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Uber ein zweidimensionales klassisches Konfigurationsmodell

von Franz Rys
ETH, Zirich¥)

(3. XII. 62)

1. Einleitung

In der Statistischen Mechanik ist es sehr niitzlich, an Hand von Modellen das
Phinomen der Phasenumwandlung zu untersuchen. Dazu sind zwei Voraussetzun-
gen notig: einmal sollen fiir das Modell die thermodynamischen Grossen als Funk-
tion von dusseren Variabeln, wie Temperatur, Druck, Magnetfeld usw., bestimmbar
sein. Zweitens soll eine Phasenumwandlung auftreten.

Bis heute sind erst drei statistische Modelle bekannt, die diese beiden Voraus-
setzungen erfiillen: Das Bose-Einstein-Gas, das Sphirische Modell und das Ising-
Modell des Ferromagnetismus bei Abwesenheit des dusseren Magnetfeldes (vgl. 1)2)3)).

Das im folgenden behandelte Modell (F-Modell) ist ein Konfigurationsmodell
auf einem quadratischen Gitter. Die Energie ist nur abhingig von der Konfigura-
tion; es tritt kein dynamischer Term auf. Die Anzahl der moglichen Konfiguratio-
nen wird durch bestimmte Zwangsbedingungen eingeschriankt. Die Beschreibung
des F-Modells erfolgt in Abschnitt 2. Das F-Modell weist eine grosse Ahnlichkeit mit
dem Ising-Modell auf, die im Abschnitt 3 beschrieben wird. Daraus ergibt sich die
Moglichkeit einer Tieftemperaturentwicklung (Abschnitt 4). Ferner ldsst sich ganz
analog zum Ising-Modell eine lange Reichweite der Ordnung fiir tiefe Temperaturen
beweisen (Abschnitt 5). Es gelingt auch, eine Operatormethode zu entwickeln, die
im Abschnitt 6 beschrieben wird. Es kénnen einige allgemeine Aussagen iiber die
Methode des grossten Eigenwertes des Operators gemacht werden; fiir endliche
Streifenbreiten (# = 2, 4 und 6) wird ferner die exakte Losung angegeben. Im Ab-
schnitt 7 wird eine Ndherungsmethode entwickelt, und im Abschnitt 8 werden
einige Schlussfolgerungen gezogen.

2. Definition und Erlduterungen

Das F-Modell ist auf einem zweidimensionalen quadratischen Gitter (G) defi-
niert. Dieses Gitter habe N Gitterpunkte (GP). Auf jedem Verbindungsstrich (St7)
eines GP mit seinen 4 Nachbarn befindet sich ein Atom (4). 4 kann 2 beziiglich der
Str-Mitte symmetrische Lagen einnehmen, sitzt also stets in der Ndhe eines GP. Auf
N GP entfallen 2 N Str und damit 2 N A’s, das heisst im Mittel gehéren zu jedem
GP 2 A’s. Die Vorschrift des Modells verlangt nun, dass genau 2 A’s in der Nihe
jedes GP sitzen. Jeder GP bildet mit seinen beiden A’s zusammen eine GP-Anord-

*) Gegenwartig: Institut de Physique, Université de Genéve, Genéve.
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Fig. 1

nung. Betrachtet man einen GP fiir sich, so sind 6 verschiedene GP-Anordnungen
moglich (vgl. Fig. 1).

Die Gesamtheit der Anordnungen aller N GP des Gitters bilden eine Gitterkon-
figuration (Konf.). Die Anordnungen sind jedoch nicht unabhingig voneinander,
denn jedes A trigt zu den Anordnungen beider GP bei, die der betreffende Sir ver-
bindet.

Ohne die Vorschrift, dass jedem GP genau 2 A’s benachbart sind, wire die totale
Anzahl verschiedener Konfigurationen gleich 22V. Diese Zahl wird nun durch die
Vorschrift betriachtlich reduziert.

Jedem GP wird ferner eine Energie zugeordnet, die von der Anordnung abhingig
ist, und zwar setzt man fiir:

Anordnung Nr. 1, 2, 3, 4 (Symbol 0) die Energie &,,
Anordnung Nr. 5 (Symbol —) die Energie ¢,,
Anordnung Nr. 6 (Symbol +) die Energie &, .

Die totale Energie einer Konfiguration setzt sich additiv aus den Energien der

einzelnen GP zusammen:
N

E gons = Zs(k) (1)
E=1
(k: GP-Index). ‘
Es tritt keine Wechselwirkungsenergie auf; dafiir bestehen Zwangsbedingungen
fiir die Konfigurationen.
Das Problem der statistischen Behandlung des Modells besteht nun in der Be-

stimmung der Zustandssumme

Z = Y e ExonlkT 2)
e

Eine Gitterkonfiguration ist eindeutig gegeben durch die Grosse ¢; in jedem GP
(7=1,2,...,N);0;kann die Werte 0, — 1 und + 1 annehmen und entspricht dem
in Tabelle 1 eingefithrten Symbol der Anordnung. Die Vorschrift ldsst sich nun
durch die g; ausdriicken. Lings einer jeden Zeile bzw. Kolonne diirfen auf ein 41
beliebig viele 0 und hierauf nur ein — 1 folgen und umgekehrt. Die 0 ist gewisser-
massen durchsichtig.

Die totale Konfigurationsenergie ldsst sich nun schreiben:

E=(N—S)eo+Se;,=Negy+ (e, — ) S, (3)

N
52.51"611. (4)

wobei
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Wir unterscheiden nun zwei Fille:

a) & > & . Der Zustand kleinster Energie (Grundzustand) ist durch S = N ge-
geben. 4 und — wechseln lings jeder Zeile und Kolonne ab (+ —-Feld). Der erste
angeregte Zustand besteht aus 4 quadratisch angeordneten 0 im + —-Feld. Die
hoher angeregten Zustinde lassen sich systematisch angeben, ganz analog wie beim
Ising-Modell. Dies fithrt zu einer Tieftemperaturentwicklung, die im Detail im Ab-
schnitt 4 dargestellt ist. Der Entartungsgrad aller dieser Zustdnde betragt 2.

b) &y < &,. Der Grundzustand S = 0 besteht aus lauter 0 (0-Feld). Wie weiter
unten ersichtlich sein wird, betriagt der Entartungsgrad 2"+" = 4VN (fir m = n),
schrumpft aber auf 1 zusammen, wenn nur eine Zeile und eine Kolonne durch lauter
Vorzeichen besetzt ist. Die innere Struktur des Modells ist in diesem Fall durch den
Rand wesentlich beeinflusst. Eine Tieftemperaturentwicklung ist nach dem Muster

des Falles a) nicht moglich. Aus diesen Griinden werden wir diesen (pathologischen)
Fall nicht weiter behandeln und uns auf den Fall a) beschrianken.

Um uns von den unbequemen Randpunkten zu befreien, die in jedem endlichen
ebenen Gitter auftreten, spannen wir G auf einen Torus auf. Dies bedeutet, dass jede
Zeile und jede Kolonne in sich geschlossen wird. Dazu dquivalent ist ein anderes
Verfahren: Man identifiziert in einem ebenen Gitter die 1. mit der (m -+ 1)-Zeile und
die 1. mit der (# + 1)-Kolonne (Periodizitdtsbedingung).

Nimmt man an, dass N sehr gross sei, so ist es sehr wahrscheinlich, dass in jeder
Zeile und jeder Kolonne ein 4 (und daher auch ein —) vorhanden ist. Dann legen
aber alle im Gitter vorhandenen 0 eindeutig die Anordnung fest. Die Zeile, die durch
eine 0-Anordnung geht, legt nimlich durch das nichste ldngs dieser Zeile auftre-
tende Vorzeichen die 4’s auf beiden waagrechten S## der Anordnung eindeutig fest,
und ebenso das Kolonnenvorzeichen die 4’s auf den senkrechten Str.

Obige Annahme ist durch die grosse Zahl N gerechtfertigt. Die Anzahl der Vor-
zeichen des Gitters sei oo N, wo « sehr klein aber endlich sei. Dann entfallen im Mit-
tel («/4) YN Vorzeichen auf jede der )N Zeilen und Kolonnen. Diese Zahl ist gross fiir
grosse N, das heisst das Auftreten einer Zeile oder Kolonne mit lauter 0 ist beliebig
unwahrscheinlich. Tritt eine solche doch auf, so ergibt dies bloss einen Faktor 2
in der Konfigurationsanzahl fiir jede 0-Zeile oder -Kolonne.

3. Die Graphenmethode. Vergleich mit dem Ising-Modell

Um eine systematische Charakterisierung der verschiedenen Zustdnde zu erhal-
ten, verwenden wir zweckmaissig passende Graphen. Diese Methode beruht wesent-
lich auf der Giiltigkeit des folgenden Satzes.

Man zieht zunichst durch alle GP mit 0-Anordnung (von Quadratmitte zu
Quadratmitte) einen zum Gitter G diagonal verlaufenden Strich, und zwar durch

jene beiden Quadranten, auf deren Rand entweder beide zum GP gehoérende A’s
oder keine A’s sitzen (vgl. Fig. 2).

* % A %

Fig. 2
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Die Gesamtheit aller Diagonalstriche einer Konfiguration nennen wir einen
Graphen. Dann folgt der Saiz:

Jeder Graph besteht aus geschlossenen Linienziigen, die aus Diagonalstrichen be-
stehen. Zu jeder Konfiguration gehort ein Graph, wihrend zu jedem Graphen 2 Konfigu-
rationen gehiren.

Zum Beweis betrachten wir ein elementares Gitterquadrat und numerieren die
4 A’s auf dem Quadratumfang. Die 16 moglichen Lagen lassen sich alle hinzeichnen
und die Behauptung, dass niemals ein D-S#r im Quadrat enden kann, im einzelnen
verifizieren. Aus Symmetriegriinden sind jedoch nur die 4 Méglichkeiten in Figur 3
wesentlich verschieden:

N /

N ™

Wir erhalten daraus die Aussage, dass in ein Quadrat 0, 2 oder 4 S¢» hineinragen
kénnen. Dies gilt fiir jedes Gitterquadrat, und daher gibt es keine Endpunkte der
Linienziige.

Diese geschlossenen Figuren befinden sich auf einem gegeniiber dem urspriing-
lichen Gitter um 45° gedrehten Diagonalgitter (DG). Das DG besteht aus beiden
Diagonalen aller Quadrate des urspriinglichen Gitters G.

Fig. 3

Ne
N\ N/ N 7/ N7
1 » b ¢ X x
.3 VRN 7 N /s 7N
N N 7 N 7 /
X X X x | G,
P 7 N 7 N\ N (
/ N i \)t/ \)(/ \)(/
/)'( / 7 N\ VAR 4
\)‘/ N N 7 \)(/
N /J'(\ /X\ /N <€Z
N/ / N L/ \N 7 N\ 7
x x x X
/7 N s\ /7 N\ VRN /N

Fig. 4

Die Gitterpunkte des DG sind die Quadratmittelpunkte von G (Fig. 4). Wie
ersichtlich, ist dieses DG ein quadratisches Doppelgitter; es besteht aus der Uber-
lagerung eines einfachen quadratischen Gitters mit dessen dualem.

Formal ausgedriickt:

DG =G, QO Gy (5)

Ein geschlossener Linienzug eines Graphen befindet sich ganz auf einem der beiden
Ubergitter G; die Schnittpunkte der Gitterstriche von G, mit jenen von G, sind
identisch mit den GP des Gitters G.
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Da nun durch jeden GP kein oder nur ein Diagonalstrich gehen kann (einer,
wenn die Anordnung dieses GP mit 0 bezeichnet ist), diirfen sich die Linienziige auf
G, nicht mit jenen auf G, schneiden. Dagegen kénnen sich Linienziige auf demselben
Ubergitter gegenseitig schneiden,

Betrachtet man die Tieftemperaturentwicklung des Ising-Modells, so ldsst sich
bekanntlich jede Gitterkonfiguration durch einen Graphen darstellen. Eine Ising-
Konfiguration ist nimlich dann gegeben, wenn in jedem Gitterpunkt eines qudra-
tischen Gitters der Spin angegeben wird (+ 1 oder —1). Rahmt man nun alle
— 1 = Spins ein, indem man jedes Paar benachbarter ungleicher Spins in der Mitte
senkrecht durchschneidet, so ordnet man dadurch jeder Gitterkonfiguration einen
Graphen in eindeutiger Weise zu, der nur aus geschlossenen Linienziigen besteht.
Zum Unterschied zum F-Modell befindet sich ein Ising-Graph vollstindig auf einem
einfachen quadratischen Gitter.

Vergleicht man nun die Ising-Konfigurationen mit den F-Konfigurationen auf
einem Gitter mit N GP, so sieht man, dass es offenbar weitaus mehr Ising- als
F-Konfigurationen gibt. Das DG des F-Modells besteht aus G, und G,, welche je
N/2 Gitterpunkte enthalten. Setzt man zum Vergleich beider Modelle G, und G,
nebeneinander an und bildet so ein einfaches quadratisches Gitter mit N GP, solassen
sich die F-Graphen mit den Ising-Graphen vergleichen. Ein Ising-Graph kann aus
allen moglichen Arten geschlossener Linienziige aufgebaut sein, wihrend ein F-
Graph nur dann erlaubt ist, wenn sich entsprechende Linien auf G, und G, des
Doppelgitters gegenseitig nicht schneiden.

Die Energie einer Konfiguration ist fiir beide Modelle gegeben durch die Linge /
aller Linienziige eines Graphen. Beim Ising-Modell sei die Energie so normiert, dass:

Jedem Paar ungleicher Nachbarn entspricht ein Strich mit Einheitslinge im Graph;
daher ist die totale Konfigurationsenergie gegeben durch:

Egms=1"¢. (7)
Fiir das F-Modell sei:
e(0) =g,
(8)
e(+) =¢e(—)=0

Jeder 0-Anordnung entspricht ein Strich im Graph; also ist auch hier:
EKO?lf = l *E.
Die Zustandssumme lautet beim Ising-Modell:

a) e >0:
2N
7 = Eg(n; N) x"; x = ¢ **7, (9)

n=0
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b) e < 0:
Z=x""N 3'g(n; N) £*V",

= x7*N }¢(2N — n; N) x*, (10)
gn, N) = g(n); x = e l°lI*T

Fir das Ising-Modell ist wegen:

g2 N —n) =g(n), (11)
also:

Zy =122, (12)

das heisst beide Zustandssummen unterscheiden sich nicht wesentlich, sondern nur
bis auf eine additive Konstante in der Energie.

Fir das F-Modell ist diese Beziehung zwischen den Fillen a) und b) #nichf mehr
giiltig. Dies ist schon aus den beiden Grundzustinden ersichtlich. Der Grundzu-
stand im Falle a) ist zweifach entartet und besteht aus alternierend verteilten -+
und —. Dagegen ist der Grundzustand im Falle b) hochgradig entartet. Der zuge-
horige Graph besteht aus einem Gewirr von geschlossenen Linienziigen, wobei durch
jeden GP genau eine Diagonallinie hindurchgeht. Die Grundkonfiguration besteht
aus lauter 0-Anordnungen. Fiir jede Zeile und jede Kolonne sind je 2 Méglichkeiten
vorhanden, indem ndmlich stets zu jeder Kette von Anordnungen lings einer Zeile
eine zweite Kette gehort, die durch Vertauschen simtlicher A’s mit den Leerplitzen
in der Zeile entsteht. Daher betrdgt der Entartungsgrad:

omtn — 4VN (4 — p) (13)
fiir ein m - n-Gitter,
m-n=N. (14)

4, Tieftemperaturentwicklung

Aus der Ahnlichkeit des F-Modells mit dem Ising-Modell ergibt sich die Méglich-
keit einer Tieftemperaturentwicklung. Der Entwicklungsparameter ist:

X — eue/kT’
(15)
¥, =00=0; %(T =mo0)=1. }

Die Zustandssumme lautet:

Z = 3 e ExonltT, 2)

wobei iiber alle erlaubten Konfigurationen summiert wird.
Sie lasst sich auch schreiben:

N
e e~ ETDRT (16)

(I"}) bedeutet, dass iiber alle erlaubten Graphen mit der Strichldnge / summiert wird.
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Der Faktor 2 vor der Summe ist die Vielfachheit der Konfigurationen beziiglich
eines Graphen und ist von / unabhingig. Im folgenden wird er weggelassen, da er
keinerlei physikalische Bedeutung hat.

Fiir die Energie gilt:

- E(IN)=1-¢, (17)

das heisst, die additive Konstante der Energie wurde so gewihlt, dass

€ =¢(—) =0,
(+) = &(-) } @
e0) =e.
Zudem wird der Fall
>0 (18)
angenommen. Daher ist:
N
Z=)"gl, N % (19)
=0

mit den Bezeichnungen:
g(!, N) = Anzahl I} im Gitter mit N GP .

Der tiefste angeregte Zustand ist offenbar durch ein Quadrat mit Einheitskan-
tenldnge auf dem DG gegeben. G, und G, haben je N/2 GP, so dass es je N /2 Mog-
lichkeiten fiir die Lage eines Quadrates gibt:

g4, N)=2-

N
5 =N. (20)

Fiir den nédchst héheren Zustand (Rechteck 2 - 1) ist:
g6, N) =2N. . (21)

Diese beiden Anzahlen g(4, N) und g(6, N) stimmen mit den entsprechenden Werten
des Ising-Modells iiberein, da die entsprechenden Graphen nur aus einem einzigen
Linienzug bestehen und deshalb keine Uberschneidungen auftreten. Erst fiir I = 8
tritt ein Unterschied auf; fiir einen Graphen kommen nun folgende Linienziige in
Frage:

n==8

414

I's,1

I's2 Is3
Fig. 5

Die Anzahlen dieser verschiedenen Graphen sind in Tabelle 2 angegeben.
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Tabelle 2
g Ising F
g(Il's,1) 2N 2N
g(Is,2) N N
8(I's,3) 4N 4N
N(N — 5
g4+ 4) b(—2——L
gla+4); Fa44 _N_(_Ii_s)
ganz auf G, oder G, 2 \2
g(la+4); Ma 44 ﬂ(ﬁ_zg)
auf G, und G, 2 12
Total NS MY

Fiir = 10, 12 und 14 sind diese Anzahlen im Anhang dargestellt.
Diese Anzahlen ergeben die ersten Terme der Entwicklung der Zustandssumme
nach x:

N(N + 5

Ze=1+Nat + 2N a0 + 0, ) x84 2 N2 g0

(22)
4+ 5 (N 4 27N — 82) 51 £ N(N* + 5N+ 6) a1 + -

Bildet man die Zustandssumme pro Teilchen, so hat man die N-te Wurzel aus Zr zu
ziehen. Dies ergibt:

Ap(x) =1 4+ 24 + 2 2% + 348 + 2410 — 9 x12 12414, ., . (23)
Fiir das Ising-Modell ist (vgl. 4)):
Ais(2) =1 + 24 + 2 x°% + 528 + 14 210 44 212 - 152 x4, .. . (24)

Daraus lisst sich die Entwicklung der Energie und der spezifischen Wiarme nach x
berechnen. Bekanntlich ist:

E=kT2(-dl;—§—A)N:ex(dlng)N. (25)
% = (Z—?—)N = (log x)? (x2 d2;Z§A + x dl;f‘d ) . (26)
Dies ergibt:
T4 (1434 5 a0 — 4l 2w, (27)
und
%:16x4(1+-2—x2+10x4—123x8+ﬂx10...). (28)
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5. Lange Reichweite der Ordnung

Fiir das Ising-Modell hat vAN DER WAERDEN?) noch vor der exakten Behandlung
durch ONSAGER®) gezeigt, dass eine lange Reichweite der Ordnung fiir Mischkristalle
(und daher auch fiir Ising-Ferromagnetika) existiert, falls die Temperatur geniigend
klein ist.

Dieser Satz ldsst sich unmittelbar auf das F-Modell iibertragen. Betrachtet man
zum Beispiel ein Gitter von 108 - 108 GP (wie in %)), so gilt zunéichst der Sa¢z 1:

Die Anzahl der moglichen Linienziige mat der Linge | auf dem DG betrigt hichstens

O"N,l = N . 3l . (29)

Tatsdchlich ist diese Anzahl wegen des Verbotes von Uberschneidungen fiir das
F-Modell noch kleiner als fiir das Ising-Modell. Daraus folgt aber a fortiori der
Satz 2 (in 3)):

Die gesamte relative Wahrscheinlichkeit des Auftretens von Graphen aus Linien-
ziigen wal der Linge | < 40 ist kleiner als der 2 - 108-te Teil der relativen Wahrschein-
lichkeit der Graphen, bei denen keine solchen Linienziige vorkommen.

Dabei wurde fiir x der Wert ¥ = 1/12 angenommen, um einen konkreten Fall
vor Augen zu haben.

Zum Beweis gibt der Autor eine obere Schranke fiir die relative Wahrscheinlich-
keit an:

Wrel(l = 40 2 l H S8 3 "V 40+1/]k" X (40 + ) kg

(k
# (0, . )

(30)
o (l4f3N-(3x)“ -y o

~

2-108 °

Fiir das F-Modell ist diese Abschitzung ebenfalls richtig, da ja die ay ; nach Satz 1
gegeniiber dem Ising-Modell noch unterboten werden.

Im Anschluss an die bei vaAN DER WAERDEN folgende Diskussion folgt auch fiir
das F-Modell, dass fiir grosse N die Anzahl der gegeniiber dem Grundzustand falsch
besetzten Stellen sowie 0-Anordnungen verglichen mit N verschwindend klein ist.
Dies gilt fiir alle Graphen, die mit nicht verschwindender Wahrscheinlichkeit auf-
treten.

Beim Ising-Modell kann man zudem eine Unordnung fiir hohe Temperaturen
folgern. Es ist ndmlich moglich, eine konvergente Hochtemperaturentwicklung an-
zugeben. Die lange (im Grenzfall unendlich lange) Reichweite der Ordnung bricht
also bei einer kritischen Temperatur zusammen. Damit ist aber die Existenz minde-
stens eines Umwandlungspunktes gezeigt. Die Betrachtung iiber die lange Reich-
weite liefert zudem empirisch (nach vAN bER WAERDEN?®)) einen guten Wert fiir den

kritischen Punkt:
%o is 22 0,46 . (31)

Der exakte Wert liegt bei:

C'LS

=0414...=]2—1. (31')

Leider ist es fiir das F-Modell nicht méglich, eine analoge Uberlegung anzustellen.
Es ist nicht erwiesen, ob fiir hohe Temperaturen die lange Reichweite der Ordnung
zusammenbricht oder ob sie wegen den herrschenden Zwangsbedingungen aufrecht
erhalten bleibt. Fiir das F-Modell lisst sich daher auf diese Art nicht entscheiden,
ob eine Umwandlung existiert.
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6. Die Operatormethode

KrAaMERS und WANNIER?) (und unabhingig davon LASSETTRE und HoOWwE?))
gelang es zum ersten Mal, die Zustandssumme des Ising-Modells als grossten Eigen-
wert eines hermiteschen Operators auszudriicken. ONSAGERS®) 16ste hierauf das zwei-
dimensionale Ising-Modell exakt. Fiir das F-Modell ist es gelungen, einen analogen
Operator anzugeben, dessen grosster Eigenwert die Zustandssumme darstellt. Ana-
log zum Ising-Modell spannt man das quadratische Gitter G auf einem Zylinder auf,
wobei die Zeilen (mit je #» GP) ringf6rmig angeordnet werden, wihrend die Kolonnen
axial verlaufen. In den GP sind die Anordnungen -+, 0 und — gemdss der Vorschrift
des Modells angegeben. Der erste und der (m + 1)-Zylinderring werden miteinander
identifiziert, das heisst der Zylinder wird zu einem Torus geschlossen. Die Anzahl der
GP sei wieder N = m - #n. Lings der Zylinderachse sei nach dem Zeilenring z%
(! =1,2,..., m)einer Signatur ¢ definiert als n-Tupel von Zahlen s{ mit s = 4 1
(1=1,2,...,n). Dabei gehort sgl) zur j-ten Kolonne und bezeichnet die erste GP-
Anordnung s 0 lings dieser (j-ten) Kolonne auf den Zeilenringen z;, 2;_1, 2,_2, . . .
Die 0-Anordnungen werden also als durchsichtig betrachtet. Man nimmt nun an,
dass der Zylinder bereits geniigend lang ist (! sehr gross), damit in jeder Kolonne
mindestens einmal ein GP-Symbol = 0 angetroffen wird.

Durch Angabe aller Signaturen ¢ ( = 1, 2, . . ., m) ist eine Gitterkonfiguration
vollstindig gegeben. Das Paar von aufeinanderfolgenden Signaturen ¢ und ¢¢*1
bestimmt nidmlich eindeutig die Anordnungen aller GP auf dem dazwischenliegen-
den Zeilenring 2;.

Die Zustandssumme lisst sich in der Form darstellen:

Z =) yuyt... yom - (32)
(Konf)
mit:
y — =) -eORT _ % (32)

o; ist die Anzahl von Anordnungssymbolen = 0 lings des Zeilenringes z; (j = 1,

2, ..., m). Die Summe erstreckt sich nur iiber alle erlaubten Gitterkonfigurationen.
Z kann nun formal geschrieben werden:
— Z‘ (oV ‘ H ’ @) (¢® 1 H \ @) e (o™ ‘ H ’ oMy . (33)

.....

Dabei muss H die beiden Bedingungen erfiillen:
1. Es diirfen nur erlaubte Ringkonfigurationen auftreten. Dies bedeutet, dass
auf einen Vorzeichenwechsel, zum Beispiel

s =4+ 1sit) = —1
(entsprechend dem Zeilensymbol z{) = -+ 1), lings einer Zeile als nichster nur ein
umgekehrter Vorzeichenwechsel folgen darf:
s = —1 st = 41
(was z{) = —1 entspricht). Bleibt ein Vorzeichen gleich:
si) = s D,

so entspricht dies dem Zeilensymbol z{) = 0.
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2. Ferner muss gelten:
(o‘(j) [ H | 0(""'1))' =3 T=1,2c00M):
Folgender symmetrischer Operator erfiillt 1. und 2.:

H=I+y ) (PQi— QP + ¥ 3 Py, Py 0+ CuFe 0o, Pu)

= L en

+ Y (P1QeQn + Q1 Pyr - Pa).

Der Einfachheit halber nimmt man # geradzahlig an: n = 2 ».
Dabei sind die Operatoren Px und Q definiert als:

1

Py o($1, « « vy Sky s + ) 84) = -{2-81.: 0(Sy, .« vy — Sky« - -, Sn) (35)
1 —

085 5 v 4 5 5is o o Sm) == 28'“ oSy, .- — Sk, ..., Sa) . (35)

Man sieht sofort, dass H der Bedingung 1) geniigt; ferner ist die Anzahl der Vorzei-
chenwechsel, die ein Summand von H bewirkt, gerade gleich dem entsprechenden
Exponenten von y; das heisst auch 2) ist erfiillt.

P und Q werden dargestellt durch:

- (38): 0= (33)

das heisst die Py und Q lassen sich darstellen als direkte Produkte:

Ppr=1xIx:+++xPx---x1,
(36")
Qe=IX1X»s=sXQ X==2 X1,

Zu jedem Summand in H ist noch ein entsprechender hermitesch konjugierter Ope-
rator hinzuaddiert; weil zudem H reell ist, bedeutet dies, dass H symmetrisch ist.
Daraus folgt, dass simtliche Eigenwerte von H reell sind. Fiir die Zustandssumme
ergibt sich daher:

91

Z=SpH" =X (37)

1=1

Sei A, der grosste Eigenwert von H. Dann ist:

Z=2"g (1 +y (%“—)m) . (37')

g, ist der Entartungsgrad von A,; das heisst Ax/4; < 1.
Im Limes m — oo ergibt sich fiir die Zustandssumme /1 pro Teilchen:

A =lmZ"" = 2, - limgy™. (37")

m—>oc0 m—>oQ
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Zur Bestimmung von / muss man also erstens den Entartungsgrad g, bzw.

y = limgy™
W —> 00
und zweitens den grossten Eigenwert A, kennen.

Betrachtet man nun einen Vektor mit nicht negativen Koeffizienten in der Basis
der ¢ im V#") («nicht-negativer Vektor»), und wendet darauf den Operator H an,
so entsteht wieder ein nicht-negativer Vektor, weil H nur nicht-negative Matrix-
elemente besitzt. Die Komponenten eines nicht-negativen Vektors kénnen nun (als
nicht-negative Zahlen) aufgefasst werden als Wahrscheinlichkeiten der statistischen
Gesamtheit von Zustdnden o.

Nach dem fundamentalen Entwicklungssatz einer Matrix nach ihren Eigen-
werten gilt:

on

G| H|k) =D 1, e el (38)
p=1

p numeriert alle Eigenwerte bzw. -vektoren. m-malige Anwendung von H ergibt:
on

(¢ } H™ | k) == Zlf ) P (38')
p=1

Fiir sehr grosse m wird schliesslich der urspriingliche Vektor in den Eigenraum zu
grosstem Eigenwert A, projiziert, vorausgesetzt dass ersterer nicht orthogonal auf
dem Eigenraum steht. Geht man zum Beispiel vom Vektor

on
.t — ! (k)
6-—W(1,1,...,1)—Wk§1’(7 (39)

aus, so ist er bestimmt nicht orthogonal zum Eigenraum zu 4,.
Folgender Satz von FrRoOBENIUS?) enthilt einige allgemeine Aussagen iiber den
grossten Eigenwert einer nicht-negativen Matrix:

Satz: Fiir eine Matrix A in n Dimensionen mit lauter nicht-negativen Elementen
(nicht-negative Matrix) ist der grisste Eigenwert A, stets nicht-negativ. A, ist genau
dann k-fach entartet, falls samiliche Hauptminoren (n—1)-, (n —2)-, ..., (n —k+1)-
Grades der Matrix

AA) =4 — 1E

verschwinden. A, = 0 nur dann, falls simtliche Ausdriicke von der Form a,,,
Ayp Ay - - - VEYSChwinden.
Fir H folgt daraus wegen A, = 1:

A >0. (40)
Ferner gilt folgender
Satz: Zum grissten Eigenwert einer symmetrischen M atrix gibt es eimen micht-
negativen Eigenvektor.
Bewers: Der grosste Eigenwert 4, ist gegeben durch

Ay =sup xi Hix 2 (> 0). (41)

l=xl=1
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Sei nun ¢ ein Eigenvektor zu A;:

Ao=& Hix by (41"
Dann ist auch (s = | &:|,7 =1,2,...,2" ein Eigenvektor zu 4,, denn aus:
lxtHikxk‘gl%i{Hiklxk!; (Hir = 0)

folgt:

sup x; Hix 2 = supx; Hix % .

T=ll=1 lz]]l=1
Daher ist:

S Hiwbx = i Hig e = Ay - (41")

Die Komponenten des Vektors % kénnen also als Wahrscheinlichkeiten aufgefasst
werden. :
Uber H lassen sich ferner einige weitere spezielle Aussagen machen. Der Opera-
tor besitzt verschiedene Symmetrien, die aus der Definition leicht ersichtlich sind.
1. H kommutiert mit dem Operator 7" der Vorzeichensumme der Signaturen:

[H, T]=0. (42)

T @{8isseral) =t-luvnwela) s =Y 8, (42"

Die Eigenvektoren von T sind die Basisvektoren o.
H lisst daher alle Unterrdume U; invariant, welche durch alle Basisvektoren
mit dem festen Eigenwert ¢ aufgespannt werden. £ nimmt die » 4 1-Werte an:

t=—n, —u+2...,—2,02,...,n—2,n.
Die Dimension A; von U, betrigt:

Agz(f_t). (42")

2

Falls der grosste Eigenwert von H nicht entartet ist, kann der zugehorige Eigenvek-
tor nur in !, liegen, denn zu jedem Eigenvektor in U, (¢ = 0) gehort ein zweiter in
U_; mit demselben Eigenwert.

2. H ist symmetrisch beziiglich der Gruppe D, der Diederpermutationen der
n Argumente s; der Signaturen ¢. D, wird erzeugt durch die 2 Elemente 4 und B:

D,={A-B; A"—E, B*—=E, B'AB=A4"}.

Die irreduzierten Darstellungen sind ein- und zweidimensional. Unter den eindimen-
sionalen Darstellungen gibt es:

a) die identische: A =8=[1j,

b) ferner: A=(1), B=(—1.

Fiir geradzahliges # gibt es ferner die zwei weiteren eindimensionalen Darstellungen:
) A=(=1), B=(1),

d) A=(—1), B=(—1).
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Ferner gibt es (fiir #» gerade) noch m/2 — 1 verschiedene zweidimensionale Dar-
stellungen:

; () o)

wobei ¢ eine primitive m-te Einheitswurzel ist.

D, ist im Raum V@ hochgradig reduzibel dargestellt und zerfillt in ein- und
zweidimensionale irreduzible Bestandteile. Es gilt der

Satz: Vektoren, die zu indquivalenten irreduziblen Darstellungen gehioren, sind
gegenseitig orthogonal.

Der oben eingefiihrte Vektor e (Gleichung (39)) gehort zur identischen Darstel-
lung von D,; da aber der Eigenvektor # zum grossten Eigenwert 4, (Gleichung
(41")) nicht orthogonal auf ¢ stehen kann, gehort er dem Unterraum zur identischen
Darstellung an.

Weitere Aussagen iiber H lassen sich nur erhalten, wenn man die spezielle Form
des Operators untersucht. Fiir tiefe Temperaturen und ¢ > 0 ist der grésste Eigen-
wert nicht entartet; der entsprechende Eigenvektor gehort dem Unterraum 2, an.
Um dies zu zeigen, entwickelt man H nach Potenzen von x = ¢~¢*T) = 1/y:

S H=H™ 4+ x2 H=D 1 ... 1 2 g L gO (34")
Dabei ist:
H®" =P1Qy P, 10, t hc.,
(n-2) __ 3K
H — 2 Pm1 era Pﬂn-—3 Qan_2 + h.c..

Oy <t < Oy g

Nun entwickelt man auch den Eigenvektor und den Eigenwert nach Potenzen von
%% und vergleicht die entsprechenden Koeffizienten der Eigenwertgleichung:

(H(n) + x2 H" 9 4 xa g4 4 .. Y (vo + 2wy + xbuy - ) 13)
= (Ao + 22 yy + 22 A4+ -+ ) (vp + 220, + 22 0wy--0).

Dies ergibt zunéchst:
H(n) Uo == Ao vo . (43’)

Man sieht leicht, dass folgende Eigenvektoren zu H™ gehéren:

py =gt —vred ot (=4 o=}, }(44)
oo ={(+ — -+ =)= (=F- =)}

Die entsprechenden Eigenwerte sind 1 (von v,,) und —1 (von v,,). Ferner gibt es
noch alle iibrigen Signaturen, welche Eigenvektoren von H®™ zum Eigenwert 0
sind. Fiir den grossten Eigenwert A(x) muss auch 4, maximal sein, das heisst:

Ay=1 1wmd v3= ¥, (45)

offenbar ist:
T vy =0, dasheisst v,ell,. (45")
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Daraus folgt aber bereits, dass wegen [H, T] = 0
v ="y, + %20y + €Wy (46)

n U, liegt und dass 4 nicht entartet ist, solange die Reihenentwicklung nach x kon-
vergiert, das heisst fiir tiefe Temperaturen (siehe unten). Es ist jedoch mdéglich,
dass auch fiir hohe Temperaturen der Eigenvektor zum grossten Eigenwert nicht
entartet ist. Ist dies jedoch nicht mehr der Fall, so wire damit die Existenz eines
(bzw. mindestens eines) Umwandlungspunktes gezeigt.

Aus dem Koeffizientenvergleich lassen sich ferner die ersten Glieder der Ent-
wicklung der Zustandssumme angeben. Es ist:

Xg- H™ Vo= Ao Up —>Vp = Vo1, Ao=1, (43I)
x¥y  HEH Vor + H™ vy = A5 091 + v, . (43")
Mit
7)2=0”}01+137)02+‘}"U;’ (45)
wobei
('Ué Uo1) = (Ué Uoz) = ('an Uoz) = { (451)
ist, das heisst
H(n) Vg = & UO]_ - ﬁ Vo2 - (43”)
Ferner ist, formal ausgedriickt:
w=H(""2’v01=2{(+ s e MOE . ol e e ] +h.c-)}, (47)
=1
daher

(w 7’01) = (w Vo) = 0,
somit

01901_57)024‘1”:“7)01“‘6”02‘f—vé‘f—}»evm-
Daraus folgt:

Vg = LUy + @, (431”)
wobei

o unbestimmt, A, = 0 (48)

ist. (48) ist in Ubereinstimmung mit der Tieftemperaturentwicklung nach der Gra-
phenmethode (vgl. (22)).
Fiir den nichsten Koeffizienten ergibt sich:
xt: HP gy - H® (g vy 4+ w) + H® vy = 4,00 + Ao 4 . (43™)
Daraus
Ay = (Voy 1 H=4 [ Vo1) + (Vo | o Lans | Vo1) (49)
+ (Vo1 | H#3 ‘ w) + (Vo | H" l V) — (Vo1 74) -

Die ersten beiden Summanden sind einzeln = 0; die letzten beiden addieren sich
zu 0, und es ergibt sich:

A= (o | H"? | w) = |w|*=n. (49')
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Die Entwicklung der Zustandssumme lautet daher:
Z=AMx)y=14+nx*~+4 -, (50)

was genau der Tieftemperaturentwicklung entspricht.

Fiir hohe Temperaturen ldsst sich jedoch die Berechnung der Zustandssumme
auf diese Art nicht durchfiihren.

Fiir endliche # (n = 2, 4 und 6) lassen sich die exakten L&sungen ohne grosse
Miihe explizit berechnen.

Fir den Fall n = 2 ergibt sich:

10 00
{01 420 .
B=1094,10 (51)
00 0 1
Die Sikulargleichung lautet:
det(H —AE)=(1—A)2[(1 —4)2— 94 =0. (52)
Sie hat die Losungen:
=149 A=1—9% Lh=A=1. (52")

Der grosste Eigenwert 4, ergibt die Zustandssumme pro Teilchen:

Ay) = |1 + 5. (52")
Daraus ergibt sich die Energie und die spezifische Wirme:
E__ v . C_ (& \__2y
e 1+ T“(M) (149792 ° 58]

E und C bleiben stetig und glatt, so dass kein Umwandlungspunkt auftritt.

Fiir den Fall » = 4 sucht man nicht alle Eigenwerte von H zu bestimmen, son-
dern niitzt die oben erwdhnten Symmetrien aus. Man klassifiziert die Basisvektoren
beziiglich der Eigenrdume U; des Operators T (vgl. Tabelle 3).

Tabelle 3
Wt (o 4] Up (== =)
b + 4= [ — =
(4 e o= o) (— =+ )
Wy -+ 1) S e =
(—+ + +) (+——-)

[ (% 4 =)

(—+ + -)

==+

BT i =2 o

(- +—]

( e

I
o
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Weiter beniitzt man die Tatsache, dass der grosste Eigenwert von H zum Eigen-
raum der identischen Darstellung der Diedergruppe gehort. Folgende 6 Vektoren
spannen diesen Unterraum auf (vgl. Tabelle 4).

Tabelle 4
wy, = (++++H)elly; woy=(————)el,,
wy =g [+ + =)+ (= H) (= + H) (= + + ek,
By el — — o] B o] Bl F o~ —p e - — —JEN,
By = o £ ——f + = 2 + =} 24 — £+ 4 b— — Hiel,
w02=]/%[(+—+—)+(—+—+)]6u0.

Man sieht sofort, dass w,, w,, w_, und w_, Eigenvektoren von H sind. Die zuge-
horigen Eigenwerte lauten:

2.4:1, 12:1—%‘35/2, 2_2:1+3y2, 11_4:1. (54)

Im Unterraum, der durch w,, und w,, aufgespannt wird, hat H die Form:

1+ 2y2 [/§ 2 (547
4 |/§ y: 1 4 4 . |
Die Eigenwerte lauten:
1i1=1+y2+9§j:|/9y4—y“+%8- (54")
Vergleicht man nun die 6 Eigenwerte miteinander, so ergibt sich der grosste:
21=1+y2+%i+y21/9—y2—|—y?4. (54™)

Er ist nicht entartet und gehort zu U, (fiir alle Temperaturen).
Die Zustandssumme als Funktion von x lautet (mit verschobenem Energienull-
punkt)

Z(x) =A%) =1 + 22 + 22 + |/1 — 422 + 36 2%, (55)
Oder, nach Potenzen von x? entwickelt:
Ax) =1+ a0 420 4. (55')

Esist zu beachten, dass der Koeffizient von x2 gleich 0 ist, was auch aus der exakten
Tieftemperaturentwicklung folgt.

36 H.P.A. 36, 5 (1963)
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Fiir die Energie erhédlt man den Ausdruck

E 1 -+ 18 »2
— =4 x |1 2 x2 . 56
: x(+ x+]/1—4x2+36x4) (56)
Nach x entwickelt:
Eoamfo2epont). (56')

Fiir diesen Fall » = 4 sieht man also, dass der grésste Eigenwert nicht entartet ist
und der zugehorige Eigenvektor in U, liegt. Dies gilt fiir alle Temperaturen, das
heisst fiir 0 < x < 1.

F-Modell Ising-Model/
10r 107 ‘
£ £
[ i £
N t4
- 06t g6}
(exakie
04 04t 2-dim.Ldsung)
g2 92t
02 04 06 08 10
N —
Fig. 6

Vergleich der Konfigurationsenergien des F-Modells und des Ising-Modells

Der Fall » = 6 fithrt auf die Losung einer kubischen Gleichung. Der grosste
zu U, gehorige Eigenwert bzw. die sich daraus ergebende Energie als Funktion von %
ist zusammen mit jener fiir » = 2 und #» = 4 in Figur 6 dargestellt. Die Kurven
zeigen nur ein geringes Anwachsen der maximalen Steigung fiir wachsendes #. Der
Vergleich mit den Kurven fiir das Ising-Modell [# = 2, 4 und 6 und exakte Kurve
(n = oo)] ergibt ein Indiz dafiir, dass die Steigung der Energie des F-Modells im
Grenzfall # = co endlich bleibt, dass also kein Umwandlungspunkt auftritt.

7. Eine Nidherungsmethode

Auf Grund der in Abschnitt 3 gezeigten Ahnlichkeit des F-Modells mit dem zwei-
dimensionalen Ising-Modell ergibt sich die Moglichkeit einer Ndaherungslésung fiir
das F-Modell. Man betrachtet beide Modelle auf dem Doppelgitter des F-Modells,
indem man das quadratische Gitter des Ising-Modells in 2 kongruente Teile G, und
G, spaltet und diese dual aufeinander legt. Ein Ising-Graph besteht aus geschlosse-
nen Linienziigen, die beliebig auf G; und G, liegen diirfen, wihrend fiir einen
F-Graphen die Vorschrift besteht, dass sich die Linienziige auf G, nicht mit jenen
auf G, schneiden. Diese Vorschrift l4dsst sich exakt fiir die Menge aller jener Graphen
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formulieren, die aus einzelnen Strichen mit Einheitslinge bestehen («Dimere») und
deren Gesamtlinge / gegeben ist («Dimer-Graph»).

Durch jeden der N Schnittpunkte der Ubergitter G, und G, diirfen ohne Vor-
schrift 0, 1 oder 2 Dimere gehen, wihrend nach Vorschrift nur O oder 1 Dimer gehen
darf.

Die Anzahl Dimer-Graphen mit Gesamtlinge / betrdgt fiir die beiden Fille:

a) mut Vorschrift: 71 N1
A"”:li;;’lnli: W= (57)
b) ohne Vorschrift:
2]
! NI
Ao G ! :z;; 21l -2 (N—1+212 " (58)
Fiir den Bruchteil p
K{l, N) =% (59)
. . 012
ergibt sich:
1 ! 1 ! _
%=Ful—3. 7—3, N—-i+12 (60)

(siehe ERDELYI)).
Da kein geschlossener Ausdruck fiir 1/K existiert, verwendet man die Methode
des grossten Summanden.

Dann ist " i
= =5(), wobei € _.=0, (61)
- w(l — p)(1-v) Noe ,
S(Z) — [ (2 a)oc (T) s 1 a)(v—2a) (1 —y + a)(l—v.l..a) ] ) 2= N % (61 )
Dies ergibt: i
oc(w):?(l—{—v——l/l—}-2v~—v2), (617)
also erhalten wir schliesslich
1 ; . E
ya als Funktion von: » = —

Die Ising-Konfigurationen der Linge ! bilden eine Untermenge der Menge der
Dimer-Graphen (der Gesamtlinge /). Man macht nun (im Sinne der Niherung) den
Ansatz fiir die Anzahl Gr(/, N) der F-Konfigurationen mit der Linge /:

Gr(l, N) = K(i, N) - G(I, N) , (62)

G(l, N): Anzahl der Ising-Konfigurationen.
Die mikrokanonische Konfigurationsentropie pro GP als Funktion der Energie
ist gegeben durch:

s(, N) = = logg(l, N) = klogy(») , (63)

wobei:




556 Franz Rys H.P A,

Der Ansatz der Naherung bedeutet also:

1 /
Y sr(l, N) = logy — logo (62"

mit

Die Entropie des Ising-Modells ergibt sich bekanntlich aus der exakten Zustands-
summe. Es ist

logy = logAd — vlogx, (64)
dlogy _ ' ’
— = logx . (64')
Aus (64) und (64') folgt
' y = x 21084 (64")
dx

Fiir das F-Modell ergibt sich die zu (64') analoge Gleichung:

dlogy dlogo
dy dv

+ logx = 0. (65)

Fasst man nun fiir beide Modelle x als Funktion der Energie » auf, so lautet (65):

log e (v) = log zus(y) — 2870 (65

oder
1 - n
1) = () - oy g ) (65")

Die Energie des Ising-Modells ist bekanntlich eine monoton wachsende Funktion
der Temperatur (also auch von x). Es ist:

dv . ax(v)

e 0, .-. —— = 0, (66)
ausser am kritischen Punkt, wo

dv ) dx(v) /

T s g =1 (66")

Fiir das F-Modell ergibt sich im Sinne der Ndherung:

dlog xp dlog xis d?logo

v dv + v (67)
Da nun aber
d’logg 4 v 1= v 4 )
dv? _W[l—-v v — 2a(v) ]>0 i)

fiir den ganzen Variationsbereich der F-Energie ist, so gilt fiir alle Temperaturen:

dxp
dy

>0, (69)

das heisst dv/dx bleibt endlich. Damit tritt aber keine Singularitidt der spezifischen
Wirme auf.
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Die Reihenentwicklung der Niherung fiir kleine x ergibt fiir die Energie:

Byt 5 447
FS =4x4(1+3x2+%x4—ﬁx6---) (70)
Die exakte Entwicklung lautet:
L (1 302500 — 4l a1, (70')

Ob diese Methode das F-Modell im wesentlichen richtig beschreibt, ldsst sich nicht
entscheiden. Jedenfalls wird die Funktion gg(l, N) fiir grosse /, das heisst I ~ N
vom richtigen Wert nur wenig abweichen; fiir tiefe Temperaturen ist hingegen die
Abweichung grosser.

8. Schlussfolgerungen

Eine exakte Losung, wie sie fiir die drei eingangs erwihnten Modelle gefunden
werden konnte, lisst sich fiir das F-Modell nicht angeben. Auch die Frage nach dem
Auftreten eines Umwandlungspunktes kann nicht endgiiltig beantwortet werden.
Einige Hinweise deuten jedoch darauf hin, dass keine Phasenumwandlung auftritt.
Die Konfigurationsenergie der Gitterstreifen mit Breite » = 2, 4 und 6 nihert sich,
fiir wachsendes #, weniger rasch einer Kurve mit senkrechter Tangente, als dies
beim Ising-Modell der Fall ist. Ferner ergibt sich aus dem vorgeschlagenen Nihe-
rungsverfahren, dass es zweifelhaft ist, ob die «richtige» Korrektur der Konfigu-
rationsentropie fiir das F-Modell eine Umwandlung ergibt. Schliesslich ist die Ver-
mutung, dass fiir hohe Temperaturen die weitreichende Ordnung zusammenbricht,
durch nichts gerechtfertigt, und die Moglichkeit einer solchen Ordnung auf Grund
der Natur der Zwangsbedingungen durchaus vorhanden.

Zum Schluss sei hier meinen beiden Lehrern, Prof. M. FiErz und Prof. R. Josr,
sowie den ibrigen Mitgliedern des Seminars fiir theoretische Physik an der ETH,
vor allem Herrn Dr. M. KUMMER, herzlichst fiir die hilfreichen Diskussionen gedankt.
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Anhang

Tabelle einiger Graphen

l Graph gising(l, N) gr(l, N)
4 ] N N
6 ] 2N 2N
N(N — 5 N(N — 9
8 0 [ ( 5 ) ( 5 )
] 2N 2N
:lj 4 N 4N
N N
; N(N + 9) N(N 4 5)
Total: —— ——
0 [] [ 2NN — 8) 2 N(N — 14)
I 2N 2N
G 4N 4N
l_l__Ll 4N 4N
| ,:l 8 N 8N
2N 2N
_,—_I 8 N 8N
Total: 2N(N + 6) 2 N?
12 ][0 ﬁ(N2—15N+62) ﬂ(1\72—27N+194)
6 6
1 [ N(@2 N — 23) 2 N(N — 20)
] ] 2NN — 11) 2 N(N — 19)
}1 ] 4 N(N — 10) 4 N(N — 18)
] NN — 12) N(N — 20)
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l Graph gising(l, N) gr(l, N)

12 | | 2N

_‘_I I_U_J 8N;8N
’J 2N;8N
__J_‘ LI_IJ 8N; 4N

N:4 N
In
J Ll 8N;4N
LI L[
|—| b —I_‘_‘ 4N;8N
0 L e
_|_|J _I‘L_l 4N; 4N
| I Ijl‘| 4N;8N
- F' F 4N;8N
T
l ‘ | 2N;4N
FI [4]] 4N;N
Total: 124 N 124 N
N N
Total: (I = 12): o (NT+ 39N +224) o (N* + 27N — 82)

Differenz g;(12, N) — gp(12, N) = Ay, = 2 N(N + 26)

! = 14: Analog: Differenz g;(14, N) — gp(14, N) = 4,, = N(16 N 4 124)
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