquotientenverteilung mitzubestimmen, ähnlich wie die Ermittlung der
Energieeigenwerte bei der Schrödinger-Gleichung zwangsläufig die Berechnung der
Eigenfunktion erfordert.

Das erste Mal wurde eine derartige Gleichung von Dyson11) in der Theorie der
ungeordneten Gitter eingeführt, die in einem Spezialfall exakt gelöst werden
konnte. Von Bellman12) wurde der Beweis vereinfacht und von Des Cloizeaux13)
die Gleichung durch Einführung der Phasen umgeformt. Leider kann eine derartige
Gleichung nur für eindimensionale Probleme aufgestellt werden, wobei zudem die
Wechselwirkungskräfte nur bis zum nächsten Nachbarn reichen dürfen. Trotz dieses
Nachteils gibt auch der eindimensionale Kristall eine qualitative Einsicht in den
physikalischen Sachverhalt, zum Beispiel im Hinblick auf die Störlinienverbreiterung

zu einem Störband. Ferner ist die Methodik zur Lösung derartiger
Funktionalgleichungen, die in Verbindung mit der Wahrscheinlichkeitsrechnung immer
häufiger auftreten, von einem gewissen Interesse (siehe Aczél14)).

Für die folgende Arbeit wollen wir die Schmidt-Form dieser Gleichung, die
einem isotopisch ungeordneten Kristall entspricht, zu Grunde legen. In § 2 wird die
Herleitung der Schmidt-Gleichung skizziert und der Fall des periodischen Gitters
diskutiert. In § 3 wird eine zweigliedrige lineare Funktionalgleichung durch eine
geeignete Substitution in eine Differenzengleichung verwandelt. Dieses Verfahren
wird zur Vereinfachung der Schmidt-Gleichung benützt, die in § 4 durch einen
Potenzreihenansatz nach der Störkonzentration gelöst wird. § 5: Diskussion der
Resultate.
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§2. Die Dyson-Schmidt-Gleichung und ihre Anwendung auf das
periodische Gitter

Wir betrachten eine lineare Kette von Atomen, deren Masse mn im «-ten Gitterpunkt

mit der Wahrscheinlichkeitsdichte gfmn) verteilt ist, und die nachbarweise
miteinander harmonisch gekoppelt sind. Die Enden seien fest, so dass die
Randbedingungen u0 uN + 0 lauten, wobei un die Auslenkung des «-ten Atoms von
geometrischem Gitterplatz ist. Damit wird die Bewegungsgleichung

oder mit

nimmt sie die Gestalt

n
Ün Kfun + 14- un-i -- 2 U J

ii, ~ eiat Zn z
Un- i

Un

Cin 1 - mn x
X

CO2

K2 '

Zn+1
1

2a„ %n

(2.1)

(2.2)

(2.3)

an, wobei zx 0, zN + 1 oo die neuen Randbedingungen sind.
Aus der Randbedingung zN + 1 oo folgt, dass die Anzahl der Frequenzeigenwerte

xv < x gleich der Anzahl negativer zn der nach links verankerten Folge
zx 0, z2fx), zNfx) ist (siehe 10)); das heisst man kann in einer statistischen
Theorie die Verteilungsfunktion der Frequenzen aus den Verteilungen des
Auslenkungsquotienten ermitteln, ohne von der Randbedingung zN + 1 oo Gebrauch zu
machen.

Es sei wnfz) die Wahrscheinlichkeitsdichte, den Auslenkungsquotienten zn in
einem Intervall fz, z + dz) zu finden; ferner sei W„fz) die zugehörige Verteilungsfunktion,

so dass dWnfz)\dz wnfz) ist. In einer nach links verankerten Folge sind
Zn und mn statistisch unabhängig, daher lässt sich die Verteilung für zn + x folgender-
massen aus der Verteilung für zn berechnen :

oder
wn + ifzn + i) dzn + 1 J dmngfm„) wn(znfzn + 1, mn)) dzn (2.4)

Wn + Az) J dm gfm) Wn{2 - m x - ~j JL (2.5)

mit wxfz) òfz).
Falls für « -s* oo die Verteilungen einem Grenzwert wfz) zustreben, gilt die

Integralgleichung

wfz) I dm gfm) w\2 — m x 1

-y (2-6)

wfz) =fdz'^ g(
2 - l'x' -z' wfz') (2.7)

oder

Wegen der Asymmetrie des Kerns der homogenen Integralgleichung (2.7) kann man
kein einfaches Variationsprinzip für wfz) aufstellen.
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Durch Integration von (2.6) erhält man die Dyson-Schmidt-Gleichung für die
Verteilungsfunktion Wfz)

Wfz) f dm gfm) W(2 - m x - -j) + C (2.8)

wobei
o

C f wfz) dz (2.9)
— oo

wegen der obigen Charakterisierung die Anzahl Frequenzeigenwerte x" < x pro
Atom, das heisst die Verteilungsfunktion für die Frequenzen darstellt. Schmidt
bewies ferner, dass die Wnfz) im arithmetischen Mittel gegen eine stetige Funktion
Wfz) konvergieren, deren Ableitung wfz) ergibt. Damit die einfache Gestalt der
Dyson-Schmidt-Gleichung gilt, muss man zulassen, dass Wfz) eine mehrdeutige
Funktion ist, die allerdings modulo 1 eindeutig wird.

Für diskrete Massenverteilungen fr Atomarten mit der Masse m' in der Konzentration

pi) geht die Integralgleichung (2.8) in eine Funktionalgleichung über:

Wfz) JA pi w{2 - mi x —~\ + C (2.10)

In analoger Weise könnte man die £n-Folge nach rechts (zN +1 °o, wN + 1fz)

ôfz — oo)) verankern, dann wären zn + 1 und mn statistisch unabhängig, und die (2.6),
(2.7) und (2.8) entsprechenden Gleichungen würden lauten, falls man den Limes
abnehmender Indizes betrachtet:

wfz) fdm gfm) A(-2 - -X
_

_
(2 _

_L
_ _ (2.11)

wfz) fdz'\ g(
2 - ' - llz' wfz') (2.12)

Wfz) f dm gfm) wly-TI-±-—-) - C (2.13)

Die Gleichungsgruppen gehen ineinander über, wenn man setzt

wfz) ~ wfz) bzw. Wfz) - wU-^j (2.14)

was auch aus der Transformation zn ijzn folgt, die die linksverankerte Kette in
die rechtsverankerte verwandelt. Im Folgenden wollen wir nur die linksverankerte
Form verwenden.

Bevor wir zur Lösung der Dyson-Schmidt-Gleichung schreiten, sei der Fall
des periodischen Gitters diskutiert. Für festen linken Rand (w0 0) wird

also

und

un A sinn r x — sin2 -^-, (2-15)

sin (w — 1) t co ic\zn -. — COST — siw ctg« T (2-lv)ein in t KJ x '

Wnfz) òfz - Zn) (2.17)
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Die Verteilung wnfz) strebt im Limes « —> oo keinem Grenzwert zu, da die zn keinen

Grenzwert haben. Hingegen strebt die Wahrscheinlichkeitsdichte im arithmetischen

Mittel gegen eine Grenzverteilung wfz), die durch die Verteilung aller zn der
Folge auf der z-Axe gegeben ist.

Für irrationale rjn wird wegen der Gleichwahrscheinlichkeit der einzelnen «

(2.18)wfz) Const
dn
dz '

wobei die Konstante aus der Normierung
oo

fz) dz -- 1

folgt.
Man findet leicht aus (2.16)

und analog

wfz)

Wfz) Z

sinr
z2 — 2 cost z A-

z — COST
arctg :° sinr

1

Die zugehörige Frequenzverteilungsfunktion wird

C WfO) -- Wf- oo)
T

n

(2.19)

(2.20)

(2.21)

in Übereinstimmung mit der konstanten Eigenwertdichte in t. Dass (2.19) und
(2.20) tatsächlich eine Lösung der Dyson-Schmidt-Gleichung ist, kann man leicht
verifizieren.

Für rationale rjn PjQ, wobei P und Q natürliche, relativ prime Zahlen sind,
durchläuft zn zyklisch die Werte zx 0, z%, Zq oo. Daher wird die
Wahrscheinlichkeitsdichte im arithmetischen Mittel gegen die diskrete Verteilung

«*W A Ê ô(z -*•) <2-22)

streben. Wir wollen diese diskontinuierlichen Lösungen, die typisch für
gitterkommensurable Wellen in periodischen Ketten sind, als nullte Näherung zur
Behandlung von Störeffekten in unendlichen Gittern ausschliessen, weil sie nicht
modulo 1 eindeutige Lösungen der Dyson-Schmidt-Gleichung sind.

§ 3. Differenzenform der Dyson-Schmidt-Gleichung
Um eine der störungstheoretischen Behandlung adäquate Form zu erhalten,

führt man eine passende mittlere Masse m0 ein und ersetzt z -> 1/(2 — m0 x — z)

in (2.8):
W(- ' I dm gfm) Wfz - fm - m0) x) + C. (3.1)

\ Z m0x ZJJ
Falls eine Taylorentwicklung des Integranden erlaubt ist und alle Momente der
Massenverteilung existieren, wird

w(a-^Ax^) - ^W - c Ês^r (^^ «- (i)" w& ¦ w
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wobei

fA0 m)n — fm — m0)n ; dm gfm) fm — m0)n (3.3)

Für Kristalle, deren Massenverteilung nur wenig von der scharfen Verteilung
abweicht, sind die Momente fA0m)n bei geeigneter Wahl von m0 klein, so dass die
rechte Seite störungsmässig berücksichtigt werden kann.

Zunächst wollen wir die obige Funktionalgleichung in eine Differenzengleichung
verwandeln. Gelingt es, die im allgemeinen nichtlineare Rekursion zn + x — cf>(zn) zu
lösen und die Lösung zfn, zx) für beliebige n analytisch fortzusetzen, so wird mit
der Definition

Wfz) Wfzfn, zx)) Vfn)

W(<f>fz)) Wfzfn + l,zx))=Vfn 4- i)

der zweigliedrige Funktionalausdruck W(cf>fz)) — Wfz) in den Differenzenausdruck
Vfn + 1) — Vfn) umgeformt. Da wir die Lösung im periodischen Gitter (2.16)
bereits kennen, können wir die Substitution daraus ablesen:

wobei

Mit der Definition

wird

J^iL tgo, z
cos(e - T)

(3.4)
mz °u cosg

COST <X0 1

Wfz) IT(COS^s~T)) V(q) (3.5)

W(2-m[x-z) ^ + *>

und damit die Dyson-Schmidt-Gleichung

V(e + „ _ „<,, _ c _ _| I=p 0-.^". (M)' (^j-)- F(,, (3.6,

wobei das mehrdeutige FF(z) durch die uniformisierende Variable q (ein Bereich
— oo < z < oo wird auf die Strecke — n/2 < q < jt/2 abgebildet) in das eindeutige

V(q) mit der Nebenbedingung

7(0 Arn)- V(q) 1 (3.7)

transformiert wird. Von dieser Form ausgehend wollen wir nun die Störungstheorie
durchführen.

§ 4. Entwicklung der Verteilungsfunktion von binären Kristallen
nach kleinen Störkonzentrationen c

Wir wählen m0 », (Hauptkomponente) und machen den Ansatz

VfQ) V0fß) + q VxfQ) + q2 Vt{Q) + ¦¦-, 1

c =c„ +?c, +?2c2 +••••
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Wegen

wird somit (3.6)

wobei

und

Werner A. Schlup

(zl0 m)n lfmi — »i)" («=1,2,..

V(g + r) - V(o) - C q X X (2 ß)n Dn VfQ)

e '--5- e-8*«''2

o- - zx

H. P. A.

(4.2)

ein Differentialoperator ist.
In der Störungstheorie erhalten wir das schrittweise lösbare System von

Differenzengleichungen mit Nebenbedingungen

VofQ + t) - V9{q) - C0 0

VxfQ + T) - ^(e) - Cx £ £ff- Dn V0(Q)
n — 1

X(<? + t) - Vt{Q) -C2 JT Pff- Dn Vxfg)

(4.3)

V0(Q + n) - F,(e) 1

X(e + ») - X(e) o

X(e + n) - V,{q) 0

usw.

Die formale Lösung von (4.3a) und (4.4a) lautet

V,{Q) i A PrjQ) «
C0

T

TT

(4.4)

(4.5)

wobei PTì„(q) eine periodische Funktion mit den Perioden t und n darstellt. Wenn

t und n inkommensurabel sind, ist PTnfo) — Const, die gleich Null gesetzt werden
darf, so lange die Normierung von Vfg) offen bleibt. Im Gegensatz dazu wird die
Lösung für die Nullmenge kommensurabler r und n, das heisst r nPjQ und
P, Q relativ prim, mehrdeutig, da Pr „fg) eine beliebige periodische Funktion mit
der Periode njQ sein kann, die zusammen mit qjn nicht abnimmt. Für Q -> oo oder

rjn irrational verschwindet diese Mehrdeutigkeit. Nach einer Bemerkung von § 2

haben wir die sägezahnförmige periodische Funktion PTtAo) auch für rationale rjn
durch die Konstante zu ersetzen. Ähnliche Beiträge in höheren Ordnungen (Lösung
der homogenen Gleichung) müssen konsequenterweise ebenfalls ausgenommen werden.

Damit wird die Lösung in nullter Ordnung

x(P) iZ c0 y. (4.6)
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Die allgemeine Lösung der Differenzengleichung

Vfe + r) - Vfe) R(q) =£Rn e2^ (4.7)
n

lautet, falls rjn irrational ist:

V{Q)=PM +Ï *. + ££££¦ (4-8)
n=£0

Sie kann nur dann der Nebenbedingung Vfq + n) Vfg) genügen, wenn

ji/2

X ± f R{Q) dQ 0 (4.9)

ist und wird folglich

VfQ)= Const AE^^i- (4-10)

Falls der Imaginärteil von t nicht verschwindet, kann der Nenner in eine geometrische

Reihe entwickelt und die Summe über « ausgeführt werden; man erhält
dadurch die bekannte iterative Lösung der Differenzengleichung (4.7).

Die Gleichung (4.3b) und die Nebenbedingung (4.4b) lässt sich nach Einsetzen
von (4.6) folgendermassen schreiben:

Vtfe + t) - VtfQ) ~Ci ~ ln(l Aiß + iß e~2ie) (4.11)

wobei
V^fQ + n) - VifQ) 0 (4.12)

Vifq) J VKq) Cx=JCi. (4.13)

V^fo) und C]1" kann man für beliebige komplexe x bzw. r analytisch fortsetzen, falls
man die Bedingung (4.9) durch Deformation des reellen Integrationsweges nach
negativ imaginären q-Werten verallgemeinert.

Somit wird

C+= -^ln(l A iß) (4.14)

eine abgesehen vom Logarithmus in der %-Ebene zweideutige analytische Funktion
mit den Verzweigungspunkten x 0 und x — xx 4jmx. Sie kann zweideutig für
x > xx (bzw. x < 0) fortgesetzt werden. Ihr Wert am oberen Ufer ist 1 — e ]/xjfx — xx)
bzw. am unteren Ufer 1 + e )/xjfx — xx). Da nach dem Saxon-Hutner-Luttinger-
Theorem für x ausserhalb des Intervalls 0 < x < 4jmMin keine Eigenfrequenzen
existieren, hat nur der Beitrag auf dem oberen Ufer einen physikalischen Sinn, oder
die analytische Fortsetzung hat für / x > 0 bzw. 0 < 9Ì r < n, J r > 0 zu
geschehen. Man kann diese physikalische Lösung auf die ganze «-Ebene bzw. auf den
Halbstreifen 0 < 9Î t < 2 tt, /t>0 ausdehnen, wenn man den Schnitt von x 0
nach x xx führt. In diesem Sinne ist C+ der Schnittwert am oberen Ufer der
%-Ebene, während der Schnittwert am unteren Ufer dem konjugiert Komplexen
entspricht, so dass Cx im wesentlichen der Funktionssprung auf dem Schnitt ist.
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Oder als Grenzwert geschrieben wird (für die höheren Ordnungen C2, C3, ist
ein kleiner Imaginärteil ô > 0 zur Konvergenzerzeugung wichtig)

Cx lim/C+L + t.;
«-> + 0

Mit (4.14) wird die Gleichung (4.11) für F+:

vtfe + t) - Vife) Rife) | ln(l + ^j «-"•).

(4.15)

(4.16)

Da im physikalischen Blatt / r > 0 ist, kann man die partikuläre Lösung durch
Iteration von (4.16) finden:

vife) ZRt(e-ir) (4.17)

Die Lösung der homogenen Gleichung entfällt nach einer früheren Bemerkung;
daher lautet die Lösung in erster Ordnung :

vi(e) i £^(i +^ A-y-2^). (4.18)

Im Appendix wird durch vollständige Induktion bewiesen, dass sich die Lösung
in «-ter Ordnung folgendermassen darstellen lässt:

00 i
X+(e)= E Aln

1 A iß
i ß XT

ißeil'r iße^k + l')r

l+iß iß Xr
*ß Xr 1 4-iß

iß e»'((i + 's + "- + (»-i>T

— e~2ie e'{il + '" + 'niT

ißeHh + ---Ai„)T

jßei(h+-Aln)r
i ft A(hA--- + l„)T

l+iß ißeil»%

_ e-2iQ eil„T 1

(4.19)

C»+ -È ~ln
h,h,...ln-l ln

1 A iß
ißetl'T

ißeHl,AI,)r

ißeihT

l+iß
i ß e'l*T

„t(J, + ¦••-Mb_1)t

i ß Xr
l + iß

i ß <X

ißei(l>

-in-i)T

ln-i)T

l+iß ißeil»-iT

ißeil«-'z l+iß

.(4.20)
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Vn(Q)=ixmJV:(Q)\x + t9.
ö-*+0

C„-limJC+\x + iä,
Ö-++0

für « 1, 2, 3,
wobei II aik || der Hauptminorenquotient einer quadratischen Matrix ist:

579

(4.21)

(4.22)

Produkt aller Hauptminoren der Ordnung «, « — 2, « — 4,...
Produkt aller Hauptminoren der Ordnung « — 1, « — 3, « — 5,

zum Beispiel

11 »12 1*13

J*21 »22 »23

#31 #32 #aa

#12 #13

#22 #23

#31 #39 #3

#11 * #2

axx ax

#21 #2

#n ax

(4.23)

(4.24)

Damit haben wir die Dyson-Schmidt-Gleichung störungstheoretisch exakt
gelöst, das heisst die Lösung in jeder Ordnung explizite angegeben. Exakt im eigentlichen

Sinne wäre die Lösung erst dann, wenn man die Konvergenz der Reihen (4.1)
nachweisen könnte. Die Lösung in Form der Hauptminorenquotienten ist typisch
für eine Clusterentwicklung, die sich physikalisch in einfacher Weise interpretieren
lässt. Sie ergibt ein Eigenfrequenzspektrum, das für leichtere Störatome m2 < mx
eine komplizierte Störlinienstruktur aufweist.

Um die Verbindung zur funktionentheoretischen Methode (siehe 1),2)) herzustellen,

werde der Erwartungswert cf> einer frequenzabhängigen Funktion ^>fx), die für
reelle, positive x analytisch ist, berechnet:

cf) / cf>fx) dCfx)
o

Führt man die in der geschlitzten «-Ebene analytische Funktion

O CJ + q Ci + q2 C+ +
mit

Zln(2^
n \ xx

l +2i \/x(xx - x)¦¦x-*)\
*1 /

ein, so lässt sich (4.25) als komplexes Integral

(4.25)

(4.26)

(4.27)
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schreiben, weil
C+fx - i S) C+*(x + i ô) (4.28)

ist und sich daher die imaginären Beiträge wegheben. Der Weg ist so zu wählen,
dass er die Strecke 0 < x < 4jmMin, auf der alle Eigenfrequenzen liegen, im positiven

Sinne umfährt.

§ 5. Diskussion
In den vorhergehenden Kapiteln wurde gezeigt, dass die Dyson-Schmidt-Gleichung

für kleine Abweichungen von der scharfen Massenverteilung periodischer
Gitter approximativ gelöst werden kann. Die Frequenzverteilungen erhält man
dann in Form von Potenzreihen, die Spektralmittelwerte (zum Beispiel die
Momente) termweise exakt berechnen lassen. Das beweist die Übereinstimmung mit
der von der Entwicklung der Mittelwerte ausgehenden funktionentheoretischen
Methode. Obwohl die Wahrscheinlichkeit eine nichtnegative Grösse ist, treten bei
derartigen Entwicklungen lokal negative Wahrscheinlichkeitsdichten auf, die erst
durch selektive Summation über alle Ordnungen (Takeno15), Langer16)) verschwinden.

Man kann aber auch ausgehend von der Clusterentwicklung durch geeignete
Regularisierung Spektralverteilungen mit negativen Wahrscheinlichkeiten, wenigstens

in gewissen Parameterbereichen, vermeiden.
Da der Verteilung des Auslenkungsquotienten im Gegensatz zu den Auslenkungen

selbst physikalisch keine Bedeutung zukommt, wurde sie nicht näher untersucht.

Immerhin steht sie in einem engen Integralzusammenhang mit der
Verteilungsfunktion von un-1,«„.

Die Beschränkung der Dyson-Schmidt-Gleichung auf eindimensionale Gitter ist
grundsätzlich. Man kann jedoch für die Berechnung der Frequenzverteilung ein
eindimensionales Modell für ein mehrdimensionales Gitter finden, wenn man sich auf
(kubische) Kristalle beschränkt, deren Diagonalwechselwirkung sehr klein ist. Wird
dieses Verhältnis nur in erster Ordnung berücksichtigt, so entspricht der Kristall
einer linearen Kette, deren Atome zusätzlich harmonisch an den geometrischen
Gitterplatz gebunden sind. Das Frequenzspektrum des gewöhnlichen ungeordneten
Kristalls wird dadurch ein wenig nach höheren Frequenzen verschoben, während
die Lücke am unteren Spektralrand durch Beiträge in höherer Ordnung ausgefüllt
wird. Diese Näherung kann physikalisch nur dann brauchbar sein, wenn der Schubmodul

klein gegenüber dem Elastizitätsmodul ist.

Herrn Prof. A. Thelhmg danke ich für wertvolle Hinweise und anregende
Diskussionen. Diese Arbeit wurde durch finanzielle Unterstützung seitens des
«Schweiz. Nationalfonds» ermöglicht.

Appendix
Induktionsvoraussetzung: Die Ergebnisse (4.19) und (4.20) seien wahr für die

Indizes 1,2,...,«.
Induktionsbehauptung: Sie gelten dann auch für den Index « + 1.

Beweis : F++1, C++ x folgen aus der Differenzengleichung

v:+1fe + t) - v:+1fe) - c;+1 Z^iry D>»v»^ (A-V
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und der Nebenbedingung

v:+1fe + n)-v:+1fe) o.

Die rechte Seite von (A.l) wird

RUiia) - XXi v:(e'fe)) - v+nfe),

tge'(e) tge + 2/s •»

- iß A- (1 - iß) e-ïiQ

wobei

oder

-2ig'(e)
1 + iß + i ße-vie

581

(A.2)

(A.3)

(A.4)

Die notwendige Bedingung (4.9) kann man, da in R+(q) nur natürliche Potenzen
von e~2lß auftreten, umformen:

R0 R+(e~2ie 0)
Also wird

r+ — F+/X2*«
1 + r) - Vl(e-2^ 0)

(A.5)

(A.6)

Der letzte Term verschwindet, da der Hauptminorenquotient einer n X «-Matrix,
deren letzte Zeile ani — òm fl 1,2, n) ist, wegen bekannten Sätzen über die
Berechnung von Determinanten gleich 1 ist.

Ebenso leicht verifiziert man, dass der Hauptminorenquotient unverändert
bleibt, wenn man irgendwelche Spalten oder Zeilen mit nicht verschwindenden
Konstanten multipliziert; daher stimmt der erste Term mit dem Ergebnis (4.19)
für den Index « + 1 überein. Damit ist die Induktion für C+ bewiesen.

Wir zeigen nun, dass

oo

- S i
*1, l2l tn — 1

In

l+iß
i ß XT

i p e"'

l+i,

ißeHh + -Aln)T

— e-2'S gi(hA---Al„)r

-

ßeHh+--- + l„)T

ißeHhA-Aln)r ißeHhA-Aln)*

ißei(h^---Al„)r iß em,A- + l«)r

ißeil»r ißeil»r

l+iß iß
g-2ÌQ g'CH M„)r — e -2je 1

(A.7)

ist, indem wir uns exp(i?++ x(g) — C++ x + V+fg)) ausgerechnet denken. Dabei werden

durch C++ x die Hauptminorenfaktoren kompensiert, welche die « + 2-te Reihe
nicht enthalten, desgleichen von F+(p) diejenigen, welche die n+l-te Reihe nicht
enthalten. Doppelt kompensierte Terme (sowohl « + 1 als auch « + 2 nicht
enthaltend) treten als reziproke Faktoren wieder auf. Die Übereinstimmung des
Produktes der Restfaktoren mit exp V+(q'(q)) folgt aus der Gültigkeit der
Determinantenbeziehung :
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l+iß
i ß X'1
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ißeil>T ißei(h + - + ln)T

H. P. A

ißei{l,A- + l„)t

l+iß ¦

ß gi(l, + — + l„)r iß gi(hA---Al„)z

iß e

l+iß
i ß Xr

i(h + — Al„)r »(«Viß e

'ni* _ p-îi

¦Aln)r

,HhA---Aln)T

¦ 1 +
— e

iß
-2ÌQ

jßgUhA-Aln-UT

i ß gi{-liA---A\n-ìf

iß
1

ßeHh + - ¦Aln)r

ßeHl'+- ¦Al„)r

ißgHhA-Ain-Jr ...l+iß ißeil"T

(iß-fl-iß)e-2ie)ei{h + - + l»1z (iß - (1 - iß) XX) eil"r l+iß + iße'2iQ

Aus R++ j folgt die iterative Lösung

XXi(e)= E K+Ae-in+ri)
<"n+l l

(A.9)

die nach der Umformung mit dem oben erwähnten Satz über Hauptminorenquotienten

in die Gestalt (4.20) für den Index « + 1 gebracht werden kann. Damit ist
auch die Induktion für V^fq) bewiesen. Wegen der Verankerung der Induktion für
« 1 durch die Resultate (4.14) und (4.18) ist der Beweis für die allgemeine Lösung
(4.19) und (4.20) geliefert.
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