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Eine storungstheoretische Methode zur Losung der
Dyson-Schmidt-Gleichung

von Werner A. Schlup
Institut fiir theoretische Physik der Universitdat Ziirich

(22. XII. 62)

Zusammenfassung: Die Dyson-Schmidt-Gleichung fiir die Auslenkungsquotienten- und
Frequenzverteilung der Gitterschwingungen in einer isotopisch ungeordneten linearen Kette
wird fiir den bindren Kiristall durch eine Stérungsentwicklung gelost. Die Loésung stimmt mit
der Clusterentwicklung iiberein.

§ 1. Einleitung

In einem isotopisch ungeordneten Kristall sind die geometrischen Gitterplitze
von gewissen Atomsorten mit gewissen Wahrscheinlichkeiten besetzt, wobei im all-
gemeinen die Massen als stochastische Gréssen mit einer gegebenen Verteilung und
die Gitterkrafte als fest angenommen werden. Um die Verteilung der Eigenfrequen-
zen der Gitterschwingungen in einem solcher Art ungeordneten Kristall zu ermit-
teln, kann man verschieden vorgehen.

A) MonTrOLL, POTTS!) und LIFSCHITZ, STEPANOVA?) beniitzen zur Berechnung
von Mittelwerten additiver Funktionen (zum Beispiel freie Energie, Entropie, spe-
zifische Wirme) einen funktionentheoretischen Satz, der im Prinzip direkt die Be-
stimmung der Verteilung erlaubt. Allerdings muss man sich schon fiir sehr einfache
Ensembles wie zum Beispiel den bindren Kristall mit stérungstheoretischen Ent-
wicklungen nach der Konzentration der seltenen Komponente begniigen. Die ein-
zelnen Terme dieser Entwicklung lassen sich in Analogie zur Virialentwicklung als
Beitrige gewisser Stoératomcluster interpretieren, weshalb man auch von einer
Clusterentwicklung spricht.

B) Anderseits kann man aus den Frequenzmomenten Aufschluss iiber die Vertei-
lung bekommen. DoMB, MARADUDIN, MONTROLL, WEIsSs®) haben diese Momenten-
methode (MONTROLLY)) beniitzt, um aus den ersten zehn Momenten von w? durch
einen geeigneten Polynomialansatz die Verteilung numerisch zu ermitteln. In dhn-
licher Weise wurde diese Methode von Hori%) verwendet. Im Sinne einer Potenz-
reihenapproximation wurde von PIRENNE®) die Verteilung fiir kleine Massenabwei-
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chung, von ScHLUP?) fiir kleine Stérkonzentrationen aus den Momenten berechnet.
Die Ergebnisse stimmen mit der Clusterentwicklung {iberein. Die numerische An-
passung von endlich vielen Momenten gibt im allgemeinen nur Aufschluss iiber den
globalen Verlauf des Frequenzspektrums.

C) Um eine quantitative Einsicht in den lokalen Verlauf zu erhalten, wurde von
DeaN, MARTIN®) die Verteilung durch Auszihlen der Eigenwerte einer guten En-
semblestichprobe ermittelt. Insbesondere fiir den Stérbereich ergibt sich eine sehr
differenzierte Banderstruktur, die sich bereits in der Storlinienstruktur der Cluster-
entwicklung andeutet.

D) Die bisherigen Methoden konzentrierten sich ausschliesslich auf das Fre-
quenzspektrum. Fiir gewisse physikalische Eigenschaften benétigt man aber auch
Information iiber die Verteilung der Gitteratomauslenkungen. WALLIS, MARADU-
DIN?) bestimmten die durch das Gesamtdipolmoment gegebene Infrarotabsorption
der Gitterschwingungen bei Anwesenheit von Stératomen, indem sie den Einfluss
von ein bzw. zwel Stdrzentren in einem reinen linearen Kristall direkt (das heisst
ohne Wahrscheinlichkeitsvoraussetzungen) diskutierten. Die Ergebnisse waren da-
bei von der Wahl der Randbedingungen abhingig.

Eine von den Auslenkungen abhéingige Grosse, die in linearen Ketten mit Wech-
selwirkung nichster Nachbarn eine Rolle spielt, ist der Auslenkungsquotient.
ScHMIDT?) hat fiir dessen Verteilungsfunktion eine inhomogene Integralgleichung
mit asymmetrischem, singuldrem Kern aufgestellt, die fiir bindre Kristalle in eine
inhomogene Funktionalgleichung, die Dyson-Schmidt-Gleichung tibergeht. Ihre
Loésung bietet sowohl die Verteilung des Auslenkungsquotienten tief im Innern der
Kette als auch die Frequenzverteilung. Trotzdem man sich nur fiir die Frequenz-
verteilung interessiert, ist es dennoch nétig, zur Lésung der Funktionalgleichung die
Auslenkungsquotientenverteilung mitzubestimmen, dhnlich wie die Ermittlung der
Energieeigenwerte bei der Schridinger- Glelchung zwangsldufig die Berechnung der
Eigenfunktion erfordert.

Das erste Mal wurde eine derartige Gleichung von Dyson??!) in der Theorie der
ungeordneten Gitter eingefiihrt, die in einem Spezialfall exakt geldést werden
konnte. Von BELLMAN?) wurde der Beweis vereinfacht und von DEs CLOIZEAUX3)
die Gleichung durch Einfithrung der Phasen umgeformt. Leider kann eine derartige
Gleichung nur fiir eindimensionale Probleme aufgestellt werden, wobei zudem die
Wechselwirkungskrifte nur bis zum nichsten Nachbarn reichen diirfen. Trotz dieses
Nachteils gibt auch der eindimensionale Kristall eine qualitative Einsicht in den
physikalischen Sachverhalt, zum Beispiel im Hinblick auf die Stérlinienverbreite-
rung zu einem Stérband. Ferner ist die Methodik zur Lésung derartiger Funktional-
gleichungen, die in Verbindung mit der Wahrscheinlichkeitsrechnung immer hiu-
figer auftreten, von einem gewissen Interesse (siche AcCzEL4)).

Fiir die folgende Arbeit wollen wir die Schmidt-Form dieser Gleichung, dle
einem isotopisch ungeordneten Kristall entspricht, zu Grunde legen. In § 2 wird die
Herleitung der Schmidt-Gleichung skizziert und der Fall des periodischen Gitters
diskutiert. In § 3 wird eine zweigliedrige lineare Funktionalgleichung durch eine
geeignete Substitution in eine Differenzengleichung verwandelt. Dieses Verfahren
wird zur Vereinfachung der Schmidt-Gleichung beniitzt, die in § 4 durch einen
Potenzreihenansatz nach der Stérkonzentration gelost wird. § 5: Dlskusswn der
Resultate.



572 Werner A. Schlup H. P. A.

§ 2. Die Dyson-Schmidt-Gleichung und ihre Anwendung auf das
periodische Gitter

Wir betrachten eine lineare Kette von Atomen, deren Masse m, im n-ten Gitter-
punkt mit der Wahrscheinlichkeitsdichte g(ma.) verteilt ist, und die nachbarweise
miteinander harmonisch gekoppelt sind. Die Enden seien fest, so dass die Randbe-
dingungen u, = u, ., = 0 lauten, wobei u, die Auslenkung des n-ten Atoms von
geometrischem Gitterplatz ist. Damit wird die Bewegungsgleichung

m, ?;in = K (u’n-i-l + Uyn — 2 Mﬂ) (21)
oder mit
u eiwt P Un—1
n ™~ y n — tin
(2.2)
Mg X w?
otp = 1 — 9 x = "
nimmt sie die Gestalt
1
zn+ 1 = 2 % (2-3)

n — <n

an, wobel z; = 0, 2y, ; = oo die neuen Randbedingungen sind.

Aus der Randbedingung zy ., = oo folgt, dass die Anzahl der Frequenzeigen-
werte x” < x gleich der Anzahl negativer z, der nach links verankerten Folge
z; =0, 25(x), . . ., zy(x) ist (siehe 19)); das heisst man kann in einer statistischen
Theorie die Verteilungsfunktion der Frequenzen aus den Verteilungen des Auslen-
kungsquotienten ermitteln, ohne von der Randbedingung zy_,; = oo Gebrauch zu
machen.

Es sei wg(z) die Wahrscheinlichkeitsdichte, den Auslenkungsquotienten z, in
einem Intervall (z, z 4- dz) zu finden; ferner sei Wa(2) die zugehdrige Verteilungs-
funktion, so dass dWy(z)/dz = wn(2) ist. In einer nach links verankerten Folge sind
zn und m, statistisch unabhingig, daher lisst sich die Verteilung fiir z,, , ; folgender-
massen aus der Verteilung fiir z, berechnen:

wn+ 1(Zn—{— 1) dzn+ 1= f dmn g(mn) wn(zn(zn+ 1» mn)) dzn (24)

oder

w,  1(2) = f dm g(m) wn(2 —mx — —1—) %2 (2.5)

Z

mit w,(z) = d(2).
Falls fiir # — oo die Verteilungen einem Grenzwert ®(z) zustreben, gilt die Inte-
gralgleichung

w(z) — f dm g(m) w(2 — m x — 5 (2.6)
oder
w(z) = fdz’ x1z2 g( e lf =t 4 )w(z’) (2.7)

Wegen der Asymmetrie des Kerns der homogenen Integralgleichung (2.7) kann man
kein einfaches Variationsprinzip fiir w(z) aufstellen.
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Durch Integration von (2.6) erhilt man die Dyson-Schmidt-Gleichung fiir die
Verteilungsfunktion W (z)

W(z) = f dm g(m) W(Z —mx — %) + C, (2.8)

wobei
0
B = [w(z) dz (2.9)

wegen der obigen Charakterisierung die Anzahl Frequenzeigenwerte x” << x pro
Atom, das heisst die Verteilungsfunktion fiir die Frequenzen darstellt. SCHMIDT
bewies ferner, dass die Wy(z) im arithmetischen Mittel gegen eine stetige Funktion
W (z) konvergieren, deren Ableitung w(z) ergibt. Damit die einfache Gestalt der
Dyson-Schmidt-Gleichung gilt, muss man zulassen, dass W(z) eine mehrdeutige
Funktion ist, die allerdings modulo 1 eindeutig wird.

Fiir diskrete Massenverteilungen (» Atomarten mit der Masse #/ in der Konzen-
tration p7) geht die Integralgleichung (2.8) in eine Funktionalgleichung tiber:

W) = 3 4 Wiz —mix—1) 4 C. (2.10)
=

In analoger Weise konnte man die z,-Folge nach rechts (zy 41 = oo, wy 41(2) =
d(2 — oo)) verankern, dann wiren z,, . ; und m, statistisch unabhéingig, und die (2.6),

(2.7) und (2.8) entsprechenden Gleichungen wiirden lauten, falls man den Limes
abnehmender Indizes betrachtet:

a(z):fdmg(m) @(2_m1x_3) (Z_WIxﬁz)z , (2.11)
w(z) = fdz’ %g( i z; CL] )@(z’) : (2.12)
W(z):fdmg(m)W(z_mlx_z)—C. (2.13)

Die Gleichungsgruppen gehen ineinander iiber, wenn man setzt
_ 1 — 1
w() = wle) baw. W) =—W(}), (2.14)

was auch aus der Transformation z, = 1/z, folgt, die die linksverankerte Kette in
die rechtsverankerte verwandelt. Im Folgenden wollen wir nur die linksverankerte
Form verwenden.

Bevor wir zur Losung der Dyson-Schmidt-Gleichung schreiten, sei der Fall
des periodischen Gitters diskutiert. Fiir festen linken Rand (%, = 0) wird

Up = Asinnt, x= —:TSinL;—, (2.15)

also
Zn = E% = CcoST — sinT ctgn v (2.16)

und

wn(2) = 0(z — 2n) . (2.17)
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Die Verteilung wx(z) strebt im Limes # — oo keinem Grenzwert zu, da die z, kei-
nen Grenzwert haben. Hingegen strebt die Wahrscheinlichkeitsdichte im arithmeti-
schen Mittel gegen eine Grenzverteilung w(z), die durch die Verteilung aller z, der
Folge auf der z-Axe gegeben ist.

Fiir irrationale 7/ wird wegen der Gleichwahrscheinlichkeit der einzelnen »

d
w(z) = Const - d—: : (2.18)

wobei die Konstante aus der Normierung

(=]

fma@:1

- oo

folgt.
Man findet leicht aus (2.16)
1 sint

w(z) — 7 22 — 2costz + 1 (2'19)

und analog
W(z) = ;lt— arctg% : (2.20)

Die zugehorige Frequenzverteilungsfunktion wird-

czwm—m*@:% (2.21)

in Ubereinstimmung mit der konstanten Eigenwertdichte in 7. Dass (2.19) und
(2.20) tatsidchlich eine Losung der Dyson-Schmidt-Gleichung ist, kann man leicht
verifizieren.

Fiir rationale 7/ = P/Q, wobei P und ( natiirliche, relativ prime Zahlen sind,
durchlduft z, zyklisch die Werte z, = 0, z,, ..., 2¢ = oco. Daher wird die Wahr-
scheinlichkeitsdichte im arithmetischen Mittel gegen die diskrete Verteilung

w(z) = % ZO; Nz — zn) (2.22)

streben. Wir wollen diese diskontinuierlichen Losungen, die typisch fiir gitter-
kommensurable Wellen in periodischen Ketten sind, als nullte Ndherung zur Be-
handlung von Stéreffekten in unendlichen Gittern ausschliessen, weil sie nicht
modulo 1 eindeutige Losungen der Dyson-Schmidt-Gleichung sind.

§ 3. Differenzenform der Dyson-Schmidt-Gleichung

Um eine der storungstheoretischen Behandlung addquate Form zu erhalten,
fiihrt man eine passende mittlere Masse m, ein und ersetzt z — 1/(2 — m, x — 2)
n (2.8):

W(2—-mox—z /dmg ) W(z — (m — me) x) + C. (3.1)

Falls eine Taylorentwicklung des Integranden erlaubt ist und alle Momente der
Massenverteilung existieren, wird
L —

2 —mygr — z

o]

) =W — =3l Ugmp an (2) W) (3.2)

n=1




Vol. 36, 1963 Methode zur Losung der Dyson-Schmidt-Gleichung 575

wobel

(dymys = (m— o) — [ dm g(m) (m — mo)». (3.3)

Fiir Kristalle, deren Massenverteilung nur wenig von der scharfen Verteilung ab-

weicht, sind die Momente (4, m)” bei geeigneter Wahl von m, klein, so dass die
rechte Seite storungsméissig beriicksichtigt werden kann.

Zunichst wollen wir die obige Funktionalgleichung in eine Differenzengleichung
verwandeln. Gelingt es, die im allgemeinen nichtlineare Rekursion z,_ .1 = ¢(2:) zu
losen und die Losung z(n, z,) fiir beliebige » analytisch fortzusetzen, so wird mit
der Definition

W(z) = W(z(n, 2,)) = V(n),

W(p(z)) = W(z(n + 1,2,)) = V(n + 1)

der zweigliedrige Funktionalausdruck W(¢(z)) — W(z) in den Differenzenausdruck
V(n + 1) — V(n) umgeformt. Da wir die Lésung im periodischen Gitter (2.16) be-
reits kennen, kénnen wir die Substitution daraus ablesen:

Z — COST __cos(g — 1)
sint tge, 2= cosp £ (8.4)
wobel
COST = g = 1 — m;x
Mit der Definition
W(z) = W(PE‘“’(EE’S_;’).) = V(o) (3.5)
wird
1
W( 2 —myx — 2 )= V(Q_i_t)
und damit die Dyson-Schmidt-Gleichung
o (=) T —— [ 21t8T/2 \» da \»
V(e +17) — V() — C =n§(_n_3_ Gomp (ZEL2) (L2 Vv, 39

wobei das mehrdeutige W(z) durch die uniformisierende Variable ¢ (ein Bereich
— oo < 2 < oo wird auf die Strecke — /2 < p << ®/2 abgebildet) in das eindeu-
tige V(g) mit der Nebenbedingung

V(e +7) — V(o) =1 (3.7)
transformiert wird. Von dieser Form ausgehend wollen wir nun die Stérungstheorie

durchfiihren.

§ 4. Entwicklung der Verteilungsfunktion von binédren Kristallen
nach kleinen Storkonzentrationen c

Wir wihlen m, = m, (Hauptkomponente) und machen den Ansatz

V(e) = Vilo) + g Vile) + ¢* Vilo) + -+ -,
C == Ly +4q C, + ¢* C, + -



576 Werner A. Schlup H. P. A.

Wegen

wird somit (3.6)

o 1
V(9+T)—V(Q)—C=q;ﬁ(2ﬁ)"DnV(9), (4.2)
wobei
g = —%, f = etgt/2
und
d #
— Vatge
» = (gg)

ein Differentialoperator ist.
In der Stérungstheorie erhalten wir das schrittweise lésbare System von Diffe-
renzengleichungen mit Nebenbedingungen

Vole +7) — Vo(o) — Co =0,

Vile +7) — Vale) — Co = X 20" D, vy(),

— (4.3)
Vile + 1) — Vile) — Co = 3 28" D (o)
usw o
Vole + @) — Vile) =1,
Vile + 7)) — Vi(e) =0, (4.4)
Vile + 1) — V(o) =0
usw
Die formale Losung von (4.3a) und (4.4a) lautet
Vole) = 2+ P, ale), Co=—, (4.5)

wobei P, (o) eine periodische Funktion mit den Perioden 7 und = darstellt. Wenn
7 und 7 inkommensurabel sind, ist P, (o) = Const, die gleich Null gesetzt werden
darf, so lange die Normierung von V(p) offen bleibt. Im Gegensatz dazu wird die
Losung fiir die Nullmenge kommensurabler 7 und z, das heisst 7 = z P/Q und
P, Q relativ prim, mehrdeutig, da P, ,(0) eine beliebige periodische Funktion mit
der Periode /Q sein kann, die zusammen mit p/s nicht abnimmt. Fiir  — oo oder
7|7 irrational verschwindet diese Mehrdeutigkeit. Nach einer Bemerkung von § 2
haben wir die sdgezahnférmige periodische Funktion P, .(p) auch fiir rationale 7/n
durch die Konstante zu ersetzen. Ahnliche Beitrige in héheren Ordnungen (Lésung
der homogenen Gleichung) miissen konsequenterweise ebenfalls ausgenommen wer-
den.
Damit wird die Lésung in nullter Ordnung

Vale) =&, Co=—. (4.6)
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Die allgemeine Losung der Differenzengleichung

V(e +17) — V(o) = R(g) = } Rae™™"¢ (4.7)
lautet, falls 7/ irrational ist:
3 R, 2ing
V(e) = P.(0) + % R, + 2 -e'gmeT_—l- (4.8)
n=0

Sie kann nur dann der Nebenbedingung V(e + n) = V(o) geniigen, wenn

/2
1
R, =+ [ R(g) do = 0 (4.9)
~n/2
ist und wird folglich
V(p) = Const + Z g;ﬁ——z}% . (4.10)
n#0

Falls der Imaginirteil von 7 nicht verschwindet, kann der Nenner in eine geometri-
sche Reihe entwickelt und die Summe iiber # ausgefithrt werden; man erhilt da-
durch die bekannte iterative Lisung der Differenzengleichung (4.7).

Die Gleichung (4.3b) und die Nebenbedingung (4.4b) lisst sich nach Einsetzen
von (4.6) folgendermassen schreiben:

1

Vile+7) —Vile) —Cf = —In(1 +if + ipe??) (4.11)
Vil +m) — Vile) =0, (4.12)

wobel
Vile) = J Vile), Ci=]Cy. (4.13)

Vi{e) und Cf kann man fiir beliebige komplexe x bzw. 7 analytisch fortsetzen, falls
man die Bedingung (4.9) durch Deformation des reellen Integrationsweges nach
negativ imagindren g-Werten verallgemeinert.

Somit wird

Ct = — - In(l +4p) (4.14)

eine abgesehen vom Logarithmus in der x-Ebene zweideutige analytische Funktion
mit den Verzweigungspunkten x = 0 und x = x;, = 4/m,. Sie kann zweideutig fir
x> x, (bzw. x < 0) fortgesetzt werden. Ihr Wert am oberen Ufer ist 1 — & J/x/(x — x,)
bzw. am unteren Ufer 14 ¢ }/x/(x — x,). Da nach dem Saxon-Hutner-Luttinger-
Theorem fiir x ausserhalb des Intervalls 0 << x << 4/m,,,;, keine Eigenfrequenzen
existieren, hat nur der Beitrag auf dem oberen Ufer einen physikalischen Sinn, oder
die analytische Fortsetzung hat fir J x > 0 bzw. 0 < Rr <@, J 7> 0 zu ge-
schehen. Man kann diese physikalische Losung auf die ganze x-Ebene bzw. auf den
Halbstreifen 0 << R << 27, J v > 0 ausdehnen, wenn man den Schnitt von x = 0
nach x = x, fithrt. In diesem Sinne ist C; der Schnittwert am oberen Ufer der
x-Ebene, wihrend der Schnittwert am unteren Ufer dem konjugiert Komplexen
entspricht, so dass C, im wesentlichen der Funktionssprung auf dem Schnitt ist.



1 +1ﬁ iﬂe”" iﬁgi(l,J—l) iﬁei(ll-i—"'%-ln)r
zﬁ 615111' 1 + 'Lﬁ 'I;ﬁ ezflzr Zﬁ gi(i2+"'+1n)r
’tﬁ ei(11+1=)f iﬁeilgr 1 + 1[3 Z‘B 8i(l3+"'+ln)r
o~ 1
— In
I W P, L
iﬁ ei(ll+1!+---+ln,1)‘r 1 e 1/‘8 Zﬁ 61'1%1
_ g—hg 61( et T R 6-210 ezlnr 1
1+£ﬁ iﬁgillr iﬁei(llanl zﬁe (4 + +lp-1)T
'Zﬁ eil,r 1 + @,3 ’Lﬁ eiler i ,8 gt(lz +lga)T \
zﬁ ei(l, + )T iﬂ eilgr 1 4 1'}3 zﬁ ei(ls+"'+ln—1)f
. 2 o ln . " . . . !
11)12’“.1”_1:1?[
1+if  ifein
'l'rﬁ ei(l, R o N T - 3ﬂ eiln_lr 1 _,_ ’tﬁ

578 Werner A. Schlup ' H. P. A.

Oder als Grenzwert geschrieben wird (fiir die héheren Ordnungen C,, C,, . . . ist
ein kleiner Imaginirteil 4 > 0 zur Konvergenzerzeugung wichtig)

C,=HmJ Cf|, 44 (4.15)
6—+0
Mit (4.14) wird die Gleichung (4.11) fiir V!
1 ) —2i
Vile + ) — Vile) = Rile) = 7 In(1 + 555 7). (4.16)

Da im physikalischen Blatt J ¢ > 0 ist, kann man die partikuldre Losung durch
Iteration von (4.16) finden:

Vi) = 3 Rile — 7). (4.1

Die Losung der homogenen Gleichung entfillt nach einer fritheren Bemerkung;
daher lautet die Losung in erster Ordnung:

(4.18)

:__Z'ln(l + 1+ﬁz,8 e¥ilr e ¥ie)

Im Appendix wird durch vollstindige Induktion bewiesen, dass sich die Losung
in n-ter Ordnung folgendermassen darstellen ldsst:

. (4.19)

.(4.20)
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V(o) =Um] V(o) |4 is- (4.21)

§d—>+0 3

C,=1HmJ C}|, ;4. (4.22)
d—>+0

firn=1,2,3,...,
wobei || a; || der Hauptminorenquotient einer quadratischen Matrix ist:

. a]n
Produkt aller Hauptminoren der Ordnung »n, n — 2, n —4,..., (4.23)
Produkt aller Hauptminoren der Ordnung # — 1, n — 3, n —5, ...,
. Apy
zum Beispiel
A1 G153 A3
B Hes @ Ay Ao Aaz| " A1y " Ao * A3
11 12 13
A3y A3y A3z (4.24)
Ao Gax oy = a;, a (ay, a Ayy @ )
11 12 11 13 22 23
A3y A39 Az . :
Ag1 Ago Az A33 A3s A3

Damit haben wir die Dyson-Schmidt-Gleichung stérungstheoretisch exakt ge-
16st, das heisst die Losung in jeder Ordnung explizite angegeben. Exakt im eigent-
lichen Sinne wire die Lsung erst dann, wenn man die Konvergenz der Reihen (4.1)
nachweisen konnte. Die Losung in Form der Hauptminorenquotienten ist typisch
fiir eine Clusterentwicklung, die sich physikalisch in einfacher Weise interpretieren
lasst. Sie ergibt ein Eigenfrequenzspektrum, das fir leichtere Stératome m, < m,
eine komplizierte Storlinienstruktur aufweist.

Um die Verbindung zur funktionentheoretischen Methode (siehe !),2)) herzustel-

len, werde der Erwartungswert Ieiner frequenzabhingigen Funktion ¢(x), die fiir
reelle, positive x analytisch ist, berechnet:

= [ $(xdc) . (4.25)
d
Fiihrt man die in der geschlitzten x-Ebene analytische Funktion
C+=Ci4+qCH+¢*C5 +--- (4.26)
mit
o 1 x . V,—qf(x———x)
Cof = “;ln(z';g — 1 —|—2z-—;;~—-—)

ein, so lasst sich (4.25) als komplexes Integral

$=— 37 § $(x) dC+(x) (4.27)
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schreiben, weil

CHx — i 8) = c+¥(x + 1 6) (4.28)

ist und sich daher die imaginidren Beitrige wegheben. Der Weg ist so zu wihlen,

dass er die Strecke 0 << x < 4/myy;,, auf der alle Eigenfrequenzen liegen, im positi-
ven Sinne umféihrt.

§ 5. Diskussion

In den vorhergehenden Kapiteln wurde gezeigt, dass die Dyson-Schmidt-Glei-
chung fiir kleine Abweichungen von der scharfen Massenverteilung periodischer
Gitter approximativ gelost werden kann. Die Frequenzverteilungen erhidlt man
dann in Form von Potenzreihen, die Spektralmittelwerte (zum Beispiel die Mo-
mente) termweise exakt berechnen lassen. Das beweist die Ubereinstimmung mit
der von der Entwicklung der Mittelwerte ausgehenden funktionentheoretischen
Methode. Obwohl die Wahrscheinlichkeit eine nichtnegative Grosse ist, treten bei
derartigen Entwicklungen lokal negative Wahrscheinlichkeitsdichten auf, die erst
durch selektive Summation iiber alle Ordnungen (TAKENO05), LANGER'®)) verschwin-
den. Man kann aber auch ausgehend von der Clusterentwicklung durch geeignete
Regularisierung Spektralverteilungen mit negativen Wahrscheinlichkeiten, wenig-
stens in gewissen Parameterbereichen, vermeiden.

Da der Verteilung des Auslenkungsquotienten im Gegensatz zu den Auslenkun-
gen selbst physikalisch keine Bedeutung zukommt, wurde sie nicht nidher unter-
sucht. Immerhin steht sie in einem engen Integralzusammenhang mit der Vertei-
lungsfunktion von #,_, #%,.

Die Beschrinkung der Dyson-Schmidt-Gleichung auf eindimensionale Gitter ist
grundsitzlich. Man kann jedoch fiir die Berechnung der Frequenzverteilung ein ein-
dimensionales Modell fiir ein mehrdimensionales Gitter finden, wenn man sich auf
(kubische) Kristalle beschrinkt, deren Diagonalwechselwirkung sehr klein ist. Wird
dieses Verhiltnis nur in erster Ordnung beriicksichtigt, so entspricht der Kristall
einer linearen Kette, deren Atome zusitzlich harmonisch an den geometrischen
Gitterplatz gebunden sind. Das Frequenzspektrum des gewohnlichen ungeordneten
Kristalls wird dadurch ein wenig nach hoheren Frequenzen verschoben, wahrend
die Liicke am unteren Spektralrand durch Beitrdge in héherer Ordnung ausgefiillt
wird. Diese Niherung kann physikalisch nur dann brauchbar sein, wenn der Schub-
modul klein gegeniiber dem Elastizitdtsmodul ist.

Herrn Prof. A. Thellung danke ich fiir wertvolle Hinweise und anregende
Diskussionen. Diese Arbeit wurde durch finanzielle Unterstiitzung seitens des
«Schweiz. Nationalfonds» ermdéglicht.

Appendix .
Induktionsvoraussetzung: Die Ergebnisse (4.19) und (4.20) seien wahr fiir die
Indizes 1, 2,..., n.
Induktionsbehauptung: Sie gelten dann auch fiir den Index » + 1.

Beweis: V} ,, Ct , folgen aus der Differenzengleichung
o 2 Bym
Vieale + 7 — Viele) — G = X 28" b vig) (A1)

m=1
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und der Nebenbedingung
Vitile +7) — Vi) = 0. (A.2)

Die rechte Seite von (A.1) wird

R;+1(9) —Chp1= V?:(QI(Q)) — Vo), (A.3)
wobel
tgo'(0) = tgo + 26 ‘
oder
e~21e'(e) . T if 4 (1 —ip)e-2ie - (A4)

1+ ip +ipe-tie

Die notwendige Bedingung (4.9) kann man, da in R+(p) nur natiirliche Potenzen
von e~%%e quftreten, umformen:

Ry — R*(e~%¢ — 0) . (A.5)
Also wird
— Cipr = V(e = Tjr"—ﬁg-) _ Ve e = 0). (A.6)

Der letzte Term verschwindet, da der Hauptminorenquotient einer » X #-Matrix,
deren letzte Zeile an; = 0w (I = 1, 2, . . ., n) ist, wegen bekannten Sitzen iiber die
Berechnung von Determinanten gleich 1 ist.

Ebenso leicht verifiziert man, dass der Hauptminorenquotient unverdndert
bleibt, wenn man irgendwelche Spalten oder Zeilen mit nicht verschwindenden
Konstanten multipliziert; daher stimmt der erste Term mit dem Ergebnis (4.19)
tiir den Index # -+ 1 iiberein. Damit ist die Induktion fiir C;' bewiesen.

Wir zeigen nun, dass

L <= ’tﬁ Zﬁ etht o @,8 gt +in)T ,”3 ettt in)e
B et 14+if ... ifelerthr ;g pilat-thr
1
—In |
by 4 iﬁ eilﬂt 1fﬁ g”ﬂ"
iﬁ ei(l1+n-+ln)‘r T:ﬂ ei(lg+"‘+ln)r o + zﬁ iﬁ
p— 6—21:9 ei(lx‘l‘ et ip)T . 8_21,‘9 ei(lz"l‘""l“lvn)t o 8_21:9 1

ist, indem wir uns exp(R; ,(0) — C}, , + V;(g)) ausgerechnet denken. Dabei wer-
den durch C}, , die Hauptminorenfaktoren kompensiert, welche die # + 2-te Reihe
nicht enthalten, desgleichen von. V}(p) diejenigen, welche die #n 4- 1-te Reihe nicht
enthalten. Doppelt kompensierte Terme (sowohl # + 1 als auch # + 2 nicht ent-
haltend) treten als reziproke Faktoren wieder auf. Die Ubereinstimmung des Pro-

duktes der Restfaktoren mit exp V' }(o'(0)) folgt aus der Giiltigkeit der Determinan-
tenbeziehung:

(A.7)
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1 _;_@'ﬁ iﬁeillr o z«ﬁei(11+---+ln)r z’ﬁei(ll+---+ln)r
z‘ﬁ e*h® 1+1p .- ittt g ittt
zﬁe it =t bl iBeft AT ] 4L i B

—_— 6_21’9 ei(ll+"'+tn)t _ 6-—2i9 ei(12+"'+ln)t — 8_2129 1

1+ “3 . 0. 15 ettt o+l ”g ettt tin)T
Tfﬂ eiht L 7/[3 ei(12+"'+1n—1)f @ﬁ gi(la+"'+ln)f
zﬁ gi(l1+"‘+ln—1)7 L. 1 + zﬁ T’ﬁ g’iln"

(i — (1 —ip) ey it Fhr (i (1 —if)e )™ 1 +if+ife ™"

Aus RY | folgt die iterative Losung

u-i—l 12 Rn+1 _—ln—%lT) (A.9)
ﬂ+1—'
die nach der Umformung mit dem oben erwihnten Satz iiber Hauptminorenquo-
tienten in die Gestalt (4.20) fir den Index #» + 1 gebracht werden kann. Damit ist
auch die Induktion fiir ¥ (p) bewiesen. Wegen der Verankerung der Induktion fiir
#n = 1 durch die Resultate (4.14) und (4.18) ist der Beweis fiir die allgemeine Losung
(4.19) und (4.20) geliefert.
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