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Über ein zweidimensionales klassisches Konfigurationsmodell

von Franz Rys
ETH, Zürich*)

(3. XII. 62)

1. Einleitung

In der Statistischen Mechanik ist es sehr nützlich, an Hand von Modellen das
Phänomen der Phasenumwandlung zu untersuchen. Dazu sind zwei Voraussetzungen

nötig : einmal sollen für das Modell die thermodynamischen Grössen als Funktion

von äusseren Variabein, wie Temperatur, Druck, Magnetfeld usw., bestimmbar
sein. Zweitens soll eine Phasenumwandlung auftreten.

Bis heute sind erst drei statistische Modelle bekannt, die diese beiden
Voraussetzungen erfüllen: Das Bose-Einstein-Gas, das Sphärische Modell und das Ising-
Modell des Ferromagnetismus bei Abwesenheit des äusseren Magnetfeldes (vgl.r)2)3)).

Das im folgenden behandelte Modell (F-Modell) ist ein Konfigurationsmodell
auf einem quadratischen Gitter. Die Energie ist nur abhängig von der Konfiguration

; es tritt kein dynamischer Term auf. Die Anzahl der möglichen Konfigurationen
wird durch bestimmte Zwangsbedingungen eingeschränkt. Die Beschreibung

des F-Modells erfolgt in Abschnitt 2. Das F-Modell weist eine grosse Ähnlichkeit mit
dem Ising-Modell auf, die im Abschnitt 3 beschrieben wird. Daraus ergibt sich die
Möglichkeit einer Tieftemperaturentwicklung (Abschnitt 4). Ferner lässt sich ganz
analog zum Ising-Modell eine lange Reichweite der Ordnung für tiefe Temperaturen
beweisen (Abschnitt 5). Es gelingt auch, eine Operatormethode zu entwickeln, die
im Abschnitt 6 beschrieben wird. Es können einige allgemeine Aussagen über die
Methode des grössten Eigenwertes des Operators gemacht werden; für endliche
Streifenbreiten fn 2, 4 und 6) wird ferner die exakte Lösung angegeben. Im
Abschnitt 7 wird eine Näherungsmethode entwickelt, und im Abschnitt 8 werden
einige Schlussfolgerungen gezogen.

2. Definition und Erläuterungen

Das F-Modell ist auf einem zweidimensionalen quadratischen Gitter (G)
definiert. Dieses Gitter habe N Gitterpunkte fGP). Auf jedem Verbindungsstrich fStr)
eines GP mit seinen 4 Nachbarn befindet sich ein Atom fA). A kann 2 bezüglich der
Str-Mitte symmetrische Lagen einnehmen, sitzt also stets in der Nähe eines GP. Auf
N GP entfallen 2 N Str und damit 2N A's, das heisst im Mittel gehören zu jedem
GP 2 A's. Die Vorschrift des Modells verlangt nun, dass genau 2 A's in der Nähe
jedes GP sitzen. Jeder GP bildet mit seinen beiden A's zusammen eine GP-Anord-

*) Gegenwärtig: Institut de Physique, Université de Genève, Genève.
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nung. Betrachtet man einen GP für sich, so sind 6 verschiedene GP-Anordnungen
möglich (vgl. Fig. 1).

Die Gesamtheit der Anordnungen aller N GP des Gitters bilden eine Gitterkonfiguration

(Konf.). Die Anordnungen sind jedoch nicht unabhängig voneinander,
denn jedes A trägt zu den Anordnungen beider GP bei, die der betreffende Str
verbindet.

Ohne die Vorschrift, dass jedem GP genau 2 A 's benachbart sind, wäre die totale
Anzahl verschiedener Konfigurationen gleich 22N. Diese Zahl wird nun durch die
Vorschrift beträchtlich reduziert.

Jedem GP wird ferner eine Energie zugeordnet, die von der Anordnung abhängig
ist, und zwar setzt man für:

Anordnung Nr. 1, 2, 3, 4

Anordnung Nr. 5

Anordnung Nr. 6

(Symbol 0)

(Symbol —

(Symbol +)

die Energie e0,
die Energie e1,
die Energie et.

Die totale Energie einer Konfiguration setzt sich additiv aus den Energien der
einzelnen GP zusammen :

EKonf E/k) W
(fe: GP-Index).

Es tritt keine WechselWirkungsenergie auf; dafür bestehen Zwangsbedingungen
für die Konfigurationen.

Das Problem der statistischen Behandlung des Modells besteht nun in der
Bestimmung der Zustandssumme

Z JA e-EKonflkT
_

(Konf)
(2)

Eine Gitterkonfiguration ist eindeutig gegeben durch die Grösse Oj in jedem GP

fj 1, 2,.. N) ; aj kann die Werte 0,-1 und + 1 annehmen und entspricht dem
in Tabelle 1 eingeführten Symbol der Anordnung. Die Vorschrift lässt sich nun
durch die a ausdrücken. Längs einer jeden Zeile bzw. Kolonne dürfen auf ein +1
beliebig viele 0 und hierauf nur ein — 1 folgen und umgekehrt. Die 0 ist gewisser-
massen durchsichtig.

Die totale Konfigurationsenergie lässt sich nun schreiben :

wobei
E (N - S) e„ + 5 Sl N e0 + (e, - e«) S

s E\aA-

(3)

(4)
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Wir unterscheiden nun zwei Fälle:

a) e0 > sx. Der Zustand kleinster Energie (Grundzustand) ist durch S N
gegeben, -f- und — wechseln längs jeder Zeile und Kolonne ab (H Feld). Der erste
angeregte Zustand besteht aus 4 quadratisch angeordneten 0 im -| Feld. Die
höher angeregten Zustände lassen sich systematisch angeben, ganz analog wie beim
Ising-Modell. Dies führt zu einer Tieftemperaturentwicklung, die im Detail im
Abschnitt 4 dargestellt ist. Der Entartungsgrad aller dieser Zustände beträgt 2.

b) e0 < £i. Der Grundzustand 5 0 besteht aus lauter 0 (O-Feld). Wie weiter
unten ersichtlich sein wird, beträgt der Entartungsgrad 2m+n 4^N (für m n),
schrumpft aber auf 1 zusammen, wenn nur eine Zeile und eine Kolonne durch lauter
Vorzeichen besetzt ist. Die innere Struktur des Modells ist in diesem Fall durch den
Rand wesentlich beeinflusst. Eine Tieftemperaturentwicklung ist nach dem Muster
des Falles a) nicht möglich. Aus diesen Gründen werden wir diesen (pathologischen)
Fall nicht weiter behandeln und uns auf den Fall a) beschränken.

Um uns von den unbequemen Randpunkten zu befreien, die in jedem endlichen
ebenen Gitter auftreten, spannen wir G auf einen Torus auf. Dies bedeutet, dass jede
Zeile und jede Kolonne in sich geschlossen wird. Dazu äquivalent ist ein anderes
Verfahren: Man identifiziert in einem ebenen Gitter die 1. mit der (w-f-1)-Zeile und
die 1. mit der fnA- l)-Kolonne (Periodizitätsbedingung).

Nimmt man an, dass N sehr gross sei, so ist es sehr wahrscheinlich, dass in jeder
Zeile und jeder Kolonne ein + (und daher auch ein — vorhanden ist. Dann legen
aber alle im Gitter vorhandenen 0 eindeutig die Anordnung fest. Die Zeile, die durch
eine 0-Anordnung geht, legt nämlich durch das nächste längs dieser Zeile auftretende

Vorzeichen die A 's auf beiden waagrechten Str der Anordnung eindeutig fest,
und ebenso das Kolonnenvorzeichen die ^4's auf den senkrechten Str.

Obige Annahme ist durch die grosse Zahl N gerechtfertigt. Die Anzahl der
Vorzeichen des Gitters sei a N, wo a sehr klein aber endlich sei. Dann entfallen im Mittel

(a/4) YN Vorzeichen auf jede der ]/N Zeilen und Kolonnen. Diese Zahl ist gross für
grosse N, das heisst das Auftreten einer Zeile oder Kolonne mit lauter 0 ist beliebig
unwahrscheinlich. Tritt eine solche doch auf, so ergibt dies bloss einen Faktor 2
in der Konfigurationsanzahl für jede O-Zeile oder -Kolonne.

3. Die Graphenmethode. Vergleich mit dem Ising-Modell

Um eine systematische Charakterisierung der verschiedenen Zustände zu erhalten,

verwenden wir zweckmässig passende Graphen. Diese Methode beruht wesentlich

auf der Gültigkeit des folgenden Satzes.
Man zieht zunächst durch alle GP mit O-Anordnung (von Quadratmitte zu

Quadratmitte) einen zum Gitter G diagonal verlaufenden Strich, und zwar durch
jene beiden Quadranten, auf deren Rand entweder beide zum GP gehörende A 's
oder keine A's sitzen (vgl. Fig. 2).

* * -^ *
Fig. 2
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Die Gesamtheit aller Diagonalstriche einer Konfiguration nennen wir einen
Graphen. Dann folgt der Satz:

Jeder Graph besteht aus geschlossenen Linienzügen, die aus Diagonalstrichen
bestehen. Zu jeder Konfiguration gehört ein Graph, während zu jedem Graphen 2 Konfigurationen

gehören.
Zum Beweis betrachten wir ein elementares Gitterquadrat und numerieren die

4 A 's auf dem Quadratumfang. Die 16 möglichen Lagen lassen sich alle hinzeichnen
und die Behauptung, dass niemals ein D-Str im Quadrat enden kann, im einzelnen
verifizieren. Aus Symmetriegründen sind jedoch nur die 4 Möglichkeiten in Figur 3
wesentlich verschieden :

Fig. 3

Wir erhalten daraus die Aussage, dass in ein Quadrat 0, 2 oder 4 Str hineinragen
können. Dies gilt für jedes Gitterquadrat, und daher gibt es keine Endpunkte der
Linienzüge.

Diese geschlossenen Figuren befinden sich auf einem gegenüber dem ursprünglichen

Gitter um 45° gedrehten Diagonalgitter (DG). Das DG besteht aus beiden
Diagonalen aller Quadrate des ursprünglichen Gitters G.

VV

x

Fig. 4

Die Gitterpunkte des DG sind die Quadratmittelpunkte von G (Fig. 4). Wie
ersichtlich, ist dieses DG ein quadratisches Doppelgitter; es besteht aus der
Überlagerung eines einfachen quadratischen Gitters mit dessen dualem.

Formal ausgedrückt:
DG G10 G2. (5)

Ein geschlossener Linienzug eines Graphen befindet sich ganz auf einem der beiden
Übergitter G; die Schnittpunkte der Gitterstriche von Gj mit jenen von G2 sind
identisch mit den GP des Gitters G.
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Da nun durch jeden GP kein oder nur ein Diagonalstrich gehen kann (einer,
wenn die Anordnung dieses GP mit 0 bezeichnet ist), dürfen sich die Linienzüge auf
Gj nicht mit jenen auf G2 schneiden. Dagegen können sich Linienzüge auf demselben
Übergitter gegenseitig schneiden.

Betrachtet man die Tieftemperaturentwicklung des Ising-Modells, so lässt sich
bekanntlich jede Gitterkonfiguration durch einen Graphen darstellen. Eine Ising-
Konfiguration ist nämlich dann gegeben, wenn in jedem Gitterpunkt eines qudra-
tischen Gitters der Spin angegeben wird (+ 1 oder — 1). Rahmt man nun alle
— 1 Spins ein, indem man jedes Paar benachbarter ungleicher Spins in der Mitte
senkrecht durchschneidet, so ordnet man dadurch jeder Gitterkonfiguration einen
Graphen in eindeutiger Weise zu, der nur aus geschlossenen Linienzügen besteht.
Zum Unterschied zum F-Modell befindet sich ein Ising- Graph vollständig auf einem
einfachen quadratischen Gitter.

Vergleicht man nun die Ising-Konfigurationen mit den F-Konfigurationen auf
einem Gitter mit N GP, so sieht man, dass es offenbar weitaus mehr Ising- als

F-Konfigurationen gibt. Das DG des F-Modells besteht aus Gx und G2, welche je
N/2 Gitterpunkte enthalten. Setzt man zum Vergleich beider Modelle Gj und G2

nebeneinander an und bildet so ein einfaches quadratisches Gitter mit N GP, so lassen
sich die F-Graphen mit den Ising-Graphen vergleichen. Ein Ising-Graph kann aus
allen möglichen Arten geschlossener Linienzüge aufgebaut sein, während ein F-
Graph nur dann erlaubt ist, wenn sich entsprechende Linien auf Gx und G2 des

Doppelgitters gegenseitig nicht schneiden.
Die Energie einer Konfiguration ist für beide Modelle gegeben durch die Länge l

aller Linienzüge eines Graphen. Beim Ising-Modeii sei die Energie so normiert, dass:

«(++) «(--) o.

e(+ -) e(- A)=e.
(6)

Jedem Paar ungleicher Nachbarn entspricht ein Strich mit Einheitslänge im Graph;
daher ist die totale Konfigurationsenergie gegeben durch :

EKonf l • e ¦ (7)

Für das F-Modell sei:

e(0) ==£, Ì
(8)

e(+)=e(-)=0. j

Jeder 0-Anordnung entspricht ein Strich im Graph ; also ist auch hier :

EKonf l'E-

Die Zustandssumme lautet beim Ising-Modell:

a) £ > 0:
2 2V

Z 2Jg(n;N) x"; x e-slkT, (9)
M 0
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b) e <0:
Z x~ÎN£gfn;N) xÎN-",

x-ÌN £gf2 N - n; N) xn, ¦ (10)

gfn, N) gfn); x e^ellkT. \

Für das Ising-Modell ist wegen:

gf2 N - n) gfn) (11)
also:

X) X^Za), (12)

das heisst beide Zustandssummen unterscheiden sich nicht wesentlich, sondern nur
bis auf eine additive Konstante in der Energie.

Für das F-Modell ist diese Beziehung zwischen den Fällen a) und b) nicht mehr
gültig. Dies ist schon aus den beiden Grundzuständen ersichtlich. Der Grundzustand

im Falle a) ist zweifach entartet und besteht aus alternierend verteilten +
und —. Dagegen ist der Grundzustand im Falle b) hochgradig entartet. Der
zugehörige Graph besteht aus einem Gewirr von geschlossenen Linienzügen, wobei durch
jeden GP genau eine Diagonallinie hindurchgeht. Die Grundkonfiguration besteht
aus lauter 0-Anordnungen. Für jede Zeile und jede Kolonne sind je 2 Möglichkeiten
vorhanden, indem nämlich stets zu jeder Kette von Anordnungen längs einer Zeile
eine zweite Kette gehört, die durch Vertauschen sämtlicher yl's mit den Leerplätzen
in der Zeile entsteht. Daher beträgt der Entartungsgrad:

2m+n A^N (m n) (13)

für ein m ¦ n- Gitter,
m • n — N (14)

4. Tieftemperaturentwicklung

Aus der Ähnlichkeit des F-Modells mit dem Ising-Modell ergibt sich die Möglichkeit

einer Tieftemperaturentwicklung. Der Entwicklungsparameter ist :

(15)
*(T 0)=0; xfT oo) 1 J

Die Zustandssumme lautet:
Z £'e-EKonfl*T, (2)

wobei über alle erlaubten Konfigurationen summiert wird.
Sie lässt sich auch schreiben:

z z E Ee~E{r')lkr ¦ (16>
1 0 (f,)

ffi) bedeutet, dass über alle erlaubten Graphen mit der Strichlänge l summiert wird.
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Der Faktor 2 vor der Summe ist die Vielfachheit der Konfigurationen bezüglich
eines Graphen und ist von l unabhängig. Im folgenden wird er weggelassen, da er
keinerlei physikalische Bedeutung hat.

Für die Energie gilt :

E(r,) l-e, (17)

das heisst, die additive Konstante der Energie wurde so gewählt, dass

Zudem wird der Fall

angenommen. Daher ist:

*(¦+) e(-) 0

e(0) e

e > 0

Z Eg{l, N) A
t=o

(8)

(18)

(19)

mit den Bezeichnungen :

gfl, N) Anzahl T* im Gitter mit N GP

Der tiefste angeregte Zustand ist offenbar durch ein Quadrat mit Einheitskantenlänge

auf dem DG gegeben. G% und G2 haben je N/2 GP, so dass es je N/2
Möglichkeiten für die Lage eines Quadrates gibt:

N Ng(*,*f)=-- 2

Für den nächst höheren Zustand (Rechteck 2 • 1) ist:

g(6, N)=2N.

(20)

(21)

Diese beiden Anzahlen g (4, N) und g (6, N) stimmen mit den entsprechenden Werten
des Ising-Modells überein, da die entsprechenden Graphen nur aus einem einzigen
Linienzug bestehen und deshalb keine Überschneidungen auftreten. Erst für 1 — 8
tritt ein Unterschied auf; für einen Graphen kommen nun folgende Linienzüge in
Frage :

8

D D P4 + 4

|Ps,i

-T8.2

Fig. 5

rs,s

Die Anzahlen dieser verschiedenen Graphen sind in Tabelle 2 angegeben.
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Tabelle 2

g Ising F

g(rs,i) 2 AT 2 N
g(Ps,2) V N
g(Ps,s) 4iV 4 N

g(ri+i) N(N -
2

5)

g(ri+i) -, ri + i
ganz auf Gx oder G2 4(4-=)

g(ri+i)
auf Gj

;P4 + 4

und G2 4(4-')
Total N(N A- 9)

2
N(N A- 5)

2

Für Z 10, 12 und 14 sind diese Anzahlen im Anhang dargestellt.
Diese Anzahlen ergeben die ersten Terme der Entwicklung der Zustandssumme

nach x:

ZF 1 + N xi + 2 N x6 + N{N2+ 5)
xs + 2 N* x1»

+ X (N* + 27 N - 82) %12 + N(W + 5 Ar + 6) *14 +
(22)

Bildet man die Zustandssumme pro Teilchen, so hat man die iV-te Wurzel aus Zf zu
ziehen. Dies ergibt:

Apfx) 1 + x* y 2 xe A- 3 xs A- 2 x10 — 9 *12 + 12 xu (23)

Für das Ising-Modell ist (vgl. 4)) :

Aisfx) 1 + *4 + 2 x' + 5 xs A- 14 xw + 44 x12 + 152 *".... (24)

Daraus lässt sich die Entwicklung der Energie und der spezifischen Wärme nach x
berechnen. Bekanntlich ist:

*-"-XX„-"(XX- <25>

XffX^X'X^ + 'XX <"»

Dies ergibt:
£
e

und

4 *4 (1 + 3 x2 + 5 *4 - 41 xs + 21 x10. (27)

y 16 %4 (l + |- x2 + 10 x4 - 123 *8 + -^ *10 (28)
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5. Lange Reichweite der Ordnung
Für das Ising-Modell hat van der Waerden5) noch vor der exakten Behandlung

durch Onsager6) gezeigt, dass eine lange Reichweite der Ordnung für Mischkristalle
(und daher auch für Ising-Ferromagnetika) existiert, falls die Temperatur genügend
klein ist.

Dieser Satz lässt sich unmittelbar auf das F-Modell übertragen. Betrachtet man
zum Beispiel ein Gitter von 108 • 108 GP (wie in 5)), so gilt zunächst der Satz 1:

Die Anzahl der möglichen Linienzüge mit der Länge l auf dem DG beträgt höchstens

ocw>I N-3A (29)

Tatsächlich ist diese Anzahl wegen des Verbotes von Überschneidungen für das
F-Modell noch kleiner als für das Ising-Modell. Daraus folgt aber a fortiori der
Satz 2 (in 5)) :

Die gesamte relative Wahrscheinlichkeit des Auftretens von Graphen aus Linienzügen

mit der Länge l < 40 ist kleiner als der 2 ¦ 108-fe Teil der relativen Wahrscheinlichkeit

der Graphen, bei denen keine solchen Linienzüge vorkommen.
Dabei wurde für x der Wert x 1/12 angenommen, um einen konkreten Fall

vor Augen zu haben.
Zum Beweis gibt der Autor eine obere Schranke für die relative Wahrscheinlichkeit

an:

wrdfi>40)< x *'77 ^iigzyx^ S.40-M».

¥= (0, 0)

^(/4/3iV-(S*r» _ jj
1

X 2 • 108 ' J

(30)

Für das F-Modell ist diese Abschätzung ebenfalls richtig, da ja die a.Nl nach Satz 1

gegenüber dem Ising-Modell noch unterboten werden.
Im Anschluss an die bei van der Waerden folgende Diskussion folgt auch für

das F-Modell, dass für grosse N die Anzahl der gegenüber dem Grundzustand falsch
besetzten Stellen sowie 0-Anordnungen verglichen mit N verschwindend klein ist.
Dies gilt für alle Graphen, die mit nicht verschwindender Wahrscheinlichkeit
auftreten.

Beim Ising-Modell kann man zudem eine Unordnung für hohe Temperaturen
folgern. Es ist nämlich möglich, eine konvergente Hochtemperaturentwicklung
anzugeben. Die lange (im Grenzfall unendlich lange) Reichweite der Ordnung bricht
also bei einer kritischen Temperatur zusammen. Damit ist aber die Existenz mindestens

eines Umwandlungspunktes gezeigt. Die Betrachtung über die lange Reichweite

liefert zudem empirisch (nach van der Waerden5)) einen guten Wert für den
kritischen Punkt:

Xc,u 0,46 (31)
Der exakte Wert liegt bei:

xCtU 0,414 J/2 - 1 (31')

Leider ist es für das F-Modell nicht möglich, eine analoge Überlegung anzustellen.
Es ist nicht erwiesen, ob für hohe Temperaturen die lange Reichweite der Ordnung
zusammenbricht oder ob sie wegen den herrschenden Zwangsbedingungen aufrecht
erhalten bleibt. Für das F-Modell lässt sich daher auf diese Art nicht entscheiden,
ob eine Umwandlung existiert.
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6. Die Operatormethode

Kramers und Wannier7) (und unabhängig davon Lassettre und Howe8))
gelang es zum ersten Mal, die Zustandssumme des Ising-Modells als grössten Eigenwert

eines hermiteschen Operators auszudrücken. Onsager6) löste hierauf das
zweidimensionale Ising-Modell exakt. Für das F-Modell ist es gelungen, einen analogen
Operator anzugeben, dessen grösster Eigenwert die Zustandssumme darstellt. Analog

zum Ising-Modell spannt man das quadratische Gitter G auf einem Zylinder auf,
wobei die Zeilen (mit je n GP) ringförmig angeordnet werden, während die Kolonnen
axial verlaufen. In den GP sind die Anordnungen -f-, 0 und — gemäss der Vorschrift
des Modells angegeben. Der erste und der fm + 1)-Zylinderring werden miteinander
identifiziert, das heisst der Zylinder wird zu einem Torus geschlossen. Die Anzahl der
GP sei wieder N m • n. Längs der Zylinderachse sei nach dem Zeilenring z(,)

fl 1, 2, m) einer Signatur o-(() definiert als »-Tupel von Zahlen sf mit sf -J- 1

fj l, 2, n). Dabei gehört sf zur /-ten Kolonne und bezeichnet die erste GP-

Anordnung ^ 0 längs dieser (/-ten) Kolonne auf den Zeilenringen zu Zi_lt Zi_2, ¦ ¦ ¦

Die O-Anordnungen werden also als durchsichtig betrachtet. Man nimmt nun an,
dass der Zylinder bereits genügend lang ist fl sehr gross), damit in jeder Kolonne
mindestens einmal ein GP-Symbol ^ 0 angetroffen wird.

Durch Angabe aller Signaturen o-(,) (/ 1, 2, m) ist eine Gitterkonfiguration
vollständig gegeben. Das Paar von aufeinanderfolgenden Signaturen am und a(l+^]
bestimmt nämlich eindeutig die Anordnungen aller GP auf dem dazwischenliegenden

Zeilenring Zi.
Die Zustandssumme lässt sich in der Form darstellen :

z E x x ' * ' yQm (32)
(Konf)

mit:

Qj ist die Anzahl von Anordnungssymbolen -y 0 längs des Zeilenringes Z) fj= 1,

2, m). Die Summe erstreckt sich nur über alle erlaubten Gitterkonfigurationen.
Z kann nun formal geschrieben werden:

z 27 (ff<1) IHI ^2') (<r<2) IH Iff<3)) • • • (ff<m) IHI °m) • (33)
a(U) „(«))

Dabei muss H die beiden Bedingungen erfüllen :

1. Es dürfen nur erlaubte Ringkonfigurationen auftreten. Dies bedeutet, dass

auf einen Vorzeichenwechsel, zum Beispiel

(entsprechend dem Zeilensymbol zf> + 1), längs einer Zeile als nächster nur ein
umgekehrter VorzeichenWechsel folgen darf:

s^ -l^sX1) + l

(was z$ — 1 entspricht). Bleibt ein Vorzeichen gleich :

Ji) _ JiAl)sk — sk

so entspricht dies dem Zeilensymbol z$ 0.
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2. Ferner muss gelten:

(ffw | H | o-(' + 1)) yQi fj 1, 2, m)

Folgender symmetrischer Operator erfüllt 1. und 2.:

H / + y2 27 (p« ^ - Qa pß) Ay* E (pai 0.. Pa, Qa. + <?«, X, Qa3 K)
at < a2 <
< a3 < <x4 (34)

+ --- + y"(P1(?2---(?re + ç1P2---P»).

Der Einfachheit halber nimmt man n geradzahlig an : n 2 v.
Dabei sind die Operatoren Pk und Qu definiert als :

Pkafslt s*, s„) —Y^-afs!, — s*,. s») (35)

Cjj^Sl S», S„) r-t^Sj, — Sk, Sn) (35')

Man sieht sofort, dass H der Bedingung 1) genügt; ferner ist die Anzahl der
Vorzeichenwechsel, die ein Summand von H bewirkt, gerade gleich dem entsprechenden
Exponenten von y; das heisst auch 2) ist erfüllt.

P und Q werden dargestellt durch :

Mìo): 9,-Q.
das heisst die Pk und Qk lassen sich darstellen als direkte Produkte :

Pjb /X/X---XPX---X/,
Qtc lxlx---xQx---xl.

(36')

Zu jedem Summand in H ist noch ein entsprechender hermitesch konjugierter
Operator hinzuaddiert; weil zudem H reell ist, bedeutet dies, dass H symmetrisch ist.
Daraus folgt, dass sämtliche Eigenwerte von H reell sind. Für die Zustandssumme
ergibt sich daher:

2«

Z SpfHm) =EK"- (37)

Sei Aj der grösste Eigenwert von H. Dann ist :

2 Ar-gI(l+27(^-)W). (37')

gi ist der Entartungsgrad von lx ; das heisst faßt < 1.

Im Limes m -> co ergibt sich für die Zustandssumme A pro Teilchen :

A limZ1/m Ai • limgi/m. (37")



548 Franz Rys H. P. A.

Zur Bestimmung von A muss man also erstens den Entartungsgrad g1 bzw.

y limgî"»
m—>oo

und zweitens den grössten Eigenwert Xx kennen.
Betrachtet man nun einen Vektor mit nicht negativen Koeffizienten in der Basis

der a im F(2M)(«nicht-negativer Vektor»), und wendet darauf den Operator H an,
so entsteht wieder ein nicht-negativer Vektor, weil H nur nicht-negative
Matrixelemente besitzt. Die Komponenten eines nicht-negativen Vektors können nun (als
nicht-negative Zahlen) aufgefasst werden als Wahrscheinlichkeiten der statistischen
Gesamtheit von Zuständen a.

Nach dem fundamentalen Entwicklungssatz einer Matrix nach ihren
Eigenwerten gilt:

2»

fi\H\k)=ZXpeWef. (38)
p i

p numeriert alle Eigenwerte bzw. -vektoren. w-malige Anwendung von H ergibt:
2"

fi \ Hm \ k) 2J i; e[p) ef (38')
p=i

Für sehr grosse m wird schliesslich der ursprüngliche Vektor in den Eigenraum zu
grösstem Eigenwert Xx projiziert, vorausgesetzt dass ersterer nicht orthogonal auf
dem Eigenraum steht. Geht man zum Beispiel vom Vektor

e ^rfhh...,l)^-^rE°w (39>
*=1

aus, so ist er bestimmt nicht orthogonal zum Eigenraum zu Xx.

Folgender Satz von Frobenius9) enthält einige allgemeine Aussagen über den
grössten Eigenwert einer nicht-negativen Matrix:

Satz: Für eine Matrix A in n Dimensionen mit lauter nicht-negativen Elementen
(nicht-negative Matrix) ist der grösste Eigenwert Xx stets nicht-negativ. Xx ist genau
dann k-fach entartet, falls sämtliche Hauptminoren fn—i)-, fn — 2)-, fn — k -4-1)-
Grades der Matrix

A(X) A - XE

verschwinden. Xx — 0 nur dann, falls sämtliche Ausdrücke von der Form am,
amß aßa j • ¦ • verschwinden.

Für H folgt daraus wegen haa 1 :

Xx>0. (40)
Ferner gilt folgender
Satz: Zum grössten Eigenwert einer symmetrischen Matrix gibt es einen

nichtnegativen Eigenvektor.
Beweis: Der grösste Eigenwert Xx ist gegeben durch

Xx sup xi Rn xh (> 0) (41)
ll*.i i
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Sei nun f ein Eigenvektor zu Xx:

Ai fcff«£*. (4L)

Dann ist auch rj fr\i — | f« |, i — 1, 2, 2") ein Eigenvektor zu Ax, denn aus:

| #« Hj* ** | < | xi | Hoc \xk\; fHoc > 0)

folgt:
sup Xi Hik Xk sup xt Rite xt.
||*||=i ![*ll i

Daher ist:
& #«* f* ??i Hik r\k Xx. (41")

Die Komponenten des Vektors r\ können also als Wahrscheinlichkeiten aufgefasst
werden.

Über H lassen sich ferner einige weitere spezielle Aussagen machen. Der Operator

besitzt verschiedene Symmetrien, die aus der Definition leicht ersichtlich sind.
1. H kommutiert mit dem Operator T der Vorzeichensumme der Signaturen:

[H, T]=0. (42)

n
T a fsx, Sn) t • afsx, sn) t=2Jst. (42')

*=i
Die Eigenvektoren von T sind die Basisvektoren a.

H lässt daher alle Unterräume Ut invariant, welche durch alle Basisvektoren
mit dem festen Eigenwert t aufgespannt werden, t nimmt die n + 1-Werte an:

t — — n, — n A- 2, — 2, 0, 2, n — 2, n

Die Dimension At von Ut beträgt:

At=l:_A- (42")

Falls der grösste Eigenwert von H nicht entartet ist, kann der zugehörige Eigenvek-
tor nur in U0 liegen, denn zu jedem Eigenvektor in U« ft ^ 0) gehört ein zweiter in
IL* mit demselben Eigenwert.

2. H ist symmetrisch bezüglich der Gruppe D„ der Diederpermutationen der
n Argumente s*- der Signaturen a. D„ wird erzeugt durch die 2 Elemente A und B :

Dn={A-B; An E, B* E, B~lAB A-1}.
Die irreduzierten Darstellungen sind ein- und zweidimensional. Unter den eindimensionalen

Darstellungen gibt es:

a) die identische : A B (1)

b) ferner: A (1), B (- 1)

Für geradzahliges n gibt es ferner die zwei weiteren eindimensionalen Darstellungen :

c) A f-\), B f\),
d) A (- 1), ß (- 1)
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Ferner gibt es (für n gerade) noch mj2 — 1 verschiedene zweidimensionale
Darstellungen :

MoX -P
wobei £ eine primitive m-te Einheitswurzel ist.

Dn ist im Raum F'2*'hochgradig reduzibel dargestellt und zerfällt in ein- und
zweidimensionale irreduzible Bestandteile. Es gilt der

Satz: Vektoren, die zu inäquivalenten irreduziblen Darstellungen gehören, sind
gegenseitig orthogonal.

Der oben eingeführte Vektor e (Gleichung (39)) gehört zur identischen Darstellung

von Dn; da aber der Eigenvektor r\ zum grössten Eigenwert Xx (Gleichung
(41")) nicht orthogonal auf e stehen kann, gehört er dem Unterraum zur identischen
Darstellung an.

Weitere Aussagen über H lassen sich nur erhalten, wenn man die spezielle Form
des Operators untersucht. Für tiefe Temperaturen und £ > 0 ist der grösste Eigenwert

nicht entartet; der entsprechende Eigenvektor gehört dem Unterraum U0 an.
Um dies zu zeigen, entwickelt man H nach Potenzen von x e~Wftr) 1/y :

xn H H{n) + x* H{n~2) 4 h xn-2 H{2) + H{0). (34')

Dabei ist :

H{n) =PXQ2--- Pn_x Qn Ah.c,
^/ et, Va2 aM-3 t;an-2

a,< ¦ ¦ • <a„_2

Nun entwickelt man auch den Eigenvektor und den Eigenwert nach Potenzen von
x2 und vergleicht die entsprechenden Koeffizienten der Eigenwertgleichung:

(#(») _|_ *2 #(»-2) + Xi H(n-4) _j )(VoA- X2 V2 + X* Vt ¦ • ¦)

(A, + x2 y2 + x* X, 4 K + x2 vt + xi vt

Dies ergibt zunächst:

(43)

#<"> v, A„ v„. (43')

Man sieht leicht, dass folgende Eigenvektoren zu H1-^ gehören:

f.i {(+ + -) + (- + +)},
»M={(+ + -)-(- + +)}•

(44)

Die entsprechenden Eigenwerte sind 1 (von vox) und —1 (von v02). Ferner gibt es
noch alle übrigen Signaturen, welche Eigenvektoren von H^ zum Eigenwert 0
sind. Für den grössten Eigenwert Xfx) muss auch X0 maximal sein, das heisst :

X0 1 und ^0 vox (45)

offenbar ist:
T v0 0, das heisst v0 e U0 (45')
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Daraus folgt aber bereits, dass wegen [H, T] 0

v v0 + x2 v2 4 e U0 (46)

n U0 liegt und dass X nicht entartet ist, solange die Reihenentwicklung nach x
konvergiert, das heisst für tiefe Temperaturen (siehe unten). Es ist jedoch möglich,
dass auch für hohe Temperaturen der Eigenvektor zum grössten Eigenwert nicht
entartet ist. Ist dies jedoch nicht mehr der Fall, so wäre damit die Existenz eines

(bzw. mindestens eines) Umwandlungspunktes gezeigt.
Aus dem Koeffizientenvergleich lassen sich ferner die ersten Glieder der

Entwicklung der Zustandssumme angeben. Es ist :

*„: #lM) ^ X„ v0 -> w, vn X0 1 (43')

x2: H^-2A0X + H^v2 X2v0X + vi. (43")

v2 — a vox 4- ß v02 + y v'2 (45)

(v'» vox) [v» Vw) fvox v02) 0 (45')

H™ v2 zv0X-ß v02 (43")

Ferner ist, formal ausgedrückt:

ff<"-»V= £{(+- + + +j- -¦¦¦ + - + -)+h.c)}, (47)

Mit

wobei

ist, das heisst

w

fr
daher

somit

Daraus folgt:

wobei

(w vox) (w v02) 0

a. vox — ß v02 4- w a vox 4- ß v02 + v'2 + A2 vox

v* ol vox 4- w (43'")

a unbestimmt, Aa 0 (48)

ist. (48) ist in Übereinstimmung mit der Tieftemperaturentwicklung nach der
Graphenmethode (vgl. (22)).

Für den nächsten Koeffizienten ergibt sich:

x*: #("-4) vn A H^ (oc vn A w) + #"" vt A4 vox + A„ v,. (43"")

Daraus

A4 fvox ] H«»"4' | vox) + xfvox I ff<»-2>| vox) 1

r (49)
+ fvox j #<"-2> | w) + fvox | H* | vt) - fvox vA j

Die ersten beiden Summanden sind einzeln 0; die letzten beiden addieren sich
zu 0, und es ergibt sich :

A4 fvox I ff<M-2> I w) \\w II» n (49')
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Die Entwicklung der Zustandssumme lautet daher:

Z Xfx) i 4- n x* 4- ¦

H. P. A.

(50)

was genau der Tieftemperaturentwicklung entspricht.
Für hohe Temperaturen lässt sich jedoch die Berechnung der Zustandssumme

auf diese Art nicht durchführen.
Für endliche n fn 2, 4 und 6) lassen sich die exakten Lösungen ohne grosse

Mühe explizit berechnen.
Für den Fall n 2 ergibt sich:

H

A 0 0 0\
0 1 y2 0

0 y2 1 0

A> 0 0 Ì/
Die Säkulargleichung lautet :

det (ff-A E) s= (1 - A)2[(l - Xy-y'] 0.

Sie hat die Lösungen:

Xx 1 + y2, A2 1 - y2; A3 A4 1

Der grösste Eigenwert Xx ergibt die Zustandssumme pro Teilchen :

Afy) ]/l +y2.
Daraus ergibt sich die Energie und die spezifische Wärme :

y2 C
__

/ £ \2 2 y\Tt) AA~
E
E l a-y2

e
4- y2

(51)

(52)

(52')

(52")

(53)

E und C bleiben stetig und glatt, so dass kein Umwandlungspunkt auftritt.
Für den Fall n 4 sucht man nicht alle Eigenwerte von H zu bestimmen,

sondern nützt die oben erwähnten Symmetrien aus. Man klassifiziert die Basisvektoren
bezüglich der Eigenräume Ut des Operators T (vgl. Tabelle 3).

Tabelle 3

U4: (+ + + +) U_4: (____)
'(+ + + -) +

u • (+ + -+) U 2: ¦
+ -)

(+- + +) (—+——)
[(- + + +)

'(+ + --)
(- + + -)

l (H

U„:
h +)

(+ h)

(+- + -)
[(- + -+)
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Weiter benützt man die Tatsache, dass der grösste Eigenwert von H zum Eigenraum

der identischen Darstellung der Diedergruppe gehört. Folgende 6 Vektoren
spannen diesen Unterraum auf (vgl. Tabelle 4).

Tabelle 4

Wi =(+ + + +) eU4; aj-4 )eU-4,

^ Y [(+ + + -) + (+ + -+) + (+- + +) + (- + + +)]eUa,

*»-a \ [( +) + (-- + -) + (- + --) + (+' )] e U_2,

«"ot yC(+ + + (- + + -) + + +) + (+ +)]etfo,

^o2 -4- [(+- + -) + (- + -+)] 6 U"0

Man sieht sofort, dass wit w2, w_2 und w_4 Eigenvektoren von ff sind. Die
zugehörigen Eigenwerte lauten :

A4 1 A2 1 + 3 y2, A-2 1 + 3 y2, A_4 1 (54)

Im Unterraum, der durch w01 und w02 aufgespannt wird, hat ff die Form:

Die Eigenwerte lauten:

/l+2y2 1/2 y2,
ff TL y V

(54')
\4]/2y2 1 + y4'

A±1 l+y2+-|--t|/9y4-y« + ^-. (54")

Vergleicht man nun die 6 Eigenwerte miteinander, so ergibt sich der grösste:

Ax l + y2 + ^+y2|/9-y2 + ^. (54'")

Er ist nicht entartet und gehört zu U0 (für alle Temperaturen).
Die Zustandssumme als Funktion von x lautet (mit verschobenem Energienullpunkt)

Z(x) A\x) 1 + 2 x2 + 2 xi + |/l - 4 x2 + 36 x*. (55)

Oder, nach Potenzen von x2 entwickelt:

Afx) 1 + ~ x** + 4 xe 4 • (55')

Es ist zu beachten, dass der Koeffizient von x2 gleich 0 ist, was auch aus der exakten
Tieftemperaturentwicklung folgt.
86 H. P. A. 36, 5 (1963)
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Für die Energie erhält man den Ausdruck

E
E

Nach x entwickelt:

4 x1 11 + 2 %2 + |
\ j/l - 4 x* A- 36 jtr4 /

4 x4 (1 + 22 x2 + 24 %4 + • • ¦)

H. P. A.

(56)

(56')

Für diesen Fall n 4 sieht man also, dass der grösste Eigenwert nicht entartet ist
und der zugehörige Eigenvektor in U0 liegt. Dies gilt für alle Temperaturen, das
heisst für 0 < x < 1.

F-Modell
10

£
f
* 0,8

0,6

OA

0,2

/7-2s
/7-40

" * •y^Approx.

^r

w
Lt
A Oß

Oß

OA

0,2

Ising-Modell

/7-2
/7-4
/7-5
n-oo (exakte

2-d/tn. tosung)

0,2 0,4 0,0 0,5 /,0

>• »r

0,2 0,4 0,5 0,0 7,0

-r *-

Fig. 6

Vergleich der Konfigurationsenergien des F-Modells und des Ising-Modells

Der Fall n 6 führt auf die Lösung einer kubischen Gleichung. Der grösste
zu U0 gehörige Eigenwert bzw. die sich daraus ergebende Energie als Funktion von x
ist zusammen mit jener für n 2 und n 4 in Figur 6 dargestellt. Die Kurven
zeigen nur ein geringes Anwachsen der maximalen Steigung für wachsendes n. Der
Vergleich mit den Kurven für das Ising-Modell [n 2, 4 und 6 und exakte Kurve
fn — oo)] ergibt ein Indiz dafür, dass die Steigung der Energie des F-Modells im
Grenzfall n oo endlich bleibt, dass also kein Umwandlungspunkt auftritt.

7. Eine Näherungsmethode

Auf Grund der in Abschnitt 3 gezeigten Ähnlichkeit des F-Modells mit dem
zweidimensionalen Ising-Modell ergibt sich die Möglichkeit einer Näherungslösung für
das F-Modell. Man betrachtet beide Modelle auf dem Doppelgitter des F-Modells,
indem man das quadratische Gitter des Ising-Modells in 2 kongruente Teile Gx und
G2 spaltet und diese dual aufeinander legt. Ein Ising-Graph besteht aus geschlossenen

Linienzügen, die beliebig auf Gx und G2 liegen dürfen, während für einen
F-Graphen die Vorschrift besteht, dass sich die Linienzüge auf Gx nicht mit jenen
auf G2 schneiden. Diese Vorschrift lässt sich exakt für die Menge aller jener Graphen
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formulieren, die aus einzelnen Strichen mit Einheitslänge bestehen («Dimere») und
deren Gesamtlänge l gegeben ist («Dimer-Graph»).

Durch jeden der N Schnittpunkte der Ubergitter Gx und G2 dürfen ohne
Vorschrift 0, 1 oder 2 Dimere gehen, während nach Vorschrift nur 0 oder 1 Dimer gehen
darf.

Die Anzahl Dimer-Graphen mit Gesamtlänge / beträgt für die beiden Fälle:

a) mit Vorschrift : 11 N\
^012 %5x^ x^xr ' (57)

b) ohne Vorschrift :

l W2] N
Ao1 =^iti,2^X M zAi-2z)AX -l + z)'.^ ¦ (58)

Für den Bruchteil
K(l, N) -4^- (59)

ergibt sich:

i M-T' A-A' *-' + !:*) (6°)

(siehe Erdélyi10)).
Da kein geschlossener Ausdruck für \JK existiert, verwendet man die Methode

des grössten Summanden.
Dann ist

0, (61)~=y s(z) wobeiK v ' dz

,-v _ f x"(l - u)(l-*) Y ~
— N IRi'\SW - [ (2oe)«(, - 2 a)('-2«) (1 - v + a)(i- + «) J ' * ~ * - [ '

Dies ergibt :

xfv) -1(1 + v - J/l + 2 v - v2) (61")

also erhalten wir schliesslich

1 E
-py als Funktion von : v —rr-K e N

Die Ising-Konfigurationen der Länge l bilden eine Untermenge der Menge der
Dimer-Graphen (der Gesamtlänge l). Man macht nun (im Sinne der Näherung) den
Ansatz für die Anzahl Gpfl, N) der F-Konfigurationen mit der Länge /:

GFfl, N) Kfl, N) • Gfl, N) (62)

Gfl, N): Anzahl der Ising-Konfigurationen.
Die mikrokanonische Konfigurationsentropie pro GP als Funktion der Energie

ist gegeben durch:

sfl, N)=JA iogg(i: N) k iogy(v) (63)

wobei :

v w l=A' y=v§-
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Der Ansatz der Näherung bedeutet also:

1 sFfl, N) log y - logo- (62')

mit jV,

X-
Die Entropie des Ising-Modells ergibt sich bekanntlich aus der exakten Zustandssumme.

Es ist
log y log/1 — v log* (64)

dv
Aus (64) und (64') folgt

dl°sy _iog*. (64')

dlogA <GA"\v x -j-— (64

Für das F-Modell ergibt sich die zu (64') analoge Gleichung :

A^A_^A + iogx 0. (65)
dv dv

Fasst man nun für beide Modelle x als Funktion der Energie v auf, so lautet (65) :

oder
log^(r)=log^W--^l (65')

XP(V) xufv) • TA- - l-v + ^] (65")w v ' 1 — v v — 2 a.(v)

Die Energie des Ising-Modells ist bekanntlich eine monoton wachsende Funktion
der Temperatur (also auch von x). Es ist:

*>0, .-. ^W->0, (66)
dx dv

ausser am kritischen Punkt, wo

AA=00 ^X o. (66')
dx dv

Für das F-Modell ergibt sich im Sinne der Näherung:

dlogXF dlogXis dHoga
dv dv dv-

Da nun aber
d2\oga d \ v 1 — v A- a(v)

(67)

\^— ¦ '""oTPl > « (68)
L 1 — v v — 2 a.(v) J vdv2 dv

für den ganzen Variationsbereich der F-Energie ist, so gilt für alle Temperaturen:

~- > 0 (69)

das heisst dvfdx bleibt endlich. Damit tritt aber keine Singularität der spezifischen
Wärme auf.



Vol. 36, 1963 Über ein zweidimensionales klassisches Konfigurationsmodell 557

Die Reihenentwicklung der Näherung für kleine x ergibt für die Energie :

-{Approx)
4 x*

E\Approx> ,__,!, 5 447
(l + 3 x2 y A XK _ iX x*.. A (yo)

Die exakte Entwicklung lautet :

£"' 4 *4 (1 + 3 x2 + 5 *4 - 41 xs • ¦ ¦) (70')
£

Ob diese Methode das F-Modell im wesentlichen richtig beschreibt, lässt sich nicht
entscheiden. Jedenfalls wird die Funktion gFfl, N) für grosse /, das heisst l ~ N
vom richtigen Wert nur wenig abweichen; für tiefe Temperaturen ist hingegen die
Abweichung grösser.

8. Schlussfolgerungen

Eine exakte Lösung, wie sie für die drei eingangs erwähnten Modelle gefunden
werden konnte, lässt sich für das F-Modell nicht angeben. Auch die Frage nach dem
Auftreten eines Umwandlungspunktes kann nicht endgültig beantwortet werden.
Einige Hinweise deuten jedoch darauf hin, dass keine Phasenumwandlung auftritt.
Die Konfigurationsenergie der Gitterstreifen mit Breite n 2, 4 und 6 nähert sich,
für wachsendes n, weniger rasch einer Kurve mit senkrechter Tangente, als dies
beim Ising-Modell der Fall ist. Ferner ergibt sich aus dem vorgeschlagenen
Näherungsverfahren, dass es zweifelhaft ist, ob die «richtige» Korrektur der
Konfigurationsentropie für das F-Modell eine Umwandlung ergibt. Schliesslich ist die
Vermutung, dass für hohe Temperaturen die weitreichende Ordnung zusammenbricht,
durch nichts gerechtfertigt, und die Möglichkeit einer solchen Ordnung auf Grund
der Natur der Zwangsbedingungen durchaus vorhanden.

Zum Schluss sei hier meinen beiden Lehrern, Prof. M. Fierz und Prof. R. Jost,
sowie den übrigen Mitgliedern des Seminars für theoretische Physik an der ETH,
vor allem Herrn Dr. M. Kummer, herzlichst für die hilfreichen Diskussionen gedankt.
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Anhang
Tabelle einiger Graphen

H. P. A.

1 Graph gising(l, N) g*(i, m

4 D N N

6 2N 2 N

» Zl N(N -
2

2N

4N

5) N(N -
2

2N

4 N

9)

1

7
N N

Total: N(N + 9)
2

N(N A- 5)
2

10 Zl 2 N(N

2 N

4N

-8) 2ÌV(jV -

2N

4N

- 14)

1

X
^ 4 N

8N

2 AT

8iV

4 N

8N

2N

8N

AP

Total: 2 N(N A- 6) 2N2

12 DD f<- - 15 N + 62) >¦ - 27 AT + 194)

JV(2 IV

2 JV(AT •

- 23)

- 11)

2 N(N -

2 N(N -

- 20)

1 1 1 - 19)

[?n 4JV(AT--10) 4N(N --18)

D D N(N - 12) N(N - 20)
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Graph dh N) gr(l, N)

12 1 2N

"1X Z^ 8N;8N

H 2 N;8 N

JX ZZ 8N;4N

z^ N;4N

LrJ KJ 8N;4N

zx z^ 4 N;8N

Ri z> 8N;4N

y 4 N;4 N

Xi £> 4N;8N

lV ^ 4 N; 8N

\> 2N;4N

Lx1 z> 4N; N

Total: 124 N

N ,,v.„ (IV2 + 39 N A- 224) —- (N» + 27 N - 82)
6 b

Total: (/ 12):

Differenz £,(12, N) - gF(12, N) Ax% 2 N(N + 26)

124 AT

AT

/ 14: Analog: Differenz £,(14, N) - gF(U, N) Axl IV(16 N A- 124)
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